1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console semaphore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 int console_set_on_cmdline; 284 EXPORT_SYMBOL(console_set_on_cmdline); 285 286 /* Flag: console code may call schedule() */ 287 static int console_may_schedule; 288 289 enum con_msg_format_flags { 290 MSG_FORMAT_DEFAULT = 0, 291 MSG_FORMAT_SYSLOG = (1 << 0), 292 }; 293 294 static int console_msg_format = MSG_FORMAT_DEFAULT; 295 296 /* 297 * The printk log buffer consists of a sequenced collection of records, each 298 * containing variable length message text. Every record also contains its 299 * own meta-data (@info). 300 * 301 * Every record meta-data carries the timestamp in microseconds, as well as 302 * the standard userspace syslog level and syslog facility. The usual kernel 303 * messages use LOG_KERN; userspace-injected messages always carry a matching 304 * syslog facility, by default LOG_USER. The origin of every message can be 305 * reliably determined that way. 306 * 307 * The human readable log message of a record is available in @text, the 308 * length of the message text in @text_len. The stored message is not 309 * terminated. 310 * 311 * Optionally, a record can carry a dictionary of properties (key/value 312 * pairs), to provide userspace with a machine-readable message context. 313 * 314 * Examples for well-defined, commonly used property names are: 315 * DEVICE=b12:8 device identifier 316 * b12:8 block dev_t 317 * c127:3 char dev_t 318 * n8 netdev ifindex 319 * +sound:card0 subsystem:devname 320 * SUBSYSTEM=pci driver-core subsystem name 321 * 322 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 323 * and values are terminated by a '\0' character. 324 * 325 * Example of record values: 326 * record.text_buf = "it's a line" (unterminated) 327 * record.info.seq = 56 328 * record.info.ts_nsec = 36863 329 * record.info.text_len = 11 330 * record.info.facility = 0 (LOG_KERN) 331 * record.info.flags = 0 332 * record.info.level = 3 (LOG_ERR) 333 * record.info.caller_id = 299 (task 299) 334 * record.info.dev_info.subsystem = "pci" (terminated) 335 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 336 * 337 * The 'struct printk_info' buffer must never be directly exported to 338 * userspace, it is a kernel-private implementation detail that might 339 * need to be changed in the future, when the requirements change. 340 * 341 * /dev/kmsg exports the structured data in the following line format: 342 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 343 * 344 * Users of the export format should ignore possible additional values 345 * separated by ',', and find the message after the ';' character. 346 * 347 * The optional key/value pairs are attached as continuation lines starting 348 * with a space character and terminated by a newline. All possible 349 * non-prinatable characters are escaped in the "\xff" notation. 350 */ 351 352 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 353 static DEFINE_MUTEX(syslog_lock); 354 355 #ifdef CONFIG_PRINTK 356 DECLARE_WAIT_QUEUE_HEAD(log_wait); 357 /* All 3 protected by @syslog_lock. */ 358 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 359 static u64 syslog_seq; 360 static size_t syslog_partial; 361 static bool syslog_time; 362 363 /* All 3 protected by @console_sem. */ 364 /* the next printk record to write to the console */ 365 static u64 console_seq; 366 static u64 exclusive_console_stop_seq; 367 static unsigned long console_dropped; 368 369 struct latched_seq { 370 seqcount_latch_t latch; 371 u64 val[2]; 372 }; 373 374 /* 375 * The next printk record to read after the last 'clear' command. There are 376 * two copies (updated with seqcount_latch) so that reads can locklessly 377 * access a valid value. Writers are synchronized by @syslog_lock. 378 */ 379 static struct latched_seq clear_seq = { 380 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 381 .val[0] = 0, 382 .val[1] = 0, 383 }; 384 385 #ifdef CONFIG_PRINTK_CALLER 386 #define PREFIX_MAX 48 387 #else 388 #define PREFIX_MAX 32 389 #endif 390 391 /* the maximum size of a formatted record (i.e. with prefix added per line) */ 392 #define CONSOLE_LOG_MAX 1024 393 394 /* the maximum size allowed to be reserved for a record */ 395 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX) 396 397 #define LOG_LEVEL(v) ((v) & 0x07) 398 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 399 400 /* record buffer */ 401 #define LOG_ALIGN __alignof__(unsigned long) 402 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 403 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 404 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 405 static char *log_buf = __log_buf; 406 static u32 log_buf_len = __LOG_BUF_LEN; 407 408 /* 409 * Define the average message size. This only affects the number of 410 * descriptors that will be available. Underestimating is better than 411 * overestimating (too many available descriptors is better than not enough). 412 */ 413 #define PRB_AVGBITS 5 /* 32 character average length */ 414 415 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 416 #error CONFIG_LOG_BUF_SHIFT value too small. 417 #endif 418 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 419 PRB_AVGBITS, &__log_buf[0]); 420 421 static struct printk_ringbuffer printk_rb_dynamic; 422 423 static struct printk_ringbuffer *prb = &printk_rb_static; 424 425 /* 426 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 427 * per_cpu_areas are initialised. This variable is set to true when 428 * it's safe to access per-CPU data. 429 */ 430 static bool __printk_percpu_data_ready __read_mostly; 431 432 bool printk_percpu_data_ready(void) 433 { 434 return __printk_percpu_data_ready; 435 } 436 437 /* Must be called under syslog_lock. */ 438 static void latched_seq_write(struct latched_seq *ls, u64 val) 439 { 440 raw_write_seqcount_latch(&ls->latch); 441 ls->val[0] = val; 442 raw_write_seqcount_latch(&ls->latch); 443 ls->val[1] = val; 444 } 445 446 /* Can be called from any context. */ 447 static u64 latched_seq_read_nolock(struct latched_seq *ls) 448 { 449 unsigned int seq; 450 unsigned int idx; 451 u64 val; 452 453 do { 454 seq = raw_read_seqcount_latch(&ls->latch); 455 idx = seq & 0x1; 456 val = ls->val[idx]; 457 } while (read_seqcount_latch_retry(&ls->latch, seq)); 458 459 return val; 460 } 461 462 /* Return log buffer address */ 463 char *log_buf_addr_get(void) 464 { 465 return log_buf; 466 } 467 468 /* Return log buffer size */ 469 u32 log_buf_len_get(void) 470 { 471 return log_buf_len; 472 } 473 474 /* 475 * Define how much of the log buffer we could take at maximum. The value 476 * must be greater than two. Note that only half of the buffer is available 477 * when the index points to the middle. 478 */ 479 #define MAX_LOG_TAKE_PART 4 480 static const char trunc_msg[] = "<truncated>"; 481 482 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 483 { 484 /* 485 * The message should not take the whole buffer. Otherwise, it might 486 * get removed too soon. 487 */ 488 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 489 490 if (*text_len > max_text_len) 491 *text_len = max_text_len; 492 493 /* enable the warning message (if there is room) */ 494 *trunc_msg_len = strlen(trunc_msg); 495 if (*text_len >= *trunc_msg_len) 496 *text_len -= *trunc_msg_len; 497 else 498 *trunc_msg_len = 0; 499 } 500 501 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 502 503 static int syslog_action_restricted(int type) 504 { 505 if (dmesg_restrict) 506 return 1; 507 /* 508 * Unless restricted, we allow "read all" and "get buffer size" 509 * for everybody. 510 */ 511 return type != SYSLOG_ACTION_READ_ALL && 512 type != SYSLOG_ACTION_SIZE_BUFFER; 513 } 514 515 static int check_syslog_permissions(int type, int source) 516 { 517 /* 518 * If this is from /proc/kmsg and we've already opened it, then we've 519 * already done the capabilities checks at open time. 520 */ 521 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 522 goto ok; 523 524 if (syslog_action_restricted(type)) { 525 if (capable(CAP_SYSLOG)) 526 goto ok; 527 /* 528 * For historical reasons, accept CAP_SYS_ADMIN too, with 529 * a warning. 530 */ 531 if (capable(CAP_SYS_ADMIN)) { 532 pr_warn_once("%s (%d): Attempt to access syslog with " 533 "CAP_SYS_ADMIN but no CAP_SYSLOG " 534 "(deprecated).\n", 535 current->comm, task_pid_nr(current)); 536 goto ok; 537 } 538 return -EPERM; 539 } 540 ok: 541 return security_syslog(type); 542 } 543 544 static void append_char(char **pp, char *e, char c) 545 { 546 if (*pp < e) 547 *(*pp)++ = c; 548 } 549 550 static ssize_t info_print_ext_header(char *buf, size_t size, 551 struct printk_info *info) 552 { 553 u64 ts_usec = info->ts_nsec; 554 char caller[20]; 555 #ifdef CONFIG_PRINTK_CALLER 556 u32 id = info->caller_id; 557 558 snprintf(caller, sizeof(caller), ",caller=%c%u", 559 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 560 #else 561 caller[0] = '\0'; 562 #endif 563 564 do_div(ts_usec, 1000); 565 566 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 567 (info->facility << 3) | info->level, info->seq, 568 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 569 } 570 571 static ssize_t msg_add_ext_text(char *buf, size_t size, 572 const char *text, size_t text_len, 573 unsigned char endc) 574 { 575 char *p = buf, *e = buf + size; 576 size_t i; 577 578 /* escape non-printable characters */ 579 for (i = 0; i < text_len; i++) { 580 unsigned char c = text[i]; 581 582 if (c < ' ' || c >= 127 || c == '\\') 583 p += scnprintf(p, e - p, "\\x%02x", c); 584 else 585 append_char(&p, e, c); 586 } 587 append_char(&p, e, endc); 588 589 return p - buf; 590 } 591 592 static ssize_t msg_add_dict_text(char *buf, size_t size, 593 const char *key, const char *val) 594 { 595 size_t val_len = strlen(val); 596 ssize_t len; 597 598 if (!val_len) 599 return 0; 600 601 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 602 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 603 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 604 605 return len; 606 } 607 608 static ssize_t msg_print_ext_body(char *buf, size_t size, 609 char *text, size_t text_len, 610 struct dev_printk_info *dev_info) 611 { 612 ssize_t len; 613 614 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 615 616 if (!dev_info) 617 goto out; 618 619 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 620 dev_info->subsystem); 621 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 622 dev_info->device); 623 out: 624 return len; 625 } 626 627 /* /dev/kmsg - userspace message inject/listen interface */ 628 struct devkmsg_user { 629 atomic64_t seq; 630 struct ratelimit_state rs; 631 struct mutex lock; 632 char buf[CONSOLE_EXT_LOG_MAX]; 633 634 struct printk_info info; 635 char text_buf[CONSOLE_EXT_LOG_MAX]; 636 struct printk_record record; 637 }; 638 639 static __printf(3, 4) __cold 640 int devkmsg_emit(int facility, int level, const char *fmt, ...) 641 { 642 va_list args; 643 int r; 644 645 va_start(args, fmt); 646 r = vprintk_emit(facility, level, NULL, fmt, args); 647 va_end(args); 648 649 return r; 650 } 651 652 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 653 { 654 char *buf, *line; 655 int level = default_message_loglevel; 656 int facility = 1; /* LOG_USER */ 657 struct file *file = iocb->ki_filp; 658 struct devkmsg_user *user = file->private_data; 659 size_t len = iov_iter_count(from); 660 ssize_t ret = len; 661 662 if (!user || len > LOG_LINE_MAX) 663 return -EINVAL; 664 665 /* Ignore when user logging is disabled. */ 666 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 667 return len; 668 669 /* Ratelimit when not explicitly enabled. */ 670 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 671 if (!___ratelimit(&user->rs, current->comm)) 672 return ret; 673 } 674 675 buf = kmalloc(len+1, GFP_KERNEL); 676 if (buf == NULL) 677 return -ENOMEM; 678 679 buf[len] = '\0'; 680 if (!copy_from_iter_full(buf, len, from)) { 681 kfree(buf); 682 return -EFAULT; 683 } 684 685 /* 686 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 687 * the decimal value represents 32bit, the lower 3 bit are the log 688 * level, the rest are the log facility. 689 * 690 * If no prefix or no userspace facility is specified, we 691 * enforce LOG_USER, to be able to reliably distinguish 692 * kernel-generated messages from userspace-injected ones. 693 */ 694 line = buf; 695 if (line[0] == '<') { 696 char *endp = NULL; 697 unsigned int u; 698 699 u = simple_strtoul(line + 1, &endp, 10); 700 if (endp && endp[0] == '>') { 701 level = LOG_LEVEL(u); 702 if (LOG_FACILITY(u) != 0) 703 facility = LOG_FACILITY(u); 704 endp++; 705 line = endp; 706 } 707 } 708 709 devkmsg_emit(facility, level, "%s", line); 710 kfree(buf); 711 return ret; 712 } 713 714 static ssize_t devkmsg_read(struct file *file, char __user *buf, 715 size_t count, loff_t *ppos) 716 { 717 struct devkmsg_user *user = file->private_data; 718 struct printk_record *r = &user->record; 719 size_t len; 720 ssize_t ret; 721 722 if (!user) 723 return -EBADF; 724 725 ret = mutex_lock_interruptible(&user->lock); 726 if (ret) 727 return ret; 728 729 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { 730 if (file->f_flags & O_NONBLOCK) { 731 ret = -EAGAIN; 732 goto out; 733 } 734 735 ret = wait_event_interruptible(log_wait, 736 prb_read_valid(prb, atomic64_read(&user->seq), r)); 737 if (ret) 738 goto out; 739 } 740 741 if (r->info->seq != atomic64_read(&user->seq)) { 742 /* our last seen message is gone, return error and reset */ 743 atomic64_set(&user->seq, r->info->seq); 744 ret = -EPIPE; 745 goto out; 746 } 747 748 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 749 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 750 &r->text_buf[0], r->info->text_len, 751 &r->info->dev_info); 752 753 atomic64_set(&user->seq, r->info->seq + 1); 754 755 if (len > count) { 756 ret = -EINVAL; 757 goto out; 758 } 759 760 if (copy_to_user(buf, user->buf, len)) { 761 ret = -EFAULT; 762 goto out; 763 } 764 ret = len; 765 out: 766 mutex_unlock(&user->lock); 767 return ret; 768 } 769 770 /* 771 * Be careful when modifying this function!!! 772 * 773 * Only few operations are supported because the device works only with the 774 * entire variable length messages (records). Non-standard values are 775 * returned in the other cases and has been this way for quite some time. 776 * User space applications might depend on this behavior. 777 */ 778 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 779 { 780 struct devkmsg_user *user = file->private_data; 781 loff_t ret = 0; 782 783 if (!user) 784 return -EBADF; 785 if (offset) 786 return -ESPIPE; 787 788 switch (whence) { 789 case SEEK_SET: 790 /* the first record */ 791 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 792 break; 793 case SEEK_DATA: 794 /* 795 * The first record after the last SYSLOG_ACTION_CLEAR, 796 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 797 * changes no global state, and does not clear anything. 798 */ 799 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 800 break; 801 case SEEK_END: 802 /* after the last record */ 803 atomic64_set(&user->seq, prb_next_seq(prb)); 804 break; 805 default: 806 ret = -EINVAL; 807 } 808 return ret; 809 } 810 811 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 812 { 813 struct devkmsg_user *user = file->private_data; 814 struct printk_info info; 815 __poll_t ret = 0; 816 817 if (!user) 818 return EPOLLERR|EPOLLNVAL; 819 820 poll_wait(file, &log_wait, wait); 821 822 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 823 /* return error when data has vanished underneath us */ 824 if (info.seq != atomic64_read(&user->seq)) 825 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 826 else 827 ret = EPOLLIN|EPOLLRDNORM; 828 } 829 830 return ret; 831 } 832 833 static int devkmsg_open(struct inode *inode, struct file *file) 834 { 835 struct devkmsg_user *user; 836 int err; 837 838 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 839 return -EPERM; 840 841 /* write-only does not need any file context */ 842 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 843 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 844 SYSLOG_FROM_READER); 845 if (err) 846 return err; 847 } 848 849 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 850 if (!user) 851 return -ENOMEM; 852 853 ratelimit_default_init(&user->rs); 854 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 855 856 mutex_init(&user->lock); 857 858 prb_rec_init_rd(&user->record, &user->info, 859 &user->text_buf[0], sizeof(user->text_buf)); 860 861 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 862 863 file->private_data = user; 864 return 0; 865 } 866 867 static int devkmsg_release(struct inode *inode, struct file *file) 868 { 869 struct devkmsg_user *user = file->private_data; 870 871 if (!user) 872 return 0; 873 874 ratelimit_state_exit(&user->rs); 875 876 mutex_destroy(&user->lock); 877 kvfree(user); 878 return 0; 879 } 880 881 const struct file_operations kmsg_fops = { 882 .open = devkmsg_open, 883 .read = devkmsg_read, 884 .write_iter = devkmsg_write, 885 .llseek = devkmsg_llseek, 886 .poll = devkmsg_poll, 887 .release = devkmsg_release, 888 }; 889 890 #ifdef CONFIG_CRASH_CORE 891 /* 892 * This appends the listed symbols to /proc/vmcore 893 * 894 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 895 * obtain access to symbols that are otherwise very difficult to locate. These 896 * symbols are specifically used so that utilities can access and extract the 897 * dmesg log from a vmcore file after a crash. 898 */ 899 void log_buf_vmcoreinfo_setup(void) 900 { 901 struct dev_printk_info *dev_info = NULL; 902 903 VMCOREINFO_SYMBOL(prb); 904 VMCOREINFO_SYMBOL(printk_rb_static); 905 VMCOREINFO_SYMBOL(clear_seq); 906 907 /* 908 * Export struct size and field offsets. User space tools can 909 * parse it and detect any changes to structure down the line. 910 */ 911 912 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 913 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 914 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 915 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 916 917 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 918 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 919 VMCOREINFO_OFFSET(prb_desc_ring, descs); 920 VMCOREINFO_OFFSET(prb_desc_ring, infos); 921 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 922 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 923 924 VMCOREINFO_STRUCT_SIZE(prb_desc); 925 VMCOREINFO_OFFSET(prb_desc, state_var); 926 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 927 928 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 929 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 930 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 931 932 VMCOREINFO_STRUCT_SIZE(printk_info); 933 VMCOREINFO_OFFSET(printk_info, seq); 934 VMCOREINFO_OFFSET(printk_info, ts_nsec); 935 VMCOREINFO_OFFSET(printk_info, text_len); 936 VMCOREINFO_OFFSET(printk_info, caller_id); 937 VMCOREINFO_OFFSET(printk_info, dev_info); 938 939 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 940 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 941 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 942 VMCOREINFO_OFFSET(dev_printk_info, device); 943 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 944 945 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 946 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 947 VMCOREINFO_OFFSET(prb_data_ring, data); 948 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 949 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 950 951 VMCOREINFO_SIZE(atomic_long_t); 952 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 953 954 VMCOREINFO_STRUCT_SIZE(latched_seq); 955 VMCOREINFO_OFFSET(latched_seq, val); 956 } 957 #endif 958 959 /* requested log_buf_len from kernel cmdline */ 960 static unsigned long __initdata new_log_buf_len; 961 962 /* we practice scaling the ring buffer by powers of 2 */ 963 static void __init log_buf_len_update(u64 size) 964 { 965 if (size > (u64)LOG_BUF_LEN_MAX) { 966 size = (u64)LOG_BUF_LEN_MAX; 967 pr_err("log_buf over 2G is not supported.\n"); 968 } 969 970 if (size) 971 size = roundup_pow_of_two(size); 972 if (size > log_buf_len) 973 new_log_buf_len = (unsigned long)size; 974 } 975 976 /* save requested log_buf_len since it's too early to process it */ 977 static int __init log_buf_len_setup(char *str) 978 { 979 u64 size; 980 981 if (!str) 982 return -EINVAL; 983 984 size = memparse(str, &str); 985 986 log_buf_len_update(size); 987 988 return 0; 989 } 990 early_param("log_buf_len", log_buf_len_setup); 991 992 #ifdef CONFIG_SMP 993 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 994 995 static void __init log_buf_add_cpu(void) 996 { 997 unsigned int cpu_extra; 998 999 /* 1000 * archs should set up cpu_possible_bits properly with 1001 * set_cpu_possible() after setup_arch() but just in 1002 * case lets ensure this is valid. 1003 */ 1004 if (num_possible_cpus() == 1) 1005 return; 1006 1007 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1008 1009 /* by default this will only continue through for large > 64 CPUs */ 1010 if (cpu_extra <= __LOG_BUF_LEN / 2) 1011 return; 1012 1013 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1014 __LOG_CPU_MAX_BUF_LEN); 1015 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1016 cpu_extra); 1017 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1018 1019 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1020 } 1021 #else /* !CONFIG_SMP */ 1022 static inline void log_buf_add_cpu(void) {} 1023 #endif /* CONFIG_SMP */ 1024 1025 static void __init set_percpu_data_ready(void) 1026 { 1027 __printk_percpu_data_ready = true; 1028 } 1029 1030 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1031 struct printk_record *r) 1032 { 1033 struct prb_reserved_entry e; 1034 struct printk_record dest_r; 1035 1036 prb_rec_init_wr(&dest_r, r->info->text_len); 1037 1038 if (!prb_reserve(&e, rb, &dest_r)) 1039 return 0; 1040 1041 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1042 dest_r.info->text_len = r->info->text_len; 1043 dest_r.info->facility = r->info->facility; 1044 dest_r.info->level = r->info->level; 1045 dest_r.info->flags = r->info->flags; 1046 dest_r.info->ts_nsec = r->info->ts_nsec; 1047 dest_r.info->caller_id = r->info->caller_id; 1048 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1049 1050 prb_final_commit(&e); 1051 1052 return prb_record_text_space(&e); 1053 } 1054 1055 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1056 1057 void __init setup_log_buf(int early) 1058 { 1059 struct printk_info *new_infos; 1060 unsigned int new_descs_count; 1061 struct prb_desc *new_descs; 1062 struct printk_info info; 1063 struct printk_record r; 1064 unsigned int text_size; 1065 size_t new_descs_size; 1066 size_t new_infos_size; 1067 unsigned long flags; 1068 char *new_log_buf; 1069 unsigned int free; 1070 u64 seq; 1071 1072 /* 1073 * Some archs call setup_log_buf() multiple times - first is very 1074 * early, e.g. from setup_arch(), and second - when percpu_areas 1075 * are initialised. 1076 */ 1077 if (!early) 1078 set_percpu_data_ready(); 1079 1080 if (log_buf != __log_buf) 1081 return; 1082 1083 if (!early && !new_log_buf_len) 1084 log_buf_add_cpu(); 1085 1086 if (!new_log_buf_len) 1087 return; 1088 1089 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1090 if (new_descs_count == 0) { 1091 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1092 return; 1093 } 1094 1095 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1096 if (unlikely(!new_log_buf)) { 1097 pr_err("log_buf_len: %lu text bytes not available\n", 1098 new_log_buf_len); 1099 return; 1100 } 1101 1102 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1103 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1104 if (unlikely(!new_descs)) { 1105 pr_err("log_buf_len: %zu desc bytes not available\n", 1106 new_descs_size); 1107 goto err_free_log_buf; 1108 } 1109 1110 new_infos_size = new_descs_count * sizeof(struct printk_info); 1111 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1112 if (unlikely(!new_infos)) { 1113 pr_err("log_buf_len: %zu info bytes not available\n", 1114 new_infos_size); 1115 goto err_free_descs; 1116 } 1117 1118 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1119 1120 prb_init(&printk_rb_dynamic, 1121 new_log_buf, ilog2(new_log_buf_len), 1122 new_descs, ilog2(new_descs_count), 1123 new_infos); 1124 1125 local_irq_save(flags); 1126 1127 log_buf_len = new_log_buf_len; 1128 log_buf = new_log_buf; 1129 new_log_buf_len = 0; 1130 1131 free = __LOG_BUF_LEN; 1132 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1133 text_size = add_to_rb(&printk_rb_dynamic, &r); 1134 if (text_size > free) 1135 free = 0; 1136 else 1137 free -= text_size; 1138 } 1139 1140 prb = &printk_rb_dynamic; 1141 1142 local_irq_restore(flags); 1143 1144 /* 1145 * Copy any remaining messages that might have appeared from 1146 * NMI context after copying but before switching to the 1147 * dynamic buffer. 1148 */ 1149 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1150 text_size = add_to_rb(&printk_rb_dynamic, &r); 1151 if (text_size > free) 1152 free = 0; 1153 else 1154 free -= text_size; 1155 } 1156 1157 if (seq != prb_next_seq(&printk_rb_static)) { 1158 pr_err("dropped %llu messages\n", 1159 prb_next_seq(&printk_rb_static) - seq); 1160 } 1161 1162 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1163 pr_info("early log buf free: %u(%u%%)\n", 1164 free, (free * 100) / __LOG_BUF_LEN); 1165 return; 1166 1167 err_free_descs: 1168 memblock_free(new_descs, new_descs_size); 1169 err_free_log_buf: 1170 memblock_free(new_log_buf, new_log_buf_len); 1171 } 1172 1173 static bool __read_mostly ignore_loglevel; 1174 1175 static int __init ignore_loglevel_setup(char *str) 1176 { 1177 ignore_loglevel = true; 1178 pr_info("debug: ignoring loglevel setting.\n"); 1179 1180 return 0; 1181 } 1182 1183 early_param("ignore_loglevel", ignore_loglevel_setup); 1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1185 MODULE_PARM_DESC(ignore_loglevel, 1186 "ignore loglevel setting (prints all kernel messages to the console)"); 1187 1188 static bool suppress_message_printing(int level) 1189 { 1190 return (level >= console_loglevel && !ignore_loglevel); 1191 } 1192 1193 #ifdef CONFIG_BOOT_PRINTK_DELAY 1194 1195 static int boot_delay; /* msecs delay after each printk during bootup */ 1196 static unsigned long long loops_per_msec; /* based on boot_delay */ 1197 1198 static int __init boot_delay_setup(char *str) 1199 { 1200 unsigned long lpj; 1201 1202 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1203 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1204 1205 get_option(&str, &boot_delay); 1206 if (boot_delay > 10 * 1000) 1207 boot_delay = 0; 1208 1209 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1210 "HZ: %d, loops_per_msec: %llu\n", 1211 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1212 return 0; 1213 } 1214 early_param("boot_delay", boot_delay_setup); 1215 1216 static void boot_delay_msec(int level) 1217 { 1218 unsigned long long k; 1219 unsigned long timeout; 1220 1221 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1222 || suppress_message_printing(level)) { 1223 return; 1224 } 1225 1226 k = (unsigned long long)loops_per_msec * boot_delay; 1227 1228 timeout = jiffies + msecs_to_jiffies(boot_delay); 1229 while (k) { 1230 k--; 1231 cpu_relax(); 1232 /* 1233 * use (volatile) jiffies to prevent 1234 * compiler reduction; loop termination via jiffies 1235 * is secondary and may or may not happen. 1236 */ 1237 if (time_after(jiffies, timeout)) 1238 break; 1239 touch_nmi_watchdog(); 1240 } 1241 } 1242 #else 1243 static inline void boot_delay_msec(int level) 1244 { 1245 } 1246 #endif 1247 1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1250 1251 static size_t print_syslog(unsigned int level, char *buf) 1252 { 1253 return sprintf(buf, "<%u>", level); 1254 } 1255 1256 static size_t print_time(u64 ts, char *buf) 1257 { 1258 unsigned long rem_nsec = do_div(ts, 1000000000); 1259 1260 return sprintf(buf, "[%5lu.%06lu]", 1261 (unsigned long)ts, rem_nsec / 1000); 1262 } 1263 1264 #ifdef CONFIG_PRINTK_CALLER 1265 static size_t print_caller(u32 id, char *buf) 1266 { 1267 char caller[12]; 1268 1269 snprintf(caller, sizeof(caller), "%c%u", 1270 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1271 return sprintf(buf, "[%6s]", caller); 1272 } 1273 #else 1274 #define print_caller(id, buf) 0 1275 #endif 1276 1277 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1278 bool time, char *buf) 1279 { 1280 size_t len = 0; 1281 1282 if (syslog) 1283 len = print_syslog((info->facility << 3) | info->level, buf); 1284 1285 if (time) 1286 len += print_time(info->ts_nsec, buf + len); 1287 1288 len += print_caller(info->caller_id, buf + len); 1289 1290 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1291 buf[len++] = ' '; 1292 buf[len] = '\0'; 1293 } 1294 1295 return len; 1296 } 1297 1298 /* 1299 * Prepare the record for printing. The text is shifted within the given 1300 * buffer to avoid a need for another one. The following operations are 1301 * done: 1302 * 1303 * - Add prefix for each line. 1304 * - Drop truncated lines that no longer fit into the buffer. 1305 * - Add the trailing newline that has been removed in vprintk_store(). 1306 * - Add a string terminator. 1307 * 1308 * Since the produced string is always terminated, the maximum possible 1309 * return value is @r->text_buf_size - 1; 1310 * 1311 * Return: The length of the updated/prepared text, including the added 1312 * prefixes and the newline. The terminator is not counted. The dropped 1313 * line(s) are not counted. 1314 */ 1315 static size_t record_print_text(struct printk_record *r, bool syslog, 1316 bool time) 1317 { 1318 size_t text_len = r->info->text_len; 1319 size_t buf_size = r->text_buf_size; 1320 char *text = r->text_buf; 1321 char prefix[PREFIX_MAX]; 1322 bool truncated = false; 1323 size_t prefix_len; 1324 size_t line_len; 1325 size_t len = 0; 1326 char *next; 1327 1328 /* 1329 * If the message was truncated because the buffer was not large 1330 * enough, treat the available text as if it were the full text. 1331 */ 1332 if (text_len > buf_size) 1333 text_len = buf_size; 1334 1335 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1336 1337 /* 1338 * @text_len: bytes of unprocessed text 1339 * @line_len: bytes of current line _without_ newline 1340 * @text: pointer to beginning of current line 1341 * @len: number of bytes prepared in r->text_buf 1342 */ 1343 for (;;) { 1344 next = memchr(text, '\n', text_len); 1345 if (next) { 1346 line_len = next - text; 1347 } else { 1348 /* Drop truncated line(s). */ 1349 if (truncated) 1350 break; 1351 line_len = text_len; 1352 } 1353 1354 /* 1355 * Truncate the text if there is not enough space to add the 1356 * prefix and a trailing newline and a terminator. 1357 */ 1358 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1359 /* Drop even the current line if no space. */ 1360 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1361 break; 1362 1363 text_len = buf_size - len - prefix_len - 1 - 1; 1364 truncated = true; 1365 } 1366 1367 memmove(text + prefix_len, text, text_len); 1368 memcpy(text, prefix, prefix_len); 1369 1370 /* 1371 * Increment the prepared length to include the text and 1372 * prefix that were just moved+copied. Also increment for the 1373 * newline at the end of this line. If this is the last line, 1374 * there is no newline, but it will be added immediately below. 1375 */ 1376 len += prefix_len + line_len + 1; 1377 if (text_len == line_len) { 1378 /* 1379 * This is the last line. Add the trailing newline 1380 * removed in vprintk_store(). 1381 */ 1382 text[prefix_len + line_len] = '\n'; 1383 break; 1384 } 1385 1386 /* 1387 * Advance beyond the added prefix and the related line with 1388 * its newline. 1389 */ 1390 text += prefix_len + line_len + 1; 1391 1392 /* 1393 * The remaining text has only decreased by the line with its 1394 * newline. 1395 * 1396 * Note that @text_len can become zero. It happens when @text 1397 * ended with a newline (either due to truncation or the 1398 * original string ending with "\n\n"). The loop is correctly 1399 * repeated and (if not truncated) an empty line with a prefix 1400 * will be prepared. 1401 */ 1402 text_len -= line_len + 1; 1403 } 1404 1405 /* 1406 * If a buffer was provided, it will be terminated. Space for the 1407 * string terminator is guaranteed to be available. The terminator is 1408 * not counted in the return value. 1409 */ 1410 if (buf_size > 0) 1411 r->text_buf[len] = 0; 1412 1413 return len; 1414 } 1415 1416 static size_t get_record_print_text_size(struct printk_info *info, 1417 unsigned int line_count, 1418 bool syslog, bool time) 1419 { 1420 char prefix[PREFIX_MAX]; 1421 size_t prefix_len; 1422 1423 prefix_len = info_print_prefix(info, syslog, time, prefix); 1424 1425 /* 1426 * Each line will be preceded with a prefix. The intermediate 1427 * newlines are already within the text, but a final trailing 1428 * newline will be added. 1429 */ 1430 return ((prefix_len * line_count) + info->text_len + 1); 1431 } 1432 1433 /* 1434 * Beginning with @start_seq, find the first record where it and all following 1435 * records up to (but not including) @max_seq fit into @size. 1436 * 1437 * @max_seq is simply an upper bound and does not need to exist. If the caller 1438 * does not require an upper bound, -1 can be used for @max_seq. 1439 */ 1440 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1441 bool syslog, bool time) 1442 { 1443 struct printk_info info; 1444 unsigned int line_count; 1445 size_t len = 0; 1446 u64 seq; 1447 1448 /* Determine the size of the records up to @max_seq. */ 1449 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1450 if (info.seq >= max_seq) 1451 break; 1452 len += get_record_print_text_size(&info, line_count, syslog, time); 1453 } 1454 1455 /* 1456 * Adjust the upper bound for the next loop to avoid subtracting 1457 * lengths that were never added. 1458 */ 1459 if (seq < max_seq) 1460 max_seq = seq; 1461 1462 /* 1463 * Move first record forward until length fits into the buffer. Ignore 1464 * newest messages that were not counted in the above cycle. Messages 1465 * might appear and get lost in the meantime. This is a best effort 1466 * that prevents an infinite loop that could occur with a retry. 1467 */ 1468 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1469 if (len <= size || info.seq >= max_seq) 1470 break; 1471 len -= get_record_print_text_size(&info, line_count, syslog, time); 1472 } 1473 1474 return seq; 1475 } 1476 1477 /* The caller is responsible for making sure @size is greater than 0. */ 1478 static int syslog_print(char __user *buf, int size) 1479 { 1480 struct printk_info info; 1481 struct printk_record r; 1482 char *text; 1483 int len = 0; 1484 u64 seq; 1485 1486 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1487 if (!text) 1488 return -ENOMEM; 1489 1490 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1491 1492 mutex_lock(&syslog_lock); 1493 1494 /* 1495 * Wait for the @syslog_seq record to be available. @syslog_seq may 1496 * change while waiting. 1497 */ 1498 do { 1499 seq = syslog_seq; 1500 1501 mutex_unlock(&syslog_lock); 1502 len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL)); 1503 mutex_lock(&syslog_lock); 1504 1505 if (len) 1506 goto out; 1507 } while (syslog_seq != seq); 1508 1509 /* 1510 * Copy records that fit into the buffer. The above cycle makes sure 1511 * that the first record is always available. 1512 */ 1513 do { 1514 size_t n; 1515 size_t skip; 1516 int err; 1517 1518 if (!prb_read_valid(prb, syslog_seq, &r)) 1519 break; 1520 1521 if (r.info->seq != syslog_seq) { 1522 /* message is gone, move to next valid one */ 1523 syslog_seq = r.info->seq; 1524 syslog_partial = 0; 1525 } 1526 1527 /* 1528 * To keep reading/counting partial line consistent, 1529 * use printk_time value as of the beginning of a line. 1530 */ 1531 if (!syslog_partial) 1532 syslog_time = printk_time; 1533 1534 skip = syslog_partial; 1535 n = record_print_text(&r, true, syslog_time); 1536 if (n - syslog_partial <= size) { 1537 /* message fits into buffer, move forward */ 1538 syslog_seq = r.info->seq + 1; 1539 n -= syslog_partial; 1540 syslog_partial = 0; 1541 } else if (!len){ 1542 /* partial read(), remember position */ 1543 n = size; 1544 syslog_partial += n; 1545 } else 1546 n = 0; 1547 1548 if (!n) 1549 break; 1550 1551 mutex_unlock(&syslog_lock); 1552 err = copy_to_user(buf, text + skip, n); 1553 mutex_lock(&syslog_lock); 1554 1555 if (err) { 1556 if (!len) 1557 len = -EFAULT; 1558 break; 1559 } 1560 1561 len += n; 1562 size -= n; 1563 buf += n; 1564 } while (size); 1565 out: 1566 mutex_unlock(&syslog_lock); 1567 kfree(text); 1568 return len; 1569 } 1570 1571 static int syslog_print_all(char __user *buf, int size, bool clear) 1572 { 1573 struct printk_info info; 1574 struct printk_record r; 1575 char *text; 1576 int len = 0; 1577 u64 seq; 1578 bool time; 1579 1580 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1581 if (!text) 1582 return -ENOMEM; 1583 1584 time = printk_time; 1585 /* 1586 * Find first record that fits, including all following records, 1587 * into the user-provided buffer for this dump. 1588 */ 1589 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1590 size, true, time); 1591 1592 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1593 1594 len = 0; 1595 prb_for_each_record(seq, prb, seq, &r) { 1596 int textlen; 1597 1598 textlen = record_print_text(&r, true, time); 1599 1600 if (len + textlen > size) { 1601 seq--; 1602 break; 1603 } 1604 1605 if (copy_to_user(buf + len, text, textlen)) 1606 len = -EFAULT; 1607 else 1608 len += textlen; 1609 1610 if (len < 0) 1611 break; 1612 } 1613 1614 if (clear) { 1615 mutex_lock(&syslog_lock); 1616 latched_seq_write(&clear_seq, seq); 1617 mutex_unlock(&syslog_lock); 1618 } 1619 1620 kfree(text); 1621 return len; 1622 } 1623 1624 static void syslog_clear(void) 1625 { 1626 mutex_lock(&syslog_lock); 1627 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1628 mutex_unlock(&syslog_lock); 1629 } 1630 1631 int do_syslog(int type, char __user *buf, int len, int source) 1632 { 1633 struct printk_info info; 1634 bool clear = false; 1635 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1636 int error; 1637 1638 error = check_syslog_permissions(type, source); 1639 if (error) 1640 return error; 1641 1642 switch (type) { 1643 case SYSLOG_ACTION_CLOSE: /* Close log */ 1644 break; 1645 case SYSLOG_ACTION_OPEN: /* Open log */ 1646 break; 1647 case SYSLOG_ACTION_READ: /* Read from log */ 1648 if (!buf || len < 0) 1649 return -EINVAL; 1650 if (!len) 1651 return 0; 1652 if (!access_ok(buf, len)) 1653 return -EFAULT; 1654 error = syslog_print(buf, len); 1655 break; 1656 /* Read/clear last kernel messages */ 1657 case SYSLOG_ACTION_READ_CLEAR: 1658 clear = true; 1659 fallthrough; 1660 /* Read last kernel messages */ 1661 case SYSLOG_ACTION_READ_ALL: 1662 if (!buf || len < 0) 1663 return -EINVAL; 1664 if (!len) 1665 return 0; 1666 if (!access_ok(buf, len)) 1667 return -EFAULT; 1668 error = syslog_print_all(buf, len, clear); 1669 break; 1670 /* Clear ring buffer */ 1671 case SYSLOG_ACTION_CLEAR: 1672 syslog_clear(); 1673 break; 1674 /* Disable logging to console */ 1675 case SYSLOG_ACTION_CONSOLE_OFF: 1676 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1677 saved_console_loglevel = console_loglevel; 1678 console_loglevel = minimum_console_loglevel; 1679 break; 1680 /* Enable logging to console */ 1681 case SYSLOG_ACTION_CONSOLE_ON: 1682 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1683 console_loglevel = saved_console_loglevel; 1684 saved_console_loglevel = LOGLEVEL_DEFAULT; 1685 } 1686 break; 1687 /* Set level of messages printed to console */ 1688 case SYSLOG_ACTION_CONSOLE_LEVEL: 1689 if (len < 1 || len > 8) 1690 return -EINVAL; 1691 if (len < minimum_console_loglevel) 1692 len = minimum_console_loglevel; 1693 console_loglevel = len; 1694 /* Implicitly re-enable logging to console */ 1695 saved_console_loglevel = LOGLEVEL_DEFAULT; 1696 break; 1697 /* Number of chars in the log buffer */ 1698 case SYSLOG_ACTION_SIZE_UNREAD: 1699 mutex_lock(&syslog_lock); 1700 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1701 /* No unread messages. */ 1702 mutex_unlock(&syslog_lock); 1703 return 0; 1704 } 1705 if (info.seq != syslog_seq) { 1706 /* messages are gone, move to first one */ 1707 syslog_seq = info.seq; 1708 syslog_partial = 0; 1709 } 1710 if (source == SYSLOG_FROM_PROC) { 1711 /* 1712 * Short-cut for poll(/"proc/kmsg") which simply checks 1713 * for pending data, not the size; return the count of 1714 * records, not the length. 1715 */ 1716 error = prb_next_seq(prb) - syslog_seq; 1717 } else { 1718 bool time = syslog_partial ? syslog_time : printk_time; 1719 unsigned int line_count; 1720 u64 seq; 1721 1722 prb_for_each_info(syslog_seq, prb, seq, &info, 1723 &line_count) { 1724 error += get_record_print_text_size(&info, line_count, 1725 true, time); 1726 time = printk_time; 1727 } 1728 error -= syslog_partial; 1729 } 1730 mutex_unlock(&syslog_lock); 1731 break; 1732 /* Size of the log buffer */ 1733 case SYSLOG_ACTION_SIZE_BUFFER: 1734 error = log_buf_len; 1735 break; 1736 default: 1737 error = -EINVAL; 1738 break; 1739 } 1740 1741 return error; 1742 } 1743 1744 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1745 { 1746 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1747 } 1748 1749 /* 1750 * Special console_lock variants that help to reduce the risk of soft-lockups. 1751 * They allow to pass console_lock to another printk() call using a busy wait. 1752 */ 1753 1754 #ifdef CONFIG_LOCKDEP 1755 static struct lockdep_map console_owner_dep_map = { 1756 .name = "console_owner" 1757 }; 1758 #endif 1759 1760 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1761 static struct task_struct *console_owner; 1762 static bool console_waiter; 1763 1764 /** 1765 * console_lock_spinning_enable - mark beginning of code where another 1766 * thread might safely busy wait 1767 * 1768 * This basically converts console_lock into a spinlock. This marks 1769 * the section where the console_lock owner can not sleep, because 1770 * there may be a waiter spinning (like a spinlock). Also it must be 1771 * ready to hand over the lock at the end of the section. 1772 */ 1773 static void console_lock_spinning_enable(void) 1774 { 1775 raw_spin_lock(&console_owner_lock); 1776 console_owner = current; 1777 raw_spin_unlock(&console_owner_lock); 1778 1779 /* The waiter may spin on us after setting console_owner */ 1780 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1781 } 1782 1783 /** 1784 * console_lock_spinning_disable_and_check - mark end of code where another 1785 * thread was able to busy wait and check if there is a waiter 1786 * 1787 * This is called at the end of the section where spinning is allowed. 1788 * It has two functions. First, it is a signal that it is no longer 1789 * safe to start busy waiting for the lock. Second, it checks if 1790 * there is a busy waiter and passes the lock rights to her. 1791 * 1792 * Important: Callers lose the lock if there was a busy waiter. 1793 * They must not touch items synchronized by console_lock 1794 * in this case. 1795 * 1796 * Return: 1 if the lock rights were passed, 0 otherwise. 1797 */ 1798 static int console_lock_spinning_disable_and_check(void) 1799 { 1800 int waiter; 1801 1802 raw_spin_lock(&console_owner_lock); 1803 waiter = READ_ONCE(console_waiter); 1804 console_owner = NULL; 1805 raw_spin_unlock(&console_owner_lock); 1806 1807 if (!waiter) { 1808 spin_release(&console_owner_dep_map, _THIS_IP_); 1809 return 0; 1810 } 1811 1812 /* The waiter is now free to continue */ 1813 WRITE_ONCE(console_waiter, false); 1814 1815 spin_release(&console_owner_dep_map, _THIS_IP_); 1816 1817 /* 1818 * Hand off console_lock to waiter. The waiter will perform 1819 * the up(). After this, the waiter is the console_lock owner. 1820 */ 1821 mutex_release(&console_lock_dep_map, _THIS_IP_); 1822 return 1; 1823 } 1824 1825 /** 1826 * console_trylock_spinning - try to get console_lock by busy waiting 1827 * 1828 * This allows to busy wait for the console_lock when the current 1829 * owner is running in specially marked sections. It means that 1830 * the current owner is running and cannot reschedule until it 1831 * is ready to lose the lock. 1832 * 1833 * Return: 1 if we got the lock, 0 othrewise 1834 */ 1835 static int console_trylock_spinning(void) 1836 { 1837 struct task_struct *owner = NULL; 1838 bool waiter; 1839 bool spin = false; 1840 unsigned long flags; 1841 1842 if (console_trylock()) 1843 return 1; 1844 1845 printk_safe_enter_irqsave(flags); 1846 1847 raw_spin_lock(&console_owner_lock); 1848 owner = READ_ONCE(console_owner); 1849 waiter = READ_ONCE(console_waiter); 1850 if (!waiter && owner && owner != current) { 1851 WRITE_ONCE(console_waiter, true); 1852 spin = true; 1853 } 1854 raw_spin_unlock(&console_owner_lock); 1855 1856 /* 1857 * If there is an active printk() writing to the 1858 * consoles, instead of having it write our data too, 1859 * see if we can offload that load from the active 1860 * printer, and do some printing ourselves. 1861 * Go into a spin only if there isn't already a waiter 1862 * spinning, and there is an active printer, and 1863 * that active printer isn't us (recursive printk?). 1864 */ 1865 if (!spin) { 1866 printk_safe_exit_irqrestore(flags); 1867 return 0; 1868 } 1869 1870 /* We spin waiting for the owner to release us */ 1871 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1872 /* Owner will clear console_waiter on hand off */ 1873 while (READ_ONCE(console_waiter)) 1874 cpu_relax(); 1875 spin_release(&console_owner_dep_map, _THIS_IP_); 1876 1877 printk_safe_exit_irqrestore(flags); 1878 /* 1879 * The owner passed the console lock to us. 1880 * Since we did not spin on console lock, annotate 1881 * this as a trylock. Otherwise lockdep will 1882 * complain. 1883 */ 1884 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1885 1886 return 1; 1887 } 1888 1889 /* 1890 * Call the console drivers, asking them to write out 1891 * log_buf[start] to log_buf[end - 1]. 1892 * The console_lock must be held. 1893 */ 1894 static void call_console_drivers(const char *ext_text, size_t ext_len, 1895 const char *text, size_t len) 1896 { 1897 static char dropped_text[64]; 1898 size_t dropped_len = 0; 1899 struct console *con; 1900 1901 trace_console_rcuidle(text, len); 1902 1903 if (!console_drivers) 1904 return; 1905 1906 if (console_dropped) { 1907 dropped_len = snprintf(dropped_text, sizeof(dropped_text), 1908 "** %lu printk messages dropped **\n", 1909 console_dropped); 1910 console_dropped = 0; 1911 } 1912 1913 for_each_console(con) { 1914 if (exclusive_console && con != exclusive_console) 1915 continue; 1916 if (!(con->flags & CON_ENABLED)) 1917 continue; 1918 if (!con->write) 1919 continue; 1920 if (!cpu_online(smp_processor_id()) && 1921 !(con->flags & CON_ANYTIME)) 1922 continue; 1923 if (con->flags & CON_EXTENDED) 1924 con->write(con, ext_text, ext_len); 1925 else { 1926 if (dropped_len) 1927 con->write(con, dropped_text, dropped_len); 1928 con->write(con, text, len); 1929 } 1930 } 1931 } 1932 1933 /* 1934 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1935 * additional NMI context per CPU is also separately tracked. Until per-CPU 1936 * is available, a separate "early tracking" is performed. 1937 */ 1938 static DEFINE_PER_CPU(u8, printk_count); 1939 static u8 printk_count_early; 1940 #ifdef CONFIG_HAVE_NMI 1941 static DEFINE_PER_CPU(u8, printk_count_nmi); 1942 static u8 printk_count_nmi_early; 1943 #endif 1944 1945 /* 1946 * Recursion is limited to keep the output sane. printk() should not require 1947 * more than 1 level of recursion (allowing, for example, printk() to trigger 1948 * a WARN), but a higher value is used in case some printk-internal errors 1949 * exist, such as the ringbuffer validation checks failing. 1950 */ 1951 #define PRINTK_MAX_RECURSION 3 1952 1953 /* 1954 * Return a pointer to the dedicated counter for the CPU+context of the 1955 * caller. 1956 */ 1957 static u8 *__printk_recursion_counter(void) 1958 { 1959 #ifdef CONFIG_HAVE_NMI 1960 if (in_nmi()) { 1961 if (printk_percpu_data_ready()) 1962 return this_cpu_ptr(&printk_count_nmi); 1963 return &printk_count_nmi_early; 1964 } 1965 #endif 1966 if (printk_percpu_data_ready()) 1967 return this_cpu_ptr(&printk_count); 1968 return &printk_count_early; 1969 } 1970 1971 /* 1972 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 1973 * The caller must check the boolean return value to see if the recursion is 1974 * allowed. On failure, interrupts are not disabled. 1975 * 1976 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 1977 * that is passed to printk_exit_irqrestore(). 1978 */ 1979 #define printk_enter_irqsave(recursion_ptr, flags) \ 1980 ({ \ 1981 bool success = true; \ 1982 \ 1983 typecheck(u8 *, recursion_ptr); \ 1984 local_irq_save(flags); \ 1985 (recursion_ptr) = __printk_recursion_counter(); \ 1986 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 1987 local_irq_restore(flags); \ 1988 success = false; \ 1989 } else { \ 1990 (*(recursion_ptr))++; \ 1991 } \ 1992 success; \ 1993 }) 1994 1995 /* Exit recursion tracking, restoring interrupts. */ 1996 #define printk_exit_irqrestore(recursion_ptr, flags) \ 1997 do { \ 1998 typecheck(u8 *, recursion_ptr); \ 1999 (*(recursion_ptr))--; \ 2000 local_irq_restore(flags); \ 2001 } while (0) 2002 2003 int printk_delay_msec __read_mostly; 2004 2005 static inline void printk_delay(void) 2006 { 2007 if (unlikely(printk_delay_msec)) { 2008 int m = printk_delay_msec; 2009 2010 while (m--) { 2011 mdelay(1); 2012 touch_nmi_watchdog(); 2013 } 2014 } 2015 } 2016 2017 static inline u32 printk_caller_id(void) 2018 { 2019 return in_task() ? task_pid_nr(current) : 2020 0x80000000 + raw_smp_processor_id(); 2021 } 2022 2023 /** 2024 * printk_parse_prefix - Parse level and control flags. 2025 * 2026 * @text: The terminated text message. 2027 * @level: A pointer to the current level value, will be updated. 2028 * @flags: A pointer to the current printk_info flags, will be updated. 2029 * 2030 * @level may be NULL if the caller is not interested in the parsed value. 2031 * Otherwise the variable pointed to by @level must be set to 2032 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2033 * 2034 * @flags may be NULL if the caller is not interested in the parsed value. 2035 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2036 * value. 2037 * 2038 * Return: The length of the parsed level and control flags. 2039 */ 2040 u16 printk_parse_prefix(const char *text, int *level, 2041 enum printk_info_flags *flags) 2042 { 2043 u16 prefix_len = 0; 2044 int kern_level; 2045 2046 while (*text) { 2047 kern_level = printk_get_level(text); 2048 if (!kern_level) 2049 break; 2050 2051 switch (kern_level) { 2052 case '0' ... '7': 2053 if (level && *level == LOGLEVEL_DEFAULT) 2054 *level = kern_level - '0'; 2055 break; 2056 case 'c': /* KERN_CONT */ 2057 if (flags) 2058 *flags |= LOG_CONT; 2059 } 2060 2061 prefix_len += 2; 2062 text += 2; 2063 } 2064 2065 return prefix_len; 2066 } 2067 2068 __printf(5, 0) 2069 static u16 printk_sprint(char *text, u16 size, int facility, 2070 enum printk_info_flags *flags, const char *fmt, 2071 va_list args) 2072 { 2073 u16 text_len; 2074 2075 text_len = vscnprintf(text, size, fmt, args); 2076 2077 /* Mark and strip a trailing newline. */ 2078 if (text_len && text[text_len - 1] == '\n') { 2079 text_len--; 2080 *flags |= LOG_NEWLINE; 2081 } 2082 2083 /* Strip log level and control flags. */ 2084 if (facility == 0) { 2085 u16 prefix_len; 2086 2087 prefix_len = printk_parse_prefix(text, NULL, NULL); 2088 if (prefix_len) { 2089 text_len -= prefix_len; 2090 memmove(text, text + prefix_len, text_len); 2091 } 2092 } 2093 2094 return text_len; 2095 } 2096 2097 __printf(4, 0) 2098 int vprintk_store(int facility, int level, 2099 const struct dev_printk_info *dev_info, 2100 const char *fmt, va_list args) 2101 { 2102 const u32 caller_id = printk_caller_id(); 2103 struct prb_reserved_entry e; 2104 enum printk_info_flags flags = 0; 2105 struct printk_record r; 2106 unsigned long irqflags; 2107 u16 trunc_msg_len = 0; 2108 char prefix_buf[8]; 2109 u8 *recursion_ptr; 2110 u16 reserve_size; 2111 va_list args2; 2112 u16 text_len; 2113 int ret = 0; 2114 u64 ts_nsec; 2115 2116 /* 2117 * Since the duration of printk() can vary depending on the message 2118 * and state of the ringbuffer, grab the timestamp now so that it is 2119 * close to the call of printk(). This provides a more deterministic 2120 * timestamp with respect to the caller. 2121 */ 2122 ts_nsec = local_clock(); 2123 2124 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2125 return 0; 2126 2127 /* 2128 * The sprintf needs to come first since the syslog prefix might be 2129 * passed in as a parameter. An extra byte must be reserved so that 2130 * later the vscnprintf() into the reserved buffer has room for the 2131 * terminating '\0', which is not counted by vsnprintf(). 2132 */ 2133 va_copy(args2, args); 2134 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2135 va_end(args2); 2136 2137 if (reserve_size > LOG_LINE_MAX) 2138 reserve_size = LOG_LINE_MAX; 2139 2140 /* Extract log level or control flags. */ 2141 if (facility == 0) 2142 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2143 2144 if (level == LOGLEVEL_DEFAULT) 2145 level = default_message_loglevel; 2146 2147 if (dev_info) 2148 flags |= LOG_NEWLINE; 2149 2150 if (flags & LOG_CONT) { 2151 prb_rec_init_wr(&r, reserve_size); 2152 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2153 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2154 facility, &flags, fmt, args); 2155 r.info->text_len += text_len; 2156 2157 if (flags & LOG_NEWLINE) { 2158 r.info->flags |= LOG_NEWLINE; 2159 prb_final_commit(&e); 2160 } else { 2161 prb_commit(&e); 2162 } 2163 2164 ret = text_len; 2165 goto out; 2166 } 2167 } 2168 2169 /* 2170 * Explicitly initialize the record before every prb_reserve() call. 2171 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2172 * structure when they fail. 2173 */ 2174 prb_rec_init_wr(&r, reserve_size); 2175 if (!prb_reserve(&e, prb, &r)) { 2176 /* truncate the message if it is too long for empty buffer */ 2177 truncate_msg(&reserve_size, &trunc_msg_len); 2178 2179 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2180 if (!prb_reserve(&e, prb, &r)) 2181 goto out; 2182 } 2183 2184 /* fill message */ 2185 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2186 if (trunc_msg_len) 2187 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2188 r.info->text_len = text_len + trunc_msg_len; 2189 r.info->facility = facility; 2190 r.info->level = level & 7; 2191 r.info->flags = flags & 0x1f; 2192 r.info->ts_nsec = ts_nsec; 2193 r.info->caller_id = caller_id; 2194 if (dev_info) 2195 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2196 2197 /* A message without a trailing newline can be continued. */ 2198 if (!(flags & LOG_NEWLINE)) 2199 prb_commit(&e); 2200 else 2201 prb_final_commit(&e); 2202 2203 ret = text_len + trunc_msg_len; 2204 out: 2205 printk_exit_irqrestore(recursion_ptr, irqflags); 2206 return ret; 2207 } 2208 2209 asmlinkage int vprintk_emit(int facility, int level, 2210 const struct dev_printk_info *dev_info, 2211 const char *fmt, va_list args) 2212 { 2213 int printed_len; 2214 bool in_sched = false; 2215 2216 /* Suppress unimportant messages after panic happens */ 2217 if (unlikely(suppress_printk)) 2218 return 0; 2219 2220 if (level == LOGLEVEL_SCHED) { 2221 level = LOGLEVEL_DEFAULT; 2222 in_sched = true; 2223 } 2224 2225 boot_delay_msec(level); 2226 printk_delay(); 2227 2228 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2229 2230 /* If called from the scheduler, we can not call up(). */ 2231 if (!in_sched) { 2232 /* 2233 * Disable preemption to avoid being preempted while holding 2234 * console_sem which would prevent anyone from printing to 2235 * console 2236 */ 2237 preempt_disable(); 2238 /* 2239 * Try to acquire and then immediately release the console 2240 * semaphore. The release will print out buffers and wake up 2241 * /dev/kmsg and syslog() users. 2242 */ 2243 if (console_trylock_spinning()) 2244 console_unlock(); 2245 preempt_enable(); 2246 } 2247 2248 wake_up_klogd(); 2249 return printed_len; 2250 } 2251 EXPORT_SYMBOL(vprintk_emit); 2252 2253 int vprintk_default(const char *fmt, va_list args) 2254 { 2255 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2256 } 2257 EXPORT_SYMBOL_GPL(vprintk_default); 2258 2259 asmlinkage __visible int _printk(const char *fmt, ...) 2260 { 2261 va_list args; 2262 int r; 2263 2264 va_start(args, fmt); 2265 r = vprintk(fmt, args); 2266 va_end(args); 2267 2268 return r; 2269 } 2270 EXPORT_SYMBOL(_printk); 2271 2272 #else /* CONFIG_PRINTK */ 2273 2274 #define CONSOLE_LOG_MAX 0 2275 #define printk_time false 2276 2277 #define prb_read_valid(rb, seq, r) false 2278 #define prb_first_valid_seq(rb) 0 2279 2280 static u64 syslog_seq; 2281 static u64 console_seq; 2282 static u64 exclusive_console_stop_seq; 2283 static unsigned long console_dropped; 2284 2285 static size_t record_print_text(const struct printk_record *r, 2286 bool syslog, bool time) 2287 { 2288 return 0; 2289 } 2290 static ssize_t info_print_ext_header(char *buf, size_t size, 2291 struct printk_info *info) 2292 { 2293 return 0; 2294 } 2295 static ssize_t msg_print_ext_body(char *buf, size_t size, 2296 char *text, size_t text_len, 2297 struct dev_printk_info *dev_info) { return 0; } 2298 static void console_lock_spinning_enable(void) { } 2299 static int console_lock_spinning_disable_and_check(void) { return 0; } 2300 static void call_console_drivers(const char *ext_text, size_t ext_len, 2301 const char *text, size_t len) {} 2302 static bool suppress_message_printing(int level) { return false; } 2303 2304 #endif /* CONFIG_PRINTK */ 2305 2306 #ifdef CONFIG_EARLY_PRINTK 2307 struct console *early_console; 2308 2309 asmlinkage __visible void early_printk(const char *fmt, ...) 2310 { 2311 va_list ap; 2312 char buf[512]; 2313 int n; 2314 2315 if (!early_console) 2316 return; 2317 2318 va_start(ap, fmt); 2319 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2320 va_end(ap); 2321 2322 early_console->write(early_console, buf, n); 2323 } 2324 #endif 2325 2326 static int __add_preferred_console(char *name, int idx, char *options, 2327 char *brl_options, bool user_specified) 2328 { 2329 struct console_cmdline *c; 2330 int i; 2331 2332 /* 2333 * See if this tty is not yet registered, and 2334 * if we have a slot free. 2335 */ 2336 for (i = 0, c = console_cmdline; 2337 i < MAX_CMDLINECONSOLES && c->name[0]; 2338 i++, c++) { 2339 if (strcmp(c->name, name) == 0 && c->index == idx) { 2340 if (!brl_options) 2341 preferred_console = i; 2342 if (user_specified) 2343 c->user_specified = true; 2344 return 0; 2345 } 2346 } 2347 if (i == MAX_CMDLINECONSOLES) 2348 return -E2BIG; 2349 if (!brl_options) 2350 preferred_console = i; 2351 strlcpy(c->name, name, sizeof(c->name)); 2352 c->options = options; 2353 c->user_specified = user_specified; 2354 braille_set_options(c, brl_options); 2355 2356 c->index = idx; 2357 return 0; 2358 } 2359 2360 static int __init console_msg_format_setup(char *str) 2361 { 2362 if (!strcmp(str, "syslog")) 2363 console_msg_format = MSG_FORMAT_SYSLOG; 2364 if (!strcmp(str, "default")) 2365 console_msg_format = MSG_FORMAT_DEFAULT; 2366 return 1; 2367 } 2368 __setup("console_msg_format=", console_msg_format_setup); 2369 2370 /* 2371 * Set up a console. Called via do_early_param() in init/main.c 2372 * for each "console=" parameter in the boot command line. 2373 */ 2374 static int __init console_setup(char *str) 2375 { 2376 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2377 char *s, *options, *brl_options = NULL; 2378 int idx; 2379 2380 /* 2381 * console="" or console=null have been suggested as a way to 2382 * disable console output. Use ttynull that has been created 2383 * for exactly this purpose. 2384 */ 2385 if (str[0] == 0 || strcmp(str, "null") == 0) { 2386 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2387 return 1; 2388 } 2389 2390 if (_braille_console_setup(&str, &brl_options)) 2391 return 1; 2392 2393 /* 2394 * Decode str into name, index, options. 2395 */ 2396 if (str[0] >= '0' && str[0] <= '9') { 2397 strcpy(buf, "ttyS"); 2398 strncpy(buf + 4, str, sizeof(buf) - 5); 2399 } else { 2400 strncpy(buf, str, sizeof(buf) - 1); 2401 } 2402 buf[sizeof(buf) - 1] = 0; 2403 options = strchr(str, ','); 2404 if (options) 2405 *(options++) = 0; 2406 #ifdef __sparc__ 2407 if (!strcmp(str, "ttya")) 2408 strcpy(buf, "ttyS0"); 2409 if (!strcmp(str, "ttyb")) 2410 strcpy(buf, "ttyS1"); 2411 #endif 2412 for (s = buf; *s; s++) 2413 if (isdigit(*s) || *s == ',') 2414 break; 2415 idx = simple_strtoul(s, NULL, 10); 2416 *s = 0; 2417 2418 __add_preferred_console(buf, idx, options, brl_options, true); 2419 console_set_on_cmdline = 1; 2420 return 1; 2421 } 2422 __setup("console=", console_setup); 2423 2424 /** 2425 * add_preferred_console - add a device to the list of preferred consoles. 2426 * @name: device name 2427 * @idx: device index 2428 * @options: options for this console 2429 * 2430 * The last preferred console added will be used for kernel messages 2431 * and stdin/out/err for init. Normally this is used by console_setup 2432 * above to handle user-supplied console arguments; however it can also 2433 * be used by arch-specific code either to override the user or more 2434 * commonly to provide a default console (ie from PROM variables) when 2435 * the user has not supplied one. 2436 */ 2437 int add_preferred_console(char *name, int idx, char *options) 2438 { 2439 return __add_preferred_console(name, idx, options, NULL, false); 2440 } 2441 2442 bool console_suspend_enabled = true; 2443 EXPORT_SYMBOL(console_suspend_enabled); 2444 2445 static int __init console_suspend_disable(char *str) 2446 { 2447 console_suspend_enabled = false; 2448 return 1; 2449 } 2450 __setup("no_console_suspend", console_suspend_disable); 2451 module_param_named(console_suspend, console_suspend_enabled, 2452 bool, S_IRUGO | S_IWUSR); 2453 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2454 " and hibernate operations"); 2455 2456 static bool printk_console_no_auto_verbose; 2457 2458 void console_verbose(void) 2459 { 2460 if (console_loglevel && !printk_console_no_auto_verbose) 2461 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2462 } 2463 EXPORT_SYMBOL_GPL(console_verbose); 2464 2465 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2466 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2467 2468 /** 2469 * suspend_console - suspend the console subsystem 2470 * 2471 * This disables printk() while we go into suspend states 2472 */ 2473 void suspend_console(void) 2474 { 2475 if (!console_suspend_enabled) 2476 return; 2477 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2478 console_lock(); 2479 console_suspended = 1; 2480 up_console_sem(); 2481 } 2482 2483 void resume_console(void) 2484 { 2485 if (!console_suspend_enabled) 2486 return; 2487 down_console_sem(); 2488 console_suspended = 0; 2489 console_unlock(); 2490 } 2491 2492 /** 2493 * console_cpu_notify - print deferred console messages after CPU hotplug 2494 * @cpu: unused 2495 * 2496 * If printk() is called from a CPU that is not online yet, the messages 2497 * will be printed on the console only if there are CON_ANYTIME consoles. 2498 * This function is called when a new CPU comes online (or fails to come 2499 * up) or goes offline. 2500 */ 2501 static int console_cpu_notify(unsigned int cpu) 2502 { 2503 if (!cpuhp_tasks_frozen) { 2504 /* If trylock fails, someone else is doing the printing */ 2505 if (console_trylock()) 2506 console_unlock(); 2507 } 2508 return 0; 2509 } 2510 2511 /** 2512 * console_lock - lock the console system for exclusive use. 2513 * 2514 * Acquires a lock which guarantees that the caller has 2515 * exclusive access to the console system and the console_drivers list. 2516 * 2517 * Can sleep, returns nothing. 2518 */ 2519 void console_lock(void) 2520 { 2521 might_sleep(); 2522 2523 down_console_sem(); 2524 if (console_suspended) 2525 return; 2526 console_locked = 1; 2527 console_may_schedule = 1; 2528 } 2529 EXPORT_SYMBOL(console_lock); 2530 2531 /** 2532 * console_trylock - try to lock the console system for exclusive use. 2533 * 2534 * Try to acquire a lock which guarantees that the caller has exclusive 2535 * access to the console system and the console_drivers list. 2536 * 2537 * returns 1 on success, and 0 on failure to acquire the lock. 2538 */ 2539 int console_trylock(void) 2540 { 2541 if (down_trylock_console_sem()) 2542 return 0; 2543 if (console_suspended) { 2544 up_console_sem(); 2545 return 0; 2546 } 2547 console_locked = 1; 2548 console_may_schedule = 0; 2549 return 1; 2550 } 2551 EXPORT_SYMBOL(console_trylock); 2552 2553 int is_console_locked(void) 2554 { 2555 return console_locked; 2556 } 2557 EXPORT_SYMBOL(is_console_locked); 2558 2559 /* 2560 * Check if we have any console that is capable of printing while cpu is 2561 * booting or shutting down. Requires console_sem. 2562 */ 2563 static int have_callable_console(void) 2564 { 2565 struct console *con; 2566 2567 for_each_console(con) 2568 if ((con->flags & CON_ENABLED) && 2569 (con->flags & CON_ANYTIME)) 2570 return 1; 2571 2572 return 0; 2573 } 2574 2575 /* 2576 * Can we actually use the console at this time on this cpu? 2577 * 2578 * Console drivers may assume that per-cpu resources have been allocated. So 2579 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2580 * call them until this CPU is officially up. 2581 */ 2582 static inline int can_use_console(void) 2583 { 2584 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2585 } 2586 2587 /** 2588 * console_unlock - unlock the console system 2589 * 2590 * Releases the console_lock which the caller holds on the console system 2591 * and the console driver list. 2592 * 2593 * While the console_lock was held, console output may have been buffered 2594 * by printk(). If this is the case, console_unlock(); emits 2595 * the output prior to releasing the lock. 2596 * 2597 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2598 * 2599 * console_unlock(); may be called from any context. 2600 */ 2601 void console_unlock(void) 2602 { 2603 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2604 static char text[CONSOLE_LOG_MAX]; 2605 unsigned long flags; 2606 bool do_cond_resched, retry; 2607 struct printk_info info; 2608 struct printk_record r; 2609 u64 __maybe_unused next_seq; 2610 2611 if (console_suspended) { 2612 up_console_sem(); 2613 return; 2614 } 2615 2616 prb_rec_init_rd(&r, &info, text, sizeof(text)); 2617 2618 /* 2619 * Console drivers are called with interrupts disabled, so 2620 * @console_may_schedule should be cleared before; however, we may 2621 * end up dumping a lot of lines, for example, if called from 2622 * console registration path, and should invoke cond_resched() 2623 * between lines if allowable. Not doing so can cause a very long 2624 * scheduling stall on a slow console leading to RCU stall and 2625 * softlockup warnings which exacerbate the issue with more 2626 * messages practically incapacitating the system. 2627 * 2628 * console_trylock() is not able to detect the preemptive 2629 * context reliably. Therefore the value must be stored before 2630 * and cleared after the "again" goto label. 2631 */ 2632 do_cond_resched = console_may_schedule; 2633 again: 2634 console_may_schedule = 0; 2635 2636 /* 2637 * We released the console_sem lock, so we need to recheck if 2638 * cpu is online and (if not) is there at least one CON_ANYTIME 2639 * console. 2640 */ 2641 if (!can_use_console()) { 2642 console_locked = 0; 2643 up_console_sem(); 2644 return; 2645 } 2646 2647 for (;;) { 2648 size_t ext_len = 0; 2649 int handover; 2650 size_t len; 2651 2652 skip: 2653 if (!prb_read_valid(prb, console_seq, &r)) 2654 break; 2655 2656 if (console_seq != r.info->seq) { 2657 console_dropped += r.info->seq - console_seq; 2658 console_seq = r.info->seq; 2659 } 2660 2661 if (suppress_message_printing(r.info->level)) { 2662 /* 2663 * Skip record we have buffered and already printed 2664 * directly to the console when we received it, and 2665 * record that has level above the console loglevel. 2666 */ 2667 console_seq++; 2668 goto skip; 2669 } 2670 2671 /* Output to all consoles once old messages replayed. */ 2672 if (unlikely(exclusive_console && 2673 console_seq >= exclusive_console_stop_seq)) { 2674 exclusive_console = NULL; 2675 } 2676 2677 /* 2678 * Handle extended console text first because later 2679 * record_print_text() will modify the record buffer in-place. 2680 */ 2681 if (nr_ext_console_drivers) { 2682 ext_len = info_print_ext_header(ext_text, 2683 sizeof(ext_text), 2684 r.info); 2685 ext_len += msg_print_ext_body(ext_text + ext_len, 2686 sizeof(ext_text) - ext_len, 2687 &r.text_buf[0], 2688 r.info->text_len, 2689 &r.info->dev_info); 2690 } 2691 len = record_print_text(&r, 2692 console_msg_format & MSG_FORMAT_SYSLOG, 2693 printk_time); 2694 console_seq++; 2695 2696 /* 2697 * While actively printing out messages, if another printk() 2698 * were to occur on another CPU, it may wait for this one to 2699 * finish. This task can not be preempted if there is a 2700 * waiter waiting to take over. 2701 * 2702 * Interrupts are disabled because the hand over to a waiter 2703 * must not be interrupted until the hand over is completed 2704 * (@console_waiter is cleared). 2705 */ 2706 printk_safe_enter_irqsave(flags); 2707 console_lock_spinning_enable(); 2708 2709 stop_critical_timings(); /* don't trace print latency */ 2710 call_console_drivers(ext_text, ext_len, text, len); 2711 start_critical_timings(); 2712 2713 handover = console_lock_spinning_disable_and_check(); 2714 printk_safe_exit_irqrestore(flags); 2715 if (handover) 2716 return; 2717 2718 if (do_cond_resched) 2719 cond_resched(); 2720 } 2721 2722 /* Get consistent value of the next-to-be-used sequence number. */ 2723 next_seq = console_seq; 2724 2725 console_locked = 0; 2726 up_console_sem(); 2727 2728 /* 2729 * Someone could have filled up the buffer again, so re-check if there's 2730 * something to flush. In case we cannot trylock the console_sem again, 2731 * there's a new owner and the console_unlock() from them will do the 2732 * flush, no worries. 2733 */ 2734 retry = prb_read_valid(prb, next_seq, NULL); 2735 if (retry && console_trylock()) 2736 goto again; 2737 } 2738 EXPORT_SYMBOL(console_unlock); 2739 2740 /** 2741 * console_conditional_schedule - yield the CPU if required 2742 * 2743 * If the console code is currently allowed to sleep, and 2744 * if this CPU should yield the CPU to another task, do 2745 * so here. 2746 * 2747 * Must be called within console_lock();. 2748 */ 2749 void __sched console_conditional_schedule(void) 2750 { 2751 if (console_may_schedule) 2752 cond_resched(); 2753 } 2754 EXPORT_SYMBOL(console_conditional_schedule); 2755 2756 void console_unblank(void) 2757 { 2758 struct console *c; 2759 2760 /* 2761 * console_unblank can no longer be called in interrupt context unless 2762 * oops_in_progress is set to 1.. 2763 */ 2764 if (oops_in_progress) { 2765 if (down_trylock_console_sem() != 0) 2766 return; 2767 } else 2768 console_lock(); 2769 2770 console_locked = 1; 2771 console_may_schedule = 0; 2772 for_each_console(c) 2773 if ((c->flags & CON_ENABLED) && c->unblank) 2774 c->unblank(); 2775 console_unlock(); 2776 } 2777 2778 /** 2779 * console_flush_on_panic - flush console content on panic 2780 * @mode: flush all messages in buffer or just the pending ones 2781 * 2782 * Immediately output all pending messages no matter what. 2783 */ 2784 void console_flush_on_panic(enum con_flush_mode mode) 2785 { 2786 /* 2787 * If someone else is holding the console lock, trylock will fail 2788 * and may_schedule may be set. Ignore and proceed to unlock so 2789 * that messages are flushed out. As this can be called from any 2790 * context and we don't want to get preempted while flushing, 2791 * ensure may_schedule is cleared. 2792 */ 2793 console_trylock(); 2794 console_may_schedule = 0; 2795 2796 if (mode == CONSOLE_REPLAY_ALL) 2797 console_seq = prb_first_valid_seq(prb); 2798 console_unlock(); 2799 } 2800 2801 /* 2802 * Return the console tty driver structure and its associated index 2803 */ 2804 struct tty_driver *console_device(int *index) 2805 { 2806 struct console *c; 2807 struct tty_driver *driver = NULL; 2808 2809 console_lock(); 2810 for_each_console(c) { 2811 if (!c->device) 2812 continue; 2813 driver = c->device(c, index); 2814 if (driver) 2815 break; 2816 } 2817 console_unlock(); 2818 return driver; 2819 } 2820 2821 /* 2822 * Prevent further output on the passed console device so that (for example) 2823 * serial drivers can disable console output before suspending a port, and can 2824 * re-enable output afterwards. 2825 */ 2826 void console_stop(struct console *console) 2827 { 2828 console_lock(); 2829 console->flags &= ~CON_ENABLED; 2830 console_unlock(); 2831 } 2832 EXPORT_SYMBOL(console_stop); 2833 2834 void console_start(struct console *console) 2835 { 2836 console_lock(); 2837 console->flags |= CON_ENABLED; 2838 console_unlock(); 2839 } 2840 EXPORT_SYMBOL(console_start); 2841 2842 static int __read_mostly keep_bootcon; 2843 2844 static int __init keep_bootcon_setup(char *str) 2845 { 2846 keep_bootcon = 1; 2847 pr_info("debug: skip boot console de-registration.\n"); 2848 2849 return 0; 2850 } 2851 2852 early_param("keep_bootcon", keep_bootcon_setup); 2853 2854 /* 2855 * This is called by register_console() to try to match 2856 * the newly registered console with any of the ones selected 2857 * by either the command line or add_preferred_console() and 2858 * setup/enable it. 2859 * 2860 * Care need to be taken with consoles that are statically 2861 * enabled such as netconsole 2862 */ 2863 static int try_enable_preferred_console(struct console *newcon, 2864 bool user_specified) 2865 { 2866 struct console_cmdline *c; 2867 int i, err; 2868 2869 for (i = 0, c = console_cmdline; 2870 i < MAX_CMDLINECONSOLES && c->name[0]; 2871 i++, c++) { 2872 if (c->user_specified != user_specified) 2873 continue; 2874 if (!newcon->match || 2875 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2876 /* default matching */ 2877 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2878 if (strcmp(c->name, newcon->name) != 0) 2879 continue; 2880 if (newcon->index >= 0 && 2881 newcon->index != c->index) 2882 continue; 2883 if (newcon->index < 0) 2884 newcon->index = c->index; 2885 2886 if (_braille_register_console(newcon, c)) 2887 return 0; 2888 2889 if (newcon->setup && 2890 (err = newcon->setup(newcon, c->options)) != 0) 2891 return err; 2892 } 2893 newcon->flags |= CON_ENABLED; 2894 if (i == preferred_console) 2895 newcon->flags |= CON_CONSDEV; 2896 return 0; 2897 } 2898 2899 /* 2900 * Some consoles, such as pstore and netconsole, can be enabled even 2901 * without matching. Accept the pre-enabled consoles only when match() 2902 * and setup() had a chance to be called. 2903 */ 2904 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2905 return 0; 2906 2907 return -ENOENT; 2908 } 2909 2910 /* Try to enable the console unconditionally */ 2911 static void try_enable_default_console(struct console *newcon) 2912 { 2913 if (newcon->index < 0) 2914 newcon->index = 0; 2915 2916 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 2917 return; 2918 2919 newcon->flags |= CON_ENABLED; 2920 2921 if (newcon->device) 2922 newcon->flags |= CON_CONSDEV; 2923 } 2924 2925 /* 2926 * The console driver calls this routine during kernel initialization 2927 * to register the console printing procedure with printk() and to 2928 * print any messages that were printed by the kernel before the 2929 * console driver was initialized. 2930 * 2931 * This can happen pretty early during the boot process (because of 2932 * early_printk) - sometimes before setup_arch() completes - be careful 2933 * of what kernel features are used - they may not be initialised yet. 2934 * 2935 * There are two types of consoles - bootconsoles (early_printk) and 2936 * "real" consoles (everything which is not a bootconsole) which are 2937 * handled differently. 2938 * - Any number of bootconsoles can be registered at any time. 2939 * - As soon as a "real" console is registered, all bootconsoles 2940 * will be unregistered automatically. 2941 * - Once a "real" console is registered, any attempt to register a 2942 * bootconsoles will be rejected 2943 */ 2944 void register_console(struct console *newcon) 2945 { 2946 struct console *con; 2947 bool bootcon_enabled = false; 2948 bool realcon_enabled = false; 2949 int err; 2950 2951 for_each_console(con) { 2952 if (WARN(con == newcon, "console '%s%d' already registered\n", 2953 con->name, con->index)) 2954 return; 2955 } 2956 2957 for_each_console(con) { 2958 if (con->flags & CON_BOOT) 2959 bootcon_enabled = true; 2960 else 2961 realcon_enabled = true; 2962 } 2963 2964 /* Do not register boot consoles when there already is a real one. */ 2965 if (newcon->flags & CON_BOOT && realcon_enabled) { 2966 pr_info("Too late to register bootconsole %s%d\n", 2967 newcon->name, newcon->index); 2968 return; 2969 } 2970 2971 /* 2972 * See if we want to enable this console driver by default. 2973 * 2974 * Nope when a console is preferred by the command line, device 2975 * tree, or SPCR. 2976 * 2977 * The first real console with tty binding (driver) wins. More 2978 * consoles might get enabled before the right one is found. 2979 * 2980 * Note that a console with tty binding will have CON_CONSDEV 2981 * flag set and will be first in the list. 2982 */ 2983 if (preferred_console < 0) { 2984 if (!console_drivers || !console_drivers->device || 2985 console_drivers->flags & CON_BOOT) { 2986 try_enable_default_console(newcon); 2987 } 2988 } 2989 2990 /* See if this console matches one we selected on the command line */ 2991 err = try_enable_preferred_console(newcon, true); 2992 2993 /* If not, try to match against the platform default(s) */ 2994 if (err == -ENOENT) 2995 err = try_enable_preferred_console(newcon, false); 2996 2997 /* printk() messages are not printed to the Braille console. */ 2998 if (err || newcon->flags & CON_BRL) 2999 return; 3000 3001 /* 3002 * If we have a bootconsole, and are switching to a real console, 3003 * don't print everything out again, since when the boot console, and 3004 * the real console are the same physical device, it's annoying to 3005 * see the beginning boot messages twice 3006 */ 3007 if (bootcon_enabled && 3008 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3009 newcon->flags &= ~CON_PRINTBUFFER; 3010 } 3011 3012 /* 3013 * Put this console in the list - keep the 3014 * preferred driver at the head of the list. 3015 */ 3016 console_lock(); 3017 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 3018 newcon->next = console_drivers; 3019 console_drivers = newcon; 3020 if (newcon->next) 3021 newcon->next->flags &= ~CON_CONSDEV; 3022 /* Ensure this flag is always set for the head of the list */ 3023 newcon->flags |= CON_CONSDEV; 3024 } else { 3025 newcon->next = console_drivers->next; 3026 console_drivers->next = newcon; 3027 } 3028 3029 if (newcon->flags & CON_EXTENDED) 3030 nr_ext_console_drivers++; 3031 3032 if (newcon->flags & CON_PRINTBUFFER) { 3033 /* 3034 * console_unlock(); will print out the buffered messages 3035 * for us. 3036 * 3037 * We're about to replay the log buffer. Only do this to the 3038 * just-registered console to avoid excessive message spam to 3039 * the already-registered consoles. 3040 * 3041 * Set exclusive_console with disabled interrupts to reduce 3042 * race window with eventual console_flush_on_panic() that 3043 * ignores console_lock. 3044 */ 3045 exclusive_console = newcon; 3046 exclusive_console_stop_seq = console_seq; 3047 3048 /* Get a consistent copy of @syslog_seq. */ 3049 mutex_lock(&syslog_lock); 3050 console_seq = syslog_seq; 3051 mutex_unlock(&syslog_lock); 3052 } 3053 console_unlock(); 3054 console_sysfs_notify(); 3055 3056 /* 3057 * By unregistering the bootconsoles after we enable the real console 3058 * we get the "console xxx enabled" message on all the consoles - 3059 * boot consoles, real consoles, etc - this is to ensure that end 3060 * users know there might be something in the kernel's log buffer that 3061 * went to the bootconsole (that they do not see on the real console) 3062 */ 3063 pr_info("%sconsole [%s%d] enabled\n", 3064 (newcon->flags & CON_BOOT) ? "boot" : "" , 3065 newcon->name, newcon->index); 3066 if (bootcon_enabled && 3067 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3068 !keep_bootcon) { 3069 /* We need to iterate through all boot consoles, to make 3070 * sure we print everything out, before we unregister them. 3071 */ 3072 for_each_console(con) 3073 if (con->flags & CON_BOOT) 3074 unregister_console(con); 3075 } 3076 } 3077 EXPORT_SYMBOL(register_console); 3078 3079 int unregister_console(struct console *console) 3080 { 3081 struct console *con; 3082 int res; 3083 3084 pr_info("%sconsole [%s%d] disabled\n", 3085 (console->flags & CON_BOOT) ? "boot" : "" , 3086 console->name, console->index); 3087 3088 res = _braille_unregister_console(console); 3089 if (res < 0) 3090 return res; 3091 if (res > 0) 3092 return 0; 3093 3094 res = -ENODEV; 3095 console_lock(); 3096 if (console_drivers == console) { 3097 console_drivers=console->next; 3098 res = 0; 3099 } else { 3100 for_each_console(con) { 3101 if (con->next == console) { 3102 con->next = console->next; 3103 res = 0; 3104 break; 3105 } 3106 } 3107 } 3108 3109 if (res) 3110 goto out_disable_unlock; 3111 3112 if (console->flags & CON_EXTENDED) 3113 nr_ext_console_drivers--; 3114 3115 /* 3116 * If this isn't the last console and it has CON_CONSDEV set, we 3117 * need to set it on the next preferred console. 3118 */ 3119 if (console_drivers != NULL && console->flags & CON_CONSDEV) 3120 console_drivers->flags |= CON_CONSDEV; 3121 3122 console->flags &= ~CON_ENABLED; 3123 console_unlock(); 3124 console_sysfs_notify(); 3125 3126 if (console->exit) 3127 res = console->exit(console); 3128 3129 return res; 3130 3131 out_disable_unlock: 3132 console->flags &= ~CON_ENABLED; 3133 console_unlock(); 3134 3135 return res; 3136 } 3137 EXPORT_SYMBOL(unregister_console); 3138 3139 /* 3140 * Initialize the console device. This is called *early*, so 3141 * we can't necessarily depend on lots of kernel help here. 3142 * Just do some early initializations, and do the complex setup 3143 * later. 3144 */ 3145 void __init console_init(void) 3146 { 3147 int ret; 3148 initcall_t call; 3149 initcall_entry_t *ce; 3150 3151 /* Setup the default TTY line discipline. */ 3152 n_tty_init(); 3153 3154 /* 3155 * set up the console device so that later boot sequences can 3156 * inform about problems etc.. 3157 */ 3158 ce = __con_initcall_start; 3159 trace_initcall_level("console"); 3160 while (ce < __con_initcall_end) { 3161 call = initcall_from_entry(ce); 3162 trace_initcall_start(call); 3163 ret = call(); 3164 trace_initcall_finish(call, ret); 3165 ce++; 3166 } 3167 } 3168 3169 /* 3170 * Some boot consoles access data that is in the init section and which will 3171 * be discarded after the initcalls have been run. To make sure that no code 3172 * will access this data, unregister the boot consoles in a late initcall. 3173 * 3174 * If for some reason, such as deferred probe or the driver being a loadable 3175 * module, the real console hasn't registered yet at this point, there will 3176 * be a brief interval in which no messages are logged to the console, which 3177 * makes it difficult to diagnose problems that occur during this time. 3178 * 3179 * To mitigate this problem somewhat, only unregister consoles whose memory 3180 * intersects with the init section. Note that all other boot consoles will 3181 * get unregistered when the real preferred console is registered. 3182 */ 3183 static int __init printk_late_init(void) 3184 { 3185 struct console *con; 3186 int ret; 3187 3188 for_each_console(con) { 3189 if (!(con->flags & CON_BOOT)) 3190 continue; 3191 3192 /* Check addresses that might be used for enabled consoles. */ 3193 if (init_section_intersects(con, sizeof(*con)) || 3194 init_section_contains(con->write, 0) || 3195 init_section_contains(con->read, 0) || 3196 init_section_contains(con->device, 0) || 3197 init_section_contains(con->unblank, 0) || 3198 init_section_contains(con->data, 0)) { 3199 /* 3200 * Please, consider moving the reported consoles out 3201 * of the init section. 3202 */ 3203 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3204 con->name, con->index); 3205 unregister_console(con); 3206 } 3207 } 3208 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3209 console_cpu_notify); 3210 WARN_ON(ret < 0); 3211 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3212 console_cpu_notify, NULL); 3213 WARN_ON(ret < 0); 3214 return 0; 3215 } 3216 late_initcall(printk_late_init); 3217 3218 #if defined CONFIG_PRINTK 3219 /* 3220 * Delayed printk version, for scheduler-internal messages: 3221 */ 3222 #define PRINTK_PENDING_WAKEUP 0x01 3223 #define PRINTK_PENDING_OUTPUT 0x02 3224 3225 static DEFINE_PER_CPU(int, printk_pending); 3226 3227 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3228 { 3229 int pending = __this_cpu_xchg(printk_pending, 0); 3230 3231 if (pending & PRINTK_PENDING_OUTPUT) { 3232 /* If trylock fails, someone else is doing the printing */ 3233 if (console_trylock()) 3234 console_unlock(); 3235 } 3236 3237 if (pending & PRINTK_PENDING_WAKEUP) 3238 wake_up_interruptible(&log_wait); 3239 } 3240 3241 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3242 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3243 3244 void wake_up_klogd(void) 3245 { 3246 if (!printk_percpu_data_ready()) 3247 return; 3248 3249 preempt_disable(); 3250 if (waitqueue_active(&log_wait)) { 3251 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3252 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3253 } 3254 preempt_enable(); 3255 } 3256 3257 void defer_console_output(void) 3258 { 3259 if (!printk_percpu_data_ready()) 3260 return; 3261 3262 preempt_disable(); 3263 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3264 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3265 preempt_enable(); 3266 } 3267 3268 void printk_trigger_flush(void) 3269 { 3270 defer_console_output(); 3271 } 3272 3273 int vprintk_deferred(const char *fmt, va_list args) 3274 { 3275 int r; 3276 3277 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3278 defer_console_output(); 3279 3280 return r; 3281 } 3282 3283 int _printk_deferred(const char *fmt, ...) 3284 { 3285 va_list args; 3286 int r; 3287 3288 va_start(args, fmt); 3289 r = vprintk_deferred(fmt, args); 3290 va_end(args); 3291 3292 return r; 3293 } 3294 3295 /* 3296 * printk rate limiting, lifted from the networking subsystem. 3297 * 3298 * This enforces a rate limit: not more than 10 kernel messages 3299 * every 5s to make a denial-of-service attack impossible. 3300 */ 3301 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3302 3303 int __printk_ratelimit(const char *func) 3304 { 3305 return ___ratelimit(&printk_ratelimit_state, func); 3306 } 3307 EXPORT_SYMBOL(__printk_ratelimit); 3308 3309 /** 3310 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3311 * @caller_jiffies: pointer to caller's state 3312 * @interval_msecs: minimum interval between prints 3313 * 3314 * printk_timed_ratelimit() returns true if more than @interval_msecs 3315 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3316 * returned true. 3317 */ 3318 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3319 unsigned int interval_msecs) 3320 { 3321 unsigned long elapsed = jiffies - *caller_jiffies; 3322 3323 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3324 return false; 3325 3326 *caller_jiffies = jiffies; 3327 return true; 3328 } 3329 EXPORT_SYMBOL(printk_timed_ratelimit); 3330 3331 static DEFINE_SPINLOCK(dump_list_lock); 3332 static LIST_HEAD(dump_list); 3333 3334 /** 3335 * kmsg_dump_register - register a kernel log dumper. 3336 * @dumper: pointer to the kmsg_dumper structure 3337 * 3338 * Adds a kernel log dumper to the system. The dump callback in the 3339 * structure will be called when the kernel oopses or panics and must be 3340 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3341 */ 3342 int kmsg_dump_register(struct kmsg_dumper *dumper) 3343 { 3344 unsigned long flags; 3345 int err = -EBUSY; 3346 3347 /* The dump callback needs to be set */ 3348 if (!dumper->dump) 3349 return -EINVAL; 3350 3351 spin_lock_irqsave(&dump_list_lock, flags); 3352 /* Don't allow registering multiple times */ 3353 if (!dumper->registered) { 3354 dumper->registered = 1; 3355 list_add_tail_rcu(&dumper->list, &dump_list); 3356 err = 0; 3357 } 3358 spin_unlock_irqrestore(&dump_list_lock, flags); 3359 3360 return err; 3361 } 3362 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3363 3364 /** 3365 * kmsg_dump_unregister - unregister a kmsg dumper. 3366 * @dumper: pointer to the kmsg_dumper structure 3367 * 3368 * Removes a dump device from the system. Returns zero on success and 3369 * %-EINVAL otherwise. 3370 */ 3371 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3372 { 3373 unsigned long flags; 3374 int err = -EINVAL; 3375 3376 spin_lock_irqsave(&dump_list_lock, flags); 3377 if (dumper->registered) { 3378 dumper->registered = 0; 3379 list_del_rcu(&dumper->list); 3380 err = 0; 3381 } 3382 spin_unlock_irqrestore(&dump_list_lock, flags); 3383 synchronize_rcu(); 3384 3385 return err; 3386 } 3387 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3388 3389 static bool always_kmsg_dump; 3390 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3391 3392 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3393 { 3394 switch (reason) { 3395 case KMSG_DUMP_PANIC: 3396 return "Panic"; 3397 case KMSG_DUMP_OOPS: 3398 return "Oops"; 3399 case KMSG_DUMP_EMERG: 3400 return "Emergency"; 3401 case KMSG_DUMP_SHUTDOWN: 3402 return "Shutdown"; 3403 default: 3404 return "Unknown"; 3405 } 3406 } 3407 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3408 3409 /** 3410 * kmsg_dump - dump kernel log to kernel message dumpers. 3411 * @reason: the reason (oops, panic etc) for dumping 3412 * 3413 * Call each of the registered dumper's dump() callback, which can 3414 * retrieve the kmsg records with kmsg_dump_get_line() or 3415 * kmsg_dump_get_buffer(). 3416 */ 3417 void kmsg_dump(enum kmsg_dump_reason reason) 3418 { 3419 struct kmsg_dumper *dumper; 3420 3421 rcu_read_lock(); 3422 list_for_each_entry_rcu(dumper, &dump_list, list) { 3423 enum kmsg_dump_reason max_reason = dumper->max_reason; 3424 3425 /* 3426 * If client has not provided a specific max_reason, default 3427 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3428 */ 3429 if (max_reason == KMSG_DUMP_UNDEF) { 3430 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3431 KMSG_DUMP_OOPS; 3432 } 3433 if (reason > max_reason) 3434 continue; 3435 3436 /* invoke dumper which will iterate over records */ 3437 dumper->dump(dumper, reason); 3438 } 3439 rcu_read_unlock(); 3440 } 3441 3442 /** 3443 * kmsg_dump_get_line - retrieve one kmsg log line 3444 * @iter: kmsg dump iterator 3445 * @syslog: include the "<4>" prefixes 3446 * @line: buffer to copy the line to 3447 * @size: maximum size of the buffer 3448 * @len: length of line placed into buffer 3449 * 3450 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3451 * record, and copy one record into the provided buffer. 3452 * 3453 * Consecutive calls will return the next available record moving 3454 * towards the end of the buffer with the youngest messages. 3455 * 3456 * A return value of FALSE indicates that there are no more records to 3457 * read. 3458 */ 3459 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 3460 char *line, size_t size, size_t *len) 3461 { 3462 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3463 struct printk_info info; 3464 unsigned int line_count; 3465 struct printk_record r; 3466 size_t l = 0; 3467 bool ret = false; 3468 3469 if (iter->cur_seq < min_seq) 3470 iter->cur_seq = min_seq; 3471 3472 prb_rec_init_rd(&r, &info, line, size); 3473 3474 /* Read text or count text lines? */ 3475 if (line) { 3476 if (!prb_read_valid(prb, iter->cur_seq, &r)) 3477 goto out; 3478 l = record_print_text(&r, syslog, printk_time); 3479 } else { 3480 if (!prb_read_valid_info(prb, iter->cur_seq, 3481 &info, &line_count)) { 3482 goto out; 3483 } 3484 l = get_record_print_text_size(&info, line_count, syslog, 3485 printk_time); 3486 3487 } 3488 3489 iter->cur_seq = r.info->seq + 1; 3490 ret = true; 3491 out: 3492 if (len) 3493 *len = l; 3494 return ret; 3495 } 3496 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3497 3498 /** 3499 * kmsg_dump_get_buffer - copy kmsg log lines 3500 * @iter: kmsg dump iterator 3501 * @syslog: include the "<4>" prefixes 3502 * @buf: buffer to copy the line to 3503 * @size: maximum size of the buffer 3504 * @len_out: length of line placed into buffer 3505 * 3506 * Start at the end of the kmsg buffer and fill the provided buffer 3507 * with as many of the *youngest* kmsg records that fit into it. 3508 * If the buffer is large enough, all available kmsg records will be 3509 * copied with a single call. 3510 * 3511 * Consecutive calls will fill the buffer with the next block of 3512 * available older records, not including the earlier retrieved ones. 3513 * 3514 * A return value of FALSE indicates that there are no more records to 3515 * read. 3516 */ 3517 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 3518 char *buf, size_t size, size_t *len_out) 3519 { 3520 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3521 struct printk_info info; 3522 struct printk_record r; 3523 u64 seq; 3524 u64 next_seq; 3525 size_t len = 0; 3526 bool ret = false; 3527 bool time = printk_time; 3528 3529 if (!buf || !size) 3530 goto out; 3531 3532 if (iter->cur_seq < min_seq) 3533 iter->cur_seq = min_seq; 3534 3535 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 3536 if (info.seq != iter->cur_seq) { 3537 /* messages are gone, move to first available one */ 3538 iter->cur_seq = info.seq; 3539 } 3540 } 3541 3542 /* last entry */ 3543 if (iter->cur_seq >= iter->next_seq) 3544 goto out; 3545 3546 /* 3547 * Find first record that fits, including all following records, 3548 * into the user-provided buffer for this dump. Pass in size-1 3549 * because this function (by way of record_print_text()) will 3550 * not write more than size-1 bytes of text into @buf. 3551 */ 3552 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 3553 size - 1, syslog, time); 3554 3555 /* 3556 * Next kmsg_dump_get_buffer() invocation will dump block of 3557 * older records stored right before this one. 3558 */ 3559 next_seq = seq; 3560 3561 prb_rec_init_rd(&r, &info, buf, size); 3562 3563 len = 0; 3564 prb_for_each_record(seq, prb, seq, &r) { 3565 if (r.info->seq >= iter->next_seq) 3566 break; 3567 3568 len += record_print_text(&r, syslog, time); 3569 3570 /* Adjust record to store to remaining buffer space. */ 3571 prb_rec_init_rd(&r, &info, buf + len, size - len); 3572 } 3573 3574 iter->next_seq = next_seq; 3575 ret = true; 3576 out: 3577 if (len_out) 3578 *len_out = len; 3579 return ret; 3580 } 3581 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3582 3583 /** 3584 * kmsg_dump_rewind - reset the iterator 3585 * @iter: kmsg dump iterator 3586 * 3587 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3588 * kmsg_dump_get_buffer() can be called again and used multiple 3589 * times within the same dumper.dump() callback. 3590 */ 3591 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 3592 { 3593 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 3594 iter->next_seq = prb_next_seq(prb); 3595 } 3596 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3597 3598 #endif 3599 3600 #ifdef CONFIG_SMP 3601 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1); 3602 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0); 3603 3604 /** 3605 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant 3606 * spinning lock is not owned by any CPU. 3607 * 3608 * Context: Any context. 3609 */ 3610 void __printk_wait_on_cpu_lock(void) 3611 { 3612 do { 3613 cpu_relax(); 3614 } while (atomic_read(&printk_cpulock_owner) != -1); 3615 } 3616 EXPORT_SYMBOL(__printk_wait_on_cpu_lock); 3617 3618 /** 3619 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant 3620 * spinning lock. 3621 * 3622 * If no processor has the lock, the calling processor takes the lock and 3623 * becomes the owner. If the calling processor is already the owner of the 3624 * lock, this function succeeds immediately. 3625 * 3626 * Context: Any context. Expects interrupts to be disabled. 3627 * Return: 1 on success, otherwise 0. 3628 */ 3629 int __printk_cpu_trylock(void) 3630 { 3631 int cpu; 3632 int old; 3633 3634 cpu = smp_processor_id(); 3635 3636 /* 3637 * Guarantee loads and stores from this CPU when it is the lock owner 3638 * are _not_ visible to the previous lock owner. This pairs with 3639 * __printk_cpu_unlock:B. 3640 * 3641 * Memory barrier involvement: 3642 * 3643 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then 3644 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B. 3645 * 3646 * Relies on: 3647 * 3648 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3649 * of the previous CPU 3650 * matching 3651 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3652 * of this CPU 3653 */ 3654 old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1, 3655 cpu); /* LMM(__printk_cpu_trylock:A) */ 3656 if (old == -1) { 3657 /* 3658 * This CPU is now the owner and begins loading/storing 3659 * data: LMM(__printk_cpu_trylock:B) 3660 */ 3661 return 1; 3662 3663 } else if (old == cpu) { 3664 /* This CPU is already the owner. */ 3665 atomic_inc(&printk_cpulock_nested); 3666 return 1; 3667 } 3668 3669 return 0; 3670 } 3671 EXPORT_SYMBOL(__printk_cpu_trylock); 3672 3673 /** 3674 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock. 3675 * 3676 * The calling processor must be the owner of the lock. 3677 * 3678 * Context: Any context. Expects interrupts to be disabled. 3679 */ 3680 void __printk_cpu_unlock(void) 3681 { 3682 if (atomic_read(&printk_cpulock_nested)) { 3683 atomic_dec(&printk_cpulock_nested); 3684 return; 3685 } 3686 3687 /* 3688 * This CPU is finished loading/storing data: 3689 * LMM(__printk_cpu_unlock:A) 3690 */ 3691 3692 /* 3693 * Guarantee loads and stores from this CPU when it was the 3694 * lock owner are visible to the next lock owner. This pairs 3695 * with __printk_cpu_trylock:A. 3696 * 3697 * Memory barrier involvement: 3698 * 3699 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, 3700 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A. 3701 * 3702 * Relies on: 3703 * 3704 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3705 * of this CPU 3706 * matching 3707 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3708 * of the next CPU 3709 */ 3710 atomic_set_release(&printk_cpulock_owner, 3711 -1); /* LMM(__printk_cpu_unlock:B) */ 3712 } 3713 EXPORT_SYMBOL(__printk_cpu_unlock); 3714 #endif /* CONFIG_SMP */ 3715