xref: /openbmc/linux/kernel/printk/printk.c (revision 34fa67e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console semaphore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285 
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288 
289 enum con_msg_format_flags {
290 	MSG_FORMAT_DEFAULT	= 0,
291 	MSG_FORMAT_SYSLOG	= (1 << 0),
292 };
293 
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295 
296 /*
297  * The printk log buffer consists of a sequenced collection of records, each
298  * containing variable length message text. Every record also contains its
299  * own meta-data (@info).
300  *
301  * Every record meta-data carries the timestamp in microseconds, as well as
302  * the standard userspace syslog level and syslog facility. The usual kernel
303  * messages use LOG_KERN; userspace-injected messages always carry a matching
304  * syslog facility, by default LOG_USER. The origin of every message can be
305  * reliably determined that way.
306  *
307  * The human readable log message of a record is available in @text, the
308  * length of the message text in @text_len. The stored message is not
309  * terminated.
310  *
311  * Optionally, a record can carry a dictionary of properties (key/value
312  * pairs), to provide userspace with a machine-readable message context.
313  *
314  * Examples for well-defined, commonly used property names are:
315  *   DEVICE=b12:8               device identifier
316  *                                b12:8         block dev_t
317  *                                c127:3        char dev_t
318  *                                n8            netdev ifindex
319  *                                +sound:card0  subsystem:devname
320  *   SUBSYSTEM=pci              driver-core subsystem name
321  *
322  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
323  * and values are terminated by a '\0' character.
324  *
325  * Example of record values:
326  *   record.text_buf                = "it's a line" (unterminated)
327  *   record.info.seq                = 56
328  *   record.info.ts_nsec            = 36863
329  *   record.info.text_len           = 11
330  *   record.info.facility           = 0 (LOG_KERN)
331  *   record.info.flags              = 0
332  *   record.info.level              = 3 (LOG_ERR)
333  *   record.info.caller_id          = 299 (task 299)
334  *   record.info.dev_info.subsystem = "pci" (terminated)
335  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
336  *
337  * The 'struct printk_info' buffer must never be directly exported to
338  * userspace, it is a kernel-private implementation detail that might
339  * need to be changed in the future, when the requirements change.
340  *
341  * /dev/kmsg exports the structured data in the following line format:
342  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
343  *
344  * Users of the export format should ignore possible additional values
345  * separated by ',', and find the message after the ';' character.
346  *
347  * The optional key/value pairs are attached as continuation lines starting
348  * with a space character and terminated by a newline. All possible
349  * non-prinatable characters are escaped in the "\xff" notation.
350  */
351 
352 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
353 static DEFINE_MUTEX(syslog_lock);
354 
355 #ifdef CONFIG_PRINTK
356 DECLARE_WAIT_QUEUE_HEAD(log_wait);
357 /* All 3 protected by @syslog_lock. */
358 /* the next printk record to read by syslog(READ) or /proc/kmsg */
359 static u64 syslog_seq;
360 static size_t syslog_partial;
361 static bool syslog_time;
362 
363 /* All 3 protected by @console_sem. */
364 /* the next printk record to write to the console */
365 static u64 console_seq;
366 static u64 exclusive_console_stop_seq;
367 static unsigned long console_dropped;
368 
369 struct latched_seq {
370 	seqcount_latch_t	latch;
371 	u64			val[2];
372 };
373 
374 /*
375  * The next printk record to read after the last 'clear' command. There are
376  * two copies (updated with seqcount_latch) so that reads can locklessly
377  * access a valid value. Writers are synchronized by @syslog_lock.
378  */
379 static struct latched_seq clear_seq = {
380 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
381 	.val[0]		= 0,
382 	.val[1]		= 0,
383 };
384 
385 #ifdef CONFIG_PRINTK_CALLER
386 #define PREFIX_MAX		48
387 #else
388 #define PREFIX_MAX		32
389 #endif
390 
391 /* the maximum size of a formatted record (i.e. with prefix added per line) */
392 #define CONSOLE_LOG_MAX		1024
393 
394 /* the maximum size allowed to be reserved for a record */
395 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
396 
397 #define LOG_LEVEL(v)		((v) & 0x07)
398 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
399 
400 /* record buffer */
401 #define LOG_ALIGN __alignof__(unsigned long)
402 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
403 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
404 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
405 static char *log_buf = __log_buf;
406 static u32 log_buf_len = __LOG_BUF_LEN;
407 
408 /*
409  * Define the average message size. This only affects the number of
410  * descriptors that will be available. Underestimating is better than
411  * overestimating (too many available descriptors is better than not enough).
412  */
413 #define PRB_AVGBITS 5	/* 32 character average length */
414 
415 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
416 #error CONFIG_LOG_BUF_SHIFT value too small.
417 #endif
418 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
419 		 PRB_AVGBITS, &__log_buf[0]);
420 
421 static struct printk_ringbuffer printk_rb_dynamic;
422 
423 static struct printk_ringbuffer *prb = &printk_rb_static;
424 
425 /*
426  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
427  * per_cpu_areas are initialised. This variable is set to true when
428  * it's safe to access per-CPU data.
429  */
430 static bool __printk_percpu_data_ready __read_mostly;
431 
432 bool printk_percpu_data_ready(void)
433 {
434 	return __printk_percpu_data_ready;
435 }
436 
437 /* Must be called under syslog_lock. */
438 static void latched_seq_write(struct latched_seq *ls, u64 val)
439 {
440 	raw_write_seqcount_latch(&ls->latch);
441 	ls->val[0] = val;
442 	raw_write_seqcount_latch(&ls->latch);
443 	ls->val[1] = val;
444 }
445 
446 /* Can be called from any context. */
447 static u64 latched_seq_read_nolock(struct latched_seq *ls)
448 {
449 	unsigned int seq;
450 	unsigned int idx;
451 	u64 val;
452 
453 	do {
454 		seq = raw_read_seqcount_latch(&ls->latch);
455 		idx = seq & 0x1;
456 		val = ls->val[idx];
457 	} while (read_seqcount_latch_retry(&ls->latch, seq));
458 
459 	return val;
460 }
461 
462 /* Return log buffer address */
463 char *log_buf_addr_get(void)
464 {
465 	return log_buf;
466 }
467 
468 /* Return log buffer size */
469 u32 log_buf_len_get(void)
470 {
471 	return log_buf_len;
472 }
473 
474 /*
475  * Define how much of the log buffer we could take at maximum. The value
476  * must be greater than two. Note that only half of the buffer is available
477  * when the index points to the middle.
478  */
479 #define MAX_LOG_TAKE_PART 4
480 static const char trunc_msg[] = "<truncated>";
481 
482 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
483 {
484 	/*
485 	 * The message should not take the whole buffer. Otherwise, it might
486 	 * get removed too soon.
487 	 */
488 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
489 
490 	if (*text_len > max_text_len)
491 		*text_len = max_text_len;
492 
493 	/* enable the warning message (if there is room) */
494 	*trunc_msg_len = strlen(trunc_msg);
495 	if (*text_len >= *trunc_msg_len)
496 		*text_len -= *trunc_msg_len;
497 	else
498 		*trunc_msg_len = 0;
499 }
500 
501 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
502 
503 static int syslog_action_restricted(int type)
504 {
505 	if (dmesg_restrict)
506 		return 1;
507 	/*
508 	 * Unless restricted, we allow "read all" and "get buffer size"
509 	 * for everybody.
510 	 */
511 	return type != SYSLOG_ACTION_READ_ALL &&
512 	       type != SYSLOG_ACTION_SIZE_BUFFER;
513 }
514 
515 static int check_syslog_permissions(int type, int source)
516 {
517 	/*
518 	 * If this is from /proc/kmsg and we've already opened it, then we've
519 	 * already done the capabilities checks at open time.
520 	 */
521 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
522 		goto ok;
523 
524 	if (syslog_action_restricted(type)) {
525 		if (capable(CAP_SYSLOG))
526 			goto ok;
527 		/*
528 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
529 		 * a warning.
530 		 */
531 		if (capable(CAP_SYS_ADMIN)) {
532 			pr_warn_once("%s (%d): Attempt to access syslog with "
533 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
534 				     "(deprecated).\n",
535 				 current->comm, task_pid_nr(current));
536 			goto ok;
537 		}
538 		return -EPERM;
539 	}
540 ok:
541 	return security_syslog(type);
542 }
543 
544 static void append_char(char **pp, char *e, char c)
545 {
546 	if (*pp < e)
547 		*(*pp)++ = c;
548 }
549 
550 static ssize_t info_print_ext_header(char *buf, size_t size,
551 				     struct printk_info *info)
552 {
553 	u64 ts_usec = info->ts_nsec;
554 	char caller[20];
555 #ifdef CONFIG_PRINTK_CALLER
556 	u32 id = info->caller_id;
557 
558 	snprintf(caller, sizeof(caller), ",caller=%c%u",
559 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
560 #else
561 	caller[0] = '\0';
562 #endif
563 
564 	do_div(ts_usec, 1000);
565 
566 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
567 			 (info->facility << 3) | info->level, info->seq,
568 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
569 }
570 
571 static ssize_t msg_add_ext_text(char *buf, size_t size,
572 				const char *text, size_t text_len,
573 				unsigned char endc)
574 {
575 	char *p = buf, *e = buf + size;
576 	size_t i;
577 
578 	/* escape non-printable characters */
579 	for (i = 0; i < text_len; i++) {
580 		unsigned char c = text[i];
581 
582 		if (c < ' ' || c >= 127 || c == '\\')
583 			p += scnprintf(p, e - p, "\\x%02x", c);
584 		else
585 			append_char(&p, e, c);
586 	}
587 	append_char(&p, e, endc);
588 
589 	return p - buf;
590 }
591 
592 static ssize_t msg_add_dict_text(char *buf, size_t size,
593 				 const char *key, const char *val)
594 {
595 	size_t val_len = strlen(val);
596 	ssize_t len;
597 
598 	if (!val_len)
599 		return 0;
600 
601 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
602 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
603 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
604 
605 	return len;
606 }
607 
608 static ssize_t msg_print_ext_body(char *buf, size_t size,
609 				  char *text, size_t text_len,
610 				  struct dev_printk_info *dev_info)
611 {
612 	ssize_t len;
613 
614 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
615 
616 	if (!dev_info)
617 		goto out;
618 
619 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
620 				 dev_info->subsystem);
621 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
622 				 dev_info->device);
623 out:
624 	return len;
625 }
626 
627 /* /dev/kmsg - userspace message inject/listen interface */
628 struct devkmsg_user {
629 	atomic64_t seq;
630 	struct ratelimit_state rs;
631 	struct mutex lock;
632 	char buf[CONSOLE_EXT_LOG_MAX];
633 
634 	struct printk_info info;
635 	char text_buf[CONSOLE_EXT_LOG_MAX];
636 	struct printk_record record;
637 };
638 
639 static __printf(3, 4) __cold
640 int devkmsg_emit(int facility, int level, const char *fmt, ...)
641 {
642 	va_list args;
643 	int r;
644 
645 	va_start(args, fmt);
646 	r = vprintk_emit(facility, level, NULL, fmt, args);
647 	va_end(args);
648 
649 	return r;
650 }
651 
652 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
653 {
654 	char *buf, *line;
655 	int level = default_message_loglevel;
656 	int facility = 1;	/* LOG_USER */
657 	struct file *file = iocb->ki_filp;
658 	struct devkmsg_user *user = file->private_data;
659 	size_t len = iov_iter_count(from);
660 	ssize_t ret = len;
661 
662 	if (!user || len > LOG_LINE_MAX)
663 		return -EINVAL;
664 
665 	/* Ignore when user logging is disabled. */
666 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
667 		return len;
668 
669 	/* Ratelimit when not explicitly enabled. */
670 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
671 		if (!___ratelimit(&user->rs, current->comm))
672 			return ret;
673 	}
674 
675 	buf = kmalloc(len+1, GFP_KERNEL);
676 	if (buf == NULL)
677 		return -ENOMEM;
678 
679 	buf[len] = '\0';
680 	if (!copy_from_iter_full(buf, len, from)) {
681 		kfree(buf);
682 		return -EFAULT;
683 	}
684 
685 	/*
686 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
687 	 * the decimal value represents 32bit, the lower 3 bit are the log
688 	 * level, the rest are the log facility.
689 	 *
690 	 * If no prefix or no userspace facility is specified, we
691 	 * enforce LOG_USER, to be able to reliably distinguish
692 	 * kernel-generated messages from userspace-injected ones.
693 	 */
694 	line = buf;
695 	if (line[0] == '<') {
696 		char *endp = NULL;
697 		unsigned int u;
698 
699 		u = simple_strtoul(line + 1, &endp, 10);
700 		if (endp && endp[0] == '>') {
701 			level = LOG_LEVEL(u);
702 			if (LOG_FACILITY(u) != 0)
703 				facility = LOG_FACILITY(u);
704 			endp++;
705 			line = endp;
706 		}
707 	}
708 
709 	devkmsg_emit(facility, level, "%s", line);
710 	kfree(buf);
711 	return ret;
712 }
713 
714 static ssize_t devkmsg_read(struct file *file, char __user *buf,
715 			    size_t count, loff_t *ppos)
716 {
717 	struct devkmsg_user *user = file->private_data;
718 	struct printk_record *r = &user->record;
719 	size_t len;
720 	ssize_t ret;
721 
722 	if (!user)
723 		return -EBADF;
724 
725 	ret = mutex_lock_interruptible(&user->lock);
726 	if (ret)
727 		return ret;
728 
729 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
730 		if (file->f_flags & O_NONBLOCK) {
731 			ret = -EAGAIN;
732 			goto out;
733 		}
734 
735 		ret = wait_event_interruptible(log_wait,
736 				prb_read_valid(prb, atomic64_read(&user->seq), r));
737 		if (ret)
738 			goto out;
739 	}
740 
741 	if (r->info->seq != atomic64_read(&user->seq)) {
742 		/* our last seen message is gone, return error and reset */
743 		atomic64_set(&user->seq, r->info->seq);
744 		ret = -EPIPE;
745 		goto out;
746 	}
747 
748 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
749 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
750 				  &r->text_buf[0], r->info->text_len,
751 				  &r->info->dev_info);
752 
753 	atomic64_set(&user->seq, r->info->seq + 1);
754 
755 	if (len > count) {
756 		ret = -EINVAL;
757 		goto out;
758 	}
759 
760 	if (copy_to_user(buf, user->buf, len)) {
761 		ret = -EFAULT;
762 		goto out;
763 	}
764 	ret = len;
765 out:
766 	mutex_unlock(&user->lock);
767 	return ret;
768 }
769 
770 /*
771  * Be careful when modifying this function!!!
772  *
773  * Only few operations are supported because the device works only with the
774  * entire variable length messages (records). Non-standard values are
775  * returned in the other cases and has been this way for quite some time.
776  * User space applications might depend on this behavior.
777  */
778 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
779 {
780 	struct devkmsg_user *user = file->private_data;
781 	loff_t ret = 0;
782 
783 	if (!user)
784 		return -EBADF;
785 	if (offset)
786 		return -ESPIPE;
787 
788 	switch (whence) {
789 	case SEEK_SET:
790 		/* the first record */
791 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
792 		break;
793 	case SEEK_DATA:
794 		/*
795 		 * The first record after the last SYSLOG_ACTION_CLEAR,
796 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
797 		 * changes no global state, and does not clear anything.
798 		 */
799 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
800 		break;
801 	case SEEK_END:
802 		/* after the last record */
803 		atomic64_set(&user->seq, prb_next_seq(prb));
804 		break;
805 	default:
806 		ret = -EINVAL;
807 	}
808 	return ret;
809 }
810 
811 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
812 {
813 	struct devkmsg_user *user = file->private_data;
814 	struct printk_info info;
815 	__poll_t ret = 0;
816 
817 	if (!user)
818 		return EPOLLERR|EPOLLNVAL;
819 
820 	poll_wait(file, &log_wait, wait);
821 
822 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
823 		/* return error when data has vanished underneath us */
824 		if (info.seq != atomic64_read(&user->seq))
825 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
826 		else
827 			ret = EPOLLIN|EPOLLRDNORM;
828 	}
829 
830 	return ret;
831 }
832 
833 static int devkmsg_open(struct inode *inode, struct file *file)
834 {
835 	struct devkmsg_user *user;
836 	int err;
837 
838 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
839 		return -EPERM;
840 
841 	/* write-only does not need any file context */
842 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
843 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
844 					       SYSLOG_FROM_READER);
845 		if (err)
846 			return err;
847 	}
848 
849 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
850 	if (!user)
851 		return -ENOMEM;
852 
853 	ratelimit_default_init(&user->rs);
854 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
855 
856 	mutex_init(&user->lock);
857 
858 	prb_rec_init_rd(&user->record, &user->info,
859 			&user->text_buf[0], sizeof(user->text_buf));
860 
861 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
862 
863 	file->private_data = user;
864 	return 0;
865 }
866 
867 static int devkmsg_release(struct inode *inode, struct file *file)
868 {
869 	struct devkmsg_user *user = file->private_data;
870 
871 	if (!user)
872 		return 0;
873 
874 	ratelimit_state_exit(&user->rs);
875 
876 	mutex_destroy(&user->lock);
877 	kvfree(user);
878 	return 0;
879 }
880 
881 const struct file_operations kmsg_fops = {
882 	.open = devkmsg_open,
883 	.read = devkmsg_read,
884 	.write_iter = devkmsg_write,
885 	.llseek = devkmsg_llseek,
886 	.poll = devkmsg_poll,
887 	.release = devkmsg_release,
888 };
889 
890 #ifdef CONFIG_CRASH_CORE
891 /*
892  * This appends the listed symbols to /proc/vmcore
893  *
894  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
895  * obtain access to symbols that are otherwise very difficult to locate.  These
896  * symbols are specifically used so that utilities can access and extract the
897  * dmesg log from a vmcore file after a crash.
898  */
899 void log_buf_vmcoreinfo_setup(void)
900 {
901 	struct dev_printk_info *dev_info = NULL;
902 
903 	VMCOREINFO_SYMBOL(prb);
904 	VMCOREINFO_SYMBOL(printk_rb_static);
905 	VMCOREINFO_SYMBOL(clear_seq);
906 
907 	/*
908 	 * Export struct size and field offsets. User space tools can
909 	 * parse it and detect any changes to structure down the line.
910 	 */
911 
912 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
913 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
914 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
915 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
916 
917 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
918 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
919 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
920 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
921 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
922 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
923 
924 	VMCOREINFO_STRUCT_SIZE(prb_desc);
925 	VMCOREINFO_OFFSET(prb_desc, state_var);
926 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
927 
928 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
929 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
930 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
931 
932 	VMCOREINFO_STRUCT_SIZE(printk_info);
933 	VMCOREINFO_OFFSET(printk_info, seq);
934 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
935 	VMCOREINFO_OFFSET(printk_info, text_len);
936 	VMCOREINFO_OFFSET(printk_info, caller_id);
937 	VMCOREINFO_OFFSET(printk_info, dev_info);
938 
939 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
940 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
941 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
942 	VMCOREINFO_OFFSET(dev_printk_info, device);
943 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
944 
945 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
946 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
947 	VMCOREINFO_OFFSET(prb_data_ring, data);
948 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
949 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
950 
951 	VMCOREINFO_SIZE(atomic_long_t);
952 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
953 
954 	VMCOREINFO_STRUCT_SIZE(latched_seq);
955 	VMCOREINFO_OFFSET(latched_seq, val);
956 }
957 #endif
958 
959 /* requested log_buf_len from kernel cmdline */
960 static unsigned long __initdata new_log_buf_len;
961 
962 /* we practice scaling the ring buffer by powers of 2 */
963 static void __init log_buf_len_update(u64 size)
964 {
965 	if (size > (u64)LOG_BUF_LEN_MAX) {
966 		size = (u64)LOG_BUF_LEN_MAX;
967 		pr_err("log_buf over 2G is not supported.\n");
968 	}
969 
970 	if (size)
971 		size = roundup_pow_of_two(size);
972 	if (size > log_buf_len)
973 		new_log_buf_len = (unsigned long)size;
974 }
975 
976 /* save requested log_buf_len since it's too early to process it */
977 static int __init log_buf_len_setup(char *str)
978 {
979 	u64 size;
980 
981 	if (!str)
982 		return -EINVAL;
983 
984 	size = memparse(str, &str);
985 
986 	log_buf_len_update(size);
987 
988 	return 0;
989 }
990 early_param("log_buf_len", log_buf_len_setup);
991 
992 #ifdef CONFIG_SMP
993 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
994 
995 static void __init log_buf_add_cpu(void)
996 {
997 	unsigned int cpu_extra;
998 
999 	/*
1000 	 * archs should set up cpu_possible_bits properly with
1001 	 * set_cpu_possible() after setup_arch() but just in
1002 	 * case lets ensure this is valid.
1003 	 */
1004 	if (num_possible_cpus() == 1)
1005 		return;
1006 
1007 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1008 
1009 	/* by default this will only continue through for large > 64 CPUs */
1010 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1011 		return;
1012 
1013 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1014 		__LOG_CPU_MAX_BUF_LEN);
1015 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1016 		cpu_extra);
1017 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1018 
1019 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1020 }
1021 #else /* !CONFIG_SMP */
1022 static inline void log_buf_add_cpu(void) {}
1023 #endif /* CONFIG_SMP */
1024 
1025 static void __init set_percpu_data_ready(void)
1026 {
1027 	__printk_percpu_data_ready = true;
1028 }
1029 
1030 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1031 				     struct printk_record *r)
1032 {
1033 	struct prb_reserved_entry e;
1034 	struct printk_record dest_r;
1035 
1036 	prb_rec_init_wr(&dest_r, r->info->text_len);
1037 
1038 	if (!prb_reserve(&e, rb, &dest_r))
1039 		return 0;
1040 
1041 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1042 	dest_r.info->text_len = r->info->text_len;
1043 	dest_r.info->facility = r->info->facility;
1044 	dest_r.info->level = r->info->level;
1045 	dest_r.info->flags = r->info->flags;
1046 	dest_r.info->ts_nsec = r->info->ts_nsec;
1047 	dest_r.info->caller_id = r->info->caller_id;
1048 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1049 
1050 	prb_final_commit(&e);
1051 
1052 	return prb_record_text_space(&e);
1053 }
1054 
1055 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1056 
1057 void __init setup_log_buf(int early)
1058 {
1059 	struct printk_info *new_infos;
1060 	unsigned int new_descs_count;
1061 	struct prb_desc *new_descs;
1062 	struct printk_info info;
1063 	struct printk_record r;
1064 	unsigned int text_size;
1065 	size_t new_descs_size;
1066 	size_t new_infos_size;
1067 	unsigned long flags;
1068 	char *new_log_buf;
1069 	unsigned int free;
1070 	u64 seq;
1071 
1072 	/*
1073 	 * Some archs call setup_log_buf() multiple times - first is very
1074 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1075 	 * are initialised.
1076 	 */
1077 	if (!early)
1078 		set_percpu_data_ready();
1079 
1080 	if (log_buf != __log_buf)
1081 		return;
1082 
1083 	if (!early && !new_log_buf_len)
1084 		log_buf_add_cpu();
1085 
1086 	if (!new_log_buf_len)
1087 		return;
1088 
1089 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1090 	if (new_descs_count == 0) {
1091 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1092 		return;
1093 	}
1094 
1095 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1096 	if (unlikely(!new_log_buf)) {
1097 		pr_err("log_buf_len: %lu text bytes not available\n",
1098 		       new_log_buf_len);
1099 		return;
1100 	}
1101 
1102 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1103 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1104 	if (unlikely(!new_descs)) {
1105 		pr_err("log_buf_len: %zu desc bytes not available\n",
1106 		       new_descs_size);
1107 		goto err_free_log_buf;
1108 	}
1109 
1110 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1111 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1112 	if (unlikely(!new_infos)) {
1113 		pr_err("log_buf_len: %zu info bytes not available\n",
1114 		       new_infos_size);
1115 		goto err_free_descs;
1116 	}
1117 
1118 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1119 
1120 	prb_init(&printk_rb_dynamic,
1121 		 new_log_buf, ilog2(new_log_buf_len),
1122 		 new_descs, ilog2(new_descs_count),
1123 		 new_infos);
1124 
1125 	local_irq_save(flags);
1126 
1127 	log_buf_len = new_log_buf_len;
1128 	log_buf = new_log_buf;
1129 	new_log_buf_len = 0;
1130 
1131 	free = __LOG_BUF_LEN;
1132 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1133 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1134 		if (text_size > free)
1135 			free = 0;
1136 		else
1137 			free -= text_size;
1138 	}
1139 
1140 	prb = &printk_rb_dynamic;
1141 
1142 	local_irq_restore(flags);
1143 
1144 	/*
1145 	 * Copy any remaining messages that might have appeared from
1146 	 * NMI context after copying but before switching to the
1147 	 * dynamic buffer.
1148 	 */
1149 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1150 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1151 		if (text_size > free)
1152 			free = 0;
1153 		else
1154 			free -= text_size;
1155 	}
1156 
1157 	if (seq != prb_next_seq(&printk_rb_static)) {
1158 		pr_err("dropped %llu messages\n",
1159 		       prb_next_seq(&printk_rb_static) - seq);
1160 	}
1161 
1162 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1163 	pr_info("early log buf free: %u(%u%%)\n",
1164 		free, (free * 100) / __LOG_BUF_LEN);
1165 	return;
1166 
1167 err_free_descs:
1168 	memblock_free(new_descs, new_descs_size);
1169 err_free_log_buf:
1170 	memblock_free(new_log_buf, new_log_buf_len);
1171 }
1172 
1173 static bool __read_mostly ignore_loglevel;
1174 
1175 static int __init ignore_loglevel_setup(char *str)
1176 {
1177 	ignore_loglevel = true;
1178 	pr_info("debug: ignoring loglevel setting.\n");
1179 
1180 	return 0;
1181 }
1182 
1183 early_param("ignore_loglevel", ignore_loglevel_setup);
1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1185 MODULE_PARM_DESC(ignore_loglevel,
1186 		 "ignore loglevel setting (prints all kernel messages to the console)");
1187 
1188 static bool suppress_message_printing(int level)
1189 {
1190 	return (level >= console_loglevel && !ignore_loglevel);
1191 }
1192 
1193 #ifdef CONFIG_BOOT_PRINTK_DELAY
1194 
1195 static int boot_delay; /* msecs delay after each printk during bootup */
1196 static unsigned long long loops_per_msec;	/* based on boot_delay */
1197 
1198 static int __init boot_delay_setup(char *str)
1199 {
1200 	unsigned long lpj;
1201 
1202 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1203 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1204 
1205 	get_option(&str, &boot_delay);
1206 	if (boot_delay > 10 * 1000)
1207 		boot_delay = 0;
1208 
1209 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1210 		"HZ: %d, loops_per_msec: %llu\n",
1211 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1212 	return 0;
1213 }
1214 early_param("boot_delay", boot_delay_setup);
1215 
1216 static void boot_delay_msec(int level)
1217 {
1218 	unsigned long long k;
1219 	unsigned long timeout;
1220 
1221 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1222 		|| suppress_message_printing(level)) {
1223 		return;
1224 	}
1225 
1226 	k = (unsigned long long)loops_per_msec * boot_delay;
1227 
1228 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1229 	while (k) {
1230 		k--;
1231 		cpu_relax();
1232 		/*
1233 		 * use (volatile) jiffies to prevent
1234 		 * compiler reduction; loop termination via jiffies
1235 		 * is secondary and may or may not happen.
1236 		 */
1237 		if (time_after(jiffies, timeout))
1238 			break;
1239 		touch_nmi_watchdog();
1240 	}
1241 }
1242 #else
1243 static inline void boot_delay_msec(int level)
1244 {
1245 }
1246 #endif
1247 
1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1250 
1251 static size_t print_syslog(unsigned int level, char *buf)
1252 {
1253 	return sprintf(buf, "<%u>", level);
1254 }
1255 
1256 static size_t print_time(u64 ts, char *buf)
1257 {
1258 	unsigned long rem_nsec = do_div(ts, 1000000000);
1259 
1260 	return sprintf(buf, "[%5lu.%06lu]",
1261 		       (unsigned long)ts, rem_nsec / 1000);
1262 }
1263 
1264 #ifdef CONFIG_PRINTK_CALLER
1265 static size_t print_caller(u32 id, char *buf)
1266 {
1267 	char caller[12];
1268 
1269 	snprintf(caller, sizeof(caller), "%c%u",
1270 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1271 	return sprintf(buf, "[%6s]", caller);
1272 }
1273 #else
1274 #define print_caller(id, buf) 0
1275 #endif
1276 
1277 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1278 				bool time, char *buf)
1279 {
1280 	size_t len = 0;
1281 
1282 	if (syslog)
1283 		len = print_syslog((info->facility << 3) | info->level, buf);
1284 
1285 	if (time)
1286 		len += print_time(info->ts_nsec, buf + len);
1287 
1288 	len += print_caller(info->caller_id, buf + len);
1289 
1290 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1291 		buf[len++] = ' ';
1292 		buf[len] = '\0';
1293 	}
1294 
1295 	return len;
1296 }
1297 
1298 /*
1299  * Prepare the record for printing. The text is shifted within the given
1300  * buffer to avoid a need for another one. The following operations are
1301  * done:
1302  *
1303  *   - Add prefix for each line.
1304  *   - Drop truncated lines that no longer fit into the buffer.
1305  *   - Add the trailing newline that has been removed in vprintk_store().
1306  *   - Add a string terminator.
1307  *
1308  * Since the produced string is always terminated, the maximum possible
1309  * return value is @r->text_buf_size - 1;
1310  *
1311  * Return: The length of the updated/prepared text, including the added
1312  * prefixes and the newline. The terminator is not counted. The dropped
1313  * line(s) are not counted.
1314  */
1315 static size_t record_print_text(struct printk_record *r, bool syslog,
1316 				bool time)
1317 {
1318 	size_t text_len = r->info->text_len;
1319 	size_t buf_size = r->text_buf_size;
1320 	char *text = r->text_buf;
1321 	char prefix[PREFIX_MAX];
1322 	bool truncated = false;
1323 	size_t prefix_len;
1324 	size_t line_len;
1325 	size_t len = 0;
1326 	char *next;
1327 
1328 	/*
1329 	 * If the message was truncated because the buffer was not large
1330 	 * enough, treat the available text as if it were the full text.
1331 	 */
1332 	if (text_len > buf_size)
1333 		text_len = buf_size;
1334 
1335 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1336 
1337 	/*
1338 	 * @text_len: bytes of unprocessed text
1339 	 * @line_len: bytes of current line _without_ newline
1340 	 * @text:     pointer to beginning of current line
1341 	 * @len:      number of bytes prepared in r->text_buf
1342 	 */
1343 	for (;;) {
1344 		next = memchr(text, '\n', text_len);
1345 		if (next) {
1346 			line_len = next - text;
1347 		} else {
1348 			/* Drop truncated line(s). */
1349 			if (truncated)
1350 				break;
1351 			line_len = text_len;
1352 		}
1353 
1354 		/*
1355 		 * Truncate the text if there is not enough space to add the
1356 		 * prefix and a trailing newline and a terminator.
1357 		 */
1358 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1359 			/* Drop even the current line if no space. */
1360 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1361 				break;
1362 
1363 			text_len = buf_size - len - prefix_len - 1 - 1;
1364 			truncated = true;
1365 		}
1366 
1367 		memmove(text + prefix_len, text, text_len);
1368 		memcpy(text, prefix, prefix_len);
1369 
1370 		/*
1371 		 * Increment the prepared length to include the text and
1372 		 * prefix that were just moved+copied. Also increment for the
1373 		 * newline at the end of this line. If this is the last line,
1374 		 * there is no newline, but it will be added immediately below.
1375 		 */
1376 		len += prefix_len + line_len + 1;
1377 		if (text_len == line_len) {
1378 			/*
1379 			 * This is the last line. Add the trailing newline
1380 			 * removed in vprintk_store().
1381 			 */
1382 			text[prefix_len + line_len] = '\n';
1383 			break;
1384 		}
1385 
1386 		/*
1387 		 * Advance beyond the added prefix and the related line with
1388 		 * its newline.
1389 		 */
1390 		text += prefix_len + line_len + 1;
1391 
1392 		/*
1393 		 * The remaining text has only decreased by the line with its
1394 		 * newline.
1395 		 *
1396 		 * Note that @text_len can become zero. It happens when @text
1397 		 * ended with a newline (either due to truncation or the
1398 		 * original string ending with "\n\n"). The loop is correctly
1399 		 * repeated and (if not truncated) an empty line with a prefix
1400 		 * will be prepared.
1401 		 */
1402 		text_len -= line_len + 1;
1403 	}
1404 
1405 	/*
1406 	 * If a buffer was provided, it will be terminated. Space for the
1407 	 * string terminator is guaranteed to be available. The terminator is
1408 	 * not counted in the return value.
1409 	 */
1410 	if (buf_size > 0)
1411 		r->text_buf[len] = 0;
1412 
1413 	return len;
1414 }
1415 
1416 static size_t get_record_print_text_size(struct printk_info *info,
1417 					 unsigned int line_count,
1418 					 bool syslog, bool time)
1419 {
1420 	char prefix[PREFIX_MAX];
1421 	size_t prefix_len;
1422 
1423 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1424 
1425 	/*
1426 	 * Each line will be preceded with a prefix. The intermediate
1427 	 * newlines are already within the text, but a final trailing
1428 	 * newline will be added.
1429 	 */
1430 	return ((prefix_len * line_count) + info->text_len + 1);
1431 }
1432 
1433 /*
1434  * Beginning with @start_seq, find the first record where it and all following
1435  * records up to (but not including) @max_seq fit into @size.
1436  *
1437  * @max_seq is simply an upper bound and does not need to exist. If the caller
1438  * does not require an upper bound, -1 can be used for @max_seq.
1439  */
1440 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1441 				  bool syslog, bool time)
1442 {
1443 	struct printk_info info;
1444 	unsigned int line_count;
1445 	size_t len = 0;
1446 	u64 seq;
1447 
1448 	/* Determine the size of the records up to @max_seq. */
1449 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1450 		if (info.seq >= max_seq)
1451 			break;
1452 		len += get_record_print_text_size(&info, line_count, syslog, time);
1453 	}
1454 
1455 	/*
1456 	 * Adjust the upper bound for the next loop to avoid subtracting
1457 	 * lengths that were never added.
1458 	 */
1459 	if (seq < max_seq)
1460 		max_seq = seq;
1461 
1462 	/*
1463 	 * Move first record forward until length fits into the buffer. Ignore
1464 	 * newest messages that were not counted in the above cycle. Messages
1465 	 * might appear and get lost in the meantime. This is a best effort
1466 	 * that prevents an infinite loop that could occur with a retry.
1467 	 */
1468 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1469 		if (len <= size || info.seq >= max_seq)
1470 			break;
1471 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1472 	}
1473 
1474 	return seq;
1475 }
1476 
1477 /* The caller is responsible for making sure @size is greater than 0. */
1478 static int syslog_print(char __user *buf, int size)
1479 {
1480 	struct printk_info info;
1481 	struct printk_record r;
1482 	char *text;
1483 	int len = 0;
1484 	u64 seq;
1485 
1486 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1487 	if (!text)
1488 		return -ENOMEM;
1489 
1490 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1491 
1492 	mutex_lock(&syslog_lock);
1493 
1494 	/*
1495 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1496 	 * change while waiting.
1497 	 */
1498 	do {
1499 		seq = syslog_seq;
1500 
1501 		mutex_unlock(&syslog_lock);
1502 		len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL));
1503 		mutex_lock(&syslog_lock);
1504 
1505 		if (len)
1506 			goto out;
1507 	} while (syslog_seq != seq);
1508 
1509 	/*
1510 	 * Copy records that fit into the buffer. The above cycle makes sure
1511 	 * that the first record is always available.
1512 	 */
1513 	do {
1514 		size_t n;
1515 		size_t skip;
1516 		int err;
1517 
1518 		if (!prb_read_valid(prb, syslog_seq, &r))
1519 			break;
1520 
1521 		if (r.info->seq != syslog_seq) {
1522 			/* message is gone, move to next valid one */
1523 			syslog_seq = r.info->seq;
1524 			syslog_partial = 0;
1525 		}
1526 
1527 		/*
1528 		 * To keep reading/counting partial line consistent,
1529 		 * use printk_time value as of the beginning of a line.
1530 		 */
1531 		if (!syslog_partial)
1532 			syslog_time = printk_time;
1533 
1534 		skip = syslog_partial;
1535 		n = record_print_text(&r, true, syslog_time);
1536 		if (n - syslog_partial <= size) {
1537 			/* message fits into buffer, move forward */
1538 			syslog_seq = r.info->seq + 1;
1539 			n -= syslog_partial;
1540 			syslog_partial = 0;
1541 		} else if (!len){
1542 			/* partial read(), remember position */
1543 			n = size;
1544 			syslog_partial += n;
1545 		} else
1546 			n = 0;
1547 
1548 		if (!n)
1549 			break;
1550 
1551 		mutex_unlock(&syslog_lock);
1552 		err = copy_to_user(buf, text + skip, n);
1553 		mutex_lock(&syslog_lock);
1554 
1555 		if (err) {
1556 			if (!len)
1557 				len = -EFAULT;
1558 			break;
1559 		}
1560 
1561 		len += n;
1562 		size -= n;
1563 		buf += n;
1564 	} while (size);
1565 out:
1566 	mutex_unlock(&syslog_lock);
1567 	kfree(text);
1568 	return len;
1569 }
1570 
1571 static int syslog_print_all(char __user *buf, int size, bool clear)
1572 {
1573 	struct printk_info info;
1574 	struct printk_record r;
1575 	char *text;
1576 	int len = 0;
1577 	u64 seq;
1578 	bool time;
1579 
1580 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1581 	if (!text)
1582 		return -ENOMEM;
1583 
1584 	time = printk_time;
1585 	/*
1586 	 * Find first record that fits, including all following records,
1587 	 * into the user-provided buffer for this dump.
1588 	 */
1589 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1590 				     size, true, time);
1591 
1592 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1593 
1594 	len = 0;
1595 	prb_for_each_record(seq, prb, seq, &r) {
1596 		int textlen;
1597 
1598 		textlen = record_print_text(&r, true, time);
1599 
1600 		if (len + textlen > size) {
1601 			seq--;
1602 			break;
1603 		}
1604 
1605 		if (copy_to_user(buf + len, text, textlen))
1606 			len = -EFAULT;
1607 		else
1608 			len += textlen;
1609 
1610 		if (len < 0)
1611 			break;
1612 	}
1613 
1614 	if (clear) {
1615 		mutex_lock(&syslog_lock);
1616 		latched_seq_write(&clear_seq, seq);
1617 		mutex_unlock(&syslog_lock);
1618 	}
1619 
1620 	kfree(text);
1621 	return len;
1622 }
1623 
1624 static void syslog_clear(void)
1625 {
1626 	mutex_lock(&syslog_lock);
1627 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1628 	mutex_unlock(&syslog_lock);
1629 }
1630 
1631 int do_syslog(int type, char __user *buf, int len, int source)
1632 {
1633 	struct printk_info info;
1634 	bool clear = false;
1635 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1636 	int error;
1637 
1638 	error = check_syslog_permissions(type, source);
1639 	if (error)
1640 		return error;
1641 
1642 	switch (type) {
1643 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1644 		break;
1645 	case SYSLOG_ACTION_OPEN:	/* Open log */
1646 		break;
1647 	case SYSLOG_ACTION_READ:	/* Read from log */
1648 		if (!buf || len < 0)
1649 			return -EINVAL;
1650 		if (!len)
1651 			return 0;
1652 		if (!access_ok(buf, len))
1653 			return -EFAULT;
1654 		error = syslog_print(buf, len);
1655 		break;
1656 	/* Read/clear last kernel messages */
1657 	case SYSLOG_ACTION_READ_CLEAR:
1658 		clear = true;
1659 		fallthrough;
1660 	/* Read last kernel messages */
1661 	case SYSLOG_ACTION_READ_ALL:
1662 		if (!buf || len < 0)
1663 			return -EINVAL;
1664 		if (!len)
1665 			return 0;
1666 		if (!access_ok(buf, len))
1667 			return -EFAULT;
1668 		error = syslog_print_all(buf, len, clear);
1669 		break;
1670 	/* Clear ring buffer */
1671 	case SYSLOG_ACTION_CLEAR:
1672 		syslog_clear();
1673 		break;
1674 	/* Disable logging to console */
1675 	case SYSLOG_ACTION_CONSOLE_OFF:
1676 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1677 			saved_console_loglevel = console_loglevel;
1678 		console_loglevel = minimum_console_loglevel;
1679 		break;
1680 	/* Enable logging to console */
1681 	case SYSLOG_ACTION_CONSOLE_ON:
1682 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1683 			console_loglevel = saved_console_loglevel;
1684 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1685 		}
1686 		break;
1687 	/* Set level of messages printed to console */
1688 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1689 		if (len < 1 || len > 8)
1690 			return -EINVAL;
1691 		if (len < minimum_console_loglevel)
1692 			len = minimum_console_loglevel;
1693 		console_loglevel = len;
1694 		/* Implicitly re-enable logging to console */
1695 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1696 		break;
1697 	/* Number of chars in the log buffer */
1698 	case SYSLOG_ACTION_SIZE_UNREAD:
1699 		mutex_lock(&syslog_lock);
1700 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1701 			/* No unread messages. */
1702 			mutex_unlock(&syslog_lock);
1703 			return 0;
1704 		}
1705 		if (info.seq != syslog_seq) {
1706 			/* messages are gone, move to first one */
1707 			syslog_seq = info.seq;
1708 			syslog_partial = 0;
1709 		}
1710 		if (source == SYSLOG_FROM_PROC) {
1711 			/*
1712 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1713 			 * for pending data, not the size; return the count of
1714 			 * records, not the length.
1715 			 */
1716 			error = prb_next_seq(prb) - syslog_seq;
1717 		} else {
1718 			bool time = syslog_partial ? syslog_time : printk_time;
1719 			unsigned int line_count;
1720 			u64 seq;
1721 
1722 			prb_for_each_info(syslog_seq, prb, seq, &info,
1723 					  &line_count) {
1724 				error += get_record_print_text_size(&info, line_count,
1725 								    true, time);
1726 				time = printk_time;
1727 			}
1728 			error -= syslog_partial;
1729 		}
1730 		mutex_unlock(&syslog_lock);
1731 		break;
1732 	/* Size of the log buffer */
1733 	case SYSLOG_ACTION_SIZE_BUFFER:
1734 		error = log_buf_len;
1735 		break;
1736 	default:
1737 		error = -EINVAL;
1738 		break;
1739 	}
1740 
1741 	return error;
1742 }
1743 
1744 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1745 {
1746 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1747 }
1748 
1749 /*
1750  * Special console_lock variants that help to reduce the risk of soft-lockups.
1751  * They allow to pass console_lock to another printk() call using a busy wait.
1752  */
1753 
1754 #ifdef CONFIG_LOCKDEP
1755 static struct lockdep_map console_owner_dep_map = {
1756 	.name = "console_owner"
1757 };
1758 #endif
1759 
1760 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1761 static struct task_struct *console_owner;
1762 static bool console_waiter;
1763 
1764 /**
1765  * console_lock_spinning_enable - mark beginning of code where another
1766  *	thread might safely busy wait
1767  *
1768  * This basically converts console_lock into a spinlock. This marks
1769  * the section where the console_lock owner can not sleep, because
1770  * there may be a waiter spinning (like a spinlock). Also it must be
1771  * ready to hand over the lock at the end of the section.
1772  */
1773 static void console_lock_spinning_enable(void)
1774 {
1775 	raw_spin_lock(&console_owner_lock);
1776 	console_owner = current;
1777 	raw_spin_unlock(&console_owner_lock);
1778 
1779 	/* The waiter may spin on us after setting console_owner */
1780 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1781 }
1782 
1783 /**
1784  * console_lock_spinning_disable_and_check - mark end of code where another
1785  *	thread was able to busy wait and check if there is a waiter
1786  *
1787  * This is called at the end of the section where spinning is allowed.
1788  * It has two functions. First, it is a signal that it is no longer
1789  * safe to start busy waiting for the lock. Second, it checks if
1790  * there is a busy waiter and passes the lock rights to her.
1791  *
1792  * Important: Callers lose the lock if there was a busy waiter.
1793  *	They must not touch items synchronized by console_lock
1794  *	in this case.
1795  *
1796  * Return: 1 if the lock rights were passed, 0 otherwise.
1797  */
1798 static int console_lock_spinning_disable_and_check(void)
1799 {
1800 	int waiter;
1801 
1802 	raw_spin_lock(&console_owner_lock);
1803 	waiter = READ_ONCE(console_waiter);
1804 	console_owner = NULL;
1805 	raw_spin_unlock(&console_owner_lock);
1806 
1807 	if (!waiter) {
1808 		spin_release(&console_owner_dep_map, _THIS_IP_);
1809 		return 0;
1810 	}
1811 
1812 	/* The waiter is now free to continue */
1813 	WRITE_ONCE(console_waiter, false);
1814 
1815 	spin_release(&console_owner_dep_map, _THIS_IP_);
1816 
1817 	/*
1818 	 * Hand off console_lock to waiter. The waiter will perform
1819 	 * the up(). After this, the waiter is the console_lock owner.
1820 	 */
1821 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1822 	return 1;
1823 }
1824 
1825 /**
1826  * console_trylock_spinning - try to get console_lock by busy waiting
1827  *
1828  * This allows to busy wait for the console_lock when the current
1829  * owner is running in specially marked sections. It means that
1830  * the current owner is running and cannot reschedule until it
1831  * is ready to lose the lock.
1832  *
1833  * Return: 1 if we got the lock, 0 othrewise
1834  */
1835 static int console_trylock_spinning(void)
1836 {
1837 	struct task_struct *owner = NULL;
1838 	bool waiter;
1839 	bool spin = false;
1840 	unsigned long flags;
1841 
1842 	if (console_trylock())
1843 		return 1;
1844 
1845 	printk_safe_enter_irqsave(flags);
1846 
1847 	raw_spin_lock(&console_owner_lock);
1848 	owner = READ_ONCE(console_owner);
1849 	waiter = READ_ONCE(console_waiter);
1850 	if (!waiter && owner && owner != current) {
1851 		WRITE_ONCE(console_waiter, true);
1852 		spin = true;
1853 	}
1854 	raw_spin_unlock(&console_owner_lock);
1855 
1856 	/*
1857 	 * If there is an active printk() writing to the
1858 	 * consoles, instead of having it write our data too,
1859 	 * see if we can offload that load from the active
1860 	 * printer, and do some printing ourselves.
1861 	 * Go into a spin only if there isn't already a waiter
1862 	 * spinning, and there is an active printer, and
1863 	 * that active printer isn't us (recursive printk?).
1864 	 */
1865 	if (!spin) {
1866 		printk_safe_exit_irqrestore(flags);
1867 		return 0;
1868 	}
1869 
1870 	/* We spin waiting for the owner to release us */
1871 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1872 	/* Owner will clear console_waiter on hand off */
1873 	while (READ_ONCE(console_waiter))
1874 		cpu_relax();
1875 	spin_release(&console_owner_dep_map, _THIS_IP_);
1876 
1877 	printk_safe_exit_irqrestore(flags);
1878 	/*
1879 	 * The owner passed the console lock to us.
1880 	 * Since we did not spin on console lock, annotate
1881 	 * this as a trylock. Otherwise lockdep will
1882 	 * complain.
1883 	 */
1884 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1885 
1886 	return 1;
1887 }
1888 
1889 /*
1890  * Call the console drivers, asking them to write out
1891  * log_buf[start] to log_buf[end - 1].
1892  * The console_lock must be held.
1893  */
1894 static void call_console_drivers(const char *ext_text, size_t ext_len,
1895 				 const char *text, size_t len)
1896 {
1897 	static char dropped_text[64];
1898 	size_t dropped_len = 0;
1899 	struct console *con;
1900 
1901 	trace_console_rcuidle(text, len);
1902 
1903 	if (!console_drivers)
1904 		return;
1905 
1906 	if (console_dropped) {
1907 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1908 				       "** %lu printk messages dropped **\n",
1909 				       console_dropped);
1910 		console_dropped = 0;
1911 	}
1912 
1913 	for_each_console(con) {
1914 		if (exclusive_console && con != exclusive_console)
1915 			continue;
1916 		if (!(con->flags & CON_ENABLED))
1917 			continue;
1918 		if (!con->write)
1919 			continue;
1920 		if (!cpu_online(smp_processor_id()) &&
1921 		    !(con->flags & CON_ANYTIME))
1922 			continue;
1923 		if (con->flags & CON_EXTENDED)
1924 			con->write(con, ext_text, ext_len);
1925 		else {
1926 			if (dropped_len)
1927 				con->write(con, dropped_text, dropped_len);
1928 			con->write(con, text, len);
1929 		}
1930 	}
1931 }
1932 
1933 /*
1934  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1935  * additional NMI context per CPU is also separately tracked. Until per-CPU
1936  * is available, a separate "early tracking" is performed.
1937  */
1938 static DEFINE_PER_CPU(u8, printk_count);
1939 static u8 printk_count_early;
1940 #ifdef CONFIG_HAVE_NMI
1941 static DEFINE_PER_CPU(u8, printk_count_nmi);
1942 static u8 printk_count_nmi_early;
1943 #endif
1944 
1945 /*
1946  * Recursion is limited to keep the output sane. printk() should not require
1947  * more than 1 level of recursion (allowing, for example, printk() to trigger
1948  * a WARN), but a higher value is used in case some printk-internal errors
1949  * exist, such as the ringbuffer validation checks failing.
1950  */
1951 #define PRINTK_MAX_RECURSION 3
1952 
1953 /*
1954  * Return a pointer to the dedicated counter for the CPU+context of the
1955  * caller.
1956  */
1957 static u8 *__printk_recursion_counter(void)
1958 {
1959 #ifdef CONFIG_HAVE_NMI
1960 	if (in_nmi()) {
1961 		if (printk_percpu_data_ready())
1962 			return this_cpu_ptr(&printk_count_nmi);
1963 		return &printk_count_nmi_early;
1964 	}
1965 #endif
1966 	if (printk_percpu_data_ready())
1967 		return this_cpu_ptr(&printk_count);
1968 	return &printk_count_early;
1969 }
1970 
1971 /*
1972  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
1973  * The caller must check the boolean return value to see if the recursion is
1974  * allowed. On failure, interrupts are not disabled.
1975  *
1976  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
1977  * that is passed to printk_exit_irqrestore().
1978  */
1979 #define printk_enter_irqsave(recursion_ptr, flags)	\
1980 ({							\
1981 	bool success = true;				\
1982 							\
1983 	typecheck(u8 *, recursion_ptr);			\
1984 	local_irq_save(flags);				\
1985 	(recursion_ptr) = __printk_recursion_counter();	\
1986 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
1987 		local_irq_restore(flags);		\
1988 		success = false;			\
1989 	} else {					\
1990 		(*(recursion_ptr))++;			\
1991 	}						\
1992 	success;					\
1993 })
1994 
1995 /* Exit recursion tracking, restoring interrupts. */
1996 #define printk_exit_irqrestore(recursion_ptr, flags)	\
1997 	do {						\
1998 		typecheck(u8 *, recursion_ptr);		\
1999 		(*(recursion_ptr))--;			\
2000 		local_irq_restore(flags);		\
2001 	} while (0)
2002 
2003 int printk_delay_msec __read_mostly;
2004 
2005 static inline void printk_delay(void)
2006 {
2007 	if (unlikely(printk_delay_msec)) {
2008 		int m = printk_delay_msec;
2009 
2010 		while (m--) {
2011 			mdelay(1);
2012 			touch_nmi_watchdog();
2013 		}
2014 	}
2015 }
2016 
2017 static inline u32 printk_caller_id(void)
2018 {
2019 	return in_task() ? task_pid_nr(current) :
2020 		0x80000000 + raw_smp_processor_id();
2021 }
2022 
2023 /**
2024  * printk_parse_prefix - Parse level and control flags.
2025  *
2026  * @text:     The terminated text message.
2027  * @level:    A pointer to the current level value, will be updated.
2028  * @flags:    A pointer to the current printk_info flags, will be updated.
2029  *
2030  * @level may be NULL if the caller is not interested in the parsed value.
2031  * Otherwise the variable pointed to by @level must be set to
2032  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2033  *
2034  * @flags may be NULL if the caller is not interested in the parsed value.
2035  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2036  * value.
2037  *
2038  * Return: The length of the parsed level and control flags.
2039  */
2040 u16 printk_parse_prefix(const char *text, int *level,
2041 			enum printk_info_flags *flags)
2042 {
2043 	u16 prefix_len = 0;
2044 	int kern_level;
2045 
2046 	while (*text) {
2047 		kern_level = printk_get_level(text);
2048 		if (!kern_level)
2049 			break;
2050 
2051 		switch (kern_level) {
2052 		case '0' ... '7':
2053 			if (level && *level == LOGLEVEL_DEFAULT)
2054 				*level = kern_level - '0';
2055 			break;
2056 		case 'c':	/* KERN_CONT */
2057 			if (flags)
2058 				*flags |= LOG_CONT;
2059 		}
2060 
2061 		prefix_len += 2;
2062 		text += 2;
2063 	}
2064 
2065 	return prefix_len;
2066 }
2067 
2068 __printf(5, 0)
2069 static u16 printk_sprint(char *text, u16 size, int facility,
2070 			 enum printk_info_flags *flags, const char *fmt,
2071 			 va_list args)
2072 {
2073 	u16 text_len;
2074 
2075 	text_len = vscnprintf(text, size, fmt, args);
2076 
2077 	/* Mark and strip a trailing newline. */
2078 	if (text_len && text[text_len - 1] == '\n') {
2079 		text_len--;
2080 		*flags |= LOG_NEWLINE;
2081 	}
2082 
2083 	/* Strip log level and control flags. */
2084 	if (facility == 0) {
2085 		u16 prefix_len;
2086 
2087 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2088 		if (prefix_len) {
2089 			text_len -= prefix_len;
2090 			memmove(text, text + prefix_len, text_len);
2091 		}
2092 	}
2093 
2094 	return text_len;
2095 }
2096 
2097 __printf(4, 0)
2098 int vprintk_store(int facility, int level,
2099 		  const struct dev_printk_info *dev_info,
2100 		  const char *fmt, va_list args)
2101 {
2102 	const u32 caller_id = printk_caller_id();
2103 	struct prb_reserved_entry e;
2104 	enum printk_info_flags flags = 0;
2105 	struct printk_record r;
2106 	unsigned long irqflags;
2107 	u16 trunc_msg_len = 0;
2108 	char prefix_buf[8];
2109 	u8 *recursion_ptr;
2110 	u16 reserve_size;
2111 	va_list args2;
2112 	u16 text_len;
2113 	int ret = 0;
2114 	u64 ts_nsec;
2115 
2116 	/*
2117 	 * Since the duration of printk() can vary depending on the message
2118 	 * and state of the ringbuffer, grab the timestamp now so that it is
2119 	 * close to the call of printk(). This provides a more deterministic
2120 	 * timestamp with respect to the caller.
2121 	 */
2122 	ts_nsec = local_clock();
2123 
2124 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2125 		return 0;
2126 
2127 	/*
2128 	 * The sprintf needs to come first since the syslog prefix might be
2129 	 * passed in as a parameter. An extra byte must be reserved so that
2130 	 * later the vscnprintf() into the reserved buffer has room for the
2131 	 * terminating '\0', which is not counted by vsnprintf().
2132 	 */
2133 	va_copy(args2, args);
2134 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2135 	va_end(args2);
2136 
2137 	if (reserve_size > LOG_LINE_MAX)
2138 		reserve_size = LOG_LINE_MAX;
2139 
2140 	/* Extract log level or control flags. */
2141 	if (facility == 0)
2142 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2143 
2144 	if (level == LOGLEVEL_DEFAULT)
2145 		level = default_message_loglevel;
2146 
2147 	if (dev_info)
2148 		flags |= LOG_NEWLINE;
2149 
2150 	if (flags & LOG_CONT) {
2151 		prb_rec_init_wr(&r, reserve_size);
2152 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2153 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2154 						 facility, &flags, fmt, args);
2155 			r.info->text_len += text_len;
2156 
2157 			if (flags & LOG_NEWLINE) {
2158 				r.info->flags |= LOG_NEWLINE;
2159 				prb_final_commit(&e);
2160 			} else {
2161 				prb_commit(&e);
2162 			}
2163 
2164 			ret = text_len;
2165 			goto out;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * Explicitly initialize the record before every prb_reserve() call.
2171 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2172 	 * structure when they fail.
2173 	 */
2174 	prb_rec_init_wr(&r, reserve_size);
2175 	if (!prb_reserve(&e, prb, &r)) {
2176 		/* truncate the message if it is too long for empty buffer */
2177 		truncate_msg(&reserve_size, &trunc_msg_len);
2178 
2179 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2180 		if (!prb_reserve(&e, prb, &r))
2181 			goto out;
2182 	}
2183 
2184 	/* fill message */
2185 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2186 	if (trunc_msg_len)
2187 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2188 	r.info->text_len = text_len + trunc_msg_len;
2189 	r.info->facility = facility;
2190 	r.info->level = level & 7;
2191 	r.info->flags = flags & 0x1f;
2192 	r.info->ts_nsec = ts_nsec;
2193 	r.info->caller_id = caller_id;
2194 	if (dev_info)
2195 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2196 
2197 	/* A message without a trailing newline can be continued. */
2198 	if (!(flags & LOG_NEWLINE))
2199 		prb_commit(&e);
2200 	else
2201 		prb_final_commit(&e);
2202 
2203 	ret = text_len + trunc_msg_len;
2204 out:
2205 	printk_exit_irqrestore(recursion_ptr, irqflags);
2206 	return ret;
2207 }
2208 
2209 asmlinkage int vprintk_emit(int facility, int level,
2210 			    const struct dev_printk_info *dev_info,
2211 			    const char *fmt, va_list args)
2212 {
2213 	int printed_len;
2214 	bool in_sched = false;
2215 
2216 	/* Suppress unimportant messages after panic happens */
2217 	if (unlikely(suppress_printk))
2218 		return 0;
2219 
2220 	if (level == LOGLEVEL_SCHED) {
2221 		level = LOGLEVEL_DEFAULT;
2222 		in_sched = true;
2223 	}
2224 
2225 	boot_delay_msec(level);
2226 	printk_delay();
2227 
2228 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2229 
2230 	/* If called from the scheduler, we can not call up(). */
2231 	if (!in_sched) {
2232 		/*
2233 		 * Disable preemption to avoid being preempted while holding
2234 		 * console_sem which would prevent anyone from printing to
2235 		 * console
2236 		 */
2237 		preempt_disable();
2238 		/*
2239 		 * Try to acquire and then immediately release the console
2240 		 * semaphore.  The release will print out buffers and wake up
2241 		 * /dev/kmsg and syslog() users.
2242 		 */
2243 		if (console_trylock_spinning())
2244 			console_unlock();
2245 		preempt_enable();
2246 	}
2247 
2248 	wake_up_klogd();
2249 	return printed_len;
2250 }
2251 EXPORT_SYMBOL(vprintk_emit);
2252 
2253 int vprintk_default(const char *fmt, va_list args)
2254 {
2255 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2256 }
2257 EXPORT_SYMBOL_GPL(vprintk_default);
2258 
2259 asmlinkage __visible int _printk(const char *fmt, ...)
2260 {
2261 	va_list args;
2262 	int r;
2263 
2264 	va_start(args, fmt);
2265 	r = vprintk(fmt, args);
2266 	va_end(args);
2267 
2268 	return r;
2269 }
2270 EXPORT_SYMBOL(_printk);
2271 
2272 #else /* CONFIG_PRINTK */
2273 
2274 #define CONSOLE_LOG_MAX		0
2275 #define printk_time		false
2276 
2277 #define prb_read_valid(rb, seq, r)	false
2278 #define prb_first_valid_seq(rb)		0
2279 
2280 static u64 syslog_seq;
2281 static u64 console_seq;
2282 static u64 exclusive_console_stop_seq;
2283 static unsigned long console_dropped;
2284 
2285 static size_t record_print_text(const struct printk_record *r,
2286 				bool syslog, bool time)
2287 {
2288 	return 0;
2289 }
2290 static ssize_t info_print_ext_header(char *buf, size_t size,
2291 				     struct printk_info *info)
2292 {
2293 	return 0;
2294 }
2295 static ssize_t msg_print_ext_body(char *buf, size_t size,
2296 				  char *text, size_t text_len,
2297 				  struct dev_printk_info *dev_info) { return 0; }
2298 static void console_lock_spinning_enable(void) { }
2299 static int console_lock_spinning_disable_and_check(void) { return 0; }
2300 static void call_console_drivers(const char *ext_text, size_t ext_len,
2301 				 const char *text, size_t len) {}
2302 static bool suppress_message_printing(int level) { return false; }
2303 
2304 #endif /* CONFIG_PRINTK */
2305 
2306 #ifdef CONFIG_EARLY_PRINTK
2307 struct console *early_console;
2308 
2309 asmlinkage __visible void early_printk(const char *fmt, ...)
2310 {
2311 	va_list ap;
2312 	char buf[512];
2313 	int n;
2314 
2315 	if (!early_console)
2316 		return;
2317 
2318 	va_start(ap, fmt);
2319 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2320 	va_end(ap);
2321 
2322 	early_console->write(early_console, buf, n);
2323 }
2324 #endif
2325 
2326 static int __add_preferred_console(char *name, int idx, char *options,
2327 				   char *brl_options, bool user_specified)
2328 {
2329 	struct console_cmdline *c;
2330 	int i;
2331 
2332 	/*
2333 	 *	See if this tty is not yet registered, and
2334 	 *	if we have a slot free.
2335 	 */
2336 	for (i = 0, c = console_cmdline;
2337 	     i < MAX_CMDLINECONSOLES && c->name[0];
2338 	     i++, c++) {
2339 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2340 			if (!brl_options)
2341 				preferred_console = i;
2342 			if (user_specified)
2343 				c->user_specified = true;
2344 			return 0;
2345 		}
2346 	}
2347 	if (i == MAX_CMDLINECONSOLES)
2348 		return -E2BIG;
2349 	if (!brl_options)
2350 		preferred_console = i;
2351 	strlcpy(c->name, name, sizeof(c->name));
2352 	c->options = options;
2353 	c->user_specified = user_specified;
2354 	braille_set_options(c, brl_options);
2355 
2356 	c->index = idx;
2357 	return 0;
2358 }
2359 
2360 static int __init console_msg_format_setup(char *str)
2361 {
2362 	if (!strcmp(str, "syslog"))
2363 		console_msg_format = MSG_FORMAT_SYSLOG;
2364 	if (!strcmp(str, "default"))
2365 		console_msg_format = MSG_FORMAT_DEFAULT;
2366 	return 1;
2367 }
2368 __setup("console_msg_format=", console_msg_format_setup);
2369 
2370 /*
2371  * Set up a console.  Called via do_early_param() in init/main.c
2372  * for each "console=" parameter in the boot command line.
2373  */
2374 static int __init console_setup(char *str)
2375 {
2376 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2377 	char *s, *options, *brl_options = NULL;
2378 	int idx;
2379 
2380 	/*
2381 	 * console="" or console=null have been suggested as a way to
2382 	 * disable console output. Use ttynull that has been created
2383 	 * for exactly this purpose.
2384 	 */
2385 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2386 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2387 		return 1;
2388 	}
2389 
2390 	if (_braille_console_setup(&str, &brl_options))
2391 		return 1;
2392 
2393 	/*
2394 	 * Decode str into name, index, options.
2395 	 */
2396 	if (str[0] >= '0' && str[0] <= '9') {
2397 		strcpy(buf, "ttyS");
2398 		strncpy(buf + 4, str, sizeof(buf) - 5);
2399 	} else {
2400 		strncpy(buf, str, sizeof(buf) - 1);
2401 	}
2402 	buf[sizeof(buf) - 1] = 0;
2403 	options = strchr(str, ',');
2404 	if (options)
2405 		*(options++) = 0;
2406 #ifdef __sparc__
2407 	if (!strcmp(str, "ttya"))
2408 		strcpy(buf, "ttyS0");
2409 	if (!strcmp(str, "ttyb"))
2410 		strcpy(buf, "ttyS1");
2411 #endif
2412 	for (s = buf; *s; s++)
2413 		if (isdigit(*s) || *s == ',')
2414 			break;
2415 	idx = simple_strtoul(s, NULL, 10);
2416 	*s = 0;
2417 
2418 	__add_preferred_console(buf, idx, options, brl_options, true);
2419 	console_set_on_cmdline = 1;
2420 	return 1;
2421 }
2422 __setup("console=", console_setup);
2423 
2424 /**
2425  * add_preferred_console - add a device to the list of preferred consoles.
2426  * @name: device name
2427  * @idx: device index
2428  * @options: options for this console
2429  *
2430  * The last preferred console added will be used for kernel messages
2431  * and stdin/out/err for init.  Normally this is used by console_setup
2432  * above to handle user-supplied console arguments; however it can also
2433  * be used by arch-specific code either to override the user or more
2434  * commonly to provide a default console (ie from PROM variables) when
2435  * the user has not supplied one.
2436  */
2437 int add_preferred_console(char *name, int idx, char *options)
2438 {
2439 	return __add_preferred_console(name, idx, options, NULL, false);
2440 }
2441 
2442 bool console_suspend_enabled = true;
2443 EXPORT_SYMBOL(console_suspend_enabled);
2444 
2445 static int __init console_suspend_disable(char *str)
2446 {
2447 	console_suspend_enabled = false;
2448 	return 1;
2449 }
2450 __setup("no_console_suspend", console_suspend_disable);
2451 module_param_named(console_suspend, console_suspend_enabled,
2452 		bool, S_IRUGO | S_IWUSR);
2453 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2454 	" and hibernate operations");
2455 
2456 static bool printk_console_no_auto_verbose;
2457 
2458 void console_verbose(void)
2459 {
2460 	if (console_loglevel && !printk_console_no_auto_verbose)
2461 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2462 }
2463 EXPORT_SYMBOL_GPL(console_verbose);
2464 
2465 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2466 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2467 
2468 /**
2469  * suspend_console - suspend the console subsystem
2470  *
2471  * This disables printk() while we go into suspend states
2472  */
2473 void suspend_console(void)
2474 {
2475 	if (!console_suspend_enabled)
2476 		return;
2477 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2478 	console_lock();
2479 	console_suspended = 1;
2480 	up_console_sem();
2481 }
2482 
2483 void resume_console(void)
2484 {
2485 	if (!console_suspend_enabled)
2486 		return;
2487 	down_console_sem();
2488 	console_suspended = 0;
2489 	console_unlock();
2490 }
2491 
2492 /**
2493  * console_cpu_notify - print deferred console messages after CPU hotplug
2494  * @cpu: unused
2495  *
2496  * If printk() is called from a CPU that is not online yet, the messages
2497  * will be printed on the console only if there are CON_ANYTIME consoles.
2498  * This function is called when a new CPU comes online (or fails to come
2499  * up) or goes offline.
2500  */
2501 static int console_cpu_notify(unsigned int cpu)
2502 {
2503 	if (!cpuhp_tasks_frozen) {
2504 		/* If trylock fails, someone else is doing the printing */
2505 		if (console_trylock())
2506 			console_unlock();
2507 	}
2508 	return 0;
2509 }
2510 
2511 /**
2512  * console_lock - lock the console system for exclusive use.
2513  *
2514  * Acquires a lock which guarantees that the caller has
2515  * exclusive access to the console system and the console_drivers list.
2516  *
2517  * Can sleep, returns nothing.
2518  */
2519 void console_lock(void)
2520 {
2521 	might_sleep();
2522 
2523 	down_console_sem();
2524 	if (console_suspended)
2525 		return;
2526 	console_locked = 1;
2527 	console_may_schedule = 1;
2528 }
2529 EXPORT_SYMBOL(console_lock);
2530 
2531 /**
2532  * console_trylock - try to lock the console system for exclusive use.
2533  *
2534  * Try to acquire a lock which guarantees that the caller has exclusive
2535  * access to the console system and the console_drivers list.
2536  *
2537  * returns 1 on success, and 0 on failure to acquire the lock.
2538  */
2539 int console_trylock(void)
2540 {
2541 	if (down_trylock_console_sem())
2542 		return 0;
2543 	if (console_suspended) {
2544 		up_console_sem();
2545 		return 0;
2546 	}
2547 	console_locked = 1;
2548 	console_may_schedule = 0;
2549 	return 1;
2550 }
2551 EXPORT_SYMBOL(console_trylock);
2552 
2553 int is_console_locked(void)
2554 {
2555 	return console_locked;
2556 }
2557 EXPORT_SYMBOL(is_console_locked);
2558 
2559 /*
2560  * Check if we have any console that is capable of printing while cpu is
2561  * booting or shutting down. Requires console_sem.
2562  */
2563 static int have_callable_console(void)
2564 {
2565 	struct console *con;
2566 
2567 	for_each_console(con)
2568 		if ((con->flags & CON_ENABLED) &&
2569 				(con->flags & CON_ANYTIME))
2570 			return 1;
2571 
2572 	return 0;
2573 }
2574 
2575 /*
2576  * Can we actually use the console at this time on this cpu?
2577  *
2578  * Console drivers may assume that per-cpu resources have been allocated. So
2579  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2580  * call them until this CPU is officially up.
2581  */
2582 static inline int can_use_console(void)
2583 {
2584 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2585 }
2586 
2587 /**
2588  * console_unlock - unlock the console system
2589  *
2590  * Releases the console_lock which the caller holds on the console system
2591  * and the console driver list.
2592  *
2593  * While the console_lock was held, console output may have been buffered
2594  * by printk().  If this is the case, console_unlock(); emits
2595  * the output prior to releasing the lock.
2596  *
2597  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2598  *
2599  * console_unlock(); may be called from any context.
2600  */
2601 void console_unlock(void)
2602 {
2603 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2604 	static char text[CONSOLE_LOG_MAX];
2605 	unsigned long flags;
2606 	bool do_cond_resched, retry;
2607 	struct printk_info info;
2608 	struct printk_record r;
2609 	u64 __maybe_unused next_seq;
2610 
2611 	if (console_suspended) {
2612 		up_console_sem();
2613 		return;
2614 	}
2615 
2616 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2617 
2618 	/*
2619 	 * Console drivers are called with interrupts disabled, so
2620 	 * @console_may_schedule should be cleared before; however, we may
2621 	 * end up dumping a lot of lines, for example, if called from
2622 	 * console registration path, and should invoke cond_resched()
2623 	 * between lines if allowable.  Not doing so can cause a very long
2624 	 * scheduling stall on a slow console leading to RCU stall and
2625 	 * softlockup warnings which exacerbate the issue with more
2626 	 * messages practically incapacitating the system.
2627 	 *
2628 	 * console_trylock() is not able to detect the preemptive
2629 	 * context reliably. Therefore the value must be stored before
2630 	 * and cleared after the "again" goto label.
2631 	 */
2632 	do_cond_resched = console_may_schedule;
2633 again:
2634 	console_may_schedule = 0;
2635 
2636 	/*
2637 	 * We released the console_sem lock, so we need to recheck if
2638 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2639 	 * console.
2640 	 */
2641 	if (!can_use_console()) {
2642 		console_locked = 0;
2643 		up_console_sem();
2644 		return;
2645 	}
2646 
2647 	for (;;) {
2648 		size_t ext_len = 0;
2649 		int handover;
2650 		size_t len;
2651 
2652 skip:
2653 		if (!prb_read_valid(prb, console_seq, &r))
2654 			break;
2655 
2656 		if (console_seq != r.info->seq) {
2657 			console_dropped += r.info->seq - console_seq;
2658 			console_seq = r.info->seq;
2659 		}
2660 
2661 		if (suppress_message_printing(r.info->level)) {
2662 			/*
2663 			 * Skip record we have buffered and already printed
2664 			 * directly to the console when we received it, and
2665 			 * record that has level above the console loglevel.
2666 			 */
2667 			console_seq++;
2668 			goto skip;
2669 		}
2670 
2671 		/* Output to all consoles once old messages replayed. */
2672 		if (unlikely(exclusive_console &&
2673 			     console_seq >= exclusive_console_stop_seq)) {
2674 			exclusive_console = NULL;
2675 		}
2676 
2677 		/*
2678 		 * Handle extended console text first because later
2679 		 * record_print_text() will modify the record buffer in-place.
2680 		 */
2681 		if (nr_ext_console_drivers) {
2682 			ext_len = info_print_ext_header(ext_text,
2683 						sizeof(ext_text),
2684 						r.info);
2685 			ext_len += msg_print_ext_body(ext_text + ext_len,
2686 						sizeof(ext_text) - ext_len,
2687 						&r.text_buf[0],
2688 						r.info->text_len,
2689 						&r.info->dev_info);
2690 		}
2691 		len = record_print_text(&r,
2692 				console_msg_format & MSG_FORMAT_SYSLOG,
2693 				printk_time);
2694 		console_seq++;
2695 
2696 		/*
2697 		 * While actively printing out messages, if another printk()
2698 		 * were to occur on another CPU, it may wait for this one to
2699 		 * finish. This task can not be preempted if there is a
2700 		 * waiter waiting to take over.
2701 		 *
2702 		 * Interrupts are disabled because the hand over to a waiter
2703 		 * must not be interrupted until the hand over is completed
2704 		 * (@console_waiter is cleared).
2705 		 */
2706 		printk_safe_enter_irqsave(flags);
2707 		console_lock_spinning_enable();
2708 
2709 		stop_critical_timings();	/* don't trace print latency */
2710 		call_console_drivers(ext_text, ext_len, text, len);
2711 		start_critical_timings();
2712 
2713 		handover = console_lock_spinning_disable_and_check();
2714 		printk_safe_exit_irqrestore(flags);
2715 		if (handover)
2716 			return;
2717 
2718 		if (do_cond_resched)
2719 			cond_resched();
2720 	}
2721 
2722 	/* Get consistent value of the next-to-be-used sequence number. */
2723 	next_seq = console_seq;
2724 
2725 	console_locked = 0;
2726 	up_console_sem();
2727 
2728 	/*
2729 	 * Someone could have filled up the buffer again, so re-check if there's
2730 	 * something to flush. In case we cannot trylock the console_sem again,
2731 	 * there's a new owner and the console_unlock() from them will do the
2732 	 * flush, no worries.
2733 	 */
2734 	retry = prb_read_valid(prb, next_seq, NULL);
2735 	if (retry && console_trylock())
2736 		goto again;
2737 }
2738 EXPORT_SYMBOL(console_unlock);
2739 
2740 /**
2741  * console_conditional_schedule - yield the CPU if required
2742  *
2743  * If the console code is currently allowed to sleep, and
2744  * if this CPU should yield the CPU to another task, do
2745  * so here.
2746  *
2747  * Must be called within console_lock();.
2748  */
2749 void __sched console_conditional_schedule(void)
2750 {
2751 	if (console_may_schedule)
2752 		cond_resched();
2753 }
2754 EXPORT_SYMBOL(console_conditional_schedule);
2755 
2756 void console_unblank(void)
2757 {
2758 	struct console *c;
2759 
2760 	/*
2761 	 * console_unblank can no longer be called in interrupt context unless
2762 	 * oops_in_progress is set to 1..
2763 	 */
2764 	if (oops_in_progress) {
2765 		if (down_trylock_console_sem() != 0)
2766 			return;
2767 	} else
2768 		console_lock();
2769 
2770 	console_locked = 1;
2771 	console_may_schedule = 0;
2772 	for_each_console(c)
2773 		if ((c->flags & CON_ENABLED) && c->unblank)
2774 			c->unblank();
2775 	console_unlock();
2776 }
2777 
2778 /**
2779  * console_flush_on_panic - flush console content on panic
2780  * @mode: flush all messages in buffer or just the pending ones
2781  *
2782  * Immediately output all pending messages no matter what.
2783  */
2784 void console_flush_on_panic(enum con_flush_mode mode)
2785 {
2786 	/*
2787 	 * If someone else is holding the console lock, trylock will fail
2788 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2789 	 * that messages are flushed out.  As this can be called from any
2790 	 * context and we don't want to get preempted while flushing,
2791 	 * ensure may_schedule is cleared.
2792 	 */
2793 	console_trylock();
2794 	console_may_schedule = 0;
2795 
2796 	if (mode == CONSOLE_REPLAY_ALL)
2797 		console_seq = prb_first_valid_seq(prb);
2798 	console_unlock();
2799 }
2800 
2801 /*
2802  * Return the console tty driver structure and its associated index
2803  */
2804 struct tty_driver *console_device(int *index)
2805 {
2806 	struct console *c;
2807 	struct tty_driver *driver = NULL;
2808 
2809 	console_lock();
2810 	for_each_console(c) {
2811 		if (!c->device)
2812 			continue;
2813 		driver = c->device(c, index);
2814 		if (driver)
2815 			break;
2816 	}
2817 	console_unlock();
2818 	return driver;
2819 }
2820 
2821 /*
2822  * Prevent further output on the passed console device so that (for example)
2823  * serial drivers can disable console output before suspending a port, and can
2824  * re-enable output afterwards.
2825  */
2826 void console_stop(struct console *console)
2827 {
2828 	console_lock();
2829 	console->flags &= ~CON_ENABLED;
2830 	console_unlock();
2831 }
2832 EXPORT_SYMBOL(console_stop);
2833 
2834 void console_start(struct console *console)
2835 {
2836 	console_lock();
2837 	console->flags |= CON_ENABLED;
2838 	console_unlock();
2839 }
2840 EXPORT_SYMBOL(console_start);
2841 
2842 static int __read_mostly keep_bootcon;
2843 
2844 static int __init keep_bootcon_setup(char *str)
2845 {
2846 	keep_bootcon = 1;
2847 	pr_info("debug: skip boot console de-registration.\n");
2848 
2849 	return 0;
2850 }
2851 
2852 early_param("keep_bootcon", keep_bootcon_setup);
2853 
2854 /*
2855  * This is called by register_console() to try to match
2856  * the newly registered console with any of the ones selected
2857  * by either the command line or add_preferred_console() and
2858  * setup/enable it.
2859  *
2860  * Care need to be taken with consoles that are statically
2861  * enabled such as netconsole
2862  */
2863 static int try_enable_preferred_console(struct console *newcon,
2864 					bool user_specified)
2865 {
2866 	struct console_cmdline *c;
2867 	int i, err;
2868 
2869 	for (i = 0, c = console_cmdline;
2870 	     i < MAX_CMDLINECONSOLES && c->name[0];
2871 	     i++, c++) {
2872 		if (c->user_specified != user_specified)
2873 			continue;
2874 		if (!newcon->match ||
2875 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2876 			/* default matching */
2877 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2878 			if (strcmp(c->name, newcon->name) != 0)
2879 				continue;
2880 			if (newcon->index >= 0 &&
2881 			    newcon->index != c->index)
2882 				continue;
2883 			if (newcon->index < 0)
2884 				newcon->index = c->index;
2885 
2886 			if (_braille_register_console(newcon, c))
2887 				return 0;
2888 
2889 			if (newcon->setup &&
2890 			    (err = newcon->setup(newcon, c->options)) != 0)
2891 				return err;
2892 		}
2893 		newcon->flags |= CON_ENABLED;
2894 		if (i == preferred_console)
2895 			newcon->flags |= CON_CONSDEV;
2896 		return 0;
2897 	}
2898 
2899 	/*
2900 	 * Some consoles, such as pstore and netconsole, can be enabled even
2901 	 * without matching. Accept the pre-enabled consoles only when match()
2902 	 * and setup() had a chance to be called.
2903 	 */
2904 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2905 		return 0;
2906 
2907 	return -ENOENT;
2908 }
2909 
2910 /* Try to enable the console unconditionally */
2911 static void try_enable_default_console(struct console *newcon)
2912 {
2913 	if (newcon->index < 0)
2914 		newcon->index = 0;
2915 
2916 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
2917 		return;
2918 
2919 	newcon->flags |= CON_ENABLED;
2920 
2921 	if (newcon->device)
2922 		newcon->flags |= CON_CONSDEV;
2923 }
2924 
2925 /*
2926  * The console driver calls this routine during kernel initialization
2927  * to register the console printing procedure with printk() and to
2928  * print any messages that were printed by the kernel before the
2929  * console driver was initialized.
2930  *
2931  * This can happen pretty early during the boot process (because of
2932  * early_printk) - sometimes before setup_arch() completes - be careful
2933  * of what kernel features are used - they may not be initialised yet.
2934  *
2935  * There are two types of consoles - bootconsoles (early_printk) and
2936  * "real" consoles (everything which is not a bootconsole) which are
2937  * handled differently.
2938  *  - Any number of bootconsoles can be registered at any time.
2939  *  - As soon as a "real" console is registered, all bootconsoles
2940  *    will be unregistered automatically.
2941  *  - Once a "real" console is registered, any attempt to register a
2942  *    bootconsoles will be rejected
2943  */
2944 void register_console(struct console *newcon)
2945 {
2946 	struct console *con;
2947 	bool bootcon_enabled = false;
2948 	bool realcon_enabled = false;
2949 	int err;
2950 
2951 	for_each_console(con) {
2952 		if (WARN(con == newcon, "console '%s%d' already registered\n",
2953 					 con->name, con->index))
2954 			return;
2955 	}
2956 
2957 	for_each_console(con) {
2958 		if (con->flags & CON_BOOT)
2959 			bootcon_enabled = true;
2960 		else
2961 			realcon_enabled = true;
2962 	}
2963 
2964 	/* Do not register boot consoles when there already is a real one. */
2965 	if (newcon->flags & CON_BOOT && realcon_enabled) {
2966 		pr_info("Too late to register bootconsole %s%d\n",
2967 			newcon->name, newcon->index);
2968 		return;
2969 	}
2970 
2971 	/*
2972 	 * See if we want to enable this console driver by default.
2973 	 *
2974 	 * Nope when a console is preferred by the command line, device
2975 	 * tree, or SPCR.
2976 	 *
2977 	 * The first real console with tty binding (driver) wins. More
2978 	 * consoles might get enabled before the right one is found.
2979 	 *
2980 	 * Note that a console with tty binding will have CON_CONSDEV
2981 	 * flag set and will be first in the list.
2982 	 */
2983 	if (preferred_console < 0) {
2984 		if (!console_drivers || !console_drivers->device ||
2985 		    console_drivers->flags & CON_BOOT) {
2986 			try_enable_default_console(newcon);
2987 		}
2988 	}
2989 
2990 	/* See if this console matches one we selected on the command line */
2991 	err = try_enable_preferred_console(newcon, true);
2992 
2993 	/* If not, try to match against the platform default(s) */
2994 	if (err == -ENOENT)
2995 		err = try_enable_preferred_console(newcon, false);
2996 
2997 	/* printk() messages are not printed to the Braille console. */
2998 	if (err || newcon->flags & CON_BRL)
2999 		return;
3000 
3001 	/*
3002 	 * If we have a bootconsole, and are switching to a real console,
3003 	 * don't print everything out again, since when the boot console, and
3004 	 * the real console are the same physical device, it's annoying to
3005 	 * see the beginning boot messages twice
3006 	 */
3007 	if (bootcon_enabled &&
3008 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3009 		newcon->flags &= ~CON_PRINTBUFFER;
3010 	}
3011 
3012 	/*
3013 	 *	Put this console in the list - keep the
3014 	 *	preferred driver at the head of the list.
3015 	 */
3016 	console_lock();
3017 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
3018 		newcon->next = console_drivers;
3019 		console_drivers = newcon;
3020 		if (newcon->next)
3021 			newcon->next->flags &= ~CON_CONSDEV;
3022 		/* Ensure this flag is always set for the head of the list */
3023 		newcon->flags |= CON_CONSDEV;
3024 	} else {
3025 		newcon->next = console_drivers->next;
3026 		console_drivers->next = newcon;
3027 	}
3028 
3029 	if (newcon->flags & CON_EXTENDED)
3030 		nr_ext_console_drivers++;
3031 
3032 	if (newcon->flags & CON_PRINTBUFFER) {
3033 		/*
3034 		 * console_unlock(); will print out the buffered messages
3035 		 * for us.
3036 		 *
3037 		 * We're about to replay the log buffer.  Only do this to the
3038 		 * just-registered console to avoid excessive message spam to
3039 		 * the already-registered consoles.
3040 		 *
3041 		 * Set exclusive_console with disabled interrupts to reduce
3042 		 * race window with eventual console_flush_on_panic() that
3043 		 * ignores console_lock.
3044 		 */
3045 		exclusive_console = newcon;
3046 		exclusive_console_stop_seq = console_seq;
3047 
3048 		/* Get a consistent copy of @syslog_seq. */
3049 		mutex_lock(&syslog_lock);
3050 		console_seq = syslog_seq;
3051 		mutex_unlock(&syslog_lock);
3052 	}
3053 	console_unlock();
3054 	console_sysfs_notify();
3055 
3056 	/*
3057 	 * By unregistering the bootconsoles after we enable the real console
3058 	 * we get the "console xxx enabled" message on all the consoles -
3059 	 * boot consoles, real consoles, etc - this is to ensure that end
3060 	 * users know there might be something in the kernel's log buffer that
3061 	 * went to the bootconsole (that they do not see on the real console)
3062 	 */
3063 	pr_info("%sconsole [%s%d] enabled\n",
3064 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
3065 		newcon->name, newcon->index);
3066 	if (bootcon_enabled &&
3067 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3068 	    !keep_bootcon) {
3069 		/* We need to iterate through all boot consoles, to make
3070 		 * sure we print everything out, before we unregister them.
3071 		 */
3072 		for_each_console(con)
3073 			if (con->flags & CON_BOOT)
3074 				unregister_console(con);
3075 	}
3076 }
3077 EXPORT_SYMBOL(register_console);
3078 
3079 int unregister_console(struct console *console)
3080 {
3081 	struct console *con;
3082 	int res;
3083 
3084 	pr_info("%sconsole [%s%d] disabled\n",
3085 		(console->flags & CON_BOOT) ? "boot" : "" ,
3086 		console->name, console->index);
3087 
3088 	res = _braille_unregister_console(console);
3089 	if (res < 0)
3090 		return res;
3091 	if (res > 0)
3092 		return 0;
3093 
3094 	res = -ENODEV;
3095 	console_lock();
3096 	if (console_drivers == console) {
3097 		console_drivers=console->next;
3098 		res = 0;
3099 	} else {
3100 		for_each_console(con) {
3101 			if (con->next == console) {
3102 				con->next = console->next;
3103 				res = 0;
3104 				break;
3105 			}
3106 		}
3107 	}
3108 
3109 	if (res)
3110 		goto out_disable_unlock;
3111 
3112 	if (console->flags & CON_EXTENDED)
3113 		nr_ext_console_drivers--;
3114 
3115 	/*
3116 	 * If this isn't the last console and it has CON_CONSDEV set, we
3117 	 * need to set it on the next preferred console.
3118 	 */
3119 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3120 		console_drivers->flags |= CON_CONSDEV;
3121 
3122 	console->flags &= ~CON_ENABLED;
3123 	console_unlock();
3124 	console_sysfs_notify();
3125 
3126 	if (console->exit)
3127 		res = console->exit(console);
3128 
3129 	return res;
3130 
3131 out_disable_unlock:
3132 	console->flags &= ~CON_ENABLED;
3133 	console_unlock();
3134 
3135 	return res;
3136 }
3137 EXPORT_SYMBOL(unregister_console);
3138 
3139 /*
3140  * Initialize the console device. This is called *early*, so
3141  * we can't necessarily depend on lots of kernel help here.
3142  * Just do some early initializations, and do the complex setup
3143  * later.
3144  */
3145 void __init console_init(void)
3146 {
3147 	int ret;
3148 	initcall_t call;
3149 	initcall_entry_t *ce;
3150 
3151 	/* Setup the default TTY line discipline. */
3152 	n_tty_init();
3153 
3154 	/*
3155 	 * set up the console device so that later boot sequences can
3156 	 * inform about problems etc..
3157 	 */
3158 	ce = __con_initcall_start;
3159 	trace_initcall_level("console");
3160 	while (ce < __con_initcall_end) {
3161 		call = initcall_from_entry(ce);
3162 		trace_initcall_start(call);
3163 		ret = call();
3164 		trace_initcall_finish(call, ret);
3165 		ce++;
3166 	}
3167 }
3168 
3169 /*
3170  * Some boot consoles access data that is in the init section and which will
3171  * be discarded after the initcalls have been run. To make sure that no code
3172  * will access this data, unregister the boot consoles in a late initcall.
3173  *
3174  * If for some reason, such as deferred probe or the driver being a loadable
3175  * module, the real console hasn't registered yet at this point, there will
3176  * be a brief interval in which no messages are logged to the console, which
3177  * makes it difficult to diagnose problems that occur during this time.
3178  *
3179  * To mitigate this problem somewhat, only unregister consoles whose memory
3180  * intersects with the init section. Note that all other boot consoles will
3181  * get unregistered when the real preferred console is registered.
3182  */
3183 static int __init printk_late_init(void)
3184 {
3185 	struct console *con;
3186 	int ret;
3187 
3188 	for_each_console(con) {
3189 		if (!(con->flags & CON_BOOT))
3190 			continue;
3191 
3192 		/* Check addresses that might be used for enabled consoles. */
3193 		if (init_section_intersects(con, sizeof(*con)) ||
3194 		    init_section_contains(con->write, 0) ||
3195 		    init_section_contains(con->read, 0) ||
3196 		    init_section_contains(con->device, 0) ||
3197 		    init_section_contains(con->unblank, 0) ||
3198 		    init_section_contains(con->data, 0)) {
3199 			/*
3200 			 * Please, consider moving the reported consoles out
3201 			 * of the init section.
3202 			 */
3203 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3204 				con->name, con->index);
3205 			unregister_console(con);
3206 		}
3207 	}
3208 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3209 					console_cpu_notify);
3210 	WARN_ON(ret < 0);
3211 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3212 					console_cpu_notify, NULL);
3213 	WARN_ON(ret < 0);
3214 	return 0;
3215 }
3216 late_initcall(printk_late_init);
3217 
3218 #if defined CONFIG_PRINTK
3219 /*
3220  * Delayed printk version, for scheduler-internal messages:
3221  */
3222 #define PRINTK_PENDING_WAKEUP	0x01
3223 #define PRINTK_PENDING_OUTPUT	0x02
3224 
3225 static DEFINE_PER_CPU(int, printk_pending);
3226 
3227 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3228 {
3229 	int pending = __this_cpu_xchg(printk_pending, 0);
3230 
3231 	if (pending & PRINTK_PENDING_OUTPUT) {
3232 		/* If trylock fails, someone else is doing the printing */
3233 		if (console_trylock())
3234 			console_unlock();
3235 	}
3236 
3237 	if (pending & PRINTK_PENDING_WAKEUP)
3238 		wake_up_interruptible(&log_wait);
3239 }
3240 
3241 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3242 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3243 
3244 void wake_up_klogd(void)
3245 {
3246 	if (!printk_percpu_data_ready())
3247 		return;
3248 
3249 	preempt_disable();
3250 	if (waitqueue_active(&log_wait)) {
3251 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3252 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3253 	}
3254 	preempt_enable();
3255 }
3256 
3257 void defer_console_output(void)
3258 {
3259 	if (!printk_percpu_data_ready())
3260 		return;
3261 
3262 	preempt_disable();
3263 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3264 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3265 	preempt_enable();
3266 }
3267 
3268 void printk_trigger_flush(void)
3269 {
3270 	defer_console_output();
3271 }
3272 
3273 int vprintk_deferred(const char *fmt, va_list args)
3274 {
3275 	int r;
3276 
3277 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3278 	defer_console_output();
3279 
3280 	return r;
3281 }
3282 
3283 int _printk_deferred(const char *fmt, ...)
3284 {
3285 	va_list args;
3286 	int r;
3287 
3288 	va_start(args, fmt);
3289 	r = vprintk_deferred(fmt, args);
3290 	va_end(args);
3291 
3292 	return r;
3293 }
3294 
3295 /*
3296  * printk rate limiting, lifted from the networking subsystem.
3297  *
3298  * This enforces a rate limit: not more than 10 kernel messages
3299  * every 5s to make a denial-of-service attack impossible.
3300  */
3301 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3302 
3303 int __printk_ratelimit(const char *func)
3304 {
3305 	return ___ratelimit(&printk_ratelimit_state, func);
3306 }
3307 EXPORT_SYMBOL(__printk_ratelimit);
3308 
3309 /**
3310  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3311  * @caller_jiffies: pointer to caller's state
3312  * @interval_msecs: minimum interval between prints
3313  *
3314  * printk_timed_ratelimit() returns true if more than @interval_msecs
3315  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3316  * returned true.
3317  */
3318 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3319 			unsigned int interval_msecs)
3320 {
3321 	unsigned long elapsed = jiffies - *caller_jiffies;
3322 
3323 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3324 		return false;
3325 
3326 	*caller_jiffies = jiffies;
3327 	return true;
3328 }
3329 EXPORT_SYMBOL(printk_timed_ratelimit);
3330 
3331 static DEFINE_SPINLOCK(dump_list_lock);
3332 static LIST_HEAD(dump_list);
3333 
3334 /**
3335  * kmsg_dump_register - register a kernel log dumper.
3336  * @dumper: pointer to the kmsg_dumper structure
3337  *
3338  * Adds a kernel log dumper to the system. The dump callback in the
3339  * structure will be called when the kernel oopses or panics and must be
3340  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3341  */
3342 int kmsg_dump_register(struct kmsg_dumper *dumper)
3343 {
3344 	unsigned long flags;
3345 	int err = -EBUSY;
3346 
3347 	/* The dump callback needs to be set */
3348 	if (!dumper->dump)
3349 		return -EINVAL;
3350 
3351 	spin_lock_irqsave(&dump_list_lock, flags);
3352 	/* Don't allow registering multiple times */
3353 	if (!dumper->registered) {
3354 		dumper->registered = 1;
3355 		list_add_tail_rcu(&dumper->list, &dump_list);
3356 		err = 0;
3357 	}
3358 	spin_unlock_irqrestore(&dump_list_lock, flags);
3359 
3360 	return err;
3361 }
3362 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3363 
3364 /**
3365  * kmsg_dump_unregister - unregister a kmsg dumper.
3366  * @dumper: pointer to the kmsg_dumper structure
3367  *
3368  * Removes a dump device from the system. Returns zero on success and
3369  * %-EINVAL otherwise.
3370  */
3371 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3372 {
3373 	unsigned long flags;
3374 	int err = -EINVAL;
3375 
3376 	spin_lock_irqsave(&dump_list_lock, flags);
3377 	if (dumper->registered) {
3378 		dumper->registered = 0;
3379 		list_del_rcu(&dumper->list);
3380 		err = 0;
3381 	}
3382 	spin_unlock_irqrestore(&dump_list_lock, flags);
3383 	synchronize_rcu();
3384 
3385 	return err;
3386 }
3387 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3388 
3389 static bool always_kmsg_dump;
3390 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3391 
3392 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3393 {
3394 	switch (reason) {
3395 	case KMSG_DUMP_PANIC:
3396 		return "Panic";
3397 	case KMSG_DUMP_OOPS:
3398 		return "Oops";
3399 	case KMSG_DUMP_EMERG:
3400 		return "Emergency";
3401 	case KMSG_DUMP_SHUTDOWN:
3402 		return "Shutdown";
3403 	default:
3404 		return "Unknown";
3405 	}
3406 }
3407 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3408 
3409 /**
3410  * kmsg_dump - dump kernel log to kernel message dumpers.
3411  * @reason: the reason (oops, panic etc) for dumping
3412  *
3413  * Call each of the registered dumper's dump() callback, which can
3414  * retrieve the kmsg records with kmsg_dump_get_line() or
3415  * kmsg_dump_get_buffer().
3416  */
3417 void kmsg_dump(enum kmsg_dump_reason reason)
3418 {
3419 	struct kmsg_dumper *dumper;
3420 
3421 	rcu_read_lock();
3422 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3423 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3424 
3425 		/*
3426 		 * If client has not provided a specific max_reason, default
3427 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3428 		 */
3429 		if (max_reason == KMSG_DUMP_UNDEF) {
3430 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3431 							KMSG_DUMP_OOPS;
3432 		}
3433 		if (reason > max_reason)
3434 			continue;
3435 
3436 		/* invoke dumper which will iterate over records */
3437 		dumper->dump(dumper, reason);
3438 	}
3439 	rcu_read_unlock();
3440 }
3441 
3442 /**
3443  * kmsg_dump_get_line - retrieve one kmsg log line
3444  * @iter: kmsg dump iterator
3445  * @syslog: include the "<4>" prefixes
3446  * @line: buffer to copy the line to
3447  * @size: maximum size of the buffer
3448  * @len: length of line placed into buffer
3449  *
3450  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3451  * record, and copy one record into the provided buffer.
3452  *
3453  * Consecutive calls will return the next available record moving
3454  * towards the end of the buffer with the youngest messages.
3455  *
3456  * A return value of FALSE indicates that there are no more records to
3457  * read.
3458  */
3459 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3460 			char *line, size_t size, size_t *len)
3461 {
3462 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3463 	struct printk_info info;
3464 	unsigned int line_count;
3465 	struct printk_record r;
3466 	size_t l = 0;
3467 	bool ret = false;
3468 
3469 	if (iter->cur_seq < min_seq)
3470 		iter->cur_seq = min_seq;
3471 
3472 	prb_rec_init_rd(&r, &info, line, size);
3473 
3474 	/* Read text or count text lines? */
3475 	if (line) {
3476 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3477 			goto out;
3478 		l = record_print_text(&r, syslog, printk_time);
3479 	} else {
3480 		if (!prb_read_valid_info(prb, iter->cur_seq,
3481 					 &info, &line_count)) {
3482 			goto out;
3483 		}
3484 		l = get_record_print_text_size(&info, line_count, syslog,
3485 					       printk_time);
3486 
3487 	}
3488 
3489 	iter->cur_seq = r.info->seq + 1;
3490 	ret = true;
3491 out:
3492 	if (len)
3493 		*len = l;
3494 	return ret;
3495 }
3496 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3497 
3498 /**
3499  * kmsg_dump_get_buffer - copy kmsg log lines
3500  * @iter: kmsg dump iterator
3501  * @syslog: include the "<4>" prefixes
3502  * @buf: buffer to copy the line to
3503  * @size: maximum size of the buffer
3504  * @len_out: length of line placed into buffer
3505  *
3506  * Start at the end of the kmsg buffer and fill the provided buffer
3507  * with as many of the *youngest* kmsg records that fit into it.
3508  * If the buffer is large enough, all available kmsg records will be
3509  * copied with a single call.
3510  *
3511  * Consecutive calls will fill the buffer with the next block of
3512  * available older records, not including the earlier retrieved ones.
3513  *
3514  * A return value of FALSE indicates that there are no more records to
3515  * read.
3516  */
3517 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3518 			  char *buf, size_t size, size_t *len_out)
3519 {
3520 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3521 	struct printk_info info;
3522 	struct printk_record r;
3523 	u64 seq;
3524 	u64 next_seq;
3525 	size_t len = 0;
3526 	bool ret = false;
3527 	bool time = printk_time;
3528 
3529 	if (!buf || !size)
3530 		goto out;
3531 
3532 	if (iter->cur_seq < min_seq)
3533 		iter->cur_seq = min_seq;
3534 
3535 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3536 		if (info.seq != iter->cur_seq) {
3537 			/* messages are gone, move to first available one */
3538 			iter->cur_seq = info.seq;
3539 		}
3540 	}
3541 
3542 	/* last entry */
3543 	if (iter->cur_seq >= iter->next_seq)
3544 		goto out;
3545 
3546 	/*
3547 	 * Find first record that fits, including all following records,
3548 	 * into the user-provided buffer for this dump. Pass in size-1
3549 	 * because this function (by way of record_print_text()) will
3550 	 * not write more than size-1 bytes of text into @buf.
3551 	 */
3552 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3553 				     size - 1, syslog, time);
3554 
3555 	/*
3556 	 * Next kmsg_dump_get_buffer() invocation will dump block of
3557 	 * older records stored right before this one.
3558 	 */
3559 	next_seq = seq;
3560 
3561 	prb_rec_init_rd(&r, &info, buf, size);
3562 
3563 	len = 0;
3564 	prb_for_each_record(seq, prb, seq, &r) {
3565 		if (r.info->seq >= iter->next_seq)
3566 			break;
3567 
3568 		len += record_print_text(&r, syslog, time);
3569 
3570 		/* Adjust record to store to remaining buffer space. */
3571 		prb_rec_init_rd(&r, &info, buf + len, size - len);
3572 	}
3573 
3574 	iter->next_seq = next_seq;
3575 	ret = true;
3576 out:
3577 	if (len_out)
3578 		*len_out = len;
3579 	return ret;
3580 }
3581 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3582 
3583 /**
3584  * kmsg_dump_rewind - reset the iterator
3585  * @iter: kmsg dump iterator
3586  *
3587  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3588  * kmsg_dump_get_buffer() can be called again and used multiple
3589  * times within the same dumper.dump() callback.
3590  */
3591 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3592 {
3593 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3594 	iter->next_seq = prb_next_seq(prb);
3595 }
3596 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3597 
3598 #endif
3599 
3600 #ifdef CONFIG_SMP
3601 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3602 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3603 
3604 /**
3605  * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3606  *                               spinning lock is not owned by any CPU.
3607  *
3608  * Context: Any context.
3609  */
3610 void __printk_wait_on_cpu_lock(void)
3611 {
3612 	do {
3613 		cpu_relax();
3614 	} while (atomic_read(&printk_cpulock_owner) != -1);
3615 }
3616 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3617 
3618 /**
3619  * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3620  *                          spinning lock.
3621  *
3622  * If no processor has the lock, the calling processor takes the lock and
3623  * becomes the owner. If the calling processor is already the owner of the
3624  * lock, this function succeeds immediately.
3625  *
3626  * Context: Any context. Expects interrupts to be disabled.
3627  * Return: 1 on success, otherwise 0.
3628  */
3629 int __printk_cpu_trylock(void)
3630 {
3631 	int cpu;
3632 	int old;
3633 
3634 	cpu = smp_processor_id();
3635 
3636 	/*
3637 	 * Guarantee loads and stores from this CPU when it is the lock owner
3638 	 * are _not_ visible to the previous lock owner. This pairs with
3639 	 * __printk_cpu_unlock:B.
3640 	 *
3641 	 * Memory barrier involvement:
3642 	 *
3643 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3644 	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3645 	 *
3646 	 * Relies on:
3647 	 *
3648 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3649 	 * of the previous CPU
3650 	 *    matching
3651 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3652 	 * of this CPU
3653 	 */
3654 	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3655 				     cpu); /* LMM(__printk_cpu_trylock:A) */
3656 	if (old == -1) {
3657 		/*
3658 		 * This CPU is now the owner and begins loading/storing
3659 		 * data: LMM(__printk_cpu_trylock:B)
3660 		 */
3661 		return 1;
3662 
3663 	} else if (old == cpu) {
3664 		/* This CPU is already the owner. */
3665 		atomic_inc(&printk_cpulock_nested);
3666 		return 1;
3667 	}
3668 
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(__printk_cpu_trylock);
3672 
3673 /**
3674  * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3675  *
3676  * The calling processor must be the owner of the lock.
3677  *
3678  * Context: Any context. Expects interrupts to be disabled.
3679  */
3680 void __printk_cpu_unlock(void)
3681 {
3682 	if (atomic_read(&printk_cpulock_nested)) {
3683 		atomic_dec(&printk_cpulock_nested);
3684 		return;
3685 	}
3686 
3687 	/*
3688 	 * This CPU is finished loading/storing data:
3689 	 * LMM(__printk_cpu_unlock:A)
3690 	 */
3691 
3692 	/*
3693 	 * Guarantee loads and stores from this CPU when it was the
3694 	 * lock owner are visible to the next lock owner. This pairs
3695 	 * with __printk_cpu_trylock:A.
3696 	 *
3697 	 * Memory barrier involvement:
3698 	 *
3699 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3700 	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3701 	 *
3702 	 * Relies on:
3703 	 *
3704 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3705 	 * of this CPU
3706 	 *    matching
3707 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3708 	 * of the next CPU
3709 	 */
3710 	atomic_set_release(&printk_cpulock_owner,
3711 			   -1); /* LMM(__printk_cpu_unlock:B) */
3712 }
3713 EXPORT_SYMBOL(__printk_cpu_unlock);
3714 #endif /* CONFIG_SMP */
3715