1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/tty.h> 24 #include <linux/tty_driver.h> 25 #include <linux/console.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/nmi.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/delay.h> 32 #include <linux/smp.h> 33 #include <linux/security.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/crash_core.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 EXPORT_SYMBOL_GPL(console_printk); 69 70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 71 EXPORT_SYMBOL(ignore_console_lock_warning); 72 73 /* 74 * Low level drivers may need that to know if they can schedule in 75 * their unblank() callback or not. So let's export it. 76 */ 77 int oops_in_progress; 78 EXPORT_SYMBOL(oops_in_progress); 79 80 /* 81 * console_sem protects the console_drivers list, and also 82 * provides serialisation for access to the entire console 83 * driver system. 84 */ 85 static DEFINE_SEMAPHORE(console_sem); 86 struct console *console_drivers; 87 EXPORT_SYMBOL_GPL(console_drivers); 88 89 #ifdef CONFIG_LOCKDEP 90 static struct lockdep_map console_lock_dep_map = { 91 .name = "console_lock" 92 }; 93 #endif 94 95 enum devkmsg_log_bits { 96 __DEVKMSG_LOG_BIT_ON = 0, 97 __DEVKMSG_LOG_BIT_OFF, 98 __DEVKMSG_LOG_BIT_LOCK, 99 }; 100 101 enum devkmsg_log_masks { 102 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 103 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 104 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 105 }; 106 107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 108 #define DEVKMSG_LOG_MASK_DEFAULT 0 109 110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 111 112 static int __control_devkmsg(char *str) 113 { 114 if (!str) 115 return -EINVAL; 116 117 if (!strncmp(str, "on", 2)) { 118 devkmsg_log = DEVKMSG_LOG_MASK_ON; 119 return 2; 120 } else if (!strncmp(str, "off", 3)) { 121 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 122 return 3; 123 } else if (!strncmp(str, "ratelimit", 9)) { 124 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 125 return 9; 126 } 127 return -EINVAL; 128 } 129 130 static int __init control_devkmsg(char *str) 131 { 132 if (__control_devkmsg(str) < 0) 133 return 1; 134 135 /* 136 * Set sysctl string accordingly: 137 */ 138 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 139 strcpy(devkmsg_log_str, "on"); 140 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 141 strcpy(devkmsg_log_str, "off"); 142 /* else "ratelimit" which is set by default. */ 143 144 /* 145 * Sysctl cannot change it anymore. The kernel command line setting of 146 * this parameter is to force the setting to be permanent throughout the 147 * runtime of the system. This is a precation measure against userspace 148 * trying to be a smarta** and attempting to change it up on us. 149 */ 150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 151 152 return 0; 153 } 154 __setup("printk.devkmsg=", control_devkmsg); 155 156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 157 158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 159 void __user *buffer, size_t *lenp, loff_t *ppos) 160 { 161 char old_str[DEVKMSG_STR_MAX_SIZE]; 162 unsigned int old; 163 int err; 164 165 if (write) { 166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 167 return -EINVAL; 168 169 old = devkmsg_log; 170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 171 } 172 173 err = proc_dostring(table, write, buffer, lenp, ppos); 174 if (err) 175 return err; 176 177 if (write) { 178 err = __control_devkmsg(devkmsg_log_str); 179 180 /* 181 * Do not accept an unknown string OR a known string with 182 * trailing crap... 183 */ 184 if (err < 0 || (err + 1 != *lenp)) { 185 186 /* ... and restore old setting. */ 187 devkmsg_log = old; 188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 189 190 return -EINVAL; 191 } 192 } 193 194 return 0; 195 } 196 197 /* Number of registered extended console drivers. */ 198 static int nr_ext_console_drivers; 199 200 /* 201 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 202 * macros instead of functions so that _RET_IP_ contains useful information. 203 */ 204 #define down_console_sem() do { \ 205 down(&console_sem);\ 206 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 207 } while (0) 208 209 static int __down_trylock_console_sem(unsigned long ip) 210 { 211 int lock_failed; 212 unsigned long flags; 213 214 /* 215 * Here and in __up_console_sem() we need to be in safe mode, 216 * because spindump/WARN/etc from under console ->lock will 217 * deadlock in printk()->down_trylock_console_sem() otherwise. 218 */ 219 printk_safe_enter_irqsave(flags); 220 lock_failed = down_trylock(&console_sem); 221 printk_safe_exit_irqrestore(flags); 222 223 if (lock_failed) 224 return 1; 225 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 226 return 0; 227 } 228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 229 230 static void __up_console_sem(unsigned long ip) 231 { 232 unsigned long flags; 233 234 mutex_release(&console_lock_dep_map, 1, ip); 235 236 printk_safe_enter_irqsave(flags); 237 up(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 } 240 #define up_console_sem() __up_console_sem(_RET_IP_) 241 242 /* 243 * This is used for debugging the mess that is the VT code by 244 * keeping track if we have the console semaphore held. It's 245 * definitely not the perfect debug tool (we don't know if _WE_ 246 * hold it and are racing, but it helps tracking those weird code 247 * paths in the console code where we end up in places I want 248 * locked without the console sempahore held). 249 */ 250 static int console_locked, console_suspended; 251 252 /* 253 * If exclusive_console is non-NULL then only this console is to be printed to. 254 */ 255 static struct console *exclusive_console; 256 257 /* 258 * Array of consoles built from command line options (console=) 259 */ 260 261 #define MAX_CMDLINECONSOLES 8 262 263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 264 265 static int preferred_console = -1; 266 int console_set_on_cmdline; 267 EXPORT_SYMBOL(console_set_on_cmdline); 268 269 /* Flag: console code may call schedule() */ 270 static int console_may_schedule; 271 272 enum con_msg_format_flags { 273 MSG_FORMAT_DEFAULT = 0, 274 MSG_FORMAT_SYSLOG = (1 << 0), 275 }; 276 277 static int console_msg_format = MSG_FORMAT_DEFAULT; 278 279 /* 280 * The printk log buffer consists of a chain of concatenated variable 281 * length records. Every record starts with a record header, containing 282 * the overall length of the record. 283 * 284 * The heads to the first and last entry in the buffer, as well as the 285 * sequence numbers of these entries are maintained when messages are 286 * stored. 287 * 288 * If the heads indicate available messages, the length in the header 289 * tells the start next message. A length == 0 for the next message 290 * indicates a wrap-around to the beginning of the buffer. 291 * 292 * Every record carries the monotonic timestamp in microseconds, as well as 293 * the standard userspace syslog level and syslog facility. The usual 294 * kernel messages use LOG_KERN; userspace-injected messages always carry 295 * a matching syslog facility, by default LOG_USER. The origin of every 296 * message can be reliably determined that way. 297 * 298 * The human readable log message directly follows the message header. The 299 * length of the message text is stored in the header, the stored message 300 * is not terminated. 301 * 302 * Optionally, a message can carry a dictionary of properties (key/value pairs), 303 * to provide userspace with a machine-readable message context. 304 * 305 * Examples for well-defined, commonly used property names are: 306 * DEVICE=b12:8 device identifier 307 * b12:8 block dev_t 308 * c127:3 char dev_t 309 * n8 netdev ifindex 310 * +sound:card0 subsystem:devname 311 * SUBSYSTEM=pci driver-core subsystem name 312 * 313 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 314 * follows directly after a '=' character. Every property is terminated by 315 * a '\0' character. The last property is not terminated. 316 * 317 * Example of a message structure: 318 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 319 * 0008 34 00 record is 52 bytes long 320 * 000a 0b 00 text is 11 bytes long 321 * 000c 1f 00 dictionary is 23 bytes long 322 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 323 * 0010 69 74 27 73 20 61 20 6c "it's a l" 324 * 69 6e 65 "ine" 325 * 001b 44 45 56 49 43 "DEVIC" 326 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 327 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 328 * 67 "g" 329 * 0032 00 00 00 padding to next message header 330 * 331 * The 'struct printk_log' buffer header must never be directly exported to 332 * userspace, it is a kernel-private implementation detail that might 333 * need to be changed in the future, when the requirements change. 334 * 335 * /dev/kmsg exports the structured data in the following line format: 336 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 337 * 338 * Users of the export format should ignore possible additional values 339 * separated by ',', and find the message after the ';' character. 340 * 341 * The optional key/value pairs are attached as continuation lines starting 342 * with a space character and terminated by a newline. All possible 343 * non-prinatable characters are escaped in the "\xff" notation. 344 */ 345 346 enum log_flags { 347 LOG_NEWLINE = 2, /* text ended with a newline */ 348 LOG_CONT = 8, /* text is a fragment of a continuation line */ 349 }; 350 351 struct printk_log { 352 u64 ts_nsec; /* timestamp in nanoseconds */ 353 u16 len; /* length of entire record */ 354 u16 text_len; /* length of text buffer */ 355 u16 dict_len; /* length of dictionary buffer */ 356 u8 facility; /* syslog facility */ 357 u8 flags:5; /* internal record flags */ 358 u8 level:3; /* syslog level */ 359 #ifdef CONFIG_PRINTK_CALLER 360 u32 caller_id; /* thread id or processor id */ 361 #endif 362 } 363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 364 __packed __aligned(4) 365 #endif 366 ; 367 368 /* 369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 370 * within the scheduler's rq lock. It must be released before calling 371 * console_unlock() or anything else that might wake up a process. 372 */ 373 DEFINE_RAW_SPINLOCK(logbuf_lock); 374 375 /* 376 * Helper macros to lock/unlock logbuf_lock and switch between 377 * printk-safe/unsafe modes. 378 */ 379 #define logbuf_lock_irq() \ 380 do { \ 381 printk_safe_enter_irq(); \ 382 raw_spin_lock(&logbuf_lock); \ 383 } while (0) 384 385 #define logbuf_unlock_irq() \ 386 do { \ 387 raw_spin_unlock(&logbuf_lock); \ 388 printk_safe_exit_irq(); \ 389 } while (0) 390 391 #define logbuf_lock_irqsave(flags) \ 392 do { \ 393 printk_safe_enter_irqsave(flags); \ 394 raw_spin_lock(&logbuf_lock); \ 395 } while (0) 396 397 #define logbuf_unlock_irqrestore(flags) \ 398 do { \ 399 raw_spin_unlock(&logbuf_lock); \ 400 printk_safe_exit_irqrestore(flags); \ 401 } while (0) 402 403 #ifdef CONFIG_PRINTK 404 DECLARE_WAIT_QUEUE_HEAD(log_wait); 405 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 406 static u64 syslog_seq; 407 static u32 syslog_idx; 408 static size_t syslog_partial; 409 static bool syslog_time; 410 411 /* index and sequence number of the first record stored in the buffer */ 412 static u64 log_first_seq; 413 static u32 log_first_idx; 414 415 /* index and sequence number of the next record to store in the buffer */ 416 static u64 log_next_seq; 417 static u32 log_next_idx; 418 419 /* the next printk record to write to the console */ 420 static u64 console_seq; 421 static u32 console_idx; 422 static u64 exclusive_console_stop_seq; 423 424 /* the next printk record to read after the last 'clear' command */ 425 static u64 clear_seq; 426 static u32 clear_idx; 427 428 #ifdef CONFIG_PRINTK_CALLER 429 #define PREFIX_MAX 48 430 #else 431 #define PREFIX_MAX 32 432 #endif 433 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 434 435 #define LOG_LEVEL(v) ((v) & 0x07) 436 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 437 438 /* record buffer */ 439 #define LOG_ALIGN __alignof__(struct printk_log) 440 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 441 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 442 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 443 static char *log_buf = __log_buf; 444 static u32 log_buf_len = __LOG_BUF_LEN; 445 446 /* Return log buffer address */ 447 char *log_buf_addr_get(void) 448 { 449 return log_buf; 450 } 451 452 /* Return log buffer size */ 453 u32 log_buf_len_get(void) 454 { 455 return log_buf_len; 456 } 457 458 /* human readable text of the record */ 459 static char *log_text(const struct printk_log *msg) 460 { 461 return (char *)msg + sizeof(struct printk_log); 462 } 463 464 /* optional key/value pair dictionary attached to the record */ 465 static char *log_dict(const struct printk_log *msg) 466 { 467 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 468 } 469 470 /* get record by index; idx must point to valid msg */ 471 static struct printk_log *log_from_idx(u32 idx) 472 { 473 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 474 475 /* 476 * A length == 0 record is the end of buffer marker. Wrap around and 477 * read the message at the start of the buffer. 478 */ 479 if (!msg->len) 480 return (struct printk_log *)log_buf; 481 return msg; 482 } 483 484 /* get next record; idx must point to valid msg */ 485 static u32 log_next(u32 idx) 486 { 487 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 488 489 /* length == 0 indicates the end of the buffer; wrap */ 490 /* 491 * A length == 0 record is the end of buffer marker. Wrap around and 492 * read the message at the start of the buffer as *this* one, and 493 * return the one after that. 494 */ 495 if (!msg->len) { 496 msg = (struct printk_log *)log_buf; 497 return msg->len; 498 } 499 return idx + msg->len; 500 } 501 502 /* 503 * Check whether there is enough free space for the given message. 504 * 505 * The same values of first_idx and next_idx mean that the buffer 506 * is either empty or full. 507 * 508 * If the buffer is empty, we must respect the position of the indexes. 509 * They cannot be reset to the beginning of the buffer. 510 */ 511 static int logbuf_has_space(u32 msg_size, bool empty) 512 { 513 u32 free; 514 515 if (log_next_idx > log_first_idx || empty) 516 free = max(log_buf_len - log_next_idx, log_first_idx); 517 else 518 free = log_first_idx - log_next_idx; 519 520 /* 521 * We need space also for an empty header that signalizes wrapping 522 * of the buffer. 523 */ 524 return free >= msg_size + sizeof(struct printk_log); 525 } 526 527 static int log_make_free_space(u32 msg_size) 528 { 529 while (log_first_seq < log_next_seq && 530 !logbuf_has_space(msg_size, false)) { 531 /* drop old messages until we have enough contiguous space */ 532 log_first_idx = log_next(log_first_idx); 533 log_first_seq++; 534 } 535 536 if (clear_seq < log_first_seq) { 537 clear_seq = log_first_seq; 538 clear_idx = log_first_idx; 539 } 540 541 /* sequence numbers are equal, so the log buffer is empty */ 542 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 543 return 0; 544 545 return -ENOMEM; 546 } 547 548 /* compute the message size including the padding bytes */ 549 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 550 { 551 u32 size; 552 553 size = sizeof(struct printk_log) + text_len + dict_len; 554 *pad_len = (-size) & (LOG_ALIGN - 1); 555 size += *pad_len; 556 557 return size; 558 } 559 560 /* 561 * Define how much of the log buffer we could take at maximum. The value 562 * must be greater than two. Note that only half of the buffer is available 563 * when the index points to the middle. 564 */ 565 #define MAX_LOG_TAKE_PART 4 566 static const char trunc_msg[] = "<truncated>"; 567 568 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 569 u16 *dict_len, u32 *pad_len) 570 { 571 /* 572 * The message should not take the whole buffer. Otherwise, it might 573 * get removed too soon. 574 */ 575 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 576 if (*text_len > max_text_len) 577 *text_len = max_text_len; 578 /* enable the warning message */ 579 *trunc_msg_len = strlen(trunc_msg); 580 /* disable the "dict" completely */ 581 *dict_len = 0; 582 /* compute the size again, count also the warning message */ 583 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 584 } 585 586 /* insert record into the buffer, discard old ones, update heads */ 587 static int log_store(u32 caller_id, int facility, int level, 588 enum log_flags flags, u64 ts_nsec, 589 const char *dict, u16 dict_len, 590 const char *text, u16 text_len) 591 { 592 struct printk_log *msg; 593 u32 size, pad_len; 594 u16 trunc_msg_len = 0; 595 596 /* number of '\0' padding bytes to next message */ 597 size = msg_used_size(text_len, dict_len, &pad_len); 598 599 if (log_make_free_space(size)) { 600 /* truncate the message if it is too long for empty buffer */ 601 size = truncate_msg(&text_len, &trunc_msg_len, 602 &dict_len, &pad_len); 603 /* survive when the log buffer is too small for trunc_msg */ 604 if (log_make_free_space(size)) 605 return 0; 606 } 607 608 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 609 /* 610 * This message + an additional empty header does not fit 611 * at the end of the buffer. Add an empty header with len == 0 612 * to signify a wrap around. 613 */ 614 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 615 log_next_idx = 0; 616 } 617 618 /* fill message */ 619 msg = (struct printk_log *)(log_buf + log_next_idx); 620 memcpy(log_text(msg), text, text_len); 621 msg->text_len = text_len; 622 if (trunc_msg_len) { 623 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 624 msg->text_len += trunc_msg_len; 625 } 626 memcpy(log_dict(msg), dict, dict_len); 627 msg->dict_len = dict_len; 628 msg->facility = facility; 629 msg->level = level & 7; 630 msg->flags = flags & 0x1f; 631 if (ts_nsec > 0) 632 msg->ts_nsec = ts_nsec; 633 else 634 msg->ts_nsec = local_clock(); 635 #ifdef CONFIG_PRINTK_CALLER 636 msg->caller_id = caller_id; 637 #endif 638 memset(log_dict(msg) + dict_len, 0, pad_len); 639 msg->len = size; 640 641 /* insert message */ 642 log_next_idx += msg->len; 643 log_next_seq++; 644 645 return msg->text_len; 646 } 647 648 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 649 650 static int syslog_action_restricted(int type) 651 { 652 if (dmesg_restrict) 653 return 1; 654 /* 655 * Unless restricted, we allow "read all" and "get buffer size" 656 * for everybody. 657 */ 658 return type != SYSLOG_ACTION_READ_ALL && 659 type != SYSLOG_ACTION_SIZE_BUFFER; 660 } 661 662 static int check_syslog_permissions(int type, int source) 663 { 664 /* 665 * If this is from /proc/kmsg and we've already opened it, then we've 666 * already done the capabilities checks at open time. 667 */ 668 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 669 goto ok; 670 671 if (syslog_action_restricted(type)) { 672 if (capable(CAP_SYSLOG)) 673 goto ok; 674 /* 675 * For historical reasons, accept CAP_SYS_ADMIN too, with 676 * a warning. 677 */ 678 if (capable(CAP_SYS_ADMIN)) { 679 pr_warn_once("%s (%d): Attempt to access syslog with " 680 "CAP_SYS_ADMIN but no CAP_SYSLOG " 681 "(deprecated).\n", 682 current->comm, task_pid_nr(current)); 683 goto ok; 684 } 685 return -EPERM; 686 } 687 ok: 688 return security_syslog(type); 689 } 690 691 static void append_char(char **pp, char *e, char c) 692 { 693 if (*pp < e) 694 *(*pp)++ = c; 695 } 696 697 static ssize_t msg_print_ext_header(char *buf, size_t size, 698 struct printk_log *msg, u64 seq) 699 { 700 u64 ts_usec = msg->ts_nsec; 701 char caller[20]; 702 #ifdef CONFIG_PRINTK_CALLER 703 u32 id = msg->caller_id; 704 705 snprintf(caller, sizeof(caller), ",caller=%c%u", 706 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 707 #else 708 caller[0] = '\0'; 709 #endif 710 711 do_div(ts_usec, 1000); 712 713 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 714 (msg->facility << 3) | msg->level, seq, ts_usec, 715 msg->flags & LOG_CONT ? 'c' : '-', caller); 716 } 717 718 static ssize_t msg_print_ext_body(char *buf, size_t size, 719 char *dict, size_t dict_len, 720 char *text, size_t text_len) 721 { 722 char *p = buf, *e = buf + size; 723 size_t i; 724 725 /* escape non-printable characters */ 726 for (i = 0; i < text_len; i++) { 727 unsigned char c = text[i]; 728 729 if (c < ' ' || c >= 127 || c == '\\') 730 p += scnprintf(p, e - p, "\\x%02x", c); 731 else 732 append_char(&p, e, c); 733 } 734 append_char(&p, e, '\n'); 735 736 if (dict_len) { 737 bool line = true; 738 739 for (i = 0; i < dict_len; i++) { 740 unsigned char c = dict[i]; 741 742 if (line) { 743 append_char(&p, e, ' '); 744 line = false; 745 } 746 747 if (c == '\0') { 748 append_char(&p, e, '\n'); 749 line = true; 750 continue; 751 } 752 753 if (c < ' ' || c >= 127 || c == '\\') { 754 p += scnprintf(p, e - p, "\\x%02x", c); 755 continue; 756 } 757 758 append_char(&p, e, c); 759 } 760 append_char(&p, e, '\n'); 761 } 762 763 return p - buf; 764 } 765 766 /* /dev/kmsg - userspace message inject/listen interface */ 767 struct devkmsg_user { 768 u64 seq; 769 u32 idx; 770 struct ratelimit_state rs; 771 struct mutex lock; 772 char buf[CONSOLE_EXT_LOG_MAX]; 773 }; 774 775 static __printf(3, 4) __cold 776 int devkmsg_emit(int facility, int level, const char *fmt, ...) 777 { 778 va_list args; 779 int r; 780 781 va_start(args, fmt); 782 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 783 va_end(args); 784 785 return r; 786 } 787 788 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 789 { 790 char *buf, *line; 791 int level = default_message_loglevel; 792 int facility = 1; /* LOG_USER */ 793 struct file *file = iocb->ki_filp; 794 struct devkmsg_user *user = file->private_data; 795 size_t len = iov_iter_count(from); 796 ssize_t ret = len; 797 798 if (!user || len > LOG_LINE_MAX) 799 return -EINVAL; 800 801 /* Ignore when user logging is disabled. */ 802 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 803 return len; 804 805 /* Ratelimit when not explicitly enabled. */ 806 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 807 if (!___ratelimit(&user->rs, current->comm)) 808 return ret; 809 } 810 811 buf = kmalloc(len+1, GFP_KERNEL); 812 if (buf == NULL) 813 return -ENOMEM; 814 815 buf[len] = '\0'; 816 if (!copy_from_iter_full(buf, len, from)) { 817 kfree(buf); 818 return -EFAULT; 819 } 820 821 /* 822 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 823 * the decimal value represents 32bit, the lower 3 bit are the log 824 * level, the rest are the log facility. 825 * 826 * If no prefix or no userspace facility is specified, we 827 * enforce LOG_USER, to be able to reliably distinguish 828 * kernel-generated messages from userspace-injected ones. 829 */ 830 line = buf; 831 if (line[0] == '<') { 832 char *endp = NULL; 833 unsigned int u; 834 835 u = simple_strtoul(line + 1, &endp, 10); 836 if (endp && endp[0] == '>') { 837 level = LOG_LEVEL(u); 838 if (LOG_FACILITY(u) != 0) 839 facility = LOG_FACILITY(u); 840 endp++; 841 len -= endp - line; 842 line = endp; 843 } 844 } 845 846 devkmsg_emit(facility, level, "%s", line); 847 kfree(buf); 848 return ret; 849 } 850 851 static ssize_t devkmsg_read(struct file *file, char __user *buf, 852 size_t count, loff_t *ppos) 853 { 854 struct devkmsg_user *user = file->private_data; 855 struct printk_log *msg; 856 size_t len; 857 ssize_t ret; 858 859 if (!user) 860 return -EBADF; 861 862 ret = mutex_lock_interruptible(&user->lock); 863 if (ret) 864 return ret; 865 866 logbuf_lock_irq(); 867 while (user->seq == log_next_seq) { 868 if (file->f_flags & O_NONBLOCK) { 869 ret = -EAGAIN; 870 logbuf_unlock_irq(); 871 goto out; 872 } 873 874 logbuf_unlock_irq(); 875 ret = wait_event_interruptible(log_wait, 876 user->seq != log_next_seq); 877 if (ret) 878 goto out; 879 logbuf_lock_irq(); 880 } 881 882 if (user->seq < log_first_seq) { 883 /* our last seen message is gone, return error and reset */ 884 user->idx = log_first_idx; 885 user->seq = log_first_seq; 886 ret = -EPIPE; 887 logbuf_unlock_irq(); 888 goto out; 889 } 890 891 msg = log_from_idx(user->idx); 892 len = msg_print_ext_header(user->buf, sizeof(user->buf), 893 msg, user->seq); 894 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 895 log_dict(msg), msg->dict_len, 896 log_text(msg), msg->text_len); 897 898 user->idx = log_next(user->idx); 899 user->seq++; 900 logbuf_unlock_irq(); 901 902 if (len > count) { 903 ret = -EINVAL; 904 goto out; 905 } 906 907 if (copy_to_user(buf, user->buf, len)) { 908 ret = -EFAULT; 909 goto out; 910 } 911 ret = len; 912 out: 913 mutex_unlock(&user->lock); 914 return ret; 915 } 916 917 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 918 { 919 struct devkmsg_user *user = file->private_data; 920 loff_t ret = 0; 921 922 if (!user) 923 return -EBADF; 924 if (offset) 925 return -ESPIPE; 926 927 logbuf_lock_irq(); 928 switch (whence) { 929 case SEEK_SET: 930 /* the first record */ 931 user->idx = log_first_idx; 932 user->seq = log_first_seq; 933 break; 934 case SEEK_DATA: 935 /* 936 * The first record after the last SYSLOG_ACTION_CLEAR, 937 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 938 * changes no global state, and does not clear anything. 939 */ 940 user->idx = clear_idx; 941 user->seq = clear_seq; 942 break; 943 case SEEK_END: 944 /* after the last record */ 945 user->idx = log_next_idx; 946 user->seq = log_next_seq; 947 break; 948 default: 949 ret = -EINVAL; 950 } 951 logbuf_unlock_irq(); 952 return ret; 953 } 954 955 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 956 { 957 struct devkmsg_user *user = file->private_data; 958 __poll_t ret = 0; 959 960 if (!user) 961 return EPOLLERR|EPOLLNVAL; 962 963 poll_wait(file, &log_wait, wait); 964 965 logbuf_lock_irq(); 966 if (user->seq < log_next_seq) { 967 /* return error when data has vanished underneath us */ 968 if (user->seq < log_first_seq) 969 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 970 else 971 ret = EPOLLIN|EPOLLRDNORM; 972 } 973 logbuf_unlock_irq(); 974 975 return ret; 976 } 977 978 static int devkmsg_open(struct inode *inode, struct file *file) 979 { 980 struct devkmsg_user *user; 981 int err; 982 983 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 984 return -EPERM; 985 986 /* write-only does not need any file context */ 987 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 988 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 989 SYSLOG_FROM_READER); 990 if (err) 991 return err; 992 } 993 994 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 995 if (!user) 996 return -ENOMEM; 997 998 ratelimit_default_init(&user->rs); 999 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1000 1001 mutex_init(&user->lock); 1002 1003 logbuf_lock_irq(); 1004 user->idx = log_first_idx; 1005 user->seq = log_first_seq; 1006 logbuf_unlock_irq(); 1007 1008 file->private_data = user; 1009 return 0; 1010 } 1011 1012 static int devkmsg_release(struct inode *inode, struct file *file) 1013 { 1014 struct devkmsg_user *user = file->private_data; 1015 1016 if (!user) 1017 return 0; 1018 1019 ratelimit_state_exit(&user->rs); 1020 1021 mutex_destroy(&user->lock); 1022 kfree(user); 1023 return 0; 1024 } 1025 1026 const struct file_operations kmsg_fops = { 1027 .open = devkmsg_open, 1028 .read = devkmsg_read, 1029 .write_iter = devkmsg_write, 1030 .llseek = devkmsg_llseek, 1031 .poll = devkmsg_poll, 1032 .release = devkmsg_release, 1033 }; 1034 1035 #ifdef CONFIG_CRASH_CORE 1036 /* 1037 * This appends the listed symbols to /proc/vmcore 1038 * 1039 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1040 * obtain access to symbols that are otherwise very difficult to locate. These 1041 * symbols are specifically used so that utilities can access and extract the 1042 * dmesg log from a vmcore file after a crash. 1043 */ 1044 void log_buf_vmcoreinfo_setup(void) 1045 { 1046 VMCOREINFO_SYMBOL(log_buf); 1047 VMCOREINFO_SYMBOL(log_buf_len); 1048 VMCOREINFO_SYMBOL(log_first_idx); 1049 VMCOREINFO_SYMBOL(clear_idx); 1050 VMCOREINFO_SYMBOL(log_next_idx); 1051 /* 1052 * Export struct printk_log size and field offsets. User space tools can 1053 * parse it and detect any changes to structure down the line. 1054 */ 1055 VMCOREINFO_STRUCT_SIZE(printk_log); 1056 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1057 VMCOREINFO_OFFSET(printk_log, len); 1058 VMCOREINFO_OFFSET(printk_log, text_len); 1059 VMCOREINFO_OFFSET(printk_log, dict_len); 1060 #ifdef CONFIG_PRINTK_CALLER 1061 VMCOREINFO_OFFSET(printk_log, caller_id); 1062 #endif 1063 } 1064 #endif 1065 1066 /* requested log_buf_len from kernel cmdline */ 1067 static unsigned long __initdata new_log_buf_len; 1068 1069 /* we practice scaling the ring buffer by powers of 2 */ 1070 static void __init log_buf_len_update(u64 size) 1071 { 1072 if (size > (u64)LOG_BUF_LEN_MAX) { 1073 size = (u64)LOG_BUF_LEN_MAX; 1074 pr_err("log_buf over 2G is not supported.\n"); 1075 } 1076 1077 if (size) 1078 size = roundup_pow_of_two(size); 1079 if (size > log_buf_len) 1080 new_log_buf_len = (unsigned long)size; 1081 } 1082 1083 /* save requested log_buf_len since it's too early to process it */ 1084 static int __init log_buf_len_setup(char *str) 1085 { 1086 u64 size; 1087 1088 if (!str) 1089 return -EINVAL; 1090 1091 size = memparse(str, &str); 1092 1093 log_buf_len_update(size); 1094 1095 return 0; 1096 } 1097 early_param("log_buf_len", log_buf_len_setup); 1098 1099 #ifdef CONFIG_SMP 1100 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1101 1102 static void __init log_buf_add_cpu(void) 1103 { 1104 unsigned int cpu_extra; 1105 1106 /* 1107 * archs should set up cpu_possible_bits properly with 1108 * set_cpu_possible() after setup_arch() but just in 1109 * case lets ensure this is valid. 1110 */ 1111 if (num_possible_cpus() == 1) 1112 return; 1113 1114 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1115 1116 /* by default this will only continue through for large > 64 CPUs */ 1117 if (cpu_extra <= __LOG_BUF_LEN / 2) 1118 return; 1119 1120 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1121 __LOG_CPU_MAX_BUF_LEN); 1122 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1123 cpu_extra); 1124 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1125 1126 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1127 } 1128 #else /* !CONFIG_SMP */ 1129 static inline void log_buf_add_cpu(void) {} 1130 #endif /* CONFIG_SMP */ 1131 1132 void __init setup_log_buf(int early) 1133 { 1134 unsigned long flags; 1135 char *new_log_buf; 1136 unsigned int free; 1137 1138 if (log_buf != __log_buf) 1139 return; 1140 1141 if (!early && !new_log_buf_len) 1142 log_buf_add_cpu(); 1143 1144 if (!new_log_buf_len) 1145 return; 1146 1147 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1148 if (unlikely(!new_log_buf)) { 1149 pr_err("log_buf_len: %lu bytes not available\n", 1150 new_log_buf_len); 1151 return; 1152 } 1153 1154 logbuf_lock_irqsave(flags); 1155 log_buf_len = new_log_buf_len; 1156 log_buf = new_log_buf; 1157 new_log_buf_len = 0; 1158 free = __LOG_BUF_LEN - log_next_idx; 1159 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1160 logbuf_unlock_irqrestore(flags); 1161 1162 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1163 pr_info("early log buf free: %u(%u%%)\n", 1164 free, (free * 100) / __LOG_BUF_LEN); 1165 } 1166 1167 static bool __read_mostly ignore_loglevel; 1168 1169 static int __init ignore_loglevel_setup(char *str) 1170 { 1171 ignore_loglevel = true; 1172 pr_info("debug: ignoring loglevel setting.\n"); 1173 1174 return 0; 1175 } 1176 1177 early_param("ignore_loglevel", ignore_loglevel_setup); 1178 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1179 MODULE_PARM_DESC(ignore_loglevel, 1180 "ignore loglevel setting (prints all kernel messages to the console)"); 1181 1182 static bool suppress_message_printing(int level) 1183 { 1184 return (level >= console_loglevel && !ignore_loglevel); 1185 } 1186 1187 #ifdef CONFIG_BOOT_PRINTK_DELAY 1188 1189 static int boot_delay; /* msecs delay after each printk during bootup */ 1190 static unsigned long long loops_per_msec; /* based on boot_delay */ 1191 1192 static int __init boot_delay_setup(char *str) 1193 { 1194 unsigned long lpj; 1195 1196 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1197 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1198 1199 get_option(&str, &boot_delay); 1200 if (boot_delay > 10 * 1000) 1201 boot_delay = 0; 1202 1203 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1204 "HZ: %d, loops_per_msec: %llu\n", 1205 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1206 return 0; 1207 } 1208 early_param("boot_delay", boot_delay_setup); 1209 1210 static void boot_delay_msec(int level) 1211 { 1212 unsigned long long k; 1213 unsigned long timeout; 1214 1215 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1216 || suppress_message_printing(level)) { 1217 return; 1218 } 1219 1220 k = (unsigned long long)loops_per_msec * boot_delay; 1221 1222 timeout = jiffies + msecs_to_jiffies(boot_delay); 1223 while (k) { 1224 k--; 1225 cpu_relax(); 1226 /* 1227 * use (volatile) jiffies to prevent 1228 * compiler reduction; loop termination via jiffies 1229 * is secondary and may or may not happen. 1230 */ 1231 if (time_after(jiffies, timeout)) 1232 break; 1233 touch_nmi_watchdog(); 1234 } 1235 } 1236 #else 1237 static inline void boot_delay_msec(int level) 1238 { 1239 } 1240 #endif 1241 1242 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1243 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1244 1245 static size_t print_syslog(unsigned int level, char *buf) 1246 { 1247 return sprintf(buf, "<%u>", level); 1248 } 1249 1250 static size_t print_time(u64 ts, char *buf) 1251 { 1252 unsigned long rem_nsec = do_div(ts, 1000000000); 1253 1254 return sprintf(buf, "[%5lu.%06lu]", 1255 (unsigned long)ts, rem_nsec / 1000); 1256 } 1257 1258 #ifdef CONFIG_PRINTK_CALLER 1259 static size_t print_caller(u32 id, char *buf) 1260 { 1261 char caller[12]; 1262 1263 snprintf(caller, sizeof(caller), "%c%u", 1264 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1265 return sprintf(buf, "[%6s]", caller); 1266 } 1267 #else 1268 #define print_caller(id, buf) 0 1269 #endif 1270 1271 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1272 bool time, char *buf) 1273 { 1274 size_t len = 0; 1275 1276 if (syslog) 1277 len = print_syslog((msg->facility << 3) | msg->level, buf); 1278 1279 if (time) 1280 len += print_time(msg->ts_nsec, buf + len); 1281 1282 len += print_caller(msg->caller_id, buf + len); 1283 1284 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1285 buf[len++] = ' '; 1286 buf[len] = '\0'; 1287 } 1288 1289 return len; 1290 } 1291 1292 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1293 bool time, char *buf, size_t size) 1294 { 1295 const char *text = log_text(msg); 1296 size_t text_size = msg->text_len; 1297 size_t len = 0; 1298 char prefix[PREFIX_MAX]; 1299 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1300 1301 do { 1302 const char *next = memchr(text, '\n', text_size); 1303 size_t text_len; 1304 1305 if (next) { 1306 text_len = next - text; 1307 next++; 1308 text_size -= next - text; 1309 } else { 1310 text_len = text_size; 1311 } 1312 1313 if (buf) { 1314 if (prefix_len + text_len + 1 >= size - len) 1315 break; 1316 1317 memcpy(buf + len, prefix, prefix_len); 1318 len += prefix_len; 1319 memcpy(buf + len, text, text_len); 1320 len += text_len; 1321 buf[len++] = '\n'; 1322 } else { 1323 /* SYSLOG_ACTION_* buffer size only calculation */ 1324 len += prefix_len + text_len + 1; 1325 } 1326 1327 text = next; 1328 } while (text); 1329 1330 return len; 1331 } 1332 1333 static int syslog_print(char __user *buf, int size) 1334 { 1335 char *text; 1336 struct printk_log *msg; 1337 int len = 0; 1338 1339 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1340 if (!text) 1341 return -ENOMEM; 1342 1343 while (size > 0) { 1344 size_t n; 1345 size_t skip; 1346 1347 logbuf_lock_irq(); 1348 if (syslog_seq < log_first_seq) { 1349 /* messages are gone, move to first one */ 1350 syslog_seq = log_first_seq; 1351 syslog_idx = log_first_idx; 1352 syslog_partial = 0; 1353 } 1354 if (syslog_seq == log_next_seq) { 1355 logbuf_unlock_irq(); 1356 break; 1357 } 1358 1359 /* 1360 * To keep reading/counting partial line consistent, 1361 * use printk_time value as of the beginning of a line. 1362 */ 1363 if (!syslog_partial) 1364 syslog_time = printk_time; 1365 1366 skip = syslog_partial; 1367 msg = log_from_idx(syslog_idx); 1368 n = msg_print_text(msg, true, syslog_time, text, 1369 LOG_LINE_MAX + PREFIX_MAX); 1370 if (n - syslog_partial <= size) { 1371 /* message fits into buffer, move forward */ 1372 syslog_idx = log_next(syslog_idx); 1373 syslog_seq++; 1374 n -= syslog_partial; 1375 syslog_partial = 0; 1376 } else if (!len){ 1377 /* partial read(), remember position */ 1378 n = size; 1379 syslog_partial += n; 1380 } else 1381 n = 0; 1382 logbuf_unlock_irq(); 1383 1384 if (!n) 1385 break; 1386 1387 if (copy_to_user(buf, text + skip, n)) { 1388 if (!len) 1389 len = -EFAULT; 1390 break; 1391 } 1392 1393 len += n; 1394 size -= n; 1395 buf += n; 1396 } 1397 1398 kfree(text); 1399 return len; 1400 } 1401 1402 static int syslog_print_all(char __user *buf, int size, bool clear) 1403 { 1404 char *text; 1405 int len = 0; 1406 u64 next_seq; 1407 u64 seq; 1408 u32 idx; 1409 bool time; 1410 1411 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1412 if (!text) 1413 return -ENOMEM; 1414 1415 time = printk_time; 1416 logbuf_lock_irq(); 1417 /* 1418 * Find first record that fits, including all following records, 1419 * into the user-provided buffer for this dump. 1420 */ 1421 seq = clear_seq; 1422 idx = clear_idx; 1423 while (seq < log_next_seq) { 1424 struct printk_log *msg = log_from_idx(idx); 1425 1426 len += msg_print_text(msg, true, time, NULL, 0); 1427 idx = log_next(idx); 1428 seq++; 1429 } 1430 1431 /* move first record forward until length fits into the buffer */ 1432 seq = clear_seq; 1433 idx = clear_idx; 1434 while (len > size && seq < log_next_seq) { 1435 struct printk_log *msg = log_from_idx(idx); 1436 1437 len -= msg_print_text(msg, true, time, NULL, 0); 1438 idx = log_next(idx); 1439 seq++; 1440 } 1441 1442 /* last message fitting into this dump */ 1443 next_seq = log_next_seq; 1444 1445 len = 0; 1446 while (len >= 0 && seq < next_seq) { 1447 struct printk_log *msg = log_from_idx(idx); 1448 int textlen = msg_print_text(msg, true, time, text, 1449 LOG_LINE_MAX + PREFIX_MAX); 1450 1451 idx = log_next(idx); 1452 seq++; 1453 1454 logbuf_unlock_irq(); 1455 if (copy_to_user(buf + len, text, textlen)) 1456 len = -EFAULT; 1457 else 1458 len += textlen; 1459 logbuf_lock_irq(); 1460 1461 if (seq < log_first_seq) { 1462 /* messages are gone, move to next one */ 1463 seq = log_first_seq; 1464 idx = log_first_idx; 1465 } 1466 } 1467 1468 if (clear) { 1469 clear_seq = log_next_seq; 1470 clear_idx = log_next_idx; 1471 } 1472 logbuf_unlock_irq(); 1473 1474 kfree(text); 1475 return len; 1476 } 1477 1478 static void syslog_clear(void) 1479 { 1480 logbuf_lock_irq(); 1481 clear_seq = log_next_seq; 1482 clear_idx = log_next_idx; 1483 logbuf_unlock_irq(); 1484 } 1485 1486 int do_syslog(int type, char __user *buf, int len, int source) 1487 { 1488 bool clear = false; 1489 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1490 int error; 1491 1492 error = check_syslog_permissions(type, source); 1493 if (error) 1494 return error; 1495 1496 switch (type) { 1497 case SYSLOG_ACTION_CLOSE: /* Close log */ 1498 break; 1499 case SYSLOG_ACTION_OPEN: /* Open log */ 1500 break; 1501 case SYSLOG_ACTION_READ: /* Read from log */ 1502 if (!buf || len < 0) 1503 return -EINVAL; 1504 if (!len) 1505 return 0; 1506 if (!access_ok(buf, len)) 1507 return -EFAULT; 1508 error = wait_event_interruptible(log_wait, 1509 syslog_seq != log_next_seq); 1510 if (error) 1511 return error; 1512 error = syslog_print(buf, len); 1513 break; 1514 /* Read/clear last kernel messages */ 1515 case SYSLOG_ACTION_READ_CLEAR: 1516 clear = true; 1517 /* FALL THRU */ 1518 /* Read last kernel messages */ 1519 case SYSLOG_ACTION_READ_ALL: 1520 if (!buf || len < 0) 1521 return -EINVAL; 1522 if (!len) 1523 return 0; 1524 if (!access_ok(buf, len)) 1525 return -EFAULT; 1526 error = syslog_print_all(buf, len, clear); 1527 break; 1528 /* Clear ring buffer */ 1529 case SYSLOG_ACTION_CLEAR: 1530 syslog_clear(); 1531 break; 1532 /* Disable logging to console */ 1533 case SYSLOG_ACTION_CONSOLE_OFF: 1534 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1535 saved_console_loglevel = console_loglevel; 1536 console_loglevel = minimum_console_loglevel; 1537 break; 1538 /* Enable logging to console */ 1539 case SYSLOG_ACTION_CONSOLE_ON: 1540 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1541 console_loglevel = saved_console_loglevel; 1542 saved_console_loglevel = LOGLEVEL_DEFAULT; 1543 } 1544 break; 1545 /* Set level of messages printed to console */ 1546 case SYSLOG_ACTION_CONSOLE_LEVEL: 1547 if (len < 1 || len > 8) 1548 return -EINVAL; 1549 if (len < minimum_console_loglevel) 1550 len = minimum_console_loglevel; 1551 console_loglevel = len; 1552 /* Implicitly re-enable logging to console */ 1553 saved_console_loglevel = LOGLEVEL_DEFAULT; 1554 break; 1555 /* Number of chars in the log buffer */ 1556 case SYSLOG_ACTION_SIZE_UNREAD: 1557 logbuf_lock_irq(); 1558 if (syslog_seq < log_first_seq) { 1559 /* messages are gone, move to first one */ 1560 syslog_seq = log_first_seq; 1561 syslog_idx = log_first_idx; 1562 syslog_partial = 0; 1563 } 1564 if (source == SYSLOG_FROM_PROC) { 1565 /* 1566 * Short-cut for poll(/"proc/kmsg") which simply checks 1567 * for pending data, not the size; return the count of 1568 * records, not the length. 1569 */ 1570 error = log_next_seq - syslog_seq; 1571 } else { 1572 u64 seq = syslog_seq; 1573 u32 idx = syslog_idx; 1574 bool time = syslog_partial ? syslog_time : printk_time; 1575 1576 while (seq < log_next_seq) { 1577 struct printk_log *msg = log_from_idx(idx); 1578 1579 error += msg_print_text(msg, true, time, NULL, 1580 0); 1581 time = printk_time; 1582 idx = log_next(idx); 1583 seq++; 1584 } 1585 error -= syslog_partial; 1586 } 1587 logbuf_unlock_irq(); 1588 break; 1589 /* Size of the log buffer */ 1590 case SYSLOG_ACTION_SIZE_BUFFER: 1591 error = log_buf_len; 1592 break; 1593 default: 1594 error = -EINVAL; 1595 break; 1596 } 1597 1598 return error; 1599 } 1600 1601 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1602 { 1603 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1604 } 1605 1606 /* 1607 * Special console_lock variants that help to reduce the risk of soft-lockups. 1608 * They allow to pass console_lock to another printk() call using a busy wait. 1609 */ 1610 1611 #ifdef CONFIG_LOCKDEP 1612 static struct lockdep_map console_owner_dep_map = { 1613 .name = "console_owner" 1614 }; 1615 #endif 1616 1617 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1618 static struct task_struct *console_owner; 1619 static bool console_waiter; 1620 1621 /** 1622 * console_lock_spinning_enable - mark beginning of code where another 1623 * thread might safely busy wait 1624 * 1625 * This basically converts console_lock into a spinlock. This marks 1626 * the section where the console_lock owner can not sleep, because 1627 * there may be a waiter spinning (like a spinlock). Also it must be 1628 * ready to hand over the lock at the end of the section. 1629 */ 1630 static void console_lock_spinning_enable(void) 1631 { 1632 raw_spin_lock(&console_owner_lock); 1633 console_owner = current; 1634 raw_spin_unlock(&console_owner_lock); 1635 1636 /* The waiter may spin on us after setting console_owner */ 1637 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1638 } 1639 1640 /** 1641 * console_lock_spinning_disable_and_check - mark end of code where another 1642 * thread was able to busy wait and check if there is a waiter 1643 * 1644 * This is called at the end of the section where spinning is allowed. 1645 * It has two functions. First, it is a signal that it is no longer 1646 * safe to start busy waiting for the lock. Second, it checks if 1647 * there is a busy waiter and passes the lock rights to her. 1648 * 1649 * Important: Callers lose the lock if there was a busy waiter. 1650 * They must not touch items synchronized by console_lock 1651 * in this case. 1652 * 1653 * Return: 1 if the lock rights were passed, 0 otherwise. 1654 */ 1655 static int console_lock_spinning_disable_and_check(void) 1656 { 1657 int waiter; 1658 1659 raw_spin_lock(&console_owner_lock); 1660 waiter = READ_ONCE(console_waiter); 1661 console_owner = NULL; 1662 raw_spin_unlock(&console_owner_lock); 1663 1664 if (!waiter) { 1665 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1666 return 0; 1667 } 1668 1669 /* The waiter is now free to continue */ 1670 WRITE_ONCE(console_waiter, false); 1671 1672 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1673 1674 /* 1675 * Hand off console_lock to waiter. The waiter will perform 1676 * the up(). After this, the waiter is the console_lock owner. 1677 */ 1678 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1679 return 1; 1680 } 1681 1682 /** 1683 * console_trylock_spinning - try to get console_lock by busy waiting 1684 * 1685 * This allows to busy wait for the console_lock when the current 1686 * owner is running in specially marked sections. It means that 1687 * the current owner is running and cannot reschedule until it 1688 * is ready to lose the lock. 1689 * 1690 * Return: 1 if we got the lock, 0 othrewise 1691 */ 1692 static int console_trylock_spinning(void) 1693 { 1694 struct task_struct *owner = NULL; 1695 bool waiter; 1696 bool spin = false; 1697 unsigned long flags; 1698 1699 if (console_trylock()) 1700 return 1; 1701 1702 printk_safe_enter_irqsave(flags); 1703 1704 raw_spin_lock(&console_owner_lock); 1705 owner = READ_ONCE(console_owner); 1706 waiter = READ_ONCE(console_waiter); 1707 if (!waiter && owner && owner != current) { 1708 WRITE_ONCE(console_waiter, true); 1709 spin = true; 1710 } 1711 raw_spin_unlock(&console_owner_lock); 1712 1713 /* 1714 * If there is an active printk() writing to the 1715 * consoles, instead of having it write our data too, 1716 * see if we can offload that load from the active 1717 * printer, and do some printing ourselves. 1718 * Go into a spin only if there isn't already a waiter 1719 * spinning, and there is an active printer, and 1720 * that active printer isn't us (recursive printk?). 1721 */ 1722 if (!spin) { 1723 printk_safe_exit_irqrestore(flags); 1724 return 0; 1725 } 1726 1727 /* We spin waiting for the owner to release us */ 1728 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1729 /* Owner will clear console_waiter on hand off */ 1730 while (READ_ONCE(console_waiter)) 1731 cpu_relax(); 1732 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1733 1734 printk_safe_exit_irqrestore(flags); 1735 /* 1736 * The owner passed the console lock to us. 1737 * Since we did not spin on console lock, annotate 1738 * this as a trylock. Otherwise lockdep will 1739 * complain. 1740 */ 1741 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1742 1743 return 1; 1744 } 1745 1746 /* 1747 * Call the console drivers, asking them to write out 1748 * log_buf[start] to log_buf[end - 1]. 1749 * The console_lock must be held. 1750 */ 1751 static void call_console_drivers(const char *ext_text, size_t ext_len, 1752 const char *text, size_t len) 1753 { 1754 struct console *con; 1755 1756 trace_console_rcuidle(text, len); 1757 1758 if (!console_drivers) 1759 return; 1760 1761 for_each_console(con) { 1762 if (exclusive_console && con != exclusive_console) 1763 continue; 1764 if (!(con->flags & CON_ENABLED)) 1765 continue; 1766 if (!con->write) 1767 continue; 1768 if (!cpu_online(smp_processor_id()) && 1769 !(con->flags & CON_ANYTIME)) 1770 continue; 1771 if (con->flags & CON_EXTENDED) 1772 con->write(con, ext_text, ext_len); 1773 else 1774 con->write(con, text, len); 1775 } 1776 } 1777 1778 int printk_delay_msec __read_mostly; 1779 1780 static inline void printk_delay(void) 1781 { 1782 if (unlikely(printk_delay_msec)) { 1783 int m = printk_delay_msec; 1784 1785 while (m--) { 1786 mdelay(1); 1787 touch_nmi_watchdog(); 1788 } 1789 } 1790 } 1791 1792 static inline u32 printk_caller_id(void) 1793 { 1794 return in_task() ? task_pid_nr(current) : 1795 0x80000000 + raw_smp_processor_id(); 1796 } 1797 1798 /* 1799 * Continuation lines are buffered, and not committed to the record buffer 1800 * until the line is complete, or a race forces it. The line fragments 1801 * though, are printed immediately to the consoles to ensure everything has 1802 * reached the console in case of a kernel crash. 1803 */ 1804 static struct cont { 1805 char buf[LOG_LINE_MAX]; 1806 size_t len; /* length == 0 means unused buffer */ 1807 u32 caller_id; /* printk_caller_id() of first print */ 1808 u64 ts_nsec; /* time of first print */ 1809 u8 level; /* log level of first message */ 1810 u8 facility; /* log facility of first message */ 1811 enum log_flags flags; /* prefix, newline flags */ 1812 } cont; 1813 1814 static void cont_flush(void) 1815 { 1816 if (cont.len == 0) 1817 return; 1818 1819 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1820 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1821 cont.len = 0; 1822 } 1823 1824 static bool cont_add(u32 caller_id, int facility, int level, 1825 enum log_flags flags, const char *text, size_t len) 1826 { 1827 /* If the line gets too long, split it up in separate records. */ 1828 if (cont.len + len > sizeof(cont.buf)) { 1829 cont_flush(); 1830 return false; 1831 } 1832 1833 if (!cont.len) { 1834 cont.facility = facility; 1835 cont.level = level; 1836 cont.caller_id = caller_id; 1837 cont.ts_nsec = local_clock(); 1838 cont.flags = flags; 1839 } 1840 1841 memcpy(cont.buf + cont.len, text, len); 1842 cont.len += len; 1843 1844 // The original flags come from the first line, 1845 // but later continuations can add a newline. 1846 if (flags & LOG_NEWLINE) { 1847 cont.flags |= LOG_NEWLINE; 1848 cont_flush(); 1849 } 1850 1851 return true; 1852 } 1853 1854 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1855 { 1856 const u32 caller_id = printk_caller_id(); 1857 1858 /* 1859 * If an earlier line was buffered, and we're a continuation 1860 * write from the same context, try to add it to the buffer. 1861 */ 1862 if (cont.len) { 1863 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1864 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1865 return text_len; 1866 } 1867 /* Otherwise, make sure it's flushed */ 1868 cont_flush(); 1869 } 1870 1871 /* Skip empty continuation lines that couldn't be added - they just flush */ 1872 if (!text_len && (lflags & LOG_CONT)) 1873 return 0; 1874 1875 /* If it doesn't end in a newline, try to buffer the current line */ 1876 if (!(lflags & LOG_NEWLINE)) { 1877 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1878 return text_len; 1879 } 1880 1881 /* Store it in the record log */ 1882 return log_store(caller_id, facility, level, lflags, 0, 1883 dict, dictlen, text, text_len); 1884 } 1885 1886 /* Must be called under logbuf_lock. */ 1887 int vprintk_store(int facility, int level, 1888 const char *dict, size_t dictlen, 1889 const char *fmt, va_list args) 1890 { 1891 static char textbuf[LOG_LINE_MAX]; 1892 char *text = textbuf; 1893 size_t text_len; 1894 enum log_flags lflags = 0; 1895 1896 /* 1897 * The printf needs to come first; we need the syslog 1898 * prefix which might be passed-in as a parameter. 1899 */ 1900 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1901 1902 /* mark and strip a trailing newline */ 1903 if (text_len && text[text_len-1] == '\n') { 1904 text_len--; 1905 lflags |= LOG_NEWLINE; 1906 } 1907 1908 /* strip kernel syslog prefix and extract log level or control flags */ 1909 if (facility == 0) { 1910 int kern_level; 1911 1912 while ((kern_level = printk_get_level(text)) != 0) { 1913 switch (kern_level) { 1914 case '0' ... '7': 1915 if (level == LOGLEVEL_DEFAULT) 1916 level = kern_level - '0'; 1917 break; 1918 case 'c': /* KERN_CONT */ 1919 lflags |= LOG_CONT; 1920 } 1921 1922 text_len -= 2; 1923 text += 2; 1924 } 1925 } 1926 1927 if (level == LOGLEVEL_DEFAULT) 1928 level = default_message_loglevel; 1929 1930 if (dict) 1931 lflags |= LOG_NEWLINE; 1932 1933 return log_output(facility, level, lflags, 1934 dict, dictlen, text, text_len); 1935 } 1936 1937 asmlinkage int vprintk_emit(int facility, int level, 1938 const char *dict, size_t dictlen, 1939 const char *fmt, va_list args) 1940 { 1941 int printed_len; 1942 bool in_sched = false, pending_output; 1943 unsigned long flags; 1944 u64 curr_log_seq; 1945 1946 if (level == LOGLEVEL_SCHED) { 1947 level = LOGLEVEL_DEFAULT; 1948 in_sched = true; 1949 } 1950 1951 boot_delay_msec(level); 1952 printk_delay(); 1953 1954 /* This stops the holder of console_sem just where we want him */ 1955 logbuf_lock_irqsave(flags); 1956 curr_log_seq = log_next_seq; 1957 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1958 pending_output = (curr_log_seq != log_next_seq); 1959 logbuf_unlock_irqrestore(flags); 1960 1961 /* If called from the scheduler, we can not call up(). */ 1962 if (!in_sched && pending_output) { 1963 /* 1964 * Disable preemption to avoid being preempted while holding 1965 * console_sem which would prevent anyone from printing to 1966 * console 1967 */ 1968 preempt_disable(); 1969 /* 1970 * Try to acquire and then immediately release the console 1971 * semaphore. The release will print out buffers and wake up 1972 * /dev/kmsg and syslog() users. 1973 */ 1974 if (console_trylock_spinning()) 1975 console_unlock(); 1976 preempt_enable(); 1977 } 1978 1979 if (pending_output) 1980 wake_up_klogd(); 1981 return printed_len; 1982 } 1983 EXPORT_SYMBOL(vprintk_emit); 1984 1985 asmlinkage int vprintk(const char *fmt, va_list args) 1986 { 1987 return vprintk_func(fmt, args); 1988 } 1989 EXPORT_SYMBOL(vprintk); 1990 1991 int vprintk_default(const char *fmt, va_list args) 1992 { 1993 int r; 1994 1995 #ifdef CONFIG_KGDB_KDB 1996 /* Allow to pass printk() to kdb but avoid a recursion. */ 1997 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1998 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1999 return r; 2000 } 2001 #endif 2002 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2003 2004 return r; 2005 } 2006 EXPORT_SYMBOL_GPL(vprintk_default); 2007 2008 /** 2009 * printk - print a kernel message 2010 * @fmt: format string 2011 * 2012 * This is printk(). It can be called from any context. We want it to work. 2013 * 2014 * We try to grab the console_lock. If we succeed, it's easy - we log the 2015 * output and call the console drivers. If we fail to get the semaphore, we 2016 * place the output into the log buffer and return. The current holder of 2017 * the console_sem will notice the new output in console_unlock(); and will 2018 * send it to the consoles before releasing the lock. 2019 * 2020 * One effect of this deferred printing is that code which calls printk() and 2021 * then changes console_loglevel may break. This is because console_loglevel 2022 * is inspected when the actual printing occurs. 2023 * 2024 * See also: 2025 * printf(3) 2026 * 2027 * See the vsnprintf() documentation for format string extensions over C99. 2028 */ 2029 asmlinkage __visible int printk(const char *fmt, ...) 2030 { 2031 va_list args; 2032 int r; 2033 2034 va_start(args, fmt); 2035 r = vprintk_func(fmt, args); 2036 va_end(args); 2037 2038 return r; 2039 } 2040 EXPORT_SYMBOL(printk); 2041 2042 #else /* CONFIG_PRINTK */ 2043 2044 #define LOG_LINE_MAX 0 2045 #define PREFIX_MAX 0 2046 #define printk_time false 2047 2048 static u64 syslog_seq; 2049 static u32 syslog_idx; 2050 static u64 console_seq; 2051 static u32 console_idx; 2052 static u64 exclusive_console_stop_seq; 2053 static u64 log_first_seq; 2054 static u32 log_first_idx; 2055 static u64 log_next_seq; 2056 static char *log_text(const struct printk_log *msg) { return NULL; } 2057 static char *log_dict(const struct printk_log *msg) { return NULL; } 2058 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2059 static u32 log_next(u32 idx) { return 0; } 2060 static ssize_t msg_print_ext_header(char *buf, size_t size, 2061 struct printk_log *msg, 2062 u64 seq) { return 0; } 2063 static ssize_t msg_print_ext_body(char *buf, size_t size, 2064 char *dict, size_t dict_len, 2065 char *text, size_t text_len) { return 0; } 2066 static void console_lock_spinning_enable(void) { } 2067 static int console_lock_spinning_disable_and_check(void) { return 0; } 2068 static void call_console_drivers(const char *ext_text, size_t ext_len, 2069 const char *text, size_t len) {} 2070 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2071 bool time, char *buf, size_t size) { return 0; } 2072 static bool suppress_message_printing(int level) { return false; } 2073 2074 #endif /* CONFIG_PRINTK */ 2075 2076 #ifdef CONFIG_EARLY_PRINTK 2077 struct console *early_console; 2078 2079 asmlinkage __visible void early_printk(const char *fmt, ...) 2080 { 2081 va_list ap; 2082 char buf[512]; 2083 int n; 2084 2085 if (!early_console) 2086 return; 2087 2088 va_start(ap, fmt); 2089 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2090 va_end(ap); 2091 2092 early_console->write(early_console, buf, n); 2093 } 2094 #endif 2095 2096 static int __add_preferred_console(char *name, int idx, char *options, 2097 char *brl_options) 2098 { 2099 struct console_cmdline *c; 2100 int i; 2101 2102 /* 2103 * See if this tty is not yet registered, and 2104 * if we have a slot free. 2105 */ 2106 for (i = 0, c = console_cmdline; 2107 i < MAX_CMDLINECONSOLES && c->name[0]; 2108 i++, c++) { 2109 if (strcmp(c->name, name) == 0 && c->index == idx) { 2110 if (!brl_options) 2111 preferred_console = i; 2112 return 0; 2113 } 2114 } 2115 if (i == MAX_CMDLINECONSOLES) 2116 return -E2BIG; 2117 if (!brl_options) 2118 preferred_console = i; 2119 strlcpy(c->name, name, sizeof(c->name)); 2120 c->options = options; 2121 braille_set_options(c, brl_options); 2122 2123 c->index = idx; 2124 return 0; 2125 } 2126 2127 static int __init console_msg_format_setup(char *str) 2128 { 2129 if (!strcmp(str, "syslog")) 2130 console_msg_format = MSG_FORMAT_SYSLOG; 2131 if (!strcmp(str, "default")) 2132 console_msg_format = MSG_FORMAT_DEFAULT; 2133 return 1; 2134 } 2135 __setup("console_msg_format=", console_msg_format_setup); 2136 2137 /* 2138 * Set up a console. Called via do_early_param() in init/main.c 2139 * for each "console=" parameter in the boot command line. 2140 */ 2141 static int __init console_setup(char *str) 2142 { 2143 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2144 char *s, *options, *brl_options = NULL; 2145 int idx; 2146 2147 if (_braille_console_setup(&str, &brl_options)) 2148 return 1; 2149 2150 /* 2151 * Decode str into name, index, options. 2152 */ 2153 if (str[0] >= '0' && str[0] <= '9') { 2154 strcpy(buf, "ttyS"); 2155 strncpy(buf + 4, str, sizeof(buf) - 5); 2156 } else { 2157 strncpy(buf, str, sizeof(buf) - 1); 2158 } 2159 buf[sizeof(buf) - 1] = 0; 2160 options = strchr(str, ','); 2161 if (options) 2162 *(options++) = 0; 2163 #ifdef __sparc__ 2164 if (!strcmp(str, "ttya")) 2165 strcpy(buf, "ttyS0"); 2166 if (!strcmp(str, "ttyb")) 2167 strcpy(buf, "ttyS1"); 2168 #endif 2169 for (s = buf; *s; s++) 2170 if (isdigit(*s) || *s == ',') 2171 break; 2172 idx = simple_strtoul(s, NULL, 10); 2173 *s = 0; 2174 2175 __add_preferred_console(buf, idx, options, brl_options); 2176 console_set_on_cmdline = 1; 2177 return 1; 2178 } 2179 __setup("console=", console_setup); 2180 2181 /** 2182 * add_preferred_console - add a device to the list of preferred consoles. 2183 * @name: device name 2184 * @idx: device index 2185 * @options: options for this console 2186 * 2187 * The last preferred console added will be used for kernel messages 2188 * and stdin/out/err for init. Normally this is used by console_setup 2189 * above to handle user-supplied console arguments; however it can also 2190 * be used by arch-specific code either to override the user or more 2191 * commonly to provide a default console (ie from PROM variables) when 2192 * the user has not supplied one. 2193 */ 2194 int add_preferred_console(char *name, int idx, char *options) 2195 { 2196 return __add_preferred_console(name, idx, options, NULL); 2197 } 2198 2199 bool console_suspend_enabled = true; 2200 EXPORT_SYMBOL(console_suspend_enabled); 2201 2202 static int __init console_suspend_disable(char *str) 2203 { 2204 console_suspend_enabled = false; 2205 return 1; 2206 } 2207 __setup("no_console_suspend", console_suspend_disable); 2208 module_param_named(console_suspend, console_suspend_enabled, 2209 bool, S_IRUGO | S_IWUSR); 2210 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2211 " and hibernate operations"); 2212 2213 /** 2214 * suspend_console - suspend the console subsystem 2215 * 2216 * This disables printk() while we go into suspend states 2217 */ 2218 void suspend_console(void) 2219 { 2220 if (!console_suspend_enabled) 2221 return; 2222 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2223 console_lock(); 2224 console_suspended = 1; 2225 up_console_sem(); 2226 } 2227 2228 void resume_console(void) 2229 { 2230 if (!console_suspend_enabled) 2231 return; 2232 down_console_sem(); 2233 console_suspended = 0; 2234 console_unlock(); 2235 } 2236 2237 /** 2238 * console_cpu_notify - print deferred console messages after CPU hotplug 2239 * @cpu: unused 2240 * 2241 * If printk() is called from a CPU that is not online yet, the messages 2242 * will be printed on the console only if there are CON_ANYTIME consoles. 2243 * This function is called when a new CPU comes online (or fails to come 2244 * up) or goes offline. 2245 */ 2246 static int console_cpu_notify(unsigned int cpu) 2247 { 2248 if (!cpuhp_tasks_frozen) { 2249 /* If trylock fails, someone else is doing the printing */ 2250 if (console_trylock()) 2251 console_unlock(); 2252 } 2253 return 0; 2254 } 2255 2256 /** 2257 * console_lock - lock the console system for exclusive use. 2258 * 2259 * Acquires a lock which guarantees that the caller has 2260 * exclusive access to the console system and the console_drivers list. 2261 * 2262 * Can sleep, returns nothing. 2263 */ 2264 void console_lock(void) 2265 { 2266 might_sleep(); 2267 2268 down_console_sem(); 2269 if (console_suspended) 2270 return; 2271 console_locked = 1; 2272 console_may_schedule = 1; 2273 } 2274 EXPORT_SYMBOL(console_lock); 2275 2276 /** 2277 * console_trylock - try to lock the console system for exclusive use. 2278 * 2279 * Try to acquire a lock which guarantees that the caller has exclusive 2280 * access to the console system and the console_drivers list. 2281 * 2282 * returns 1 on success, and 0 on failure to acquire the lock. 2283 */ 2284 int console_trylock(void) 2285 { 2286 if (down_trylock_console_sem()) 2287 return 0; 2288 if (console_suspended) { 2289 up_console_sem(); 2290 return 0; 2291 } 2292 console_locked = 1; 2293 console_may_schedule = 0; 2294 return 1; 2295 } 2296 EXPORT_SYMBOL(console_trylock); 2297 2298 int is_console_locked(void) 2299 { 2300 return console_locked; 2301 } 2302 EXPORT_SYMBOL(is_console_locked); 2303 2304 /* 2305 * Check if we have any console that is capable of printing while cpu is 2306 * booting or shutting down. Requires console_sem. 2307 */ 2308 static int have_callable_console(void) 2309 { 2310 struct console *con; 2311 2312 for_each_console(con) 2313 if ((con->flags & CON_ENABLED) && 2314 (con->flags & CON_ANYTIME)) 2315 return 1; 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * Can we actually use the console at this time on this cpu? 2322 * 2323 * Console drivers may assume that per-cpu resources have been allocated. So 2324 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2325 * call them until this CPU is officially up. 2326 */ 2327 static inline int can_use_console(void) 2328 { 2329 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2330 } 2331 2332 /** 2333 * console_unlock - unlock the console system 2334 * 2335 * Releases the console_lock which the caller holds on the console system 2336 * and the console driver list. 2337 * 2338 * While the console_lock was held, console output may have been buffered 2339 * by printk(). If this is the case, console_unlock(); emits 2340 * the output prior to releasing the lock. 2341 * 2342 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2343 * 2344 * console_unlock(); may be called from any context. 2345 */ 2346 void console_unlock(void) 2347 { 2348 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2349 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2350 unsigned long flags; 2351 bool do_cond_resched, retry; 2352 2353 if (console_suspended) { 2354 up_console_sem(); 2355 return; 2356 } 2357 2358 /* 2359 * Console drivers are called with interrupts disabled, so 2360 * @console_may_schedule should be cleared before; however, we may 2361 * end up dumping a lot of lines, for example, if called from 2362 * console registration path, and should invoke cond_resched() 2363 * between lines if allowable. Not doing so can cause a very long 2364 * scheduling stall on a slow console leading to RCU stall and 2365 * softlockup warnings which exacerbate the issue with more 2366 * messages practically incapacitating the system. 2367 * 2368 * console_trylock() is not able to detect the preemptive 2369 * context reliably. Therefore the value must be stored before 2370 * and cleared after the the "again" goto label. 2371 */ 2372 do_cond_resched = console_may_schedule; 2373 again: 2374 console_may_schedule = 0; 2375 2376 /* 2377 * We released the console_sem lock, so we need to recheck if 2378 * cpu is online and (if not) is there at least one CON_ANYTIME 2379 * console. 2380 */ 2381 if (!can_use_console()) { 2382 console_locked = 0; 2383 up_console_sem(); 2384 return; 2385 } 2386 2387 for (;;) { 2388 struct printk_log *msg; 2389 size_t ext_len = 0; 2390 size_t len; 2391 2392 printk_safe_enter_irqsave(flags); 2393 raw_spin_lock(&logbuf_lock); 2394 if (console_seq < log_first_seq) { 2395 len = sprintf(text, 2396 "** %llu printk messages dropped **\n", 2397 log_first_seq - console_seq); 2398 2399 /* messages are gone, move to first one */ 2400 console_seq = log_first_seq; 2401 console_idx = log_first_idx; 2402 } else { 2403 len = 0; 2404 } 2405 skip: 2406 if (console_seq == log_next_seq) 2407 break; 2408 2409 msg = log_from_idx(console_idx); 2410 if (suppress_message_printing(msg->level)) { 2411 /* 2412 * Skip record we have buffered and already printed 2413 * directly to the console when we received it, and 2414 * record that has level above the console loglevel. 2415 */ 2416 console_idx = log_next(console_idx); 2417 console_seq++; 2418 goto skip; 2419 } 2420 2421 /* Output to all consoles once old messages replayed. */ 2422 if (unlikely(exclusive_console && 2423 console_seq >= exclusive_console_stop_seq)) { 2424 exclusive_console = NULL; 2425 } 2426 2427 len += msg_print_text(msg, 2428 console_msg_format & MSG_FORMAT_SYSLOG, 2429 printk_time, text + len, sizeof(text) - len); 2430 if (nr_ext_console_drivers) { 2431 ext_len = msg_print_ext_header(ext_text, 2432 sizeof(ext_text), 2433 msg, console_seq); 2434 ext_len += msg_print_ext_body(ext_text + ext_len, 2435 sizeof(ext_text) - ext_len, 2436 log_dict(msg), msg->dict_len, 2437 log_text(msg), msg->text_len); 2438 } 2439 console_idx = log_next(console_idx); 2440 console_seq++; 2441 raw_spin_unlock(&logbuf_lock); 2442 2443 /* 2444 * While actively printing out messages, if another printk() 2445 * were to occur on another CPU, it may wait for this one to 2446 * finish. This task can not be preempted if there is a 2447 * waiter waiting to take over. 2448 */ 2449 console_lock_spinning_enable(); 2450 2451 stop_critical_timings(); /* don't trace print latency */ 2452 call_console_drivers(ext_text, ext_len, text, len); 2453 start_critical_timings(); 2454 2455 if (console_lock_spinning_disable_and_check()) { 2456 printk_safe_exit_irqrestore(flags); 2457 return; 2458 } 2459 2460 printk_safe_exit_irqrestore(flags); 2461 2462 if (do_cond_resched) 2463 cond_resched(); 2464 } 2465 2466 console_locked = 0; 2467 2468 raw_spin_unlock(&logbuf_lock); 2469 2470 up_console_sem(); 2471 2472 /* 2473 * Someone could have filled up the buffer again, so re-check if there's 2474 * something to flush. In case we cannot trylock the console_sem again, 2475 * there's a new owner and the console_unlock() from them will do the 2476 * flush, no worries. 2477 */ 2478 raw_spin_lock(&logbuf_lock); 2479 retry = console_seq != log_next_seq; 2480 raw_spin_unlock(&logbuf_lock); 2481 printk_safe_exit_irqrestore(flags); 2482 2483 if (retry && console_trylock()) 2484 goto again; 2485 } 2486 EXPORT_SYMBOL(console_unlock); 2487 2488 /** 2489 * console_conditional_schedule - yield the CPU if required 2490 * 2491 * If the console code is currently allowed to sleep, and 2492 * if this CPU should yield the CPU to another task, do 2493 * so here. 2494 * 2495 * Must be called within console_lock();. 2496 */ 2497 void __sched console_conditional_schedule(void) 2498 { 2499 if (console_may_schedule) 2500 cond_resched(); 2501 } 2502 EXPORT_SYMBOL(console_conditional_schedule); 2503 2504 void console_unblank(void) 2505 { 2506 struct console *c; 2507 2508 /* 2509 * console_unblank can no longer be called in interrupt context unless 2510 * oops_in_progress is set to 1.. 2511 */ 2512 if (oops_in_progress) { 2513 if (down_trylock_console_sem() != 0) 2514 return; 2515 } else 2516 console_lock(); 2517 2518 console_locked = 1; 2519 console_may_schedule = 0; 2520 for_each_console(c) 2521 if ((c->flags & CON_ENABLED) && c->unblank) 2522 c->unblank(); 2523 console_unlock(); 2524 } 2525 2526 /** 2527 * console_flush_on_panic - flush console content on panic 2528 * 2529 * Immediately output all pending messages no matter what. 2530 */ 2531 void console_flush_on_panic(void) 2532 { 2533 /* 2534 * If someone else is holding the console lock, trylock will fail 2535 * and may_schedule may be set. Ignore and proceed to unlock so 2536 * that messages are flushed out. As this can be called from any 2537 * context and we don't want to get preempted while flushing, 2538 * ensure may_schedule is cleared. 2539 */ 2540 console_trylock(); 2541 console_may_schedule = 0; 2542 console_unlock(); 2543 } 2544 2545 /* 2546 * Return the console tty driver structure and its associated index 2547 */ 2548 struct tty_driver *console_device(int *index) 2549 { 2550 struct console *c; 2551 struct tty_driver *driver = NULL; 2552 2553 console_lock(); 2554 for_each_console(c) { 2555 if (!c->device) 2556 continue; 2557 driver = c->device(c, index); 2558 if (driver) 2559 break; 2560 } 2561 console_unlock(); 2562 return driver; 2563 } 2564 2565 /* 2566 * Prevent further output on the passed console device so that (for example) 2567 * serial drivers can disable console output before suspending a port, and can 2568 * re-enable output afterwards. 2569 */ 2570 void console_stop(struct console *console) 2571 { 2572 console_lock(); 2573 console->flags &= ~CON_ENABLED; 2574 console_unlock(); 2575 } 2576 EXPORT_SYMBOL(console_stop); 2577 2578 void console_start(struct console *console) 2579 { 2580 console_lock(); 2581 console->flags |= CON_ENABLED; 2582 console_unlock(); 2583 } 2584 EXPORT_SYMBOL(console_start); 2585 2586 static int __read_mostly keep_bootcon; 2587 2588 static int __init keep_bootcon_setup(char *str) 2589 { 2590 keep_bootcon = 1; 2591 pr_info("debug: skip boot console de-registration.\n"); 2592 2593 return 0; 2594 } 2595 2596 early_param("keep_bootcon", keep_bootcon_setup); 2597 2598 /* 2599 * The console driver calls this routine during kernel initialization 2600 * to register the console printing procedure with printk() and to 2601 * print any messages that were printed by the kernel before the 2602 * console driver was initialized. 2603 * 2604 * This can happen pretty early during the boot process (because of 2605 * early_printk) - sometimes before setup_arch() completes - be careful 2606 * of what kernel features are used - they may not be initialised yet. 2607 * 2608 * There are two types of consoles - bootconsoles (early_printk) and 2609 * "real" consoles (everything which is not a bootconsole) which are 2610 * handled differently. 2611 * - Any number of bootconsoles can be registered at any time. 2612 * - As soon as a "real" console is registered, all bootconsoles 2613 * will be unregistered automatically. 2614 * - Once a "real" console is registered, any attempt to register a 2615 * bootconsoles will be rejected 2616 */ 2617 void register_console(struct console *newcon) 2618 { 2619 int i; 2620 unsigned long flags; 2621 struct console *bcon = NULL; 2622 struct console_cmdline *c; 2623 static bool has_preferred; 2624 2625 if (console_drivers) 2626 for_each_console(bcon) 2627 if (WARN(bcon == newcon, 2628 "console '%s%d' already registered\n", 2629 bcon->name, bcon->index)) 2630 return; 2631 2632 /* 2633 * before we register a new CON_BOOT console, make sure we don't 2634 * already have a valid console 2635 */ 2636 if (console_drivers && newcon->flags & CON_BOOT) { 2637 /* find the last or real console */ 2638 for_each_console(bcon) { 2639 if (!(bcon->flags & CON_BOOT)) { 2640 pr_info("Too late to register bootconsole %s%d\n", 2641 newcon->name, newcon->index); 2642 return; 2643 } 2644 } 2645 } 2646 2647 if (console_drivers && console_drivers->flags & CON_BOOT) 2648 bcon = console_drivers; 2649 2650 if (!has_preferred || bcon || !console_drivers) 2651 has_preferred = preferred_console >= 0; 2652 2653 /* 2654 * See if we want to use this console driver. If we 2655 * didn't select a console we take the first one 2656 * that registers here. 2657 */ 2658 if (!has_preferred) { 2659 if (newcon->index < 0) 2660 newcon->index = 0; 2661 if (newcon->setup == NULL || 2662 newcon->setup(newcon, NULL) == 0) { 2663 newcon->flags |= CON_ENABLED; 2664 if (newcon->device) { 2665 newcon->flags |= CON_CONSDEV; 2666 has_preferred = true; 2667 } 2668 } 2669 } 2670 2671 /* 2672 * See if this console matches one we selected on 2673 * the command line. 2674 */ 2675 for (i = 0, c = console_cmdline; 2676 i < MAX_CMDLINECONSOLES && c->name[0]; 2677 i++, c++) { 2678 if (!newcon->match || 2679 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2680 /* default matching */ 2681 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2682 if (strcmp(c->name, newcon->name) != 0) 2683 continue; 2684 if (newcon->index >= 0 && 2685 newcon->index != c->index) 2686 continue; 2687 if (newcon->index < 0) 2688 newcon->index = c->index; 2689 2690 if (_braille_register_console(newcon, c)) 2691 return; 2692 2693 if (newcon->setup && 2694 newcon->setup(newcon, c->options) != 0) 2695 break; 2696 } 2697 2698 newcon->flags |= CON_ENABLED; 2699 if (i == preferred_console) { 2700 newcon->flags |= CON_CONSDEV; 2701 has_preferred = true; 2702 } 2703 break; 2704 } 2705 2706 if (!(newcon->flags & CON_ENABLED)) 2707 return; 2708 2709 /* 2710 * If we have a bootconsole, and are switching to a real console, 2711 * don't print everything out again, since when the boot console, and 2712 * the real console are the same physical device, it's annoying to 2713 * see the beginning boot messages twice 2714 */ 2715 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2716 newcon->flags &= ~CON_PRINTBUFFER; 2717 2718 /* 2719 * Put this console in the list - keep the 2720 * preferred driver at the head of the list. 2721 */ 2722 console_lock(); 2723 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2724 newcon->next = console_drivers; 2725 console_drivers = newcon; 2726 if (newcon->next) 2727 newcon->next->flags &= ~CON_CONSDEV; 2728 } else { 2729 newcon->next = console_drivers->next; 2730 console_drivers->next = newcon; 2731 } 2732 2733 if (newcon->flags & CON_EXTENDED) 2734 nr_ext_console_drivers++; 2735 2736 if (newcon->flags & CON_PRINTBUFFER) { 2737 /* 2738 * console_unlock(); will print out the buffered messages 2739 * for us. 2740 */ 2741 logbuf_lock_irqsave(flags); 2742 console_seq = syslog_seq; 2743 console_idx = syslog_idx; 2744 /* 2745 * We're about to replay the log buffer. Only do this to the 2746 * just-registered console to avoid excessive message spam to 2747 * the already-registered consoles. 2748 * 2749 * Set exclusive_console with disabled interrupts to reduce 2750 * race window with eventual console_flush_on_panic() that 2751 * ignores console_lock. 2752 */ 2753 exclusive_console = newcon; 2754 exclusive_console_stop_seq = console_seq; 2755 logbuf_unlock_irqrestore(flags); 2756 } 2757 console_unlock(); 2758 console_sysfs_notify(); 2759 2760 /* 2761 * By unregistering the bootconsoles after we enable the real console 2762 * we get the "console xxx enabled" message on all the consoles - 2763 * boot consoles, real consoles, etc - this is to ensure that end 2764 * users know there might be something in the kernel's log buffer that 2765 * went to the bootconsole (that they do not see on the real console) 2766 */ 2767 pr_info("%sconsole [%s%d] enabled\n", 2768 (newcon->flags & CON_BOOT) ? "boot" : "" , 2769 newcon->name, newcon->index); 2770 if (bcon && 2771 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2772 !keep_bootcon) { 2773 /* We need to iterate through all boot consoles, to make 2774 * sure we print everything out, before we unregister them. 2775 */ 2776 for_each_console(bcon) 2777 if (bcon->flags & CON_BOOT) 2778 unregister_console(bcon); 2779 } 2780 } 2781 EXPORT_SYMBOL(register_console); 2782 2783 int unregister_console(struct console *console) 2784 { 2785 struct console *a, *b; 2786 int res; 2787 2788 pr_info("%sconsole [%s%d] disabled\n", 2789 (console->flags & CON_BOOT) ? "boot" : "" , 2790 console->name, console->index); 2791 2792 res = _braille_unregister_console(console); 2793 if (res) 2794 return res; 2795 2796 res = 1; 2797 console_lock(); 2798 if (console_drivers == console) { 2799 console_drivers=console->next; 2800 res = 0; 2801 } else if (console_drivers) { 2802 for (a=console_drivers->next, b=console_drivers ; 2803 a; b=a, a=b->next) { 2804 if (a == console) { 2805 b->next = a->next; 2806 res = 0; 2807 break; 2808 } 2809 } 2810 } 2811 2812 if (!res && (console->flags & CON_EXTENDED)) 2813 nr_ext_console_drivers--; 2814 2815 /* 2816 * If this isn't the last console and it has CON_CONSDEV set, we 2817 * need to set it on the next preferred console. 2818 */ 2819 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2820 console_drivers->flags |= CON_CONSDEV; 2821 2822 console->flags &= ~CON_ENABLED; 2823 console_unlock(); 2824 console_sysfs_notify(); 2825 return res; 2826 } 2827 EXPORT_SYMBOL(unregister_console); 2828 2829 /* 2830 * Initialize the console device. This is called *early*, so 2831 * we can't necessarily depend on lots of kernel help here. 2832 * Just do some early initializations, and do the complex setup 2833 * later. 2834 */ 2835 void __init console_init(void) 2836 { 2837 int ret; 2838 initcall_t call; 2839 initcall_entry_t *ce; 2840 2841 /* Setup the default TTY line discipline. */ 2842 n_tty_init(); 2843 2844 /* 2845 * set up the console device so that later boot sequences can 2846 * inform about problems etc.. 2847 */ 2848 ce = __con_initcall_start; 2849 trace_initcall_level("console"); 2850 while (ce < __con_initcall_end) { 2851 call = initcall_from_entry(ce); 2852 trace_initcall_start(call); 2853 ret = call(); 2854 trace_initcall_finish(call, ret); 2855 ce++; 2856 } 2857 } 2858 2859 /* 2860 * Some boot consoles access data that is in the init section and which will 2861 * be discarded after the initcalls have been run. To make sure that no code 2862 * will access this data, unregister the boot consoles in a late initcall. 2863 * 2864 * If for some reason, such as deferred probe or the driver being a loadable 2865 * module, the real console hasn't registered yet at this point, there will 2866 * be a brief interval in which no messages are logged to the console, which 2867 * makes it difficult to diagnose problems that occur during this time. 2868 * 2869 * To mitigate this problem somewhat, only unregister consoles whose memory 2870 * intersects with the init section. Note that all other boot consoles will 2871 * get unregistred when the real preferred console is registered. 2872 */ 2873 static int __init printk_late_init(void) 2874 { 2875 struct console *con; 2876 int ret; 2877 2878 for_each_console(con) { 2879 if (!(con->flags & CON_BOOT)) 2880 continue; 2881 2882 /* Check addresses that might be used for enabled consoles. */ 2883 if (init_section_intersects(con, sizeof(*con)) || 2884 init_section_contains(con->write, 0) || 2885 init_section_contains(con->read, 0) || 2886 init_section_contains(con->device, 0) || 2887 init_section_contains(con->unblank, 0) || 2888 init_section_contains(con->data, 0)) { 2889 /* 2890 * Please, consider moving the reported consoles out 2891 * of the init section. 2892 */ 2893 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2894 con->name, con->index); 2895 unregister_console(con); 2896 } 2897 } 2898 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2899 console_cpu_notify); 2900 WARN_ON(ret < 0); 2901 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2902 console_cpu_notify, NULL); 2903 WARN_ON(ret < 0); 2904 return 0; 2905 } 2906 late_initcall(printk_late_init); 2907 2908 #if defined CONFIG_PRINTK 2909 /* 2910 * Delayed printk version, for scheduler-internal messages: 2911 */ 2912 #define PRINTK_PENDING_WAKEUP 0x01 2913 #define PRINTK_PENDING_OUTPUT 0x02 2914 2915 static DEFINE_PER_CPU(int, printk_pending); 2916 2917 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2918 { 2919 int pending = __this_cpu_xchg(printk_pending, 0); 2920 2921 if (pending & PRINTK_PENDING_OUTPUT) { 2922 /* If trylock fails, someone else is doing the printing */ 2923 if (console_trylock()) 2924 console_unlock(); 2925 } 2926 2927 if (pending & PRINTK_PENDING_WAKEUP) 2928 wake_up_interruptible(&log_wait); 2929 } 2930 2931 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2932 .func = wake_up_klogd_work_func, 2933 .flags = IRQ_WORK_LAZY, 2934 }; 2935 2936 void wake_up_klogd(void) 2937 { 2938 preempt_disable(); 2939 if (waitqueue_active(&log_wait)) { 2940 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2941 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2942 } 2943 preempt_enable(); 2944 } 2945 2946 void defer_console_output(void) 2947 { 2948 preempt_disable(); 2949 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2950 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2951 preempt_enable(); 2952 } 2953 2954 int vprintk_deferred(const char *fmt, va_list args) 2955 { 2956 int r; 2957 2958 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2959 defer_console_output(); 2960 2961 return r; 2962 } 2963 2964 int printk_deferred(const char *fmt, ...) 2965 { 2966 va_list args; 2967 int r; 2968 2969 va_start(args, fmt); 2970 r = vprintk_deferred(fmt, args); 2971 va_end(args); 2972 2973 return r; 2974 } 2975 2976 /* 2977 * printk rate limiting, lifted from the networking subsystem. 2978 * 2979 * This enforces a rate limit: not more than 10 kernel messages 2980 * every 5s to make a denial-of-service attack impossible. 2981 */ 2982 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2983 2984 int __printk_ratelimit(const char *func) 2985 { 2986 return ___ratelimit(&printk_ratelimit_state, func); 2987 } 2988 EXPORT_SYMBOL(__printk_ratelimit); 2989 2990 /** 2991 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2992 * @caller_jiffies: pointer to caller's state 2993 * @interval_msecs: minimum interval between prints 2994 * 2995 * printk_timed_ratelimit() returns true if more than @interval_msecs 2996 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2997 * returned true. 2998 */ 2999 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3000 unsigned int interval_msecs) 3001 { 3002 unsigned long elapsed = jiffies - *caller_jiffies; 3003 3004 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3005 return false; 3006 3007 *caller_jiffies = jiffies; 3008 return true; 3009 } 3010 EXPORT_SYMBOL(printk_timed_ratelimit); 3011 3012 static DEFINE_SPINLOCK(dump_list_lock); 3013 static LIST_HEAD(dump_list); 3014 3015 /** 3016 * kmsg_dump_register - register a kernel log dumper. 3017 * @dumper: pointer to the kmsg_dumper structure 3018 * 3019 * Adds a kernel log dumper to the system. The dump callback in the 3020 * structure will be called when the kernel oopses or panics and must be 3021 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3022 */ 3023 int kmsg_dump_register(struct kmsg_dumper *dumper) 3024 { 3025 unsigned long flags; 3026 int err = -EBUSY; 3027 3028 /* The dump callback needs to be set */ 3029 if (!dumper->dump) 3030 return -EINVAL; 3031 3032 spin_lock_irqsave(&dump_list_lock, flags); 3033 /* Don't allow registering multiple times */ 3034 if (!dumper->registered) { 3035 dumper->registered = 1; 3036 list_add_tail_rcu(&dumper->list, &dump_list); 3037 err = 0; 3038 } 3039 spin_unlock_irqrestore(&dump_list_lock, flags); 3040 3041 return err; 3042 } 3043 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3044 3045 /** 3046 * kmsg_dump_unregister - unregister a kmsg dumper. 3047 * @dumper: pointer to the kmsg_dumper structure 3048 * 3049 * Removes a dump device from the system. Returns zero on success and 3050 * %-EINVAL otherwise. 3051 */ 3052 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3053 { 3054 unsigned long flags; 3055 int err = -EINVAL; 3056 3057 spin_lock_irqsave(&dump_list_lock, flags); 3058 if (dumper->registered) { 3059 dumper->registered = 0; 3060 list_del_rcu(&dumper->list); 3061 err = 0; 3062 } 3063 spin_unlock_irqrestore(&dump_list_lock, flags); 3064 synchronize_rcu(); 3065 3066 return err; 3067 } 3068 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3069 3070 static bool always_kmsg_dump; 3071 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3072 3073 /** 3074 * kmsg_dump - dump kernel log to kernel message dumpers. 3075 * @reason: the reason (oops, panic etc) for dumping 3076 * 3077 * Call each of the registered dumper's dump() callback, which can 3078 * retrieve the kmsg records with kmsg_dump_get_line() or 3079 * kmsg_dump_get_buffer(). 3080 */ 3081 void kmsg_dump(enum kmsg_dump_reason reason) 3082 { 3083 struct kmsg_dumper *dumper; 3084 unsigned long flags; 3085 3086 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3087 return; 3088 3089 rcu_read_lock(); 3090 list_for_each_entry_rcu(dumper, &dump_list, list) { 3091 if (dumper->max_reason && reason > dumper->max_reason) 3092 continue; 3093 3094 /* initialize iterator with data about the stored records */ 3095 dumper->active = true; 3096 3097 logbuf_lock_irqsave(flags); 3098 dumper->cur_seq = clear_seq; 3099 dumper->cur_idx = clear_idx; 3100 dumper->next_seq = log_next_seq; 3101 dumper->next_idx = log_next_idx; 3102 logbuf_unlock_irqrestore(flags); 3103 3104 /* invoke dumper which will iterate over records */ 3105 dumper->dump(dumper, reason); 3106 3107 /* reset iterator */ 3108 dumper->active = false; 3109 } 3110 rcu_read_unlock(); 3111 } 3112 3113 /** 3114 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3115 * @dumper: registered kmsg dumper 3116 * @syslog: include the "<4>" prefixes 3117 * @line: buffer to copy the line to 3118 * @size: maximum size of the buffer 3119 * @len: length of line placed into buffer 3120 * 3121 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3122 * record, and copy one record into the provided buffer. 3123 * 3124 * Consecutive calls will return the next available record moving 3125 * towards the end of the buffer with the youngest messages. 3126 * 3127 * A return value of FALSE indicates that there are no more records to 3128 * read. 3129 * 3130 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3131 */ 3132 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3133 char *line, size_t size, size_t *len) 3134 { 3135 struct printk_log *msg; 3136 size_t l = 0; 3137 bool ret = false; 3138 3139 if (!dumper->active) 3140 goto out; 3141 3142 if (dumper->cur_seq < log_first_seq) { 3143 /* messages are gone, move to first available one */ 3144 dumper->cur_seq = log_first_seq; 3145 dumper->cur_idx = log_first_idx; 3146 } 3147 3148 /* last entry */ 3149 if (dumper->cur_seq >= log_next_seq) 3150 goto out; 3151 3152 msg = log_from_idx(dumper->cur_idx); 3153 l = msg_print_text(msg, syslog, printk_time, line, size); 3154 3155 dumper->cur_idx = log_next(dumper->cur_idx); 3156 dumper->cur_seq++; 3157 ret = true; 3158 out: 3159 if (len) 3160 *len = l; 3161 return ret; 3162 } 3163 3164 /** 3165 * kmsg_dump_get_line - retrieve one kmsg log line 3166 * @dumper: registered kmsg dumper 3167 * @syslog: include the "<4>" prefixes 3168 * @line: buffer to copy the line to 3169 * @size: maximum size of the buffer 3170 * @len: length of line placed into buffer 3171 * 3172 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3173 * record, and copy one record into the provided buffer. 3174 * 3175 * Consecutive calls will return the next available record moving 3176 * towards the end of the buffer with the youngest messages. 3177 * 3178 * A return value of FALSE indicates that there are no more records to 3179 * read. 3180 */ 3181 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3182 char *line, size_t size, size_t *len) 3183 { 3184 unsigned long flags; 3185 bool ret; 3186 3187 logbuf_lock_irqsave(flags); 3188 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3189 logbuf_unlock_irqrestore(flags); 3190 3191 return ret; 3192 } 3193 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3194 3195 /** 3196 * kmsg_dump_get_buffer - copy kmsg log lines 3197 * @dumper: registered kmsg dumper 3198 * @syslog: include the "<4>" prefixes 3199 * @buf: buffer to copy the line to 3200 * @size: maximum size of the buffer 3201 * @len: length of line placed into buffer 3202 * 3203 * Start at the end of the kmsg buffer and fill the provided buffer 3204 * with as many of the the *youngest* kmsg records that fit into it. 3205 * If the buffer is large enough, all available kmsg records will be 3206 * copied with a single call. 3207 * 3208 * Consecutive calls will fill the buffer with the next block of 3209 * available older records, not including the earlier retrieved ones. 3210 * 3211 * A return value of FALSE indicates that there are no more records to 3212 * read. 3213 */ 3214 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3215 char *buf, size_t size, size_t *len) 3216 { 3217 unsigned long flags; 3218 u64 seq; 3219 u32 idx; 3220 u64 next_seq; 3221 u32 next_idx; 3222 size_t l = 0; 3223 bool ret = false; 3224 bool time = printk_time; 3225 3226 if (!dumper->active) 3227 goto out; 3228 3229 logbuf_lock_irqsave(flags); 3230 if (dumper->cur_seq < log_first_seq) { 3231 /* messages are gone, move to first available one */ 3232 dumper->cur_seq = log_first_seq; 3233 dumper->cur_idx = log_first_idx; 3234 } 3235 3236 /* last entry */ 3237 if (dumper->cur_seq >= dumper->next_seq) { 3238 logbuf_unlock_irqrestore(flags); 3239 goto out; 3240 } 3241 3242 /* calculate length of entire buffer */ 3243 seq = dumper->cur_seq; 3244 idx = dumper->cur_idx; 3245 while (seq < dumper->next_seq) { 3246 struct printk_log *msg = log_from_idx(idx); 3247 3248 l += msg_print_text(msg, true, time, NULL, 0); 3249 idx = log_next(idx); 3250 seq++; 3251 } 3252 3253 /* move first record forward until length fits into the buffer */ 3254 seq = dumper->cur_seq; 3255 idx = dumper->cur_idx; 3256 while (l > size && seq < dumper->next_seq) { 3257 struct printk_log *msg = log_from_idx(idx); 3258 3259 l -= msg_print_text(msg, true, time, NULL, 0); 3260 idx = log_next(idx); 3261 seq++; 3262 } 3263 3264 /* last message in next interation */ 3265 next_seq = seq; 3266 next_idx = idx; 3267 3268 l = 0; 3269 while (seq < dumper->next_seq) { 3270 struct printk_log *msg = log_from_idx(idx); 3271 3272 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3273 idx = log_next(idx); 3274 seq++; 3275 } 3276 3277 dumper->next_seq = next_seq; 3278 dumper->next_idx = next_idx; 3279 ret = true; 3280 logbuf_unlock_irqrestore(flags); 3281 out: 3282 if (len) 3283 *len = l; 3284 return ret; 3285 } 3286 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3287 3288 /** 3289 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3290 * @dumper: registered kmsg dumper 3291 * 3292 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3293 * kmsg_dump_get_buffer() can be called again and used multiple 3294 * times within the same dumper.dump() callback. 3295 * 3296 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3297 */ 3298 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3299 { 3300 dumper->cur_seq = clear_seq; 3301 dumper->cur_idx = clear_idx; 3302 dumper->next_seq = log_next_seq; 3303 dumper->next_idx = log_next_idx; 3304 } 3305 3306 /** 3307 * kmsg_dump_rewind - reset the interator 3308 * @dumper: registered kmsg dumper 3309 * 3310 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3311 * kmsg_dump_get_buffer() can be called again and used multiple 3312 * times within the same dumper.dump() callback. 3313 */ 3314 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3315 { 3316 unsigned long flags; 3317 3318 logbuf_lock_irqsave(flags); 3319 kmsg_dump_rewind_nolock(dumper); 3320 logbuf_unlock_irqrestore(flags); 3321 } 3322 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3323 3324 #endif 3325