1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 #include <linux/ctype.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* Deferred messaged from sched code are marked by this special level */ 66 #define SCHED_MESSAGE_LOGLEVEL -2 67 68 /* 69 * Low level drivers may need that to know if they can schedule in 70 * their unblank() callback or not. So let's export it. 71 */ 72 int oops_in_progress; 73 EXPORT_SYMBOL(oops_in_progress); 74 75 /* 76 * console_sem protects the console_drivers list, and also 77 * provides serialisation for access to the entire console 78 * driver system. 79 */ 80 static DEFINE_SEMAPHORE(console_sem); 81 struct console *console_drivers; 82 EXPORT_SYMBOL_GPL(console_drivers); 83 84 #ifdef CONFIG_LOCKDEP 85 static struct lockdep_map console_lock_dep_map = { 86 .name = "console_lock" 87 }; 88 #endif 89 90 /* 91 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 92 * macros instead of functions so that _RET_IP_ contains useful information. 93 */ 94 #define down_console_sem() do { \ 95 down(&console_sem);\ 96 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 97 } while (0) 98 99 static int __down_trylock_console_sem(unsigned long ip) 100 { 101 if (down_trylock(&console_sem)) 102 return 1; 103 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 104 return 0; 105 } 106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 107 108 #define up_console_sem() do { \ 109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 110 up(&console_sem);\ 111 } while (0) 112 113 /* 114 * This is used for debugging the mess that is the VT code by 115 * keeping track if we have the console semaphore held. It's 116 * definitely not the perfect debug tool (we don't know if _WE_ 117 * hold it and are racing, but it helps tracking those weird code 118 * paths in the console code where we end up in places I want 119 * locked without the console sempahore held). 120 */ 121 static int console_locked, console_suspended; 122 123 /* 124 * If exclusive_console is non-NULL then only this console is to be printed to. 125 */ 126 static struct console *exclusive_console; 127 128 /* 129 * Array of consoles built from command line options (console=) 130 */ 131 132 #define MAX_CMDLINECONSOLES 8 133 134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 135 136 static int selected_console = -1; 137 static int preferred_console = -1; 138 int console_set_on_cmdline; 139 EXPORT_SYMBOL(console_set_on_cmdline); 140 141 /* Flag: console code may call schedule() */ 142 static int console_may_schedule; 143 144 /* 145 * The printk log buffer consists of a chain of concatenated variable 146 * length records. Every record starts with a record header, containing 147 * the overall length of the record. 148 * 149 * The heads to the first and last entry in the buffer, as well as the 150 * sequence numbers of these entries are maintained when messages are 151 * stored. 152 * 153 * If the heads indicate available messages, the length in the header 154 * tells the start next message. A length == 0 for the next message 155 * indicates a wrap-around to the beginning of the buffer. 156 * 157 * Every record carries the monotonic timestamp in microseconds, as well as 158 * the standard userspace syslog level and syslog facility. The usual 159 * kernel messages use LOG_KERN; userspace-injected messages always carry 160 * a matching syslog facility, by default LOG_USER. The origin of every 161 * message can be reliably determined that way. 162 * 163 * The human readable log message directly follows the message header. The 164 * length of the message text is stored in the header, the stored message 165 * is not terminated. 166 * 167 * Optionally, a message can carry a dictionary of properties (key/value pairs), 168 * to provide userspace with a machine-readable message context. 169 * 170 * Examples for well-defined, commonly used property names are: 171 * DEVICE=b12:8 device identifier 172 * b12:8 block dev_t 173 * c127:3 char dev_t 174 * n8 netdev ifindex 175 * +sound:card0 subsystem:devname 176 * SUBSYSTEM=pci driver-core subsystem name 177 * 178 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 179 * follows directly after a '=' character. Every property is terminated by 180 * a '\0' character. The last property is not terminated. 181 * 182 * Example of a message structure: 183 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 184 * 0008 34 00 record is 52 bytes long 185 * 000a 0b 00 text is 11 bytes long 186 * 000c 1f 00 dictionary is 23 bytes long 187 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 188 * 0010 69 74 27 73 20 61 20 6c "it's a l" 189 * 69 6e 65 "ine" 190 * 001b 44 45 56 49 43 "DEVIC" 191 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 192 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 193 * 67 "g" 194 * 0032 00 00 00 padding to next message header 195 * 196 * The 'struct printk_log' buffer header must never be directly exported to 197 * userspace, it is a kernel-private implementation detail that might 198 * need to be changed in the future, when the requirements change. 199 * 200 * /dev/kmsg exports the structured data in the following line format: 201 * "level,sequnum,timestamp;<message text>\n" 202 * 203 * The optional key/value pairs are attached as continuation lines starting 204 * with a space character and terminated by a newline. All possible 205 * non-prinatable characters are escaped in the "\xff" notation. 206 * 207 * Users of the export format should ignore possible additional values 208 * separated by ',', and find the message after the ';' character. 209 */ 210 211 enum log_flags { 212 LOG_NOCONS = 1, /* already flushed, do not print to console */ 213 LOG_NEWLINE = 2, /* text ended with a newline */ 214 LOG_PREFIX = 4, /* text started with a prefix */ 215 LOG_CONT = 8, /* text is a fragment of a continuation line */ 216 }; 217 218 struct printk_log { 219 u64 ts_nsec; /* timestamp in nanoseconds */ 220 u16 len; /* length of entire record */ 221 u16 text_len; /* length of text buffer */ 222 u16 dict_len; /* length of dictionary buffer */ 223 u8 facility; /* syslog facility */ 224 u8 flags:5; /* internal record flags */ 225 u8 level:3; /* syslog level */ 226 }; 227 228 /* 229 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 230 * within the scheduler's rq lock. It must be released before calling 231 * console_unlock() or anything else that might wake up a process. 232 */ 233 static DEFINE_RAW_SPINLOCK(logbuf_lock); 234 235 #ifdef CONFIG_PRINTK 236 DECLARE_WAIT_QUEUE_HEAD(log_wait); 237 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 238 static u64 syslog_seq; 239 static u32 syslog_idx; 240 static enum log_flags syslog_prev; 241 static size_t syslog_partial; 242 243 /* index and sequence number of the first record stored in the buffer */ 244 static u64 log_first_seq; 245 static u32 log_first_idx; 246 247 /* index and sequence number of the next record to store in the buffer */ 248 static u64 log_next_seq; 249 static u32 log_next_idx; 250 251 /* the next printk record to write to the console */ 252 static u64 console_seq; 253 static u32 console_idx; 254 static enum log_flags console_prev; 255 256 /* the next printk record to read after the last 'clear' command */ 257 static u64 clear_seq; 258 static u32 clear_idx; 259 260 #define PREFIX_MAX 32 261 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 262 263 /* record buffer */ 264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 265 #define LOG_ALIGN 4 266 #else 267 #define LOG_ALIGN __alignof__(struct printk_log) 268 #endif 269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 270 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 271 static char *log_buf = __log_buf; 272 static u32 log_buf_len = __LOG_BUF_LEN; 273 274 /* Return log buffer address */ 275 char *log_buf_addr_get(void) 276 { 277 return log_buf; 278 } 279 280 /* Return log buffer size */ 281 u32 log_buf_len_get(void) 282 { 283 return log_buf_len; 284 } 285 286 /* human readable text of the record */ 287 static char *log_text(const struct printk_log *msg) 288 { 289 return (char *)msg + sizeof(struct printk_log); 290 } 291 292 /* optional key/value pair dictionary attached to the record */ 293 static char *log_dict(const struct printk_log *msg) 294 { 295 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 296 } 297 298 /* get record by index; idx must point to valid msg */ 299 static struct printk_log *log_from_idx(u32 idx) 300 { 301 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 302 303 /* 304 * A length == 0 record is the end of buffer marker. Wrap around and 305 * read the message at the start of the buffer. 306 */ 307 if (!msg->len) 308 return (struct printk_log *)log_buf; 309 return msg; 310 } 311 312 /* get next record; idx must point to valid msg */ 313 static u32 log_next(u32 idx) 314 { 315 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 316 317 /* length == 0 indicates the end of the buffer; wrap */ 318 /* 319 * A length == 0 record is the end of buffer marker. Wrap around and 320 * read the message at the start of the buffer as *this* one, and 321 * return the one after that. 322 */ 323 if (!msg->len) { 324 msg = (struct printk_log *)log_buf; 325 return msg->len; 326 } 327 return idx + msg->len; 328 } 329 330 /* 331 * Check whether there is enough free space for the given message. 332 * 333 * The same values of first_idx and next_idx mean that the buffer 334 * is either empty or full. 335 * 336 * If the buffer is empty, we must respect the position of the indexes. 337 * They cannot be reset to the beginning of the buffer. 338 */ 339 static int logbuf_has_space(u32 msg_size, bool empty) 340 { 341 u32 free; 342 343 if (log_next_idx > log_first_idx || empty) 344 free = max(log_buf_len - log_next_idx, log_first_idx); 345 else 346 free = log_first_idx - log_next_idx; 347 348 /* 349 * We need space also for an empty header that signalizes wrapping 350 * of the buffer. 351 */ 352 return free >= msg_size + sizeof(struct printk_log); 353 } 354 355 static int log_make_free_space(u32 msg_size) 356 { 357 while (log_first_seq < log_next_seq) { 358 if (logbuf_has_space(msg_size, false)) 359 return 0; 360 /* drop old messages until we have enough contiguous space */ 361 log_first_idx = log_next(log_first_idx); 362 log_first_seq++; 363 } 364 365 /* sequence numbers are equal, so the log buffer is empty */ 366 if (logbuf_has_space(msg_size, true)) 367 return 0; 368 369 return -ENOMEM; 370 } 371 372 /* compute the message size including the padding bytes */ 373 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 374 { 375 u32 size; 376 377 size = sizeof(struct printk_log) + text_len + dict_len; 378 *pad_len = (-size) & (LOG_ALIGN - 1); 379 size += *pad_len; 380 381 return size; 382 } 383 384 /* 385 * Define how much of the log buffer we could take at maximum. The value 386 * must be greater than two. Note that only half of the buffer is available 387 * when the index points to the middle. 388 */ 389 #define MAX_LOG_TAKE_PART 4 390 static const char trunc_msg[] = "<truncated>"; 391 392 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 393 u16 *dict_len, u32 *pad_len) 394 { 395 /* 396 * The message should not take the whole buffer. Otherwise, it might 397 * get removed too soon. 398 */ 399 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 400 if (*text_len > max_text_len) 401 *text_len = max_text_len; 402 /* enable the warning message */ 403 *trunc_msg_len = strlen(trunc_msg); 404 /* disable the "dict" completely */ 405 *dict_len = 0; 406 /* compute the size again, count also the warning message */ 407 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 408 } 409 410 /* insert record into the buffer, discard old ones, update heads */ 411 static int log_store(int facility, int level, 412 enum log_flags flags, u64 ts_nsec, 413 const char *dict, u16 dict_len, 414 const char *text, u16 text_len) 415 { 416 struct printk_log *msg; 417 u32 size, pad_len; 418 u16 trunc_msg_len = 0; 419 420 /* number of '\0' padding bytes to next message */ 421 size = msg_used_size(text_len, dict_len, &pad_len); 422 423 if (log_make_free_space(size)) { 424 /* truncate the message if it is too long for empty buffer */ 425 size = truncate_msg(&text_len, &trunc_msg_len, 426 &dict_len, &pad_len); 427 /* survive when the log buffer is too small for trunc_msg */ 428 if (log_make_free_space(size)) 429 return 0; 430 } 431 432 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 433 /* 434 * This message + an additional empty header does not fit 435 * at the end of the buffer. Add an empty header with len == 0 436 * to signify a wrap around. 437 */ 438 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 439 log_next_idx = 0; 440 } 441 442 /* fill message */ 443 msg = (struct printk_log *)(log_buf + log_next_idx); 444 memcpy(log_text(msg), text, text_len); 445 msg->text_len = text_len; 446 if (trunc_msg_len) { 447 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 448 msg->text_len += trunc_msg_len; 449 } 450 memcpy(log_dict(msg), dict, dict_len); 451 msg->dict_len = dict_len; 452 msg->facility = facility; 453 msg->level = level & 7; 454 msg->flags = flags & 0x1f; 455 if (ts_nsec > 0) 456 msg->ts_nsec = ts_nsec; 457 else 458 msg->ts_nsec = local_clock(); 459 memset(log_dict(msg) + dict_len, 0, pad_len); 460 msg->len = size; 461 462 /* insert message */ 463 log_next_idx += msg->len; 464 log_next_seq++; 465 466 return msg->text_len; 467 } 468 469 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 470 471 static int syslog_action_restricted(int type) 472 { 473 if (dmesg_restrict) 474 return 1; 475 /* 476 * Unless restricted, we allow "read all" and "get buffer size" 477 * for everybody. 478 */ 479 return type != SYSLOG_ACTION_READ_ALL && 480 type != SYSLOG_ACTION_SIZE_BUFFER; 481 } 482 483 static int check_syslog_permissions(int type, bool from_file) 484 { 485 /* 486 * If this is from /proc/kmsg and we've already opened it, then we've 487 * already done the capabilities checks at open time. 488 */ 489 if (from_file && type != SYSLOG_ACTION_OPEN) 490 return 0; 491 492 if (syslog_action_restricted(type)) { 493 if (capable(CAP_SYSLOG)) 494 return 0; 495 /* 496 * For historical reasons, accept CAP_SYS_ADMIN too, with 497 * a warning. 498 */ 499 if (capable(CAP_SYS_ADMIN)) { 500 pr_warn_once("%s (%d): Attempt to access syslog with " 501 "CAP_SYS_ADMIN but no CAP_SYSLOG " 502 "(deprecated).\n", 503 current->comm, task_pid_nr(current)); 504 return 0; 505 } 506 return -EPERM; 507 } 508 return security_syslog(type); 509 } 510 511 512 /* /dev/kmsg - userspace message inject/listen interface */ 513 struct devkmsg_user { 514 u64 seq; 515 u32 idx; 516 enum log_flags prev; 517 struct mutex lock; 518 char buf[8192]; 519 }; 520 521 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 522 { 523 char *buf, *line; 524 int i; 525 int level = default_message_loglevel; 526 int facility = 1; /* LOG_USER */ 527 size_t len = iocb->ki_nbytes; 528 ssize_t ret = len; 529 530 if (len > LOG_LINE_MAX) 531 return -EINVAL; 532 buf = kmalloc(len+1, GFP_KERNEL); 533 if (buf == NULL) 534 return -ENOMEM; 535 536 buf[len] = '\0'; 537 if (copy_from_iter(buf, len, from) != len) { 538 kfree(buf); 539 return -EFAULT; 540 } 541 542 /* 543 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 544 * the decimal value represents 32bit, the lower 3 bit are the log 545 * level, the rest are the log facility. 546 * 547 * If no prefix or no userspace facility is specified, we 548 * enforce LOG_USER, to be able to reliably distinguish 549 * kernel-generated messages from userspace-injected ones. 550 */ 551 line = buf; 552 if (line[0] == '<') { 553 char *endp = NULL; 554 555 i = simple_strtoul(line+1, &endp, 10); 556 if (endp && endp[0] == '>') { 557 level = i & 7; 558 if (i >> 3) 559 facility = i >> 3; 560 endp++; 561 len -= endp - line; 562 line = endp; 563 } 564 } 565 566 printk_emit(facility, level, NULL, 0, "%s", line); 567 kfree(buf); 568 return ret; 569 } 570 571 static ssize_t devkmsg_read(struct file *file, char __user *buf, 572 size_t count, loff_t *ppos) 573 { 574 struct devkmsg_user *user = file->private_data; 575 struct printk_log *msg; 576 u64 ts_usec; 577 size_t i; 578 char cont = '-'; 579 size_t len; 580 ssize_t ret; 581 582 if (!user) 583 return -EBADF; 584 585 ret = mutex_lock_interruptible(&user->lock); 586 if (ret) 587 return ret; 588 raw_spin_lock_irq(&logbuf_lock); 589 while (user->seq == log_next_seq) { 590 if (file->f_flags & O_NONBLOCK) { 591 ret = -EAGAIN; 592 raw_spin_unlock_irq(&logbuf_lock); 593 goto out; 594 } 595 596 raw_spin_unlock_irq(&logbuf_lock); 597 ret = wait_event_interruptible(log_wait, 598 user->seq != log_next_seq); 599 if (ret) 600 goto out; 601 raw_spin_lock_irq(&logbuf_lock); 602 } 603 604 if (user->seq < log_first_seq) { 605 /* our last seen message is gone, return error and reset */ 606 user->idx = log_first_idx; 607 user->seq = log_first_seq; 608 ret = -EPIPE; 609 raw_spin_unlock_irq(&logbuf_lock); 610 goto out; 611 } 612 613 msg = log_from_idx(user->idx); 614 ts_usec = msg->ts_nsec; 615 do_div(ts_usec, 1000); 616 617 /* 618 * If we couldn't merge continuation line fragments during the print, 619 * export the stored flags to allow an optional external merge of the 620 * records. Merging the records isn't always neccessarily correct, like 621 * when we hit a race during printing. In most cases though, it produces 622 * better readable output. 'c' in the record flags mark the first 623 * fragment of a line, '+' the following. 624 */ 625 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 626 cont = 'c'; 627 else if ((msg->flags & LOG_CONT) || 628 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 629 cont = '+'; 630 631 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 632 (msg->facility << 3) | msg->level, 633 user->seq, ts_usec, cont); 634 user->prev = msg->flags; 635 636 /* escape non-printable characters */ 637 for (i = 0; i < msg->text_len; i++) { 638 unsigned char c = log_text(msg)[i]; 639 640 if (c < ' ' || c >= 127 || c == '\\') 641 len += sprintf(user->buf + len, "\\x%02x", c); 642 else 643 user->buf[len++] = c; 644 } 645 user->buf[len++] = '\n'; 646 647 if (msg->dict_len) { 648 bool line = true; 649 650 for (i = 0; i < msg->dict_len; i++) { 651 unsigned char c = log_dict(msg)[i]; 652 653 if (line) { 654 user->buf[len++] = ' '; 655 line = false; 656 } 657 658 if (c == '\0') { 659 user->buf[len++] = '\n'; 660 line = true; 661 continue; 662 } 663 664 if (c < ' ' || c >= 127 || c == '\\') { 665 len += sprintf(user->buf + len, "\\x%02x", c); 666 continue; 667 } 668 669 user->buf[len++] = c; 670 } 671 user->buf[len++] = '\n'; 672 } 673 674 user->idx = log_next(user->idx); 675 user->seq++; 676 raw_spin_unlock_irq(&logbuf_lock); 677 678 if (len > count) { 679 ret = -EINVAL; 680 goto out; 681 } 682 683 if (copy_to_user(buf, user->buf, len)) { 684 ret = -EFAULT; 685 goto out; 686 } 687 ret = len; 688 out: 689 mutex_unlock(&user->lock); 690 return ret; 691 } 692 693 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 694 { 695 struct devkmsg_user *user = file->private_data; 696 loff_t ret = 0; 697 698 if (!user) 699 return -EBADF; 700 if (offset) 701 return -ESPIPE; 702 703 raw_spin_lock_irq(&logbuf_lock); 704 switch (whence) { 705 case SEEK_SET: 706 /* the first record */ 707 user->idx = log_first_idx; 708 user->seq = log_first_seq; 709 break; 710 case SEEK_DATA: 711 /* 712 * The first record after the last SYSLOG_ACTION_CLEAR, 713 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 714 * changes no global state, and does not clear anything. 715 */ 716 user->idx = clear_idx; 717 user->seq = clear_seq; 718 break; 719 case SEEK_END: 720 /* after the last record */ 721 user->idx = log_next_idx; 722 user->seq = log_next_seq; 723 break; 724 default: 725 ret = -EINVAL; 726 } 727 raw_spin_unlock_irq(&logbuf_lock); 728 return ret; 729 } 730 731 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 732 { 733 struct devkmsg_user *user = file->private_data; 734 int ret = 0; 735 736 if (!user) 737 return POLLERR|POLLNVAL; 738 739 poll_wait(file, &log_wait, wait); 740 741 raw_spin_lock_irq(&logbuf_lock); 742 if (user->seq < log_next_seq) { 743 /* return error when data has vanished underneath us */ 744 if (user->seq < log_first_seq) 745 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 746 else 747 ret = POLLIN|POLLRDNORM; 748 } 749 raw_spin_unlock_irq(&logbuf_lock); 750 751 return ret; 752 } 753 754 static int devkmsg_open(struct inode *inode, struct file *file) 755 { 756 struct devkmsg_user *user; 757 int err; 758 759 /* write-only does not need any file context */ 760 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 761 return 0; 762 763 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 764 SYSLOG_FROM_READER); 765 if (err) 766 return err; 767 768 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 769 if (!user) 770 return -ENOMEM; 771 772 mutex_init(&user->lock); 773 774 raw_spin_lock_irq(&logbuf_lock); 775 user->idx = log_first_idx; 776 user->seq = log_first_seq; 777 raw_spin_unlock_irq(&logbuf_lock); 778 779 file->private_data = user; 780 return 0; 781 } 782 783 static int devkmsg_release(struct inode *inode, struct file *file) 784 { 785 struct devkmsg_user *user = file->private_data; 786 787 if (!user) 788 return 0; 789 790 mutex_destroy(&user->lock); 791 kfree(user); 792 return 0; 793 } 794 795 const struct file_operations kmsg_fops = { 796 .open = devkmsg_open, 797 .read = devkmsg_read, 798 .write_iter = devkmsg_write, 799 .llseek = devkmsg_llseek, 800 .poll = devkmsg_poll, 801 .release = devkmsg_release, 802 }; 803 804 #ifdef CONFIG_KEXEC 805 /* 806 * This appends the listed symbols to /proc/vmcore 807 * 808 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 809 * obtain access to symbols that are otherwise very difficult to locate. These 810 * symbols are specifically used so that utilities can access and extract the 811 * dmesg log from a vmcore file after a crash. 812 */ 813 void log_buf_kexec_setup(void) 814 { 815 VMCOREINFO_SYMBOL(log_buf); 816 VMCOREINFO_SYMBOL(log_buf_len); 817 VMCOREINFO_SYMBOL(log_first_idx); 818 VMCOREINFO_SYMBOL(log_next_idx); 819 /* 820 * Export struct printk_log size and field offsets. User space tools can 821 * parse it and detect any changes to structure down the line. 822 */ 823 VMCOREINFO_STRUCT_SIZE(printk_log); 824 VMCOREINFO_OFFSET(printk_log, ts_nsec); 825 VMCOREINFO_OFFSET(printk_log, len); 826 VMCOREINFO_OFFSET(printk_log, text_len); 827 VMCOREINFO_OFFSET(printk_log, dict_len); 828 } 829 #endif 830 831 /* requested log_buf_len from kernel cmdline */ 832 static unsigned long __initdata new_log_buf_len; 833 834 /* we practice scaling the ring buffer by powers of 2 */ 835 static void __init log_buf_len_update(unsigned size) 836 { 837 if (size) 838 size = roundup_pow_of_two(size); 839 if (size > log_buf_len) 840 new_log_buf_len = size; 841 } 842 843 /* save requested log_buf_len since it's too early to process it */ 844 static int __init log_buf_len_setup(char *str) 845 { 846 unsigned size = memparse(str, &str); 847 848 log_buf_len_update(size); 849 850 return 0; 851 } 852 early_param("log_buf_len", log_buf_len_setup); 853 854 #ifdef CONFIG_SMP 855 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 856 857 static void __init log_buf_add_cpu(void) 858 { 859 unsigned int cpu_extra; 860 861 /* 862 * archs should set up cpu_possible_bits properly with 863 * set_cpu_possible() after setup_arch() but just in 864 * case lets ensure this is valid. 865 */ 866 if (num_possible_cpus() == 1) 867 return; 868 869 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 870 871 /* by default this will only continue through for large > 64 CPUs */ 872 if (cpu_extra <= __LOG_BUF_LEN / 2) 873 return; 874 875 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 876 __LOG_CPU_MAX_BUF_LEN); 877 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 878 cpu_extra); 879 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 880 881 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 882 } 883 #else /* !CONFIG_SMP */ 884 static inline void log_buf_add_cpu(void) {} 885 #endif /* CONFIG_SMP */ 886 887 void __init setup_log_buf(int early) 888 { 889 unsigned long flags; 890 char *new_log_buf; 891 int free; 892 893 if (log_buf != __log_buf) 894 return; 895 896 if (!early && !new_log_buf_len) 897 log_buf_add_cpu(); 898 899 if (!new_log_buf_len) 900 return; 901 902 if (early) { 903 new_log_buf = 904 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 905 } else { 906 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 907 LOG_ALIGN); 908 } 909 910 if (unlikely(!new_log_buf)) { 911 pr_err("log_buf_len: %ld bytes not available\n", 912 new_log_buf_len); 913 return; 914 } 915 916 raw_spin_lock_irqsave(&logbuf_lock, flags); 917 log_buf_len = new_log_buf_len; 918 log_buf = new_log_buf; 919 new_log_buf_len = 0; 920 free = __LOG_BUF_LEN - log_next_idx; 921 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 922 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 923 924 pr_info("log_buf_len: %d bytes\n", log_buf_len); 925 pr_info("early log buf free: %d(%d%%)\n", 926 free, (free * 100) / __LOG_BUF_LEN); 927 } 928 929 static bool __read_mostly ignore_loglevel; 930 931 static int __init ignore_loglevel_setup(char *str) 932 { 933 ignore_loglevel = true; 934 pr_info("debug: ignoring loglevel setting.\n"); 935 936 return 0; 937 } 938 939 early_param("ignore_loglevel", ignore_loglevel_setup); 940 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 941 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 942 "print all kernel messages to the console."); 943 944 #ifdef CONFIG_BOOT_PRINTK_DELAY 945 946 static int boot_delay; /* msecs delay after each printk during bootup */ 947 static unsigned long long loops_per_msec; /* based on boot_delay */ 948 949 static int __init boot_delay_setup(char *str) 950 { 951 unsigned long lpj; 952 953 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 954 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 955 956 get_option(&str, &boot_delay); 957 if (boot_delay > 10 * 1000) 958 boot_delay = 0; 959 960 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 961 "HZ: %d, loops_per_msec: %llu\n", 962 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 963 return 0; 964 } 965 early_param("boot_delay", boot_delay_setup); 966 967 static void boot_delay_msec(int level) 968 { 969 unsigned long long k; 970 unsigned long timeout; 971 972 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 973 || (level >= console_loglevel && !ignore_loglevel)) { 974 return; 975 } 976 977 k = (unsigned long long)loops_per_msec * boot_delay; 978 979 timeout = jiffies + msecs_to_jiffies(boot_delay); 980 while (k) { 981 k--; 982 cpu_relax(); 983 /* 984 * use (volatile) jiffies to prevent 985 * compiler reduction; loop termination via jiffies 986 * is secondary and may or may not happen. 987 */ 988 if (time_after(jiffies, timeout)) 989 break; 990 touch_nmi_watchdog(); 991 } 992 } 993 #else 994 static inline void boot_delay_msec(int level) 995 { 996 } 997 #endif 998 999 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1000 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1001 1002 static size_t print_time(u64 ts, char *buf) 1003 { 1004 unsigned long rem_nsec; 1005 1006 if (!printk_time) 1007 return 0; 1008 1009 rem_nsec = do_div(ts, 1000000000); 1010 1011 if (!buf) 1012 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1013 1014 return sprintf(buf, "[%5lu.%06lu] ", 1015 (unsigned long)ts, rem_nsec / 1000); 1016 } 1017 1018 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1019 { 1020 size_t len = 0; 1021 unsigned int prefix = (msg->facility << 3) | msg->level; 1022 1023 if (syslog) { 1024 if (buf) { 1025 len += sprintf(buf, "<%u>", prefix); 1026 } else { 1027 len += 3; 1028 if (prefix > 999) 1029 len += 3; 1030 else if (prefix > 99) 1031 len += 2; 1032 else if (prefix > 9) 1033 len++; 1034 } 1035 } 1036 1037 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1038 return len; 1039 } 1040 1041 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1042 bool syslog, char *buf, size_t size) 1043 { 1044 const char *text = log_text(msg); 1045 size_t text_size = msg->text_len; 1046 bool prefix = true; 1047 bool newline = true; 1048 size_t len = 0; 1049 1050 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1051 prefix = false; 1052 1053 if (msg->flags & LOG_CONT) { 1054 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1055 prefix = false; 1056 1057 if (!(msg->flags & LOG_NEWLINE)) 1058 newline = false; 1059 } 1060 1061 do { 1062 const char *next = memchr(text, '\n', text_size); 1063 size_t text_len; 1064 1065 if (next) { 1066 text_len = next - text; 1067 next++; 1068 text_size -= next - text; 1069 } else { 1070 text_len = text_size; 1071 } 1072 1073 if (buf) { 1074 if (print_prefix(msg, syslog, NULL) + 1075 text_len + 1 >= size - len) 1076 break; 1077 1078 if (prefix) 1079 len += print_prefix(msg, syslog, buf + len); 1080 memcpy(buf + len, text, text_len); 1081 len += text_len; 1082 if (next || newline) 1083 buf[len++] = '\n'; 1084 } else { 1085 /* SYSLOG_ACTION_* buffer size only calculation */ 1086 if (prefix) 1087 len += print_prefix(msg, syslog, NULL); 1088 len += text_len; 1089 if (next || newline) 1090 len++; 1091 } 1092 1093 prefix = true; 1094 text = next; 1095 } while (text); 1096 1097 return len; 1098 } 1099 1100 static int syslog_print(char __user *buf, int size) 1101 { 1102 char *text; 1103 struct printk_log *msg; 1104 int len = 0; 1105 1106 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1107 if (!text) 1108 return -ENOMEM; 1109 1110 while (size > 0) { 1111 size_t n; 1112 size_t skip; 1113 1114 raw_spin_lock_irq(&logbuf_lock); 1115 if (syslog_seq < log_first_seq) { 1116 /* messages are gone, move to first one */ 1117 syslog_seq = log_first_seq; 1118 syslog_idx = log_first_idx; 1119 syslog_prev = 0; 1120 syslog_partial = 0; 1121 } 1122 if (syslog_seq == log_next_seq) { 1123 raw_spin_unlock_irq(&logbuf_lock); 1124 break; 1125 } 1126 1127 skip = syslog_partial; 1128 msg = log_from_idx(syslog_idx); 1129 n = msg_print_text(msg, syslog_prev, true, text, 1130 LOG_LINE_MAX + PREFIX_MAX); 1131 if (n - syslog_partial <= size) { 1132 /* message fits into buffer, move forward */ 1133 syslog_idx = log_next(syslog_idx); 1134 syslog_seq++; 1135 syslog_prev = msg->flags; 1136 n -= syslog_partial; 1137 syslog_partial = 0; 1138 } else if (!len){ 1139 /* partial read(), remember position */ 1140 n = size; 1141 syslog_partial += n; 1142 } else 1143 n = 0; 1144 raw_spin_unlock_irq(&logbuf_lock); 1145 1146 if (!n) 1147 break; 1148 1149 if (copy_to_user(buf, text + skip, n)) { 1150 if (!len) 1151 len = -EFAULT; 1152 break; 1153 } 1154 1155 len += n; 1156 size -= n; 1157 buf += n; 1158 } 1159 1160 kfree(text); 1161 return len; 1162 } 1163 1164 static int syslog_print_all(char __user *buf, int size, bool clear) 1165 { 1166 char *text; 1167 int len = 0; 1168 1169 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1170 if (!text) 1171 return -ENOMEM; 1172 1173 raw_spin_lock_irq(&logbuf_lock); 1174 if (buf) { 1175 u64 next_seq; 1176 u64 seq; 1177 u32 idx; 1178 enum log_flags prev; 1179 1180 if (clear_seq < log_first_seq) { 1181 /* messages are gone, move to first available one */ 1182 clear_seq = log_first_seq; 1183 clear_idx = log_first_idx; 1184 } 1185 1186 /* 1187 * Find first record that fits, including all following records, 1188 * into the user-provided buffer for this dump. 1189 */ 1190 seq = clear_seq; 1191 idx = clear_idx; 1192 prev = 0; 1193 while (seq < log_next_seq) { 1194 struct printk_log *msg = log_from_idx(idx); 1195 1196 len += msg_print_text(msg, prev, true, NULL, 0); 1197 prev = msg->flags; 1198 idx = log_next(idx); 1199 seq++; 1200 } 1201 1202 /* move first record forward until length fits into the buffer */ 1203 seq = clear_seq; 1204 idx = clear_idx; 1205 prev = 0; 1206 while (len > size && seq < log_next_seq) { 1207 struct printk_log *msg = log_from_idx(idx); 1208 1209 len -= msg_print_text(msg, prev, true, NULL, 0); 1210 prev = msg->flags; 1211 idx = log_next(idx); 1212 seq++; 1213 } 1214 1215 /* last message fitting into this dump */ 1216 next_seq = log_next_seq; 1217 1218 len = 0; 1219 while (len >= 0 && seq < next_seq) { 1220 struct printk_log *msg = log_from_idx(idx); 1221 int textlen; 1222 1223 textlen = msg_print_text(msg, prev, true, text, 1224 LOG_LINE_MAX + PREFIX_MAX); 1225 if (textlen < 0) { 1226 len = textlen; 1227 break; 1228 } 1229 idx = log_next(idx); 1230 seq++; 1231 prev = msg->flags; 1232 1233 raw_spin_unlock_irq(&logbuf_lock); 1234 if (copy_to_user(buf + len, text, textlen)) 1235 len = -EFAULT; 1236 else 1237 len += textlen; 1238 raw_spin_lock_irq(&logbuf_lock); 1239 1240 if (seq < log_first_seq) { 1241 /* messages are gone, move to next one */ 1242 seq = log_first_seq; 1243 idx = log_first_idx; 1244 prev = 0; 1245 } 1246 } 1247 } 1248 1249 if (clear) { 1250 clear_seq = log_next_seq; 1251 clear_idx = log_next_idx; 1252 } 1253 raw_spin_unlock_irq(&logbuf_lock); 1254 1255 kfree(text); 1256 return len; 1257 } 1258 1259 int do_syslog(int type, char __user *buf, int len, bool from_file) 1260 { 1261 bool clear = false; 1262 static int saved_console_loglevel = -1; 1263 int error; 1264 1265 error = check_syslog_permissions(type, from_file); 1266 if (error) 1267 goto out; 1268 1269 error = security_syslog(type); 1270 if (error) 1271 return error; 1272 1273 switch (type) { 1274 case SYSLOG_ACTION_CLOSE: /* Close log */ 1275 break; 1276 case SYSLOG_ACTION_OPEN: /* Open log */ 1277 break; 1278 case SYSLOG_ACTION_READ: /* Read from log */ 1279 error = -EINVAL; 1280 if (!buf || len < 0) 1281 goto out; 1282 error = 0; 1283 if (!len) 1284 goto out; 1285 if (!access_ok(VERIFY_WRITE, buf, len)) { 1286 error = -EFAULT; 1287 goto out; 1288 } 1289 error = wait_event_interruptible(log_wait, 1290 syslog_seq != log_next_seq); 1291 if (error) 1292 goto out; 1293 error = syslog_print(buf, len); 1294 break; 1295 /* Read/clear last kernel messages */ 1296 case SYSLOG_ACTION_READ_CLEAR: 1297 clear = true; 1298 /* FALL THRU */ 1299 /* Read last kernel messages */ 1300 case SYSLOG_ACTION_READ_ALL: 1301 error = -EINVAL; 1302 if (!buf || len < 0) 1303 goto out; 1304 error = 0; 1305 if (!len) 1306 goto out; 1307 if (!access_ok(VERIFY_WRITE, buf, len)) { 1308 error = -EFAULT; 1309 goto out; 1310 } 1311 error = syslog_print_all(buf, len, clear); 1312 break; 1313 /* Clear ring buffer */ 1314 case SYSLOG_ACTION_CLEAR: 1315 syslog_print_all(NULL, 0, true); 1316 break; 1317 /* Disable logging to console */ 1318 case SYSLOG_ACTION_CONSOLE_OFF: 1319 if (saved_console_loglevel == -1) 1320 saved_console_loglevel = console_loglevel; 1321 console_loglevel = minimum_console_loglevel; 1322 break; 1323 /* Enable logging to console */ 1324 case SYSLOG_ACTION_CONSOLE_ON: 1325 if (saved_console_loglevel != -1) { 1326 console_loglevel = saved_console_loglevel; 1327 saved_console_loglevel = -1; 1328 } 1329 break; 1330 /* Set level of messages printed to console */ 1331 case SYSLOG_ACTION_CONSOLE_LEVEL: 1332 error = -EINVAL; 1333 if (len < 1 || len > 8) 1334 goto out; 1335 if (len < minimum_console_loglevel) 1336 len = minimum_console_loglevel; 1337 console_loglevel = len; 1338 /* Implicitly re-enable logging to console */ 1339 saved_console_loglevel = -1; 1340 error = 0; 1341 break; 1342 /* Number of chars in the log buffer */ 1343 case SYSLOG_ACTION_SIZE_UNREAD: 1344 raw_spin_lock_irq(&logbuf_lock); 1345 if (syslog_seq < log_first_seq) { 1346 /* messages are gone, move to first one */ 1347 syslog_seq = log_first_seq; 1348 syslog_idx = log_first_idx; 1349 syslog_prev = 0; 1350 syslog_partial = 0; 1351 } 1352 if (from_file) { 1353 /* 1354 * Short-cut for poll(/"proc/kmsg") which simply checks 1355 * for pending data, not the size; return the count of 1356 * records, not the length. 1357 */ 1358 error = log_next_seq - syslog_seq; 1359 } else { 1360 u64 seq = syslog_seq; 1361 u32 idx = syslog_idx; 1362 enum log_flags prev = syslog_prev; 1363 1364 error = 0; 1365 while (seq < log_next_seq) { 1366 struct printk_log *msg = log_from_idx(idx); 1367 1368 error += msg_print_text(msg, prev, true, NULL, 0); 1369 idx = log_next(idx); 1370 seq++; 1371 prev = msg->flags; 1372 } 1373 error -= syslog_partial; 1374 } 1375 raw_spin_unlock_irq(&logbuf_lock); 1376 break; 1377 /* Size of the log buffer */ 1378 case SYSLOG_ACTION_SIZE_BUFFER: 1379 error = log_buf_len; 1380 break; 1381 default: 1382 error = -EINVAL; 1383 break; 1384 } 1385 out: 1386 return error; 1387 } 1388 1389 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1390 { 1391 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1392 } 1393 1394 /* 1395 * Call the console drivers, asking them to write out 1396 * log_buf[start] to log_buf[end - 1]. 1397 * The console_lock must be held. 1398 */ 1399 static void call_console_drivers(int level, const char *text, size_t len) 1400 { 1401 struct console *con; 1402 1403 trace_console(text, len); 1404 1405 if (level >= console_loglevel && !ignore_loglevel) 1406 return; 1407 if (!console_drivers) 1408 return; 1409 1410 for_each_console(con) { 1411 if (exclusive_console && con != exclusive_console) 1412 continue; 1413 if (!(con->flags & CON_ENABLED)) 1414 continue; 1415 if (!con->write) 1416 continue; 1417 if (!cpu_online(smp_processor_id()) && 1418 !(con->flags & CON_ANYTIME)) 1419 continue; 1420 con->write(con, text, len); 1421 } 1422 } 1423 1424 /* 1425 * Zap console related locks when oopsing. Only zap at most once 1426 * every 10 seconds, to leave time for slow consoles to print a 1427 * full oops. 1428 */ 1429 static void zap_locks(void) 1430 { 1431 static unsigned long oops_timestamp; 1432 1433 if (time_after_eq(jiffies, oops_timestamp) && 1434 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1435 return; 1436 1437 oops_timestamp = jiffies; 1438 1439 debug_locks_off(); 1440 /* If a crash is occurring, make sure we can't deadlock */ 1441 raw_spin_lock_init(&logbuf_lock); 1442 /* And make sure that we print immediately */ 1443 sema_init(&console_sem, 1); 1444 } 1445 1446 /* 1447 * Check if we have any console that is capable of printing while cpu is 1448 * booting or shutting down. Requires console_sem. 1449 */ 1450 static int have_callable_console(void) 1451 { 1452 struct console *con; 1453 1454 for_each_console(con) 1455 if (con->flags & CON_ANYTIME) 1456 return 1; 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Can we actually use the console at this time on this cpu? 1463 * 1464 * Console drivers may assume that per-cpu resources have been allocated. So 1465 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1466 * call them until this CPU is officially up. 1467 */ 1468 static inline int can_use_console(unsigned int cpu) 1469 { 1470 return cpu_online(cpu) || have_callable_console(); 1471 } 1472 1473 /* 1474 * Try to get console ownership to actually show the kernel 1475 * messages from a 'printk'. Return true (and with the 1476 * console_lock held, and 'console_locked' set) if it 1477 * is successful, false otherwise. 1478 */ 1479 static int console_trylock_for_printk(void) 1480 { 1481 unsigned int cpu = smp_processor_id(); 1482 1483 if (!console_trylock()) 1484 return 0; 1485 /* 1486 * If we can't use the console, we need to release the console 1487 * semaphore by hand to avoid flushing the buffer. We need to hold the 1488 * console semaphore in order to do this test safely. 1489 */ 1490 if (!can_use_console(cpu)) { 1491 console_locked = 0; 1492 up_console_sem(); 1493 return 0; 1494 } 1495 return 1; 1496 } 1497 1498 int printk_delay_msec __read_mostly; 1499 1500 static inline void printk_delay(void) 1501 { 1502 if (unlikely(printk_delay_msec)) { 1503 int m = printk_delay_msec; 1504 1505 while (m--) { 1506 mdelay(1); 1507 touch_nmi_watchdog(); 1508 } 1509 } 1510 } 1511 1512 /* 1513 * Continuation lines are buffered, and not committed to the record buffer 1514 * until the line is complete, or a race forces it. The line fragments 1515 * though, are printed immediately to the consoles to ensure everything has 1516 * reached the console in case of a kernel crash. 1517 */ 1518 static struct cont { 1519 char buf[LOG_LINE_MAX]; 1520 size_t len; /* length == 0 means unused buffer */ 1521 size_t cons; /* bytes written to console */ 1522 struct task_struct *owner; /* task of first print*/ 1523 u64 ts_nsec; /* time of first print */ 1524 u8 level; /* log level of first message */ 1525 u8 facility; /* log facility of first message */ 1526 enum log_flags flags; /* prefix, newline flags */ 1527 bool flushed:1; /* buffer sealed and committed */ 1528 } cont; 1529 1530 static void cont_flush(enum log_flags flags) 1531 { 1532 if (cont.flushed) 1533 return; 1534 if (cont.len == 0) 1535 return; 1536 1537 if (cont.cons) { 1538 /* 1539 * If a fragment of this line was directly flushed to the 1540 * console; wait for the console to pick up the rest of the 1541 * line. LOG_NOCONS suppresses a duplicated output. 1542 */ 1543 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1544 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1545 cont.flags = flags; 1546 cont.flushed = true; 1547 } else { 1548 /* 1549 * If no fragment of this line ever reached the console, 1550 * just submit it to the store and free the buffer. 1551 */ 1552 log_store(cont.facility, cont.level, flags, 0, 1553 NULL, 0, cont.buf, cont.len); 1554 cont.len = 0; 1555 } 1556 } 1557 1558 static bool cont_add(int facility, int level, const char *text, size_t len) 1559 { 1560 if (cont.len && cont.flushed) 1561 return false; 1562 1563 if (cont.len + len > sizeof(cont.buf)) { 1564 /* the line gets too long, split it up in separate records */ 1565 cont_flush(LOG_CONT); 1566 return false; 1567 } 1568 1569 if (!cont.len) { 1570 cont.facility = facility; 1571 cont.level = level; 1572 cont.owner = current; 1573 cont.ts_nsec = local_clock(); 1574 cont.flags = 0; 1575 cont.cons = 0; 1576 cont.flushed = false; 1577 } 1578 1579 memcpy(cont.buf + cont.len, text, len); 1580 cont.len += len; 1581 1582 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1583 cont_flush(LOG_CONT); 1584 1585 return true; 1586 } 1587 1588 static size_t cont_print_text(char *text, size_t size) 1589 { 1590 size_t textlen = 0; 1591 size_t len; 1592 1593 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1594 textlen += print_time(cont.ts_nsec, text); 1595 size -= textlen; 1596 } 1597 1598 len = cont.len - cont.cons; 1599 if (len > 0) { 1600 if (len+1 > size) 1601 len = size-1; 1602 memcpy(text + textlen, cont.buf + cont.cons, len); 1603 textlen += len; 1604 cont.cons = cont.len; 1605 } 1606 1607 if (cont.flushed) { 1608 if (cont.flags & LOG_NEWLINE) 1609 text[textlen++] = '\n'; 1610 /* got everything, release buffer */ 1611 cont.len = 0; 1612 } 1613 return textlen; 1614 } 1615 1616 asmlinkage int vprintk_emit(int facility, int level, 1617 const char *dict, size_t dictlen, 1618 const char *fmt, va_list args) 1619 { 1620 static int recursion_bug; 1621 static char textbuf[LOG_LINE_MAX]; 1622 char *text = textbuf; 1623 size_t text_len = 0; 1624 enum log_flags lflags = 0; 1625 unsigned long flags; 1626 int this_cpu; 1627 int printed_len = 0; 1628 bool in_sched = false; 1629 /* cpu currently holding logbuf_lock in this function */ 1630 static volatile unsigned int logbuf_cpu = UINT_MAX; 1631 1632 if (level == SCHED_MESSAGE_LOGLEVEL) { 1633 level = -1; 1634 in_sched = true; 1635 } 1636 1637 boot_delay_msec(level); 1638 printk_delay(); 1639 1640 /* This stops the holder of console_sem just where we want him */ 1641 local_irq_save(flags); 1642 this_cpu = smp_processor_id(); 1643 1644 /* 1645 * Ouch, printk recursed into itself! 1646 */ 1647 if (unlikely(logbuf_cpu == this_cpu)) { 1648 /* 1649 * If a crash is occurring during printk() on this CPU, 1650 * then try to get the crash message out but make sure 1651 * we can't deadlock. Otherwise just return to avoid the 1652 * recursion and return - but flag the recursion so that 1653 * it can be printed at the next appropriate moment: 1654 */ 1655 if (!oops_in_progress && !lockdep_recursing(current)) { 1656 recursion_bug = 1; 1657 local_irq_restore(flags); 1658 return 0; 1659 } 1660 zap_locks(); 1661 } 1662 1663 lockdep_off(); 1664 raw_spin_lock(&logbuf_lock); 1665 logbuf_cpu = this_cpu; 1666 1667 if (unlikely(recursion_bug)) { 1668 static const char recursion_msg[] = 1669 "BUG: recent printk recursion!"; 1670 1671 recursion_bug = 0; 1672 /* emit KERN_CRIT message */ 1673 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1674 NULL, 0, recursion_msg, 1675 strlen(recursion_msg)); 1676 } 1677 1678 /* 1679 * The printf needs to come first; we need the syslog 1680 * prefix which might be passed-in as a parameter. 1681 */ 1682 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1683 1684 /* mark and strip a trailing newline */ 1685 if (text_len && text[text_len-1] == '\n') { 1686 text_len--; 1687 lflags |= LOG_NEWLINE; 1688 } 1689 1690 /* strip kernel syslog prefix and extract log level or control flags */ 1691 if (facility == 0) { 1692 int kern_level = printk_get_level(text); 1693 1694 if (kern_level) { 1695 const char *end_of_header = printk_skip_level(text); 1696 switch (kern_level) { 1697 case '0' ... '7': 1698 if (level == -1) 1699 level = kern_level - '0'; 1700 case 'd': /* KERN_DEFAULT */ 1701 lflags |= LOG_PREFIX; 1702 } 1703 /* 1704 * No need to check length here because vscnprintf 1705 * put '\0' at the end of the string. Only valid and 1706 * newly printed level is detected. 1707 */ 1708 text_len -= end_of_header - text; 1709 text = (char *)end_of_header; 1710 } 1711 } 1712 1713 if (level == -1) 1714 level = default_message_loglevel; 1715 1716 if (dict) 1717 lflags |= LOG_PREFIX|LOG_NEWLINE; 1718 1719 if (!(lflags & LOG_NEWLINE)) { 1720 /* 1721 * Flush the conflicting buffer. An earlier newline was missing, 1722 * or another task also prints continuation lines. 1723 */ 1724 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1725 cont_flush(LOG_NEWLINE); 1726 1727 /* buffer line if possible, otherwise store it right away */ 1728 if (cont_add(facility, level, text, text_len)) 1729 printed_len += text_len; 1730 else 1731 printed_len += log_store(facility, level, 1732 lflags | LOG_CONT, 0, 1733 dict, dictlen, text, text_len); 1734 } else { 1735 bool stored = false; 1736 1737 /* 1738 * If an earlier newline was missing and it was the same task, 1739 * either merge it with the current buffer and flush, or if 1740 * there was a race with interrupts (prefix == true) then just 1741 * flush it out and store this line separately. 1742 * If the preceding printk was from a different task and missed 1743 * a newline, flush and append the newline. 1744 */ 1745 if (cont.len) { 1746 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1747 stored = cont_add(facility, level, text, 1748 text_len); 1749 cont_flush(LOG_NEWLINE); 1750 } 1751 1752 if (stored) 1753 printed_len += text_len; 1754 else 1755 printed_len += log_store(facility, level, lflags, 0, 1756 dict, dictlen, text, text_len); 1757 } 1758 1759 logbuf_cpu = UINT_MAX; 1760 raw_spin_unlock(&logbuf_lock); 1761 lockdep_on(); 1762 local_irq_restore(flags); 1763 1764 /* If called from the scheduler, we can not call up(). */ 1765 if (!in_sched) { 1766 lockdep_off(); 1767 /* 1768 * Disable preemption to avoid being preempted while holding 1769 * console_sem which would prevent anyone from printing to 1770 * console 1771 */ 1772 preempt_disable(); 1773 1774 /* 1775 * Try to acquire and then immediately release the console 1776 * semaphore. The release will print out buffers and wake up 1777 * /dev/kmsg and syslog() users. 1778 */ 1779 if (console_trylock_for_printk()) 1780 console_unlock(); 1781 preempt_enable(); 1782 lockdep_on(); 1783 } 1784 1785 return printed_len; 1786 } 1787 EXPORT_SYMBOL(vprintk_emit); 1788 1789 asmlinkage int vprintk(const char *fmt, va_list args) 1790 { 1791 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1792 } 1793 EXPORT_SYMBOL(vprintk); 1794 1795 asmlinkage int printk_emit(int facility, int level, 1796 const char *dict, size_t dictlen, 1797 const char *fmt, ...) 1798 { 1799 va_list args; 1800 int r; 1801 1802 va_start(args, fmt); 1803 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1804 va_end(args); 1805 1806 return r; 1807 } 1808 EXPORT_SYMBOL(printk_emit); 1809 1810 /** 1811 * printk - print a kernel message 1812 * @fmt: format string 1813 * 1814 * This is printk(). It can be called from any context. We want it to work. 1815 * 1816 * We try to grab the console_lock. If we succeed, it's easy - we log the 1817 * output and call the console drivers. If we fail to get the semaphore, we 1818 * place the output into the log buffer and return. The current holder of 1819 * the console_sem will notice the new output in console_unlock(); and will 1820 * send it to the consoles before releasing the lock. 1821 * 1822 * One effect of this deferred printing is that code which calls printk() and 1823 * then changes console_loglevel may break. This is because console_loglevel 1824 * is inspected when the actual printing occurs. 1825 * 1826 * See also: 1827 * printf(3) 1828 * 1829 * See the vsnprintf() documentation for format string extensions over C99. 1830 */ 1831 asmlinkage __visible int printk(const char *fmt, ...) 1832 { 1833 va_list args; 1834 int r; 1835 1836 #ifdef CONFIG_KGDB_KDB 1837 if (unlikely(kdb_trap_printk)) { 1838 va_start(args, fmt); 1839 r = vkdb_printf(fmt, args); 1840 va_end(args); 1841 return r; 1842 } 1843 #endif 1844 va_start(args, fmt); 1845 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1846 va_end(args); 1847 1848 return r; 1849 } 1850 EXPORT_SYMBOL(printk); 1851 1852 #else /* CONFIG_PRINTK */ 1853 1854 #define LOG_LINE_MAX 0 1855 #define PREFIX_MAX 0 1856 1857 static u64 syslog_seq; 1858 static u32 syslog_idx; 1859 static u64 console_seq; 1860 static u32 console_idx; 1861 static enum log_flags syslog_prev; 1862 static u64 log_first_seq; 1863 static u32 log_first_idx; 1864 static u64 log_next_seq; 1865 static enum log_flags console_prev; 1866 static struct cont { 1867 size_t len; 1868 size_t cons; 1869 u8 level; 1870 bool flushed:1; 1871 } cont; 1872 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1873 static u32 log_next(u32 idx) { return 0; } 1874 static void call_console_drivers(int level, const char *text, size_t len) {} 1875 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1876 bool syslog, char *buf, size_t size) { return 0; } 1877 static size_t cont_print_text(char *text, size_t size) { return 0; } 1878 1879 #endif /* CONFIG_PRINTK */ 1880 1881 #ifdef CONFIG_EARLY_PRINTK 1882 struct console *early_console; 1883 1884 void early_vprintk(const char *fmt, va_list ap) 1885 { 1886 if (early_console) { 1887 char buf[512]; 1888 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1889 1890 early_console->write(early_console, buf, n); 1891 } 1892 } 1893 1894 asmlinkage __visible void early_printk(const char *fmt, ...) 1895 { 1896 va_list ap; 1897 1898 va_start(ap, fmt); 1899 early_vprintk(fmt, ap); 1900 va_end(ap); 1901 } 1902 #endif 1903 1904 static int __add_preferred_console(char *name, int idx, char *options, 1905 char *brl_options) 1906 { 1907 struct console_cmdline *c; 1908 int i; 1909 1910 /* 1911 * See if this tty is not yet registered, and 1912 * if we have a slot free. 1913 */ 1914 for (i = 0, c = console_cmdline; 1915 i < MAX_CMDLINECONSOLES && c->name[0]; 1916 i++, c++) { 1917 if (strcmp(c->name, name) == 0 && c->index == idx) { 1918 if (!brl_options) 1919 selected_console = i; 1920 return 0; 1921 } 1922 } 1923 if (i == MAX_CMDLINECONSOLES) 1924 return -E2BIG; 1925 if (!brl_options) 1926 selected_console = i; 1927 strlcpy(c->name, name, sizeof(c->name)); 1928 c->options = options; 1929 braille_set_options(c, brl_options); 1930 1931 c->index = idx; 1932 return 0; 1933 } 1934 /* 1935 * Set up a console. Called via do_early_param() in init/main.c 1936 * for each "console=" parameter in the boot command line. 1937 */ 1938 static int __init console_setup(char *str) 1939 { 1940 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1941 char *s, *options, *brl_options = NULL; 1942 int idx; 1943 1944 if (_braille_console_setup(&str, &brl_options)) 1945 return 1; 1946 1947 /* 1948 * Decode str into name, index, options. 1949 */ 1950 if (str[0] >= '0' && str[0] <= '9') { 1951 strcpy(buf, "ttyS"); 1952 strncpy(buf + 4, str, sizeof(buf) - 5); 1953 } else { 1954 strncpy(buf, str, sizeof(buf) - 1); 1955 } 1956 buf[sizeof(buf) - 1] = 0; 1957 options = strchr(str, ','); 1958 if (options) 1959 *(options++) = 0; 1960 #ifdef __sparc__ 1961 if (!strcmp(str, "ttya")) 1962 strcpy(buf, "ttyS0"); 1963 if (!strcmp(str, "ttyb")) 1964 strcpy(buf, "ttyS1"); 1965 #endif 1966 for (s = buf; *s; s++) 1967 if (isdigit(*s) || *s == ',') 1968 break; 1969 idx = simple_strtoul(s, NULL, 10); 1970 *s = 0; 1971 1972 __add_preferred_console(buf, idx, options, brl_options); 1973 console_set_on_cmdline = 1; 1974 return 1; 1975 } 1976 __setup("console=", console_setup); 1977 1978 /** 1979 * add_preferred_console - add a device to the list of preferred consoles. 1980 * @name: device name 1981 * @idx: device index 1982 * @options: options for this console 1983 * 1984 * The last preferred console added will be used for kernel messages 1985 * and stdin/out/err for init. Normally this is used by console_setup 1986 * above to handle user-supplied console arguments; however it can also 1987 * be used by arch-specific code either to override the user or more 1988 * commonly to provide a default console (ie from PROM variables) when 1989 * the user has not supplied one. 1990 */ 1991 int add_preferred_console(char *name, int idx, char *options) 1992 { 1993 return __add_preferred_console(name, idx, options, NULL); 1994 } 1995 1996 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1997 { 1998 struct console_cmdline *c; 1999 int i; 2000 2001 for (i = 0, c = console_cmdline; 2002 i < MAX_CMDLINECONSOLES && c->name[0]; 2003 i++, c++) 2004 if (strcmp(c->name, name) == 0 && c->index == idx) { 2005 strlcpy(c->name, name_new, sizeof(c->name)); 2006 c->options = options; 2007 c->index = idx_new; 2008 return i; 2009 } 2010 /* not found */ 2011 return -1; 2012 } 2013 2014 bool console_suspend_enabled = true; 2015 EXPORT_SYMBOL(console_suspend_enabled); 2016 2017 static int __init console_suspend_disable(char *str) 2018 { 2019 console_suspend_enabled = false; 2020 return 1; 2021 } 2022 __setup("no_console_suspend", console_suspend_disable); 2023 module_param_named(console_suspend, console_suspend_enabled, 2024 bool, S_IRUGO | S_IWUSR); 2025 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2026 " and hibernate operations"); 2027 2028 /** 2029 * suspend_console - suspend the console subsystem 2030 * 2031 * This disables printk() while we go into suspend states 2032 */ 2033 void suspend_console(void) 2034 { 2035 if (!console_suspend_enabled) 2036 return; 2037 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2038 console_lock(); 2039 console_suspended = 1; 2040 up_console_sem(); 2041 } 2042 2043 void resume_console(void) 2044 { 2045 if (!console_suspend_enabled) 2046 return; 2047 down_console_sem(); 2048 console_suspended = 0; 2049 console_unlock(); 2050 } 2051 2052 /** 2053 * console_cpu_notify - print deferred console messages after CPU hotplug 2054 * @self: notifier struct 2055 * @action: CPU hotplug event 2056 * @hcpu: unused 2057 * 2058 * If printk() is called from a CPU that is not online yet, the messages 2059 * will be spooled but will not show up on the console. This function is 2060 * called when a new CPU comes online (or fails to come up), and ensures 2061 * that any such output gets printed. 2062 */ 2063 static int console_cpu_notify(struct notifier_block *self, 2064 unsigned long action, void *hcpu) 2065 { 2066 switch (action) { 2067 case CPU_ONLINE: 2068 case CPU_DEAD: 2069 case CPU_DOWN_FAILED: 2070 case CPU_UP_CANCELED: 2071 console_lock(); 2072 console_unlock(); 2073 } 2074 return NOTIFY_OK; 2075 } 2076 2077 /** 2078 * console_lock - lock the console system for exclusive use. 2079 * 2080 * Acquires a lock which guarantees that the caller has 2081 * exclusive access to the console system and the console_drivers list. 2082 * 2083 * Can sleep, returns nothing. 2084 */ 2085 void console_lock(void) 2086 { 2087 might_sleep(); 2088 2089 down_console_sem(); 2090 if (console_suspended) 2091 return; 2092 console_locked = 1; 2093 console_may_schedule = 1; 2094 } 2095 EXPORT_SYMBOL(console_lock); 2096 2097 /** 2098 * console_trylock - try to lock the console system for exclusive use. 2099 * 2100 * Try to acquire a lock which guarantees that the caller has exclusive 2101 * access to the console system and the console_drivers list. 2102 * 2103 * returns 1 on success, and 0 on failure to acquire the lock. 2104 */ 2105 int console_trylock(void) 2106 { 2107 if (down_trylock_console_sem()) 2108 return 0; 2109 if (console_suspended) { 2110 up_console_sem(); 2111 return 0; 2112 } 2113 console_locked = 1; 2114 console_may_schedule = 0; 2115 return 1; 2116 } 2117 EXPORT_SYMBOL(console_trylock); 2118 2119 int is_console_locked(void) 2120 { 2121 return console_locked; 2122 } 2123 2124 static void console_cont_flush(char *text, size_t size) 2125 { 2126 unsigned long flags; 2127 size_t len; 2128 2129 raw_spin_lock_irqsave(&logbuf_lock, flags); 2130 2131 if (!cont.len) 2132 goto out; 2133 2134 /* 2135 * We still queue earlier records, likely because the console was 2136 * busy. The earlier ones need to be printed before this one, we 2137 * did not flush any fragment so far, so just let it queue up. 2138 */ 2139 if (console_seq < log_next_seq && !cont.cons) 2140 goto out; 2141 2142 len = cont_print_text(text, size); 2143 raw_spin_unlock(&logbuf_lock); 2144 stop_critical_timings(); 2145 call_console_drivers(cont.level, text, len); 2146 start_critical_timings(); 2147 local_irq_restore(flags); 2148 return; 2149 out: 2150 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2151 } 2152 2153 /** 2154 * console_unlock - unlock the console system 2155 * 2156 * Releases the console_lock which the caller holds on the console system 2157 * and the console driver list. 2158 * 2159 * While the console_lock was held, console output may have been buffered 2160 * by printk(). If this is the case, console_unlock(); emits 2161 * the output prior to releasing the lock. 2162 * 2163 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2164 * 2165 * console_unlock(); may be called from any context. 2166 */ 2167 void console_unlock(void) 2168 { 2169 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2170 static u64 seen_seq; 2171 unsigned long flags; 2172 bool wake_klogd = false; 2173 bool retry; 2174 2175 if (console_suspended) { 2176 up_console_sem(); 2177 return; 2178 } 2179 2180 console_may_schedule = 0; 2181 2182 /* flush buffered message fragment immediately to console */ 2183 console_cont_flush(text, sizeof(text)); 2184 again: 2185 for (;;) { 2186 struct printk_log *msg; 2187 size_t len; 2188 int level; 2189 2190 raw_spin_lock_irqsave(&logbuf_lock, flags); 2191 if (seen_seq != log_next_seq) { 2192 wake_klogd = true; 2193 seen_seq = log_next_seq; 2194 } 2195 2196 if (console_seq < log_first_seq) { 2197 len = sprintf(text, "** %u printk messages dropped ** ", 2198 (unsigned)(log_first_seq - console_seq)); 2199 2200 /* messages are gone, move to first one */ 2201 console_seq = log_first_seq; 2202 console_idx = log_first_idx; 2203 console_prev = 0; 2204 } else { 2205 len = 0; 2206 } 2207 skip: 2208 if (console_seq == log_next_seq) 2209 break; 2210 2211 msg = log_from_idx(console_idx); 2212 if (msg->flags & LOG_NOCONS) { 2213 /* 2214 * Skip record we have buffered and already printed 2215 * directly to the console when we received it. 2216 */ 2217 console_idx = log_next(console_idx); 2218 console_seq++; 2219 /* 2220 * We will get here again when we register a new 2221 * CON_PRINTBUFFER console. Clear the flag so we 2222 * will properly dump everything later. 2223 */ 2224 msg->flags &= ~LOG_NOCONS; 2225 console_prev = msg->flags; 2226 goto skip; 2227 } 2228 2229 level = msg->level; 2230 len += msg_print_text(msg, console_prev, false, 2231 text + len, sizeof(text) - len); 2232 console_idx = log_next(console_idx); 2233 console_seq++; 2234 console_prev = msg->flags; 2235 raw_spin_unlock(&logbuf_lock); 2236 2237 stop_critical_timings(); /* don't trace print latency */ 2238 call_console_drivers(level, text, len); 2239 start_critical_timings(); 2240 local_irq_restore(flags); 2241 } 2242 console_locked = 0; 2243 2244 /* Release the exclusive_console once it is used */ 2245 if (unlikely(exclusive_console)) 2246 exclusive_console = NULL; 2247 2248 raw_spin_unlock(&logbuf_lock); 2249 2250 up_console_sem(); 2251 2252 /* 2253 * Someone could have filled up the buffer again, so re-check if there's 2254 * something to flush. In case we cannot trylock the console_sem again, 2255 * there's a new owner and the console_unlock() from them will do the 2256 * flush, no worries. 2257 */ 2258 raw_spin_lock(&logbuf_lock); 2259 retry = console_seq != log_next_seq; 2260 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2261 2262 if (retry && console_trylock()) 2263 goto again; 2264 2265 if (wake_klogd) 2266 wake_up_klogd(); 2267 } 2268 EXPORT_SYMBOL(console_unlock); 2269 2270 /** 2271 * console_conditional_schedule - yield the CPU if required 2272 * 2273 * If the console code is currently allowed to sleep, and 2274 * if this CPU should yield the CPU to another task, do 2275 * so here. 2276 * 2277 * Must be called within console_lock();. 2278 */ 2279 void __sched console_conditional_schedule(void) 2280 { 2281 if (console_may_schedule) 2282 cond_resched(); 2283 } 2284 EXPORT_SYMBOL(console_conditional_schedule); 2285 2286 void console_unblank(void) 2287 { 2288 struct console *c; 2289 2290 /* 2291 * console_unblank can no longer be called in interrupt context unless 2292 * oops_in_progress is set to 1.. 2293 */ 2294 if (oops_in_progress) { 2295 if (down_trylock_console_sem() != 0) 2296 return; 2297 } else 2298 console_lock(); 2299 2300 console_locked = 1; 2301 console_may_schedule = 0; 2302 for_each_console(c) 2303 if ((c->flags & CON_ENABLED) && c->unblank) 2304 c->unblank(); 2305 console_unlock(); 2306 } 2307 2308 /* 2309 * Return the console tty driver structure and its associated index 2310 */ 2311 struct tty_driver *console_device(int *index) 2312 { 2313 struct console *c; 2314 struct tty_driver *driver = NULL; 2315 2316 console_lock(); 2317 for_each_console(c) { 2318 if (!c->device) 2319 continue; 2320 driver = c->device(c, index); 2321 if (driver) 2322 break; 2323 } 2324 console_unlock(); 2325 return driver; 2326 } 2327 2328 /* 2329 * Prevent further output on the passed console device so that (for example) 2330 * serial drivers can disable console output before suspending a port, and can 2331 * re-enable output afterwards. 2332 */ 2333 void console_stop(struct console *console) 2334 { 2335 console_lock(); 2336 console->flags &= ~CON_ENABLED; 2337 console_unlock(); 2338 } 2339 EXPORT_SYMBOL(console_stop); 2340 2341 void console_start(struct console *console) 2342 { 2343 console_lock(); 2344 console->flags |= CON_ENABLED; 2345 console_unlock(); 2346 } 2347 EXPORT_SYMBOL(console_start); 2348 2349 static int __read_mostly keep_bootcon; 2350 2351 static int __init keep_bootcon_setup(char *str) 2352 { 2353 keep_bootcon = 1; 2354 pr_info("debug: skip boot console de-registration.\n"); 2355 2356 return 0; 2357 } 2358 2359 early_param("keep_bootcon", keep_bootcon_setup); 2360 2361 /* 2362 * The console driver calls this routine during kernel initialization 2363 * to register the console printing procedure with printk() and to 2364 * print any messages that were printed by the kernel before the 2365 * console driver was initialized. 2366 * 2367 * This can happen pretty early during the boot process (because of 2368 * early_printk) - sometimes before setup_arch() completes - be careful 2369 * of what kernel features are used - they may not be initialised yet. 2370 * 2371 * There are two types of consoles - bootconsoles (early_printk) and 2372 * "real" consoles (everything which is not a bootconsole) which are 2373 * handled differently. 2374 * - Any number of bootconsoles can be registered at any time. 2375 * - As soon as a "real" console is registered, all bootconsoles 2376 * will be unregistered automatically. 2377 * - Once a "real" console is registered, any attempt to register a 2378 * bootconsoles will be rejected 2379 */ 2380 void register_console(struct console *newcon) 2381 { 2382 int i; 2383 unsigned long flags; 2384 struct console *bcon = NULL; 2385 struct console_cmdline *c; 2386 2387 if (console_drivers) 2388 for_each_console(bcon) 2389 if (WARN(bcon == newcon, 2390 "console '%s%d' already registered\n", 2391 bcon->name, bcon->index)) 2392 return; 2393 2394 /* 2395 * before we register a new CON_BOOT console, make sure we don't 2396 * already have a valid console 2397 */ 2398 if (console_drivers && newcon->flags & CON_BOOT) { 2399 /* find the last or real console */ 2400 for_each_console(bcon) { 2401 if (!(bcon->flags & CON_BOOT)) { 2402 pr_info("Too late to register bootconsole %s%d\n", 2403 newcon->name, newcon->index); 2404 return; 2405 } 2406 } 2407 } 2408 2409 if (console_drivers && console_drivers->flags & CON_BOOT) 2410 bcon = console_drivers; 2411 2412 if (preferred_console < 0 || bcon || !console_drivers) 2413 preferred_console = selected_console; 2414 2415 if (newcon->early_setup) 2416 newcon->early_setup(); 2417 2418 /* 2419 * See if we want to use this console driver. If we 2420 * didn't select a console we take the first one 2421 * that registers here. 2422 */ 2423 if (preferred_console < 0) { 2424 if (newcon->index < 0) 2425 newcon->index = 0; 2426 if (newcon->setup == NULL || 2427 newcon->setup(newcon, NULL) == 0) { 2428 newcon->flags |= CON_ENABLED; 2429 if (newcon->device) { 2430 newcon->flags |= CON_CONSDEV; 2431 preferred_console = 0; 2432 } 2433 } 2434 } 2435 2436 /* 2437 * See if this console matches one we selected on 2438 * the command line. 2439 */ 2440 for (i = 0, c = console_cmdline; 2441 i < MAX_CMDLINECONSOLES && c->name[0]; 2442 i++, c++) { 2443 if (strcmp(c->name, newcon->name) != 0) 2444 continue; 2445 if (newcon->index >= 0 && 2446 newcon->index != c->index) 2447 continue; 2448 if (newcon->index < 0) 2449 newcon->index = c->index; 2450 2451 if (_braille_register_console(newcon, c)) 2452 return; 2453 2454 if (newcon->setup && 2455 newcon->setup(newcon, console_cmdline[i].options) != 0) 2456 break; 2457 newcon->flags |= CON_ENABLED; 2458 newcon->index = c->index; 2459 if (i == selected_console) { 2460 newcon->flags |= CON_CONSDEV; 2461 preferred_console = selected_console; 2462 } 2463 break; 2464 } 2465 2466 if (!(newcon->flags & CON_ENABLED)) 2467 return; 2468 2469 /* 2470 * If we have a bootconsole, and are switching to a real console, 2471 * don't print everything out again, since when the boot console, and 2472 * the real console are the same physical device, it's annoying to 2473 * see the beginning boot messages twice 2474 */ 2475 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2476 newcon->flags &= ~CON_PRINTBUFFER; 2477 2478 /* 2479 * Put this console in the list - keep the 2480 * preferred driver at the head of the list. 2481 */ 2482 console_lock(); 2483 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2484 newcon->next = console_drivers; 2485 console_drivers = newcon; 2486 if (newcon->next) 2487 newcon->next->flags &= ~CON_CONSDEV; 2488 } else { 2489 newcon->next = console_drivers->next; 2490 console_drivers->next = newcon; 2491 } 2492 if (newcon->flags & CON_PRINTBUFFER) { 2493 /* 2494 * console_unlock(); will print out the buffered messages 2495 * for us. 2496 */ 2497 raw_spin_lock_irqsave(&logbuf_lock, flags); 2498 console_seq = syslog_seq; 2499 console_idx = syslog_idx; 2500 console_prev = syslog_prev; 2501 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2502 /* 2503 * We're about to replay the log buffer. Only do this to the 2504 * just-registered console to avoid excessive message spam to 2505 * the already-registered consoles. 2506 */ 2507 exclusive_console = newcon; 2508 } 2509 console_unlock(); 2510 console_sysfs_notify(); 2511 2512 /* 2513 * By unregistering the bootconsoles after we enable the real console 2514 * we get the "console xxx enabled" message on all the consoles - 2515 * boot consoles, real consoles, etc - this is to ensure that end 2516 * users know there might be something in the kernel's log buffer that 2517 * went to the bootconsole (that they do not see on the real console) 2518 */ 2519 pr_info("%sconsole [%s%d] enabled\n", 2520 (newcon->flags & CON_BOOT) ? "boot" : "" , 2521 newcon->name, newcon->index); 2522 if (bcon && 2523 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2524 !keep_bootcon) { 2525 /* We need to iterate through all boot consoles, to make 2526 * sure we print everything out, before we unregister them. 2527 */ 2528 for_each_console(bcon) 2529 if (bcon->flags & CON_BOOT) 2530 unregister_console(bcon); 2531 } 2532 } 2533 EXPORT_SYMBOL(register_console); 2534 2535 int unregister_console(struct console *console) 2536 { 2537 struct console *a, *b; 2538 int res; 2539 2540 pr_info("%sconsole [%s%d] disabled\n", 2541 (console->flags & CON_BOOT) ? "boot" : "" , 2542 console->name, console->index); 2543 2544 res = _braille_unregister_console(console); 2545 if (res) 2546 return res; 2547 2548 res = 1; 2549 console_lock(); 2550 if (console_drivers == console) { 2551 console_drivers=console->next; 2552 res = 0; 2553 } else if (console_drivers) { 2554 for (a=console_drivers->next, b=console_drivers ; 2555 a; b=a, a=b->next) { 2556 if (a == console) { 2557 b->next = a->next; 2558 res = 0; 2559 break; 2560 } 2561 } 2562 } 2563 2564 /* 2565 * If this isn't the last console and it has CON_CONSDEV set, we 2566 * need to set it on the next preferred console. 2567 */ 2568 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2569 console_drivers->flags |= CON_CONSDEV; 2570 2571 console->flags &= ~CON_ENABLED; 2572 console_unlock(); 2573 console_sysfs_notify(); 2574 return res; 2575 } 2576 EXPORT_SYMBOL(unregister_console); 2577 2578 static int __init printk_late_init(void) 2579 { 2580 struct console *con; 2581 2582 for_each_console(con) { 2583 if (!keep_bootcon && con->flags & CON_BOOT) { 2584 unregister_console(con); 2585 } 2586 } 2587 hotcpu_notifier(console_cpu_notify, 0); 2588 return 0; 2589 } 2590 late_initcall(printk_late_init); 2591 2592 #if defined CONFIG_PRINTK 2593 /* 2594 * Delayed printk version, for scheduler-internal messages: 2595 */ 2596 #define PRINTK_PENDING_WAKEUP 0x01 2597 #define PRINTK_PENDING_OUTPUT 0x02 2598 2599 static DEFINE_PER_CPU(int, printk_pending); 2600 2601 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2602 { 2603 int pending = __this_cpu_xchg(printk_pending, 0); 2604 2605 if (pending & PRINTK_PENDING_OUTPUT) { 2606 /* If trylock fails, someone else is doing the printing */ 2607 if (console_trylock()) 2608 console_unlock(); 2609 } 2610 2611 if (pending & PRINTK_PENDING_WAKEUP) 2612 wake_up_interruptible(&log_wait); 2613 } 2614 2615 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2616 .func = wake_up_klogd_work_func, 2617 .flags = IRQ_WORK_LAZY, 2618 }; 2619 2620 void wake_up_klogd(void) 2621 { 2622 preempt_disable(); 2623 if (waitqueue_active(&log_wait)) { 2624 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2625 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2626 } 2627 preempt_enable(); 2628 } 2629 2630 int printk_deferred(const char *fmt, ...) 2631 { 2632 va_list args; 2633 int r; 2634 2635 preempt_disable(); 2636 va_start(args, fmt); 2637 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args); 2638 va_end(args); 2639 2640 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2641 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2642 preempt_enable(); 2643 2644 return r; 2645 } 2646 2647 /* 2648 * printk rate limiting, lifted from the networking subsystem. 2649 * 2650 * This enforces a rate limit: not more than 10 kernel messages 2651 * every 5s to make a denial-of-service attack impossible. 2652 */ 2653 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2654 2655 int __printk_ratelimit(const char *func) 2656 { 2657 return ___ratelimit(&printk_ratelimit_state, func); 2658 } 2659 EXPORT_SYMBOL(__printk_ratelimit); 2660 2661 /** 2662 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2663 * @caller_jiffies: pointer to caller's state 2664 * @interval_msecs: minimum interval between prints 2665 * 2666 * printk_timed_ratelimit() returns true if more than @interval_msecs 2667 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2668 * returned true. 2669 */ 2670 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2671 unsigned int interval_msecs) 2672 { 2673 unsigned long elapsed = jiffies - *caller_jiffies; 2674 2675 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2676 return false; 2677 2678 *caller_jiffies = jiffies; 2679 return true; 2680 } 2681 EXPORT_SYMBOL(printk_timed_ratelimit); 2682 2683 static DEFINE_SPINLOCK(dump_list_lock); 2684 static LIST_HEAD(dump_list); 2685 2686 /** 2687 * kmsg_dump_register - register a kernel log dumper. 2688 * @dumper: pointer to the kmsg_dumper structure 2689 * 2690 * Adds a kernel log dumper to the system. The dump callback in the 2691 * structure will be called when the kernel oopses or panics and must be 2692 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2693 */ 2694 int kmsg_dump_register(struct kmsg_dumper *dumper) 2695 { 2696 unsigned long flags; 2697 int err = -EBUSY; 2698 2699 /* The dump callback needs to be set */ 2700 if (!dumper->dump) 2701 return -EINVAL; 2702 2703 spin_lock_irqsave(&dump_list_lock, flags); 2704 /* Don't allow registering multiple times */ 2705 if (!dumper->registered) { 2706 dumper->registered = 1; 2707 list_add_tail_rcu(&dumper->list, &dump_list); 2708 err = 0; 2709 } 2710 spin_unlock_irqrestore(&dump_list_lock, flags); 2711 2712 return err; 2713 } 2714 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2715 2716 /** 2717 * kmsg_dump_unregister - unregister a kmsg dumper. 2718 * @dumper: pointer to the kmsg_dumper structure 2719 * 2720 * Removes a dump device from the system. Returns zero on success and 2721 * %-EINVAL otherwise. 2722 */ 2723 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2724 { 2725 unsigned long flags; 2726 int err = -EINVAL; 2727 2728 spin_lock_irqsave(&dump_list_lock, flags); 2729 if (dumper->registered) { 2730 dumper->registered = 0; 2731 list_del_rcu(&dumper->list); 2732 err = 0; 2733 } 2734 spin_unlock_irqrestore(&dump_list_lock, flags); 2735 synchronize_rcu(); 2736 2737 return err; 2738 } 2739 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2740 2741 static bool always_kmsg_dump; 2742 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2743 2744 /** 2745 * kmsg_dump - dump kernel log to kernel message dumpers. 2746 * @reason: the reason (oops, panic etc) for dumping 2747 * 2748 * Call each of the registered dumper's dump() callback, which can 2749 * retrieve the kmsg records with kmsg_dump_get_line() or 2750 * kmsg_dump_get_buffer(). 2751 */ 2752 void kmsg_dump(enum kmsg_dump_reason reason) 2753 { 2754 struct kmsg_dumper *dumper; 2755 unsigned long flags; 2756 2757 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2758 return; 2759 2760 rcu_read_lock(); 2761 list_for_each_entry_rcu(dumper, &dump_list, list) { 2762 if (dumper->max_reason && reason > dumper->max_reason) 2763 continue; 2764 2765 /* initialize iterator with data about the stored records */ 2766 dumper->active = true; 2767 2768 raw_spin_lock_irqsave(&logbuf_lock, flags); 2769 dumper->cur_seq = clear_seq; 2770 dumper->cur_idx = clear_idx; 2771 dumper->next_seq = log_next_seq; 2772 dumper->next_idx = log_next_idx; 2773 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2774 2775 /* invoke dumper which will iterate over records */ 2776 dumper->dump(dumper, reason); 2777 2778 /* reset iterator */ 2779 dumper->active = false; 2780 } 2781 rcu_read_unlock(); 2782 } 2783 2784 /** 2785 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2786 * @dumper: registered kmsg dumper 2787 * @syslog: include the "<4>" prefixes 2788 * @line: buffer to copy the line to 2789 * @size: maximum size of the buffer 2790 * @len: length of line placed into buffer 2791 * 2792 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2793 * record, and copy one record into the provided buffer. 2794 * 2795 * Consecutive calls will return the next available record moving 2796 * towards the end of the buffer with the youngest messages. 2797 * 2798 * A return value of FALSE indicates that there are no more records to 2799 * read. 2800 * 2801 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2802 */ 2803 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2804 char *line, size_t size, size_t *len) 2805 { 2806 struct printk_log *msg; 2807 size_t l = 0; 2808 bool ret = false; 2809 2810 if (!dumper->active) 2811 goto out; 2812 2813 if (dumper->cur_seq < log_first_seq) { 2814 /* messages are gone, move to first available one */ 2815 dumper->cur_seq = log_first_seq; 2816 dumper->cur_idx = log_first_idx; 2817 } 2818 2819 /* last entry */ 2820 if (dumper->cur_seq >= log_next_seq) 2821 goto out; 2822 2823 msg = log_from_idx(dumper->cur_idx); 2824 l = msg_print_text(msg, 0, syslog, line, size); 2825 2826 dumper->cur_idx = log_next(dumper->cur_idx); 2827 dumper->cur_seq++; 2828 ret = true; 2829 out: 2830 if (len) 2831 *len = l; 2832 return ret; 2833 } 2834 2835 /** 2836 * kmsg_dump_get_line - retrieve one kmsg log line 2837 * @dumper: registered kmsg dumper 2838 * @syslog: include the "<4>" prefixes 2839 * @line: buffer to copy the line to 2840 * @size: maximum size of the buffer 2841 * @len: length of line placed into buffer 2842 * 2843 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2844 * record, and copy one record into the provided buffer. 2845 * 2846 * Consecutive calls will return the next available record moving 2847 * towards the end of the buffer with the youngest messages. 2848 * 2849 * A return value of FALSE indicates that there are no more records to 2850 * read. 2851 */ 2852 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2853 char *line, size_t size, size_t *len) 2854 { 2855 unsigned long flags; 2856 bool ret; 2857 2858 raw_spin_lock_irqsave(&logbuf_lock, flags); 2859 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2860 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2861 2862 return ret; 2863 } 2864 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2865 2866 /** 2867 * kmsg_dump_get_buffer - copy kmsg log lines 2868 * @dumper: registered kmsg dumper 2869 * @syslog: include the "<4>" prefixes 2870 * @buf: buffer to copy the line to 2871 * @size: maximum size of the buffer 2872 * @len: length of line placed into buffer 2873 * 2874 * Start at the end of the kmsg buffer and fill the provided buffer 2875 * with as many of the the *youngest* kmsg records that fit into it. 2876 * If the buffer is large enough, all available kmsg records will be 2877 * copied with a single call. 2878 * 2879 * Consecutive calls will fill the buffer with the next block of 2880 * available older records, not including the earlier retrieved ones. 2881 * 2882 * A return value of FALSE indicates that there are no more records to 2883 * read. 2884 */ 2885 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2886 char *buf, size_t size, size_t *len) 2887 { 2888 unsigned long flags; 2889 u64 seq; 2890 u32 idx; 2891 u64 next_seq; 2892 u32 next_idx; 2893 enum log_flags prev; 2894 size_t l = 0; 2895 bool ret = false; 2896 2897 if (!dumper->active) 2898 goto out; 2899 2900 raw_spin_lock_irqsave(&logbuf_lock, flags); 2901 if (dumper->cur_seq < log_first_seq) { 2902 /* messages are gone, move to first available one */ 2903 dumper->cur_seq = log_first_seq; 2904 dumper->cur_idx = log_first_idx; 2905 } 2906 2907 /* last entry */ 2908 if (dumper->cur_seq >= dumper->next_seq) { 2909 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2910 goto out; 2911 } 2912 2913 /* calculate length of entire buffer */ 2914 seq = dumper->cur_seq; 2915 idx = dumper->cur_idx; 2916 prev = 0; 2917 while (seq < dumper->next_seq) { 2918 struct printk_log *msg = log_from_idx(idx); 2919 2920 l += msg_print_text(msg, prev, true, NULL, 0); 2921 idx = log_next(idx); 2922 seq++; 2923 prev = msg->flags; 2924 } 2925 2926 /* move first record forward until length fits into the buffer */ 2927 seq = dumper->cur_seq; 2928 idx = dumper->cur_idx; 2929 prev = 0; 2930 while (l > size && seq < dumper->next_seq) { 2931 struct printk_log *msg = log_from_idx(idx); 2932 2933 l -= msg_print_text(msg, prev, true, NULL, 0); 2934 idx = log_next(idx); 2935 seq++; 2936 prev = msg->flags; 2937 } 2938 2939 /* last message in next interation */ 2940 next_seq = seq; 2941 next_idx = idx; 2942 2943 l = 0; 2944 while (seq < dumper->next_seq) { 2945 struct printk_log *msg = log_from_idx(idx); 2946 2947 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2948 idx = log_next(idx); 2949 seq++; 2950 prev = msg->flags; 2951 } 2952 2953 dumper->next_seq = next_seq; 2954 dumper->next_idx = next_idx; 2955 ret = true; 2956 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2957 out: 2958 if (len) 2959 *len = l; 2960 return ret; 2961 } 2962 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2963 2964 /** 2965 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2966 * @dumper: registered kmsg dumper 2967 * 2968 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2969 * kmsg_dump_get_buffer() can be called again and used multiple 2970 * times within the same dumper.dump() callback. 2971 * 2972 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2973 */ 2974 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2975 { 2976 dumper->cur_seq = clear_seq; 2977 dumper->cur_idx = clear_idx; 2978 dumper->next_seq = log_next_seq; 2979 dumper->next_idx = log_next_idx; 2980 } 2981 2982 /** 2983 * kmsg_dump_rewind - reset the interator 2984 * @dumper: registered kmsg dumper 2985 * 2986 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2987 * kmsg_dump_get_buffer() can be called again and used multiple 2988 * times within the same dumper.dump() callback. 2989 */ 2990 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2991 { 2992 unsigned long flags; 2993 2994 raw_spin_lock_irqsave(&logbuf_lock, flags); 2995 kmsg_dump_rewind_nolock(dumper); 2996 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2997 } 2998 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2999 3000 static char dump_stack_arch_desc_str[128]; 3001 3002 /** 3003 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3004 * @fmt: printf-style format string 3005 * @...: arguments for the format string 3006 * 3007 * The configured string will be printed right after utsname during task 3008 * dumps. Usually used to add arch-specific system identifiers. If an 3009 * arch wants to make use of such an ID string, it should initialize this 3010 * as soon as possible during boot. 3011 */ 3012 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3013 { 3014 va_list args; 3015 3016 va_start(args, fmt); 3017 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3018 fmt, args); 3019 va_end(args); 3020 } 3021 3022 /** 3023 * dump_stack_print_info - print generic debug info for dump_stack() 3024 * @log_lvl: log level 3025 * 3026 * Arch-specific dump_stack() implementations can use this function to 3027 * print out the same debug information as the generic dump_stack(). 3028 */ 3029 void dump_stack_print_info(const char *log_lvl) 3030 { 3031 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3032 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3033 print_tainted(), init_utsname()->release, 3034 (int)strcspn(init_utsname()->version, " "), 3035 init_utsname()->version); 3036 3037 if (dump_stack_arch_desc_str[0] != '\0') 3038 printk("%sHardware name: %s\n", 3039 log_lvl, dump_stack_arch_desc_str); 3040 3041 print_worker_info(log_lvl, current); 3042 } 3043 3044 /** 3045 * show_regs_print_info - print generic debug info for show_regs() 3046 * @log_lvl: log level 3047 * 3048 * show_regs() implementations can use this function to print out generic 3049 * debug information. 3050 */ 3051 void show_regs_print_info(const char *log_lvl) 3052 { 3053 dump_stack_print_info(log_lvl); 3054 3055 printk("%stask: %p ti: %p task.ti: %p\n", 3056 log_lvl, current, current_thread_info(), 3057 task_thread_info(current)); 3058 } 3059 3060 #endif 3061