xref: /openbmc/linux/kernel/printk/printk.c (revision 30614cf3)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /* Deferred messaged from sched code are marked by this special level */
66 #define SCHED_MESSAGE_LOGLEVEL -2
67 
68 /*
69  * Low level drivers may need that to know if they can schedule in
70  * their unblank() callback or not. So let's export it.
71  */
72 int oops_in_progress;
73 EXPORT_SYMBOL(oops_in_progress);
74 
75 /*
76  * console_sem protects the console_drivers list, and also
77  * provides serialisation for access to the entire console
78  * driver system.
79  */
80 static DEFINE_SEMAPHORE(console_sem);
81 struct console *console_drivers;
82 EXPORT_SYMBOL_GPL(console_drivers);
83 
84 #ifdef CONFIG_LOCKDEP
85 static struct lockdep_map console_lock_dep_map = {
86 	.name = "console_lock"
87 };
88 #endif
89 
90 /*
91  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
92  * macros instead of functions so that _RET_IP_ contains useful information.
93  */
94 #define down_console_sem() do { \
95 	down(&console_sem);\
96 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
97 } while (0)
98 
99 static int __down_trylock_console_sem(unsigned long ip)
100 {
101 	if (down_trylock(&console_sem))
102 		return 1;
103 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
104 	return 0;
105 }
106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
107 
108 #define up_console_sem() do { \
109 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
110 	up(&console_sem);\
111 } while (0)
112 
113 /*
114  * This is used for debugging the mess that is the VT code by
115  * keeping track if we have the console semaphore held. It's
116  * definitely not the perfect debug tool (we don't know if _WE_
117  * hold it and are racing, but it helps tracking those weird code
118  * paths in the console code where we end up in places I want
119  * locked without the console sempahore held).
120  */
121 static int console_locked, console_suspended;
122 
123 /*
124  * If exclusive_console is non-NULL then only this console is to be printed to.
125  */
126 static struct console *exclusive_console;
127 
128 /*
129  *	Array of consoles built from command line options (console=)
130  */
131 
132 #define MAX_CMDLINECONSOLES 8
133 
134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
135 
136 static int selected_console = -1;
137 static int preferred_console = -1;
138 int console_set_on_cmdline;
139 EXPORT_SYMBOL(console_set_on_cmdline);
140 
141 /* Flag: console code may call schedule() */
142 static int console_may_schedule;
143 
144 /*
145  * The printk log buffer consists of a chain of concatenated variable
146  * length records. Every record starts with a record header, containing
147  * the overall length of the record.
148  *
149  * The heads to the first and last entry in the buffer, as well as the
150  * sequence numbers of these entries are maintained when messages are
151  * stored.
152  *
153  * If the heads indicate available messages, the length in the header
154  * tells the start next message. A length == 0 for the next message
155  * indicates a wrap-around to the beginning of the buffer.
156  *
157  * Every record carries the monotonic timestamp in microseconds, as well as
158  * the standard userspace syslog level and syslog facility. The usual
159  * kernel messages use LOG_KERN; userspace-injected messages always carry
160  * a matching syslog facility, by default LOG_USER. The origin of every
161  * message can be reliably determined that way.
162  *
163  * The human readable log message directly follows the message header. The
164  * length of the message text is stored in the header, the stored message
165  * is not terminated.
166  *
167  * Optionally, a message can carry a dictionary of properties (key/value pairs),
168  * to provide userspace with a machine-readable message context.
169  *
170  * Examples for well-defined, commonly used property names are:
171  *   DEVICE=b12:8               device identifier
172  *                                b12:8         block dev_t
173  *                                c127:3        char dev_t
174  *                                n8            netdev ifindex
175  *                                +sound:card0  subsystem:devname
176  *   SUBSYSTEM=pci              driver-core subsystem name
177  *
178  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
179  * follows directly after a '=' character. Every property is terminated by
180  * a '\0' character. The last property is not terminated.
181  *
182  * Example of a message structure:
183  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
184  *   0008  34 00                        record is 52 bytes long
185  *   000a        0b 00                  text is 11 bytes long
186  *   000c              1f 00            dictionary is 23 bytes long
187  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
188  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
189  *         69 6e 65                     "ine"
190  *   001b           44 45 56 49 43      "DEVIC"
191  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
192  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
193  *         67                           "g"
194  *   0032     00 00 00                  padding to next message header
195  *
196  * The 'struct printk_log' buffer header must never be directly exported to
197  * userspace, it is a kernel-private implementation detail that might
198  * need to be changed in the future, when the requirements change.
199  *
200  * /dev/kmsg exports the structured data in the following line format:
201  *   "level,sequnum,timestamp;<message text>\n"
202  *
203  * The optional key/value pairs are attached as continuation lines starting
204  * with a space character and terminated by a newline. All possible
205  * non-prinatable characters are escaped in the "\xff" notation.
206  *
207  * Users of the export format should ignore possible additional values
208  * separated by ',', and find the message after the ';' character.
209  */
210 
211 enum log_flags {
212 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
213 	LOG_NEWLINE	= 2,	/* text ended with a newline */
214 	LOG_PREFIX	= 4,	/* text started with a prefix */
215 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
216 };
217 
218 struct printk_log {
219 	u64 ts_nsec;		/* timestamp in nanoseconds */
220 	u16 len;		/* length of entire record */
221 	u16 text_len;		/* length of text buffer */
222 	u16 dict_len;		/* length of dictionary buffer */
223 	u8 facility;		/* syslog facility */
224 	u8 flags:5;		/* internal record flags */
225 	u8 level:3;		/* syslog level */
226 };
227 
228 /*
229  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
230  * within the scheduler's rq lock. It must be released before calling
231  * console_unlock() or anything else that might wake up a process.
232  */
233 static DEFINE_RAW_SPINLOCK(logbuf_lock);
234 
235 #ifdef CONFIG_PRINTK
236 DECLARE_WAIT_QUEUE_HEAD(log_wait);
237 /* the next printk record to read by syslog(READ) or /proc/kmsg */
238 static u64 syslog_seq;
239 static u32 syslog_idx;
240 static enum log_flags syslog_prev;
241 static size_t syslog_partial;
242 
243 /* index and sequence number of the first record stored in the buffer */
244 static u64 log_first_seq;
245 static u32 log_first_idx;
246 
247 /* index and sequence number of the next record to store in the buffer */
248 static u64 log_next_seq;
249 static u32 log_next_idx;
250 
251 /* the next printk record to write to the console */
252 static u64 console_seq;
253 static u32 console_idx;
254 static enum log_flags console_prev;
255 
256 /* the next printk record to read after the last 'clear' command */
257 static u64 clear_seq;
258 static u32 clear_idx;
259 
260 #define PREFIX_MAX		32
261 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
262 
263 /* record buffer */
264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
265 #define LOG_ALIGN 4
266 #else
267 #define LOG_ALIGN __alignof__(struct printk_log)
268 #endif
269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
270 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
271 static char *log_buf = __log_buf;
272 static u32 log_buf_len = __LOG_BUF_LEN;
273 
274 /* Return log buffer address */
275 char *log_buf_addr_get(void)
276 {
277 	return log_buf;
278 }
279 
280 /* Return log buffer size */
281 u32 log_buf_len_get(void)
282 {
283 	return log_buf_len;
284 }
285 
286 /* human readable text of the record */
287 static char *log_text(const struct printk_log *msg)
288 {
289 	return (char *)msg + sizeof(struct printk_log);
290 }
291 
292 /* optional key/value pair dictionary attached to the record */
293 static char *log_dict(const struct printk_log *msg)
294 {
295 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
296 }
297 
298 /* get record by index; idx must point to valid msg */
299 static struct printk_log *log_from_idx(u32 idx)
300 {
301 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
302 
303 	/*
304 	 * A length == 0 record is the end of buffer marker. Wrap around and
305 	 * read the message at the start of the buffer.
306 	 */
307 	if (!msg->len)
308 		return (struct printk_log *)log_buf;
309 	return msg;
310 }
311 
312 /* get next record; idx must point to valid msg */
313 static u32 log_next(u32 idx)
314 {
315 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
316 
317 	/* length == 0 indicates the end of the buffer; wrap */
318 	/*
319 	 * A length == 0 record is the end of buffer marker. Wrap around and
320 	 * read the message at the start of the buffer as *this* one, and
321 	 * return the one after that.
322 	 */
323 	if (!msg->len) {
324 		msg = (struct printk_log *)log_buf;
325 		return msg->len;
326 	}
327 	return idx + msg->len;
328 }
329 
330 /*
331  * Check whether there is enough free space for the given message.
332  *
333  * The same values of first_idx and next_idx mean that the buffer
334  * is either empty or full.
335  *
336  * If the buffer is empty, we must respect the position of the indexes.
337  * They cannot be reset to the beginning of the buffer.
338  */
339 static int logbuf_has_space(u32 msg_size, bool empty)
340 {
341 	u32 free;
342 
343 	if (log_next_idx > log_first_idx || empty)
344 		free = max(log_buf_len - log_next_idx, log_first_idx);
345 	else
346 		free = log_first_idx - log_next_idx;
347 
348 	/*
349 	 * We need space also for an empty header that signalizes wrapping
350 	 * of the buffer.
351 	 */
352 	return free >= msg_size + sizeof(struct printk_log);
353 }
354 
355 static int log_make_free_space(u32 msg_size)
356 {
357 	while (log_first_seq < log_next_seq) {
358 		if (logbuf_has_space(msg_size, false))
359 			return 0;
360 		/* drop old messages until we have enough contiguous space */
361 		log_first_idx = log_next(log_first_idx);
362 		log_first_seq++;
363 	}
364 
365 	/* sequence numbers are equal, so the log buffer is empty */
366 	if (logbuf_has_space(msg_size, true))
367 		return 0;
368 
369 	return -ENOMEM;
370 }
371 
372 /* compute the message size including the padding bytes */
373 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
374 {
375 	u32 size;
376 
377 	size = sizeof(struct printk_log) + text_len + dict_len;
378 	*pad_len = (-size) & (LOG_ALIGN - 1);
379 	size += *pad_len;
380 
381 	return size;
382 }
383 
384 /*
385  * Define how much of the log buffer we could take at maximum. The value
386  * must be greater than two. Note that only half of the buffer is available
387  * when the index points to the middle.
388  */
389 #define MAX_LOG_TAKE_PART 4
390 static const char trunc_msg[] = "<truncated>";
391 
392 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
393 			u16 *dict_len, u32 *pad_len)
394 {
395 	/*
396 	 * The message should not take the whole buffer. Otherwise, it might
397 	 * get removed too soon.
398 	 */
399 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
400 	if (*text_len > max_text_len)
401 		*text_len = max_text_len;
402 	/* enable the warning message */
403 	*trunc_msg_len = strlen(trunc_msg);
404 	/* disable the "dict" completely */
405 	*dict_len = 0;
406 	/* compute the size again, count also the warning message */
407 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
408 }
409 
410 /* insert record into the buffer, discard old ones, update heads */
411 static int log_store(int facility, int level,
412 		     enum log_flags flags, u64 ts_nsec,
413 		     const char *dict, u16 dict_len,
414 		     const char *text, u16 text_len)
415 {
416 	struct printk_log *msg;
417 	u32 size, pad_len;
418 	u16 trunc_msg_len = 0;
419 
420 	/* number of '\0' padding bytes to next message */
421 	size = msg_used_size(text_len, dict_len, &pad_len);
422 
423 	if (log_make_free_space(size)) {
424 		/* truncate the message if it is too long for empty buffer */
425 		size = truncate_msg(&text_len, &trunc_msg_len,
426 				    &dict_len, &pad_len);
427 		/* survive when the log buffer is too small for trunc_msg */
428 		if (log_make_free_space(size))
429 			return 0;
430 	}
431 
432 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
433 		/*
434 		 * This message + an additional empty header does not fit
435 		 * at the end of the buffer. Add an empty header with len == 0
436 		 * to signify a wrap around.
437 		 */
438 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
439 		log_next_idx = 0;
440 	}
441 
442 	/* fill message */
443 	msg = (struct printk_log *)(log_buf + log_next_idx);
444 	memcpy(log_text(msg), text, text_len);
445 	msg->text_len = text_len;
446 	if (trunc_msg_len) {
447 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
448 		msg->text_len += trunc_msg_len;
449 	}
450 	memcpy(log_dict(msg), dict, dict_len);
451 	msg->dict_len = dict_len;
452 	msg->facility = facility;
453 	msg->level = level & 7;
454 	msg->flags = flags & 0x1f;
455 	if (ts_nsec > 0)
456 		msg->ts_nsec = ts_nsec;
457 	else
458 		msg->ts_nsec = local_clock();
459 	memset(log_dict(msg) + dict_len, 0, pad_len);
460 	msg->len = size;
461 
462 	/* insert message */
463 	log_next_idx += msg->len;
464 	log_next_seq++;
465 
466 	return msg->text_len;
467 }
468 
469 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
470 
471 static int syslog_action_restricted(int type)
472 {
473 	if (dmesg_restrict)
474 		return 1;
475 	/*
476 	 * Unless restricted, we allow "read all" and "get buffer size"
477 	 * for everybody.
478 	 */
479 	return type != SYSLOG_ACTION_READ_ALL &&
480 	       type != SYSLOG_ACTION_SIZE_BUFFER;
481 }
482 
483 static int check_syslog_permissions(int type, bool from_file)
484 {
485 	/*
486 	 * If this is from /proc/kmsg and we've already opened it, then we've
487 	 * already done the capabilities checks at open time.
488 	 */
489 	if (from_file && type != SYSLOG_ACTION_OPEN)
490 		return 0;
491 
492 	if (syslog_action_restricted(type)) {
493 		if (capable(CAP_SYSLOG))
494 			return 0;
495 		/*
496 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
497 		 * a warning.
498 		 */
499 		if (capable(CAP_SYS_ADMIN)) {
500 			pr_warn_once("%s (%d): Attempt to access syslog with "
501 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
502 				     "(deprecated).\n",
503 				 current->comm, task_pid_nr(current));
504 			return 0;
505 		}
506 		return -EPERM;
507 	}
508 	return security_syslog(type);
509 }
510 
511 
512 /* /dev/kmsg - userspace message inject/listen interface */
513 struct devkmsg_user {
514 	u64 seq;
515 	u32 idx;
516 	enum log_flags prev;
517 	struct mutex lock;
518 	char buf[8192];
519 };
520 
521 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
522 {
523 	char *buf, *line;
524 	int i;
525 	int level = default_message_loglevel;
526 	int facility = 1;	/* LOG_USER */
527 	size_t len = iocb->ki_nbytes;
528 	ssize_t ret = len;
529 
530 	if (len > LOG_LINE_MAX)
531 		return -EINVAL;
532 	buf = kmalloc(len+1, GFP_KERNEL);
533 	if (buf == NULL)
534 		return -ENOMEM;
535 
536 	buf[len] = '\0';
537 	if (copy_from_iter(buf, len, from) != len) {
538 		kfree(buf);
539 		return -EFAULT;
540 	}
541 
542 	/*
543 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
544 	 * the decimal value represents 32bit, the lower 3 bit are the log
545 	 * level, the rest are the log facility.
546 	 *
547 	 * If no prefix or no userspace facility is specified, we
548 	 * enforce LOG_USER, to be able to reliably distinguish
549 	 * kernel-generated messages from userspace-injected ones.
550 	 */
551 	line = buf;
552 	if (line[0] == '<') {
553 		char *endp = NULL;
554 
555 		i = simple_strtoul(line+1, &endp, 10);
556 		if (endp && endp[0] == '>') {
557 			level = i & 7;
558 			if (i >> 3)
559 				facility = i >> 3;
560 			endp++;
561 			len -= endp - line;
562 			line = endp;
563 		}
564 	}
565 
566 	printk_emit(facility, level, NULL, 0, "%s", line);
567 	kfree(buf);
568 	return ret;
569 }
570 
571 static ssize_t devkmsg_read(struct file *file, char __user *buf,
572 			    size_t count, loff_t *ppos)
573 {
574 	struct devkmsg_user *user = file->private_data;
575 	struct printk_log *msg;
576 	u64 ts_usec;
577 	size_t i;
578 	char cont = '-';
579 	size_t len;
580 	ssize_t ret;
581 
582 	if (!user)
583 		return -EBADF;
584 
585 	ret = mutex_lock_interruptible(&user->lock);
586 	if (ret)
587 		return ret;
588 	raw_spin_lock_irq(&logbuf_lock);
589 	while (user->seq == log_next_seq) {
590 		if (file->f_flags & O_NONBLOCK) {
591 			ret = -EAGAIN;
592 			raw_spin_unlock_irq(&logbuf_lock);
593 			goto out;
594 		}
595 
596 		raw_spin_unlock_irq(&logbuf_lock);
597 		ret = wait_event_interruptible(log_wait,
598 					       user->seq != log_next_seq);
599 		if (ret)
600 			goto out;
601 		raw_spin_lock_irq(&logbuf_lock);
602 	}
603 
604 	if (user->seq < log_first_seq) {
605 		/* our last seen message is gone, return error and reset */
606 		user->idx = log_first_idx;
607 		user->seq = log_first_seq;
608 		ret = -EPIPE;
609 		raw_spin_unlock_irq(&logbuf_lock);
610 		goto out;
611 	}
612 
613 	msg = log_from_idx(user->idx);
614 	ts_usec = msg->ts_nsec;
615 	do_div(ts_usec, 1000);
616 
617 	/*
618 	 * If we couldn't merge continuation line fragments during the print,
619 	 * export the stored flags to allow an optional external merge of the
620 	 * records. Merging the records isn't always neccessarily correct, like
621 	 * when we hit a race during printing. In most cases though, it produces
622 	 * better readable output. 'c' in the record flags mark the first
623 	 * fragment of a line, '+' the following.
624 	 */
625 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
626 		cont = 'c';
627 	else if ((msg->flags & LOG_CONT) ||
628 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
629 		cont = '+';
630 
631 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
632 		      (msg->facility << 3) | msg->level,
633 		      user->seq, ts_usec, cont);
634 	user->prev = msg->flags;
635 
636 	/* escape non-printable characters */
637 	for (i = 0; i < msg->text_len; i++) {
638 		unsigned char c = log_text(msg)[i];
639 
640 		if (c < ' ' || c >= 127 || c == '\\')
641 			len += sprintf(user->buf + len, "\\x%02x", c);
642 		else
643 			user->buf[len++] = c;
644 	}
645 	user->buf[len++] = '\n';
646 
647 	if (msg->dict_len) {
648 		bool line = true;
649 
650 		for (i = 0; i < msg->dict_len; i++) {
651 			unsigned char c = log_dict(msg)[i];
652 
653 			if (line) {
654 				user->buf[len++] = ' ';
655 				line = false;
656 			}
657 
658 			if (c == '\0') {
659 				user->buf[len++] = '\n';
660 				line = true;
661 				continue;
662 			}
663 
664 			if (c < ' ' || c >= 127 || c == '\\') {
665 				len += sprintf(user->buf + len, "\\x%02x", c);
666 				continue;
667 			}
668 
669 			user->buf[len++] = c;
670 		}
671 		user->buf[len++] = '\n';
672 	}
673 
674 	user->idx = log_next(user->idx);
675 	user->seq++;
676 	raw_spin_unlock_irq(&logbuf_lock);
677 
678 	if (len > count) {
679 		ret = -EINVAL;
680 		goto out;
681 	}
682 
683 	if (copy_to_user(buf, user->buf, len)) {
684 		ret = -EFAULT;
685 		goto out;
686 	}
687 	ret = len;
688 out:
689 	mutex_unlock(&user->lock);
690 	return ret;
691 }
692 
693 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
694 {
695 	struct devkmsg_user *user = file->private_data;
696 	loff_t ret = 0;
697 
698 	if (!user)
699 		return -EBADF;
700 	if (offset)
701 		return -ESPIPE;
702 
703 	raw_spin_lock_irq(&logbuf_lock);
704 	switch (whence) {
705 	case SEEK_SET:
706 		/* the first record */
707 		user->idx = log_first_idx;
708 		user->seq = log_first_seq;
709 		break;
710 	case SEEK_DATA:
711 		/*
712 		 * The first record after the last SYSLOG_ACTION_CLEAR,
713 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
714 		 * changes no global state, and does not clear anything.
715 		 */
716 		user->idx = clear_idx;
717 		user->seq = clear_seq;
718 		break;
719 	case SEEK_END:
720 		/* after the last record */
721 		user->idx = log_next_idx;
722 		user->seq = log_next_seq;
723 		break;
724 	default:
725 		ret = -EINVAL;
726 	}
727 	raw_spin_unlock_irq(&logbuf_lock);
728 	return ret;
729 }
730 
731 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
732 {
733 	struct devkmsg_user *user = file->private_data;
734 	int ret = 0;
735 
736 	if (!user)
737 		return POLLERR|POLLNVAL;
738 
739 	poll_wait(file, &log_wait, wait);
740 
741 	raw_spin_lock_irq(&logbuf_lock);
742 	if (user->seq < log_next_seq) {
743 		/* return error when data has vanished underneath us */
744 		if (user->seq < log_first_seq)
745 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
746 		else
747 			ret = POLLIN|POLLRDNORM;
748 	}
749 	raw_spin_unlock_irq(&logbuf_lock);
750 
751 	return ret;
752 }
753 
754 static int devkmsg_open(struct inode *inode, struct file *file)
755 {
756 	struct devkmsg_user *user;
757 	int err;
758 
759 	/* write-only does not need any file context */
760 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
761 		return 0;
762 
763 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
764 				       SYSLOG_FROM_READER);
765 	if (err)
766 		return err;
767 
768 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
769 	if (!user)
770 		return -ENOMEM;
771 
772 	mutex_init(&user->lock);
773 
774 	raw_spin_lock_irq(&logbuf_lock);
775 	user->idx = log_first_idx;
776 	user->seq = log_first_seq;
777 	raw_spin_unlock_irq(&logbuf_lock);
778 
779 	file->private_data = user;
780 	return 0;
781 }
782 
783 static int devkmsg_release(struct inode *inode, struct file *file)
784 {
785 	struct devkmsg_user *user = file->private_data;
786 
787 	if (!user)
788 		return 0;
789 
790 	mutex_destroy(&user->lock);
791 	kfree(user);
792 	return 0;
793 }
794 
795 const struct file_operations kmsg_fops = {
796 	.open = devkmsg_open,
797 	.read = devkmsg_read,
798 	.write_iter = devkmsg_write,
799 	.llseek = devkmsg_llseek,
800 	.poll = devkmsg_poll,
801 	.release = devkmsg_release,
802 };
803 
804 #ifdef CONFIG_KEXEC
805 /*
806  * This appends the listed symbols to /proc/vmcore
807  *
808  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
809  * obtain access to symbols that are otherwise very difficult to locate.  These
810  * symbols are specifically used so that utilities can access and extract the
811  * dmesg log from a vmcore file after a crash.
812  */
813 void log_buf_kexec_setup(void)
814 {
815 	VMCOREINFO_SYMBOL(log_buf);
816 	VMCOREINFO_SYMBOL(log_buf_len);
817 	VMCOREINFO_SYMBOL(log_first_idx);
818 	VMCOREINFO_SYMBOL(log_next_idx);
819 	/*
820 	 * Export struct printk_log size and field offsets. User space tools can
821 	 * parse it and detect any changes to structure down the line.
822 	 */
823 	VMCOREINFO_STRUCT_SIZE(printk_log);
824 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
825 	VMCOREINFO_OFFSET(printk_log, len);
826 	VMCOREINFO_OFFSET(printk_log, text_len);
827 	VMCOREINFO_OFFSET(printk_log, dict_len);
828 }
829 #endif
830 
831 /* requested log_buf_len from kernel cmdline */
832 static unsigned long __initdata new_log_buf_len;
833 
834 /* we practice scaling the ring buffer by powers of 2 */
835 static void __init log_buf_len_update(unsigned size)
836 {
837 	if (size)
838 		size = roundup_pow_of_two(size);
839 	if (size > log_buf_len)
840 		new_log_buf_len = size;
841 }
842 
843 /* save requested log_buf_len since it's too early to process it */
844 static int __init log_buf_len_setup(char *str)
845 {
846 	unsigned size = memparse(str, &str);
847 
848 	log_buf_len_update(size);
849 
850 	return 0;
851 }
852 early_param("log_buf_len", log_buf_len_setup);
853 
854 #ifdef CONFIG_SMP
855 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
856 
857 static void __init log_buf_add_cpu(void)
858 {
859 	unsigned int cpu_extra;
860 
861 	/*
862 	 * archs should set up cpu_possible_bits properly with
863 	 * set_cpu_possible() after setup_arch() but just in
864 	 * case lets ensure this is valid.
865 	 */
866 	if (num_possible_cpus() == 1)
867 		return;
868 
869 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
870 
871 	/* by default this will only continue through for large > 64 CPUs */
872 	if (cpu_extra <= __LOG_BUF_LEN / 2)
873 		return;
874 
875 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
876 		__LOG_CPU_MAX_BUF_LEN);
877 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
878 		cpu_extra);
879 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
880 
881 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
882 }
883 #else /* !CONFIG_SMP */
884 static inline void log_buf_add_cpu(void) {}
885 #endif /* CONFIG_SMP */
886 
887 void __init setup_log_buf(int early)
888 {
889 	unsigned long flags;
890 	char *new_log_buf;
891 	int free;
892 
893 	if (log_buf != __log_buf)
894 		return;
895 
896 	if (!early && !new_log_buf_len)
897 		log_buf_add_cpu();
898 
899 	if (!new_log_buf_len)
900 		return;
901 
902 	if (early) {
903 		new_log_buf =
904 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
905 	} else {
906 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
907 							  LOG_ALIGN);
908 	}
909 
910 	if (unlikely(!new_log_buf)) {
911 		pr_err("log_buf_len: %ld bytes not available\n",
912 			new_log_buf_len);
913 		return;
914 	}
915 
916 	raw_spin_lock_irqsave(&logbuf_lock, flags);
917 	log_buf_len = new_log_buf_len;
918 	log_buf = new_log_buf;
919 	new_log_buf_len = 0;
920 	free = __LOG_BUF_LEN - log_next_idx;
921 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
922 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
923 
924 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
925 	pr_info("early log buf free: %d(%d%%)\n",
926 		free, (free * 100) / __LOG_BUF_LEN);
927 }
928 
929 static bool __read_mostly ignore_loglevel;
930 
931 static int __init ignore_loglevel_setup(char *str)
932 {
933 	ignore_loglevel = true;
934 	pr_info("debug: ignoring loglevel setting.\n");
935 
936 	return 0;
937 }
938 
939 early_param("ignore_loglevel", ignore_loglevel_setup);
940 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
941 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
942 	"print all kernel messages to the console.");
943 
944 #ifdef CONFIG_BOOT_PRINTK_DELAY
945 
946 static int boot_delay; /* msecs delay after each printk during bootup */
947 static unsigned long long loops_per_msec;	/* based on boot_delay */
948 
949 static int __init boot_delay_setup(char *str)
950 {
951 	unsigned long lpj;
952 
953 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
954 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
955 
956 	get_option(&str, &boot_delay);
957 	if (boot_delay > 10 * 1000)
958 		boot_delay = 0;
959 
960 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
961 		"HZ: %d, loops_per_msec: %llu\n",
962 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
963 	return 0;
964 }
965 early_param("boot_delay", boot_delay_setup);
966 
967 static void boot_delay_msec(int level)
968 {
969 	unsigned long long k;
970 	unsigned long timeout;
971 
972 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
973 		|| (level >= console_loglevel && !ignore_loglevel)) {
974 		return;
975 	}
976 
977 	k = (unsigned long long)loops_per_msec * boot_delay;
978 
979 	timeout = jiffies + msecs_to_jiffies(boot_delay);
980 	while (k) {
981 		k--;
982 		cpu_relax();
983 		/*
984 		 * use (volatile) jiffies to prevent
985 		 * compiler reduction; loop termination via jiffies
986 		 * is secondary and may or may not happen.
987 		 */
988 		if (time_after(jiffies, timeout))
989 			break;
990 		touch_nmi_watchdog();
991 	}
992 }
993 #else
994 static inline void boot_delay_msec(int level)
995 {
996 }
997 #endif
998 
999 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1000 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1001 
1002 static size_t print_time(u64 ts, char *buf)
1003 {
1004 	unsigned long rem_nsec;
1005 
1006 	if (!printk_time)
1007 		return 0;
1008 
1009 	rem_nsec = do_div(ts, 1000000000);
1010 
1011 	if (!buf)
1012 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1013 
1014 	return sprintf(buf, "[%5lu.%06lu] ",
1015 		       (unsigned long)ts, rem_nsec / 1000);
1016 }
1017 
1018 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1019 {
1020 	size_t len = 0;
1021 	unsigned int prefix = (msg->facility << 3) | msg->level;
1022 
1023 	if (syslog) {
1024 		if (buf) {
1025 			len += sprintf(buf, "<%u>", prefix);
1026 		} else {
1027 			len += 3;
1028 			if (prefix > 999)
1029 				len += 3;
1030 			else if (prefix > 99)
1031 				len += 2;
1032 			else if (prefix > 9)
1033 				len++;
1034 		}
1035 	}
1036 
1037 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1038 	return len;
1039 }
1040 
1041 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1042 			     bool syslog, char *buf, size_t size)
1043 {
1044 	const char *text = log_text(msg);
1045 	size_t text_size = msg->text_len;
1046 	bool prefix = true;
1047 	bool newline = true;
1048 	size_t len = 0;
1049 
1050 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1051 		prefix = false;
1052 
1053 	if (msg->flags & LOG_CONT) {
1054 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1055 			prefix = false;
1056 
1057 		if (!(msg->flags & LOG_NEWLINE))
1058 			newline = false;
1059 	}
1060 
1061 	do {
1062 		const char *next = memchr(text, '\n', text_size);
1063 		size_t text_len;
1064 
1065 		if (next) {
1066 			text_len = next - text;
1067 			next++;
1068 			text_size -= next - text;
1069 		} else {
1070 			text_len = text_size;
1071 		}
1072 
1073 		if (buf) {
1074 			if (print_prefix(msg, syslog, NULL) +
1075 			    text_len + 1 >= size - len)
1076 				break;
1077 
1078 			if (prefix)
1079 				len += print_prefix(msg, syslog, buf + len);
1080 			memcpy(buf + len, text, text_len);
1081 			len += text_len;
1082 			if (next || newline)
1083 				buf[len++] = '\n';
1084 		} else {
1085 			/* SYSLOG_ACTION_* buffer size only calculation */
1086 			if (prefix)
1087 				len += print_prefix(msg, syslog, NULL);
1088 			len += text_len;
1089 			if (next || newline)
1090 				len++;
1091 		}
1092 
1093 		prefix = true;
1094 		text = next;
1095 	} while (text);
1096 
1097 	return len;
1098 }
1099 
1100 static int syslog_print(char __user *buf, int size)
1101 {
1102 	char *text;
1103 	struct printk_log *msg;
1104 	int len = 0;
1105 
1106 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1107 	if (!text)
1108 		return -ENOMEM;
1109 
1110 	while (size > 0) {
1111 		size_t n;
1112 		size_t skip;
1113 
1114 		raw_spin_lock_irq(&logbuf_lock);
1115 		if (syslog_seq < log_first_seq) {
1116 			/* messages are gone, move to first one */
1117 			syslog_seq = log_first_seq;
1118 			syslog_idx = log_first_idx;
1119 			syslog_prev = 0;
1120 			syslog_partial = 0;
1121 		}
1122 		if (syslog_seq == log_next_seq) {
1123 			raw_spin_unlock_irq(&logbuf_lock);
1124 			break;
1125 		}
1126 
1127 		skip = syslog_partial;
1128 		msg = log_from_idx(syslog_idx);
1129 		n = msg_print_text(msg, syslog_prev, true, text,
1130 				   LOG_LINE_MAX + PREFIX_MAX);
1131 		if (n - syslog_partial <= size) {
1132 			/* message fits into buffer, move forward */
1133 			syslog_idx = log_next(syslog_idx);
1134 			syslog_seq++;
1135 			syslog_prev = msg->flags;
1136 			n -= syslog_partial;
1137 			syslog_partial = 0;
1138 		} else if (!len){
1139 			/* partial read(), remember position */
1140 			n = size;
1141 			syslog_partial += n;
1142 		} else
1143 			n = 0;
1144 		raw_spin_unlock_irq(&logbuf_lock);
1145 
1146 		if (!n)
1147 			break;
1148 
1149 		if (copy_to_user(buf, text + skip, n)) {
1150 			if (!len)
1151 				len = -EFAULT;
1152 			break;
1153 		}
1154 
1155 		len += n;
1156 		size -= n;
1157 		buf += n;
1158 	}
1159 
1160 	kfree(text);
1161 	return len;
1162 }
1163 
1164 static int syslog_print_all(char __user *buf, int size, bool clear)
1165 {
1166 	char *text;
1167 	int len = 0;
1168 
1169 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1170 	if (!text)
1171 		return -ENOMEM;
1172 
1173 	raw_spin_lock_irq(&logbuf_lock);
1174 	if (buf) {
1175 		u64 next_seq;
1176 		u64 seq;
1177 		u32 idx;
1178 		enum log_flags prev;
1179 
1180 		if (clear_seq < log_first_seq) {
1181 			/* messages are gone, move to first available one */
1182 			clear_seq = log_first_seq;
1183 			clear_idx = log_first_idx;
1184 		}
1185 
1186 		/*
1187 		 * Find first record that fits, including all following records,
1188 		 * into the user-provided buffer for this dump.
1189 		 */
1190 		seq = clear_seq;
1191 		idx = clear_idx;
1192 		prev = 0;
1193 		while (seq < log_next_seq) {
1194 			struct printk_log *msg = log_from_idx(idx);
1195 
1196 			len += msg_print_text(msg, prev, true, NULL, 0);
1197 			prev = msg->flags;
1198 			idx = log_next(idx);
1199 			seq++;
1200 		}
1201 
1202 		/* move first record forward until length fits into the buffer */
1203 		seq = clear_seq;
1204 		idx = clear_idx;
1205 		prev = 0;
1206 		while (len > size && seq < log_next_seq) {
1207 			struct printk_log *msg = log_from_idx(idx);
1208 
1209 			len -= msg_print_text(msg, prev, true, NULL, 0);
1210 			prev = msg->flags;
1211 			idx = log_next(idx);
1212 			seq++;
1213 		}
1214 
1215 		/* last message fitting into this dump */
1216 		next_seq = log_next_seq;
1217 
1218 		len = 0;
1219 		while (len >= 0 && seq < next_seq) {
1220 			struct printk_log *msg = log_from_idx(idx);
1221 			int textlen;
1222 
1223 			textlen = msg_print_text(msg, prev, true, text,
1224 						 LOG_LINE_MAX + PREFIX_MAX);
1225 			if (textlen < 0) {
1226 				len = textlen;
1227 				break;
1228 			}
1229 			idx = log_next(idx);
1230 			seq++;
1231 			prev = msg->flags;
1232 
1233 			raw_spin_unlock_irq(&logbuf_lock);
1234 			if (copy_to_user(buf + len, text, textlen))
1235 				len = -EFAULT;
1236 			else
1237 				len += textlen;
1238 			raw_spin_lock_irq(&logbuf_lock);
1239 
1240 			if (seq < log_first_seq) {
1241 				/* messages are gone, move to next one */
1242 				seq = log_first_seq;
1243 				idx = log_first_idx;
1244 				prev = 0;
1245 			}
1246 		}
1247 	}
1248 
1249 	if (clear) {
1250 		clear_seq = log_next_seq;
1251 		clear_idx = log_next_idx;
1252 	}
1253 	raw_spin_unlock_irq(&logbuf_lock);
1254 
1255 	kfree(text);
1256 	return len;
1257 }
1258 
1259 int do_syslog(int type, char __user *buf, int len, bool from_file)
1260 {
1261 	bool clear = false;
1262 	static int saved_console_loglevel = -1;
1263 	int error;
1264 
1265 	error = check_syslog_permissions(type, from_file);
1266 	if (error)
1267 		goto out;
1268 
1269 	error = security_syslog(type);
1270 	if (error)
1271 		return error;
1272 
1273 	switch (type) {
1274 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1275 		break;
1276 	case SYSLOG_ACTION_OPEN:	/* Open log */
1277 		break;
1278 	case SYSLOG_ACTION_READ:	/* Read from log */
1279 		error = -EINVAL;
1280 		if (!buf || len < 0)
1281 			goto out;
1282 		error = 0;
1283 		if (!len)
1284 			goto out;
1285 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1286 			error = -EFAULT;
1287 			goto out;
1288 		}
1289 		error = wait_event_interruptible(log_wait,
1290 						 syslog_seq != log_next_seq);
1291 		if (error)
1292 			goto out;
1293 		error = syslog_print(buf, len);
1294 		break;
1295 	/* Read/clear last kernel messages */
1296 	case SYSLOG_ACTION_READ_CLEAR:
1297 		clear = true;
1298 		/* FALL THRU */
1299 	/* Read last kernel messages */
1300 	case SYSLOG_ACTION_READ_ALL:
1301 		error = -EINVAL;
1302 		if (!buf || len < 0)
1303 			goto out;
1304 		error = 0;
1305 		if (!len)
1306 			goto out;
1307 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1308 			error = -EFAULT;
1309 			goto out;
1310 		}
1311 		error = syslog_print_all(buf, len, clear);
1312 		break;
1313 	/* Clear ring buffer */
1314 	case SYSLOG_ACTION_CLEAR:
1315 		syslog_print_all(NULL, 0, true);
1316 		break;
1317 	/* Disable logging to console */
1318 	case SYSLOG_ACTION_CONSOLE_OFF:
1319 		if (saved_console_loglevel == -1)
1320 			saved_console_loglevel = console_loglevel;
1321 		console_loglevel = minimum_console_loglevel;
1322 		break;
1323 	/* Enable logging to console */
1324 	case SYSLOG_ACTION_CONSOLE_ON:
1325 		if (saved_console_loglevel != -1) {
1326 			console_loglevel = saved_console_loglevel;
1327 			saved_console_loglevel = -1;
1328 		}
1329 		break;
1330 	/* Set level of messages printed to console */
1331 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1332 		error = -EINVAL;
1333 		if (len < 1 || len > 8)
1334 			goto out;
1335 		if (len < minimum_console_loglevel)
1336 			len = minimum_console_loglevel;
1337 		console_loglevel = len;
1338 		/* Implicitly re-enable logging to console */
1339 		saved_console_loglevel = -1;
1340 		error = 0;
1341 		break;
1342 	/* Number of chars in the log buffer */
1343 	case SYSLOG_ACTION_SIZE_UNREAD:
1344 		raw_spin_lock_irq(&logbuf_lock);
1345 		if (syslog_seq < log_first_seq) {
1346 			/* messages are gone, move to first one */
1347 			syslog_seq = log_first_seq;
1348 			syslog_idx = log_first_idx;
1349 			syslog_prev = 0;
1350 			syslog_partial = 0;
1351 		}
1352 		if (from_file) {
1353 			/*
1354 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1355 			 * for pending data, not the size; return the count of
1356 			 * records, not the length.
1357 			 */
1358 			error = log_next_seq - syslog_seq;
1359 		} else {
1360 			u64 seq = syslog_seq;
1361 			u32 idx = syslog_idx;
1362 			enum log_flags prev = syslog_prev;
1363 
1364 			error = 0;
1365 			while (seq < log_next_seq) {
1366 				struct printk_log *msg = log_from_idx(idx);
1367 
1368 				error += msg_print_text(msg, prev, true, NULL, 0);
1369 				idx = log_next(idx);
1370 				seq++;
1371 				prev = msg->flags;
1372 			}
1373 			error -= syslog_partial;
1374 		}
1375 		raw_spin_unlock_irq(&logbuf_lock);
1376 		break;
1377 	/* Size of the log buffer */
1378 	case SYSLOG_ACTION_SIZE_BUFFER:
1379 		error = log_buf_len;
1380 		break;
1381 	default:
1382 		error = -EINVAL;
1383 		break;
1384 	}
1385 out:
1386 	return error;
1387 }
1388 
1389 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1390 {
1391 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1392 }
1393 
1394 /*
1395  * Call the console drivers, asking them to write out
1396  * log_buf[start] to log_buf[end - 1].
1397  * The console_lock must be held.
1398  */
1399 static void call_console_drivers(int level, const char *text, size_t len)
1400 {
1401 	struct console *con;
1402 
1403 	trace_console(text, len);
1404 
1405 	if (level >= console_loglevel && !ignore_loglevel)
1406 		return;
1407 	if (!console_drivers)
1408 		return;
1409 
1410 	for_each_console(con) {
1411 		if (exclusive_console && con != exclusive_console)
1412 			continue;
1413 		if (!(con->flags & CON_ENABLED))
1414 			continue;
1415 		if (!con->write)
1416 			continue;
1417 		if (!cpu_online(smp_processor_id()) &&
1418 		    !(con->flags & CON_ANYTIME))
1419 			continue;
1420 		con->write(con, text, len);
1421 	}
1422 }
1423 
1424 /*
1425  * Zap console related locks when oopsing. Only zap at most once
1426  * every 10 seconds, to leave time for slow consoles to print a
1427  * full oops.
1428  */
1429 static void zap_locks(void)
1430 {
1431 	static unsigned long oops_timestamp;
1432 
1433 	if (time_after_eq(jiffies, oops_timestamp) &&
1434 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1435 		return;
1436 
1437 	oops_timestamp = jiffies;
1438 
1439 	debug_locks_off();
1440 	/* If a crash is occurring, make sure we can't deadlock */
1441 	raw_spin_lock_init(&logbuf_lock);
1442 	/* And make sure that we print immediately */
1443 	sema_init(&console_sem, 1);
1444 }
1445 
1446 /*
1447  * Check if we have any console that is capable of printing while cpu is
1448  * booting or shutting down. Requires console_sem.
1449  */
1450 static int have_callable_console(void)
1451 {
1452 	struct console *con;
1453 
1454 	for_each_console(con)
1455 		if (con->flags & CON_ANYTIME)
1456 			return 1;
1457 
1458 	return 0;
1459 }
1460 
1461 /*
1462  * Can we actually use the console at this time on this cpu?
1463  *
1464  * Console drivers may assume that per-cpu resources have been allocated. So
1465  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1466  * call them until this CPU is officially up.
1467  */
1468 static inline int can_use_console(unsigned int cpu)
1469 {
1470 	return cpu_online(cpu) || have_callable_console();
1471 }
1472 
1473 /*
1474  * Try to get console ownership to actually show the kernel
1475  * messages from a 'printk'. Return true (and with the
1476  * console_lock held, and 'console_locked' set) if it
1477  * is successful, false otherwise.
1478  */
1479 static int console_trylock_for_printk(void)
1480 {
1481 	unsigned int cpu = smp_processor_id();
1482 
1483 	if (!console_trylock())
1484 		return 0;
1485 	/*
1486 	 * If we can't use the console, we need to release the console
1487 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1488 	 * console semaphore in order to do this test safely.
1489 	 */
1490 	if (!can_use_console(cpu)) {
1491 		console_locked = 0;
1492 		up_console_sem();
1493 		return 0;
1494 	}
1495 	return 1;
1496 }
1497 
1498 int printk_delay_msec __read_mostly;
1499 
1500 static inline void printk_delay(void)
1501 {
1502 	if (unlikely(printk_delay_msec)) {
1503 		int m = printk_delay_msec;
1504 
1505 		while (m--) {
1506 			mdelay(1);
1507 			touch_nmi_watchdog();
1508 		}
1509 	}
1510 }
1511 
1512 /*
1513  * Continuation lines are buffered, and not committed to the record buffer
1514  * until the line is complete, or a race forces it. The line fragments
1515  * though, are printed immediately to the consoles to ensure everything has
1516  * reached the console in case of a kernel crash.
1517  */
1518 static struct cont {
1519 	char buf[LOG_LINE_MAX];
1520 	size_t len;			/* length == 0 means unused buffer */
1521 	size_t cons;			/* bytes written to console */
1522 	struct task_struct *owner;	/* task of first print*/
1523 	u64 ts_nsec;			/* time of first print */
1524 	u8 level;			/* log level of first message */
1525 	u8 facility;			/* log facility of first message */
1526 	enum log_flags flags;		/* prefix, newline flags */
1527 	bool flushed:1;			/* buffer sealed and committed */
1528 } cont;
1529 
1530 static void cont_flush(enum log_flags flags)
1531 {
1532 	if (cont.flushed)
1533 		return;
1534 	if (cont.len == 0)
1535 		return;
1536 
1537 	if (cont.cons) {
1538 		/*
1539 		 * If a fragment of this line was directly flushed to the
1540 		 * console; wait for the console to pick up the rest of the
1541 		 * line. LOG_NOCONS suppresses a duplicated output.
1542 		 */
1543 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1544 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1545 		cont.flags = flags;
1546 		cont.flushed = true;
1547 	} else {
1548 		/*
1549 		 * If no fragment of this line ever reached the console,
1550 		 * just submit it to the store and free the buffer.
1551 		 */
1552 		log_store(cont.facility, cont.level, flags, 0,
1553 			  NULL, 0, cont.buf, cont.len);
1554 		cont.len = 0;
1555 	}
1556 }
1557 
1558 static bool cont_add(int facility, int level, const char *text, size_t len)
1559 {
1560 	if (cont.len && cont.flushed)
1561 		return false;
1562 
1563 	if (cont.len + len > sizeof(cont.buf)) {
1564 		/* the line gets too long, split it up in separate records */
1565 		cont_flush(LOG_CONT);
1566 		return false;
1567 	}
1568 
1569 	if (!cont.len) {
1570 		cont.facility = facility;
1571 		cont.level = level;
1572 		cont.owner = current;
1573 		cont.ts_nsec = local_clock();
1574 		cont.flags = 0;
1575 		cont.cons = 0;
1576 		cont.flushed = false;
1577 	}
1578 
1579 	memcpy(cont.buf + cont.len, text, len);
1580 	cont.len += len;
1581 
1582 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1583 		cont_flush(LOG_CONT);
1584 
1585 	return true;
1586 }
1587 
1588 static size_t cont_print_text(char *text, size_t size)
1589 {
1590 	size_t textlen = 0;
1591 	size_t len;
1592 
1593 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1594 		textlen += print_time(cont.ts_nsec, text);
1595 		size -= textlen;
1596 	}
1597 
1598 	len = cont.len - cont.cons;
1599 	if (len > 0) {
1600 		if (len+1 > size)
1601 			len = size-1;
1602 		memcpy(text + textlen, cont.buf + cont.cons, len);
1603 		textlen += len;
1604 		cont.cons = cont.len;
1605 	}
1606 
1607 	if (cont.flushed) {
1608 		if (cont.flags & LOG_NEWLINE)
1609 			text[textlen++] = '\n';
1610 		/* got everything, release buffer */
1611 		cont.len = 0;
1612 	}
1613 	return textlen;
1614 }
1615 
1616 asmlinkage int vprintk_emit(int facility, int level,
1617 			    const char *dict, size_t dictlen,
1618 			    const char *fmt, va_list args)
1619 {
1620 	static int recursion_bug;
1621 	static char textbuf[LOG_LINE_MAX];
1622 	char *text = textbuf;
1623 	size_t text_len = 0;
1624 	enum log_flags lflags = 0;
1625 	unsigned long flags;
1626 	int this_cpu;
1627 	int printed_len = 0;
1628 	bool in_sched = false;
1629 	/* cpu currently holding logbuf_lock in this function */
1630 	static volatile unsigned int logbuf_cpu = UINT_MAX;
1631 
1632 	if (level == SCHED_MESSAGE_LOGLEVEL) {
1633 		level = -1;
1634 		in_sched = true;
1635 	}
1636 
1637 	boot_delay_msec(level);
1638 	printk_delay();
1639 
1640 	/* This stops the holder of console_sem just where we want him */
1641 	local_irq_save(flags);
1642 	this_cpu = smp_processor_id();
1643 
1644 	/*
1645 	 * Ouch, printk recursed into itself!
1646 	 */
1647 	if (unlikely(logbuf_cpu == this_cpu)) {
1648 		/*
1649 		 * If a crash is occurring during printk() on this CPU,
1650 		 * then try to get the crash message out but make sure
1651 		 * we can't deadlock. Otherwise just return to avoid the
1652 		 * recursion and return - but flag the recursion so that
1653 		 * it can be printed at the next appropriate moment:
1654 		 */
1655 		if (!oops_in_progress && !lockdep_recursing(current)) {
1656 			recursion_bug = 1;
1657 			local_irq_restore(flags);
1658 			return 0;
1659 		}
1660 		zap_locks();
1661 	}
1662 
1663 	lockdep_off();
1664 	raw_spin_lock(&logbuf_lock);
1665 	logbuf_cpu = this_cpu;
1666 
1667 	if (unlikely(recursion_bug)) {
1668 		static const char recursion_msg[] =
1669 			"BUG: recent printk recursion!";
1670 
1671 		recursion_bug = 0;
1672 		/* emit KERN_CRIT message */
1673 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1674 					 NULL, 0, recursion_msg,
1675 					 strlen(recursion_msg));
1676 	}
1677 
1678 	/*
1679 	 * The printf needs to come first; we need the syslog
1680 	 * prefix which might be passed-in as a parameter.
1681 	 */
1682 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1683 
1684 	/* mark and strip a trailing newline */
1685 	if (text_len && text[text_len-1] == '\n') {
1686 		text_len--;
1687 		lflags |= LOG_NEWLINE;
1688 	}
1689 
1690 	/* strip kernel syslog prefix and extract log level or control flags */
1691 	if (facility == 0) {
1692 		int kern_level = printk_get_level(text);
1693 
1694 		if (kern_level) {
1695 			const char *end_of_header = printk_skip_level(text);
1696 			switch (kern_level) {
1697 			case '0' ... '7':
1698 				if (level == -1)
1699 					level = kern_level - '0';
1700 			case 'd':	/* KERN_DEFAULT */
1701 				lflags |= LOG_PREFIX;
1702 			}
1703 			/*
1704 			 * No need to check length here because vscnprintf
1705 			 * put '\0' at the end of the string. Only valid and
1706 			 * newly printed level is detected.
1707 			 */
1708 			text_len -= end_of_header - text;
1709 			text = (char *)end_of_header;
1710 		}
1711 	}
1712 
1713 	if (level == -1)
1714 		level = default_message_loglevel;
1715 
1716 	if (dict)
1717 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1718 
1719 	if (!(lflags & LOG_NEWLINE)) {
1720 		/*
1721 		 * Flush the conflicting buffer. An earlier newline was missing,
1722 		 * or another task also prints continuation lines.
1723 		 */
1724 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1725 			cont_flush(LOG_NEWLINE);
1726 
1727 		/* buffer line if possible, otherwise store it right away */
1728 		if (cont_add(facility, level, text, text_len))
1729 			printed_len += text_len;
1730 		else
1731 			printed_len += log_store(facility, level,
1732 						 lflags | LOG_CONT, 0,
1733 						 dict, dictlen, text, text_len);
1734 	} else {
1735 		bool stored = false;
1736 
1737 		/*
1738 		 * If an earlier newline was missing and it was the same task,
1739 		 * either merge it with the current buffer and flush, or if
1740 		 * there was a race with interrupts (prefix == true) then just
1741 		 * flush it out and store this line separately.
1742 		 * If the preceding printk was from a different task and missed
1743 		 * a newline, flush and append the newline.
1744 		 */
1745 		if (cont.len) {
1746 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1747 				stored = cont_add(facility, level, text,
1748 						  text_len);
1749 			cont_flush(LOG_NEWLINE);
1750 		}
1751 
1752 		if (stored)
1753 			printed_len += text_len;
1754 		else
1755 			printed_len += log_store(facility, level, lflags, 0,
1756 						 dict, dictlen, text, text_len);
1757 	}
1758 
1759 	logbuf_cpu = UINT_MAX;
1760 	raw_spin_unlock(&logbuf_lock);
1761 	lockdep_on();
1762 	local_irq_restore(flags);
1763 
1764 	/* If called from the scheduler, we can not call up(). */
1765 	if (!in_sched) {
1766 		lockdep_off();
1767 		/*
1768 		 * Disable preemption to avoid being preempted while holding
1769 		 * console_sem which would prevent anyone from printing to
1770 		 * console
1771 		 */
1772 		preempt_disable();
1773 
1774 		/*
1775 		 * Try to acquire and then immediately release the console
1776 		 * semaphore.  The release will print out buffers and wake up
1777 		 * /dev/kmsg and syslog() users.
1778 		 */
1779 		if (console_trylock_for_printk())
1780 			console_unlock();
1781 		preempt_enable();
1782 		lockdep_on();
1783 	}
1784 
1785 	return printed_len;
1786 }
1787 EXPORT_SYMBOL(vprintk_emit);
1788 
1789 asmlinkage int vprintk(const char *fmt, va_list args)
1790 {
1791 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1792 }
1793 EXPORT_SYMBOL(vprintk);
1794 
1795 asmlinkage int printk_emit(int facility, int level,
1796 			   const char *dict, size_t dictlen,
1797 			   const char *fmt, ...)
1798 {
1799 	va_list args;
1800 	int r;
1801 
1802 	va_start(args, fmt);
1803 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1804 	va_end(args);
1805 
1806 	return r;
1807 }
1808 EXPORT_SYMBOL(printk_emit);
1809 
1810 /**
1811  * printk - print a kernel message
1812  * @fmt: format string
1813  *
1814  * This is printk(). It can be called from any context. We want it to work.
1815  *
1816  * We try to grab the console_lock. If we succeed, it's easy - we log the
1817  * output and call the console drivers.  If we fail to get the semaphore, we
1818  * place the output into the log buffer and return. The current holder of
1819  * the console_sem will notice the new output in console_unlock(); and will
1820  * send it to the consoles before releasing the lock.
1821  *
1822  * One effect of this deferred printing is that code which calls printk() and
1823  * then changes console_loglevel may break. This is because console_loglevel
1824  * is inspected when the actual printing occurs.
1825  *
1826  * See also:
1827  * printf(3)
1828  *
1829  * See the vsnprintf() documentation for format string extensions over C99.
1830  */
1831 asmlinkage __visible int printk(const char *fmt, ...)
1832 {
1833 	va_list args;
1834 	int r;
1835 
1836 #ifdef CONFIG_KGDB_KDB
1837 	if (unlikely(kdb_trap_printk)) {
1838 		va_start(args, fmt);
1839 		r = vkdb_printf(fmt, args);
1840 		va_end(args);
1841 		return r;
1842 	}
1843 #endif
1844 	va_start(args, fmt);
1845 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1846 	va_end(args);
1847 
1848 	return r;
1849 }
1850 EXPORT_SYMBOL(printk);
1851 
1852 #else /* CONFIG_PRINTK */
1853 
1854 #define LOG_LINE_MAX		0
1855 #define PREFIX_MAX		0
1856 
1857 static u64 syslog_seq;
1858 static u32 syslog_idx;
1859 static u64 console_seq;
1860 static u32 console_idx;
1861 static enum log_flags syslog_prev;
1862 static u64 log_first_seq;
1863 static u32 log_first_idx;
1864 static u64 log_next_seq;
1865 static enum log_flags console_prev;
1866 static struct cont {
1867 	size_t len;
1868 	size_t cons;
1869 	u8 level;
1870 	bool flushed:1;
1871 } cont;
1872 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1873 static u32 log_next(u32 idx) { return 0; }
1874 static void call_console_drivers(int level, const char *text, size_t len) {}
1875 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1876 			     bool syslog, char *buf, size_t size) { return 0; }
1877 static size_t cont_print_text(char *text, size_t size) { return 0; }
1878 
1879 #endif /* CONFIG_PRINTK */
1880 
1881 #ifdef CONFIG_EARLY_PRINTK
1882 struct console *early_console;
1883 
1884 void early_vprintk(const char *fmt, va_list ap)
1885 {
1886 	if (early_console) {
1887 		char buf[512];
1888 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1889 
1890 		early_console->write(early_console, buf, n);
1891 	}
1892 }
1893 
1894 asmlinkage __visible void early_printk(const char *fmt, ...)
1895 {
1896 	va_list ap;
1897 
1898 	va_start(ap, fmt);
1899 	early_vprintk(fmt, ap);
1900 	va_end(ap);
1901 }
1902 #endif
1903 
1904 static int __add_preferred_console(char *name, int idx, char *options,
1905 				   char *brl_options)
1906 {
1907 	struct console_cmdline *c;
1908 	int i;
1909 
1910 	/*
1911 	 *	See if this tty is not yet registered, and
1912 	 *	if we have a slot free.
1913 	 */
1914 	for (i = 0, c = console_cmdline;
1915 	     i < MAX_CMDLINECONSOLES && c->name[0];
1916 	     i++, c++) {
1917 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1918 			if (!brl_options)
1919 				selected_console = i;
1920 			return 0;
1921 		}
1922 	}
1923 	if (i == MAX_CMDLINECONSOLES)
1924 		return -E2BIG;
1925 	if (!brl_options)
1926 		selected_console = i;
1927 	strlcpy(c->name, name, sizeof(c->name));
1928 	c->options = options;
1929 	braille_set_options(c, brl_options);
1930 
1931 	c->index = idx;
1932 	return 0;
1933 }
1934 /*
1935  * Set up a console.  Called via do_early_param() in init/main.c
1936  * for each "console=" parameter in the boot command line.
1937  */
1938 static int __init console_setup(char *str)
1939 {
1940 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1941 	char *s, *options, *brl_options = NULL;
1942 	int idx;
1943 
1944 	if (_braille_console_setup(&str, &brl_options))
1945 		return 1;
1946 
1947 	/*
1948 	 * Decode str into name, index, options.
1949 	 */
1950 	if (str[0] >= '0' && str[0] <= '9') {
1951 		strcpy(buf, "ttyS");
1952 		strncpy(buf + 4, str, sizeof(buf) - 5);
1953 	} else {
1954 		strncpy(buf, str, sizeof(buf) - 1);
1955 	}
1956 	buf[sizeof(buf) - 1] = 0;
1957 	options = strchr(str, ',');
1958 	if (options)
1959 		*(options++) = 0;
1960 #ifdef __sparc__
1961 	if (!strcmp(str, "ttya"))
1962 		strcpy(buf, "ttyS0");
1963 	if (!strcmp(str, "ttyb"))
1964 		strcpy(buf, "ttyS1");
1965 #endif
1966 	for (s = buf; *s; s++)
1967 		if (isdigit(*s) || *s == ',')
1968 			break;
1969 	idx = simple_strtoul(s, NULL, 10);
1970 	*s = 0;
1971 
1972 	__add_preferred_console(buf, idx, options, brl_options);
1973 	console_set_on_cmdline = 1;
1974 	return 1;
1975 }
1976 __setup("console=", console_setup);
1977 
1978 /**
1979  * add_preferred_console - add a device to the list of preferred consoles.
1980  * @name: device name
1981  * @idx: device index
1982  * @options: options for this console
1983  *
1984  * The last preferred console added will be used for kernel messages
1985  * and stdin/out/err for init.  Normally this is used by console_setup
1986  * above to handle user-supplied console arguments; however it can also
1987  * be used by arch-specific code either to override the user or more
1988  * commonly to provide a default console (ie from PROM variables) when
1989  * the user has not supplied one.
1990  */
1991 int add_preferred_console(char *name, int idx, char *options)
1992 {
1993 	return __add_preferred_console(name, idx, options, NULL);
1994 }
1995 
1996 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1997 {
1998 	struct console_cmdline *c;
1999 	int i;
2000 
2001 	for (i = 0, c = console_cmdline;
2002 	     i < MAX_CMDLINECONSOLES && c->name[0];
2003 	     i++, c++)
2004 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2005 			strlcpy(c->name, name_new, sizeof(c->name));
2006 			c->options = options;
2007 			c->index = idx_new;
2008 			return i;
2009 		}
2010 	/* not found */
2011 	return -1;
2012 }
2013 
2014 bool console_suspend_enabled = true;
2015 EXPORT_SYMBOL(console_suspend_enabled);
2016 
2017 static int __init console_suspend_disable(char *str)
2018 {
2019 	console_suspend_enabled = false;
2020 	return 1;
2021 }
2022 __setup("no_console_suspend", console_suspend_disable);
2023 module_param_named(console_suspend, console_suspend_enabled,
2024 		bool, S_IRUGO | S_IWUSR);
2025 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2026 	" and hibernate operations");
2027 
2028 /**
2029  * suspend_console - suspend the console subsystem
2030  *
2031  * This disables printk() while we go into suspend states
2032  */
2033 void suspend_console(void)
2034 {
2035 	if (!console_suspend_enabled)
2036 		return;
2037 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2038 	console_lock();
2039 	console_suspended = 1;
2040 	up_console_sem();
2041 }
2042 
2043 void resume_console(void)
2044 {
2045 	if (!console_suspend_enabled)
2046 		return;
2047 	down_console_sem();
2048 	console_suspended = 0;
2049 	console_unlock();
2050 }
2051 
2052 /**
2053  * console_cpu_notify - print deferred console messages after CPU hotplug
2054  * @self: notifier struct
2055  * @action: CPU hotplug event
2056  * @hcpu: unused
2057  *
2058  * If printk() is called from a CPU that is not online yet, the messages
2059  * will be spooled but will not show up on the console.  This function is
2060  * called when a new CPU comes online (or fails to come up), and ensures
2061  * that any such output gets printed.
2062  */
2063 static int console_cpu_notify(struct notifier_block *self,
2064 	unsigned long action, void *hcpu)
2065 {
2066 	switch (action) {
2067 	case CPU_ONLINE:
2068 	case CPU_DEAD:
2069 	case CPU_DOWN_FAILED:
2070 	case CPU_UP_CANCELED:
2071 		console_lock();
2072 		console_unlock();
2073 	}
2074 	return NOTIFY_OK;
2075 }
2076 
2077 /**
2078  * console_lock - lock the console system for exclusive use.
2079  *
2080  * Acquires a lock which guarantees that the caller has
2081  * exclusive access to the console system and the console_drivers list.
2082  *
2083  * Can sleep, returns nothing.
2084  */
2085 void console_lock(void)
2086 {
2087 	might_sleep();
2088 
2089 	down_console_sem();
2090 	if (console_suspended)
2091 		return;
2092 	console_locked = 1;
2093 	console_may_schedule = 1;
2094 }
2095 EXPORT_SYMBOL(console_lock);
2096 
2097 /**
2098  * console_trylock - try to lock the console system for exclusive use.
2099  *
2100  * Try to acquire a lock which guarantees that the caller has exclusive
2101  * access to the console system and the console_drivers list.
2102  *
2103  * returns 1 on success, and 0 on failure to acquire the lock.
2104  */
2105 int console_trylock(void)
2106 {
2107 	if (down_trylock_console_sem())
2108 		return 0;
2109 	if (console_suspended) {
2110 		up_console_sem();
2111 		return 0;
2112 	}
2113 	console_locked = 1;
2114 	console_may_schedule = 0;
2115 	return 1;
2116 }
2117 EXPORT_SYMBOL(console_trylock);
2118 
2119 int is_console_locked(void)
2120 {
2121 	return console_locked;
2122 }
2123 
2124 static void console_cont_flush(char *text, size_t size)
2125 {
2126 	unsigned long flags;
2127 	size_t len;
2128 
2129 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2130 
2131 	if (!cont.len)
2132 		goto out;
2133 
2134 	/*
2135 	 * We still queue earlier records, likely because the console was
2136 	 * busy. The earlier ones need to be printed before this one, we
2137 	 * did not flush any fragment so far, so just let it queue up.
2138 	 */
2139 	if (console_seq < log_next_seq && !cont.cons)
2140 		goto out;
2141 
2142 	len = cont_print_text(text, size);
2143 	raw_spin_unlock(&logbuf_lock);
2144 	stop_critical_timings();
2145 	call_console_drivers(cont.level, text, len);
2146 	start_critical_timings();
2147 	local_irq_restore(flags);
2148 	return;
2149 out:
2150 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2151 }
2152 
2153 /**
2154  * console_unlock - unlock the console system
2155  *
2156  * Releases the console_lock which the caller holds on the console system
2157  * and the console driver list.
2158  *
2159  * While the console_lock was held, console output may have been buffered
2160  * by printk().  If this is the case, console_unlock(); emits
2161  * the output prior to releasing the lock.
2162  *
2163  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2164  *
2165  * console_unlock(); may be called from any context.
2166  */
2167 void console_unlock(void)
2168 {
2169 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2170 	static u64 seen_seq;
2171 	unsigned long flags;
2172 	bool wake_klogd = false;
2173 	bool retry;
2174 
2175 	if (console_suspended) {
2176 		up_console_sem();
2177 		return;
2178 	}
2179 
2180 	console_may_schedule = 0;
2181 
2182 	/* flush buffered message fragment immediately to console */
2183 	console_cont_flush(text, sizeof(text));
2184 again:
2185 	for (;;) {
2186 		struct printk_log *msg;
2187 		size_t len;
2188 		int level;
2189 
2190 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2191 		if (seen_seq != log_next_seq) {
2192 			wake_klogd = true;
2193 			seen_seq = log_next_seq;
2194 		}
2195 
2196 		if (console_seq < log_first_seq) {
2197 			len = sprintf(text, "** %u printk messages dropped ** ",
2198 				      (unsigned)(log_first_seq - console_seq));
2199 
2200 			/* messages are gone, move to first one */
2201 			console_seq = log_first_seq;
2202 			console_idx = log_first_idx;
2203 			console_prev = 0;
2204 		} else {
2205 			len = 0;
2206 		}
2207 skip:
2208 		if (console_seq == log_next_seq)
2209 			break;
2210 
2211 		msg = log_from_idx(console_idx);
2212 		if (msg->flags & LOG_NOCONS) {
2213 			/*
2214 			 * Skip record we have buffered and already printed
2215 			 * directly to the console when we received it.
2216 			 */
2217 			console_idx = log_next(console_idx);
2218 			console_seq++;
2219 			/*
2220 			 * We will get here again when we register a new
2221 			 * CON_PRINTBUFFER console. Clear the flag so we
2222 			 * will properly dump everything later.
2223 			 */
2224 			msg->flags &= ~LOG_NOCONS;
2225 			console_prev = msg->flags;
2226 			goto skip;
2227 		}
2228 
2229 		level = msg->level;
2230 		len += msg_print_text(msg, console_prev, false,
2231 				      text + len, sizeof(text) - len);
2232 		console_idx = log_next(console_idx);
2233 		console_seq++;
2234 		console_prev = msg->flags;
2235 		raw_spin_unlock(&logbuf_lock);
2236 
2237 		stop_critical_timings();	/* don't trace print latency */
2238 		call_console_drivers(level, text, len);
2239 		start_critical_timings();
2240 		local_irq_restore(flags);
2241 	}
2242 	console_locked = 0;
2243 
2244 	/* Release the exclusive_console once it is used */
2245 	if (unlikely(exclusive_console))
2246 		exclusive_console = NULL;
2247 
2248 	raw_spin_unlock(&logbuf_lock);
2249 
2250 	up_console_sem();
2251 
2252 	/*
2253 	 * Someone could have filled up the buffer again, so re-check if there's
2254 	 * something to flush. In case we cannot trylock the console_sem again,
2255 	 * there's a new owner and the console_unlock() from them will do the
2256 	 * flush, no worries.
2257 	 */
2258 	raw_spin_lock(&logbuf_lock);
2259 	retry = console_seq != log_next_seq;
2260 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2261 
2262 	if (retry && console_trylock())
2263 		goto again;
2264 
2265 	if (wake_klogd)
2266 		wake_up_klogd();
2267 }
2268 EXPORT_SYMBOL(console_unlock);
2269 
2270 /**
2271  * console_conditional_schedule - yield the CPU if required
2272  *
2273  * If the console code is currently allowed to sleep, and
2274  * if this CPU should yield the CPU to another task, do
2275  * so here.
2276  *
2277  * Must be called within console_lock();.
2278  */
2279 void __sched console_conditional_schedule(void)
2280 {
2281 	if (console_may_schedule)
2282 		cond_resched();
2283 }
2284 EXPORT_SYMBOL(console_conditional_schedule);
2285 
2286 void console_unblank(void)
2287 {
2288 	struct console *c;
2289 
2290 	/*
2291 	 * console_unblank can no longer be called in interrupt context unless
2292 	 * oops_in_progress is set to 1..
2293 	 */
2294 	if (oops_in_progress) {
2295 		if (down_trylock_console_sem() != 0)
2296 			return;
2297 	} else
2298 		console_lock();
2299 
2300 	console_locked = 1;
2301 	console_may_schedule = 0;
2302 	for_each_console(c)
2303 		if ((c->flags & CON_ENABLED) && c->unblank)
2304 			c->unblank();
2305 	console_unlock();
2306 }
2307 
2308 /*
2309  * Return the console tty driver structure and its associated index
2310  */
2311 struct tty_driver *console_device(int *index)
2312 {
2313 	struct console *c;
2314 	struct tty_driver *driver = NULL;
2315 
2316 	console_lock();
2317 	for_each_console(c) {
2318 		if (!c->device)
2319 			continue;
2320 		driver = c->device(c, index);
2321 		if (driver)
2322 			break;
2323 	}
2324 	console_unlock();
2325 	return driver;
2326 }
2327 
2328 /*
2329  * Prevent further output on the passed console device so that (for example)
2330  * serial drivers can disable console output before suspending a port, and can
2331  * re-enable output afterwards.
2332  */
2333 void console_stop(struct console *console)
2334 {
2335 	console_lock();
2336 	console->flags &= ~CON_ENABLED;
2337 	console_unlock();
2338 }
2339 EXPORT_SYMBOL(console_stop);
2340 
2341 void console_start(struct console *console)
2342 {
2343 	console_lock();
2344 	console->flags |= CON_ENABLED;
2345 	console_unlock();
2346 }
2347 EXPORT_SYMBOL(console_start);
2348 
2349 static int __read_mostly keep_bootcon;
2350 
2351 static int __init keep_bootcon_setup(char *str)
2352 {
2353 	keep_bootcon = 1;
2354 	pr_info("debug: skip boot console de-registration.\n");
2355 
2356 	return 0;
2357 }
2358 
2359 early_param("keep_bootcon", keep_bootcon_setup);
2360 
2361 /*
2362  * The console driver calls this routine during kernel initialization
2363  * to register the console printing procedure with printk() and to
2364  * print any messages that were printed by the kernel before the
2365  * console driver was initialized.
2366  *
2367  * This can happen pretty early during the boot process (because of
2368  * early_printk) - sometimes before setup_arch() completes - be careful
2369  * of what kernel features are used - they may not be initialised yet.
2370  *
2371  * There are two types of consoles - bootconsoles (early_printk) and
2372  * "real" consoles (everything which is not a bootconsole) which are
2373  * handled differently.
2374  *  - Any number of bootconsoles can be registered at any time.
2375  *  - As soon as a "real" console is registered, all bootconsoles
2376  *    will be unregistered automatically.
2377  *  - Once a "real" console is registered, any attempt to register a
2378  *    bootconsoles will be rejected
2379  */
2380 void register_console(struct console *newcon)
2381 {
2382 	int i;
2383 	unsigned long flags;
2384 	struct console *bcon = NULL;
2385 	struct console_cmdline *c;
2386 
2387 	if (console_drivers)
2388 		for_each_console(bcon)
2389 			if (WARN(bcon == newcon,
2390 					"console '%s%d' already registered\n",
2391 					bcon->name, bcon->index))
2392 				return;
2393 
2394 	/*
2395 	 * before we register a new CON_BOOT console, make sure we don't
2396 	 * already have a valid console
2397 	 */
2398 	if (console_drivers && newcon->flags & CON_BOOT) {
2399 		/* find the last or real console */
2400 		for_each_console(bcon) {
2401 			if (!(bcon->flags & CON_BOOT)) {
2402 				pr_info("Too late to register bootconsole %s%d\n",
2403 					newcon->name, newcon->index);
2404 				return;
2405 			}
2406 		}
2407 	}
2408 
2409 	if (console_drivers && console_drivers->flags & CON_BOOT)
2410 		bcon = console_drivers;
2411 
2412 	if (preferred_console < 0 || bcon || !console_drivers)
2413 		preferred_console = selected_console;
2414 
2415 	if (newcon->early_setup)
2416 		newcon->early_setup();
2417 
2418 	/*
2419 	 *	See if we want to use this console driver. If we
2420 	 *	didn't select a console we take the first one
2421 	 *	that registers here.
2422 	 */
2423 	if (preferred_console < 0) {
2424 		if (newcon->index < 0)
2425 			newcon->index = 0;
2426 		if (newcon->setup == NULL ||
2427 		    newcon->setup(newcon, NULL) == 0) {
2428 			newcon->flags |= CON_ENABLED;
2429 			if (newcon->device) {
2430 				newcon->flags |= CON_CONSDEV;
2431 				preferred_console = 0;
2432 			}
2433 		}
2434 	}
2435 
2436 	/*
2437 	 *	See if this console matches one we selected on
2438 	 *	the command line.
2439 	 */
2440 	for (i = 0, c = console_cmdline;
2441 	     i < MAX_CMDLINECONSOLES && c->name[0];
2442 	     i++, c++) {
2443 		if (strcmp(c->name, newcon->name) != 0)
2444 			continue;
2445 		if (newcon->index >= 0 &&
2446 		    newcon->index != c->index)
2447 			continue;
2448 		if (newcon->index < 0)
2449 			newcon->index = c->index;
2450 
2451 		if (_braille_register_console(newcon, c))
2452 			return;
2453 
2454 		if (newcon->setup &&
2455 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2456 			break;
2457 		newcon->flags |= CON_ENABLED;
2458 		newcon->index = c->index;
2459 		if (i == selected_console) {
2460 			newcon->flags |= CON_CONSDEV;
2461 			preferred_console = selected_console;
2462 		}
2463 		break;
2464 	}
2465 
2466 	if (!(newcon->flags & CON_ENABLED))
2467 		return;
2468 
2469 	/*
2470 	 * If we have a bootconsole, and are switching to a real console,
2471 	 * don't print everything out again, since when the boot console, and
2472 	 * the real console are the same physical device, it's annoying to
2473 	 * see the beginning boot messages twice
2474 	 */
2475 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2476 		newcon->flags &= ~CON_PRINTBUFFER;
2477 
2478 	/*
2479 	 *	Put this console in the list - keep the
2480 	 *	preferred driver at the head of the list.
2481 	 */
2482 	console_lock();
2483 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2484 		newcon->next = console_drivers;
2485 		console_drivers = newcon;
2486 		if (newcon->next)
2487 			newcon->next->flags &= ~CON_CONSDEV;
2488 	} else {
2489 		newcon->next = console_drivers->next;
2490 		console_drivers->next = newcon;
2491 	}
2492 	if (newcon->flags & CON_PRINTBUFFER) {
2493 		/*
2494 		 * console_unlock(); will print out the buffered messages
2495 		 * for us.
2496 		 */
2497 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2498 		console_seq = syslog_seq;
2499 		console_idx = syslog_idx;
2500 		console_prev = syslog_prev;
2501 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2502 		/*
2503 		 * We're about to replay the log buffer.  Only do this to the
2504 		 * just-registered console to avoid excessive message spam to
2505 		 * the already-registered consoles.
2506 		 */
2507 		exclusive_console = newcon;
2508 	}
2509 	console_unlock();
2510 	console_sysfs_notify();
2511 
2512 	/*
2513 	 * By unregistering the bootconsoles after we enable the real console
2514 	 * we get the "console xxx enabled" message on all the consoles -
2515 	 * boot consoles, real consoles, etc - this is to ensure that end
2516 	 * users know there might be something in the kernel's log buffer that
2517 	 * went to the bootconsole (that they do not see on the real console)
2518 	 */
2519 	pr_info("%sconsole [%s%d] enabled\n",
2520 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2521 		newcon->name, newcon->index);
2522 	if (bcon &&
2523 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2524 	    !keep_bootcon) {
2525 		/* We need to iterate through all boot consoles, to make
2526 		 * sure we print everything out, before we unregister them.
2527 		 */
2528 		for_each_console(bcon)
2529 			if (bcon->flags & CON_BOOT)
2530 				unregister_console(bcon);
2531 	}
2532 }
2533 EXPORT_SYMBOL(register_console);
2534 
2535 int unregister_console(struct console *console)
2536 {
2537         struct console *a, *b;
2538 	int res;
2539 
2540 	pr_info("%sconsole [%s%d] disabled\n",
2541 		(console->flags & CON_BOOT) ? "boot" : "" ,
2542 		console->name, console->index);
2543 
2544 	res = _braille_unregister_console(console);
2545 	if (res)
2546 		return res;
2547 
2548 	res = 1;
2549 	console_lock();
2550 	if (console_drivers == console) {
2551 		console_drivers=console->next;
2552 		res = 0;
2553 	} else if (console_drivers) {
2554 		for (a=console_drivers->next, b=console_drivers ;
2555 		     a; b=a, a=b->next) {
2556 			if (a == console) {
2557 				b->next = a->next;
2558 				res = 0;
2559 				break;
2560 			}
2561 		}
2562 	}
2563 
2564 	/*
2565 	 * If this isn't the last console and it has CON_CONSDEV set, we
2566 	 * need to set it on the next preferred console.
2567 	 */
2568 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2569 		console_drivers->flags |= CON_CONSDEV;
2570 
2571 	console->flags &= ~CON_ENABLED;
2572 	console_unlock();
2573 	console_sysfs_notify();
2574 	return res;
2575 }
2576 EXPORT_SYMBOL(unregister_console);
2577 
2578 static int __init printk_late_init(void)
2579 {
2580 	struct console *con;
2581 
2582 	for_each_console(con) {
2583 		if (!keep_bootcon && con->flags & CON_BOOT) {
2584 			unregister_console(con);
2585 		}
2586 	}
2587 	hotcpu_notifier(console_cpu_notify, 0);
2588 	return 0;
2589 }
2590 late_initcall(printk_late_init);
2591 
2592 #if defined CONFIG_PRINTK
2593 /*
2594  * Delayed printk version, for scheduler-internal messages:
2595  */
2596 #define PRINTK_PENDING_WAKEUP	0x01
2597 #define PRINTK_PENDING_OUTPUT	0x02
2598 
2599 static DEFINE_PER_CPU(int, printk_pending);
2600 
2601 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2602 {
2603 	int pending = __this_cpu_xchg(printk_pending, 0);
2604 
2605 	if (pending & PRINTK_PENDING_OUTPUT) {
2606 		/* If trylock fails, someone else is doing the printing */
2607 		if (console_trylock())
2608 			console_unlock();
2609 	}
2610 
2611 	if (pending & PRINTK_PENDING_WAKEUP)
2612 		wake_up_interruptible(&log_wait);
2613 }
2614 
2615 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2616 	.func = wake_up_klogd_work_func,
2617 	.flags = IRQ_WORK_LAZY,
2618 };
2619 
2620 void wake_up_klogd(void)
2621 {
2622 	preempt_disable();
2623 	if (waitqueue_active(&log_wait)) {
2624 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2625 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2626 	}
2627 	preempt_enable();
2628 }
2629 
2630 int printk_deferred(const char *fmt, ...)
2631 {
2632 	va_list args;
2633 	int r;
2634 
2635 	preempt_disable();
2636 	va_start(args, fmt);
2637 	r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2638 	va_end(args);
2639 
2640 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2641 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2642 	preempt_enable();
2643 
2644 	return r;
2645 }
2646 
2647 /*
2648  * printk rate limiting, lifted from the networking subsystem.
2649  *
2650  * This enforces a rate limit: not more than 10 kernel messages
2651  * every 5s to make a denial-of-service attack impossible.
2652  */
2653 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2654 
2655 int __printk_ratelimit(const char *func)
2656 {
2657 	return ___ratelimit(&printk_ratelimit_state, func);
2658 }
2659 EXPORT_SYMBOL(__printk_ratelimit);
2660 
2661 /**
2662  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2663  * @caller_jiffies: pointer to caller's state
2664  * @interval_msecs: minimum interval between prints
2665  *
2666  * printk_timed_ratelimit() returns true if more than @interval_msecs
2667  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2668  * returned true.
2669  */
2670 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2671 			unsigned int interval_msecs)
2672 {
2673 	unsigned long elapsed = jiffies - *caller_jiffies;
2674 
2675 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2676 		return false;
2677 
2678 	*caller_jiffies = jiffies;
2679 	return true;
2680 }
2681 EXPORT_SYMBOL(printk_timed_ratelimit);
2682 
2683 static DEFINE_SPINLOCK(dump_list_lock);
2684 static LIST_HEAD(dump_list);
2685 
2686 /**
2687  * kmsg_dump_register - register a kernel log dumper.
2688  * @dumper: pointer to the kmsg_dumper structure
2689  *
2690  * Adds a kernel log dumper to the system. The dump callback in the
2691  * structure will be called when the kernel oopses or panics and must be
2692  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2693  */
2694 int kmsg_dump_register(struct kmsg_dumper *dumper)
2695 {
2696 	unsigned long flags;
2697 	int err = -EBUSY;
2698 
2699 	/* The dump callback needs to be set */
2700 	if (!dumper->dump)
2701 		return -EINVAL;
2702 
2703 	spin_lock_irqsave(&dump_list_lock, flags);
2704 	/* Don't allow registering multiple times */
2705 	if (!dumper->registered) {
2706 		dumper->registered = 1;
2707 		list_add_tail_rcu(&dumper->list, &dump_list);
2708 		err = 0;
2709 	}
2710 	spin_unlock_irqrestore(&dump_list_lock, flags);
2711 
2712 	return err;
2713 }
2714 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2715 
2716 /**
2717  * kmsg_dump_unregister - unregister a kmsg dumper.
2718  * @dumper: pointer to the kmsg_dumper structure
2719  *
2720  * Removes a dump device from the system. Returns zero on success and
2721  * %-EINVAL otherwise.
2722  */
2723 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2724 {
2725 	unsigned long flags;
2726 	int err = -EINVAL;
2727 
2728 	spin_lock_irqsave(&dump_list_lock, flags);
2729 	if (dumper->registered) {
2730 		dumper->registered = 0;
2731 		list_del_rcu(&dumper->list);
2732 		err = 0;
2733 	}
2734 	spin_unlock_irqrestore(&dump_list_lock, flags);
2735 	synchronize_rcu();
2736 
2737 	return err;
2738 }
2739 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2740 
2741 static bool always_kmsg_dump;
2742 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2743 
2744 /**
2745  * kmsg_dump - dump kernel log to kernel message dumpers.
2746  * @reason: the reason (oops, panic etc) for dumping
2747  *
2748  * Call each of the registered dumper's dump() callback, which can
2749  * retrieve the kmsg records with kmsg_dump_get_line() or
2750  * kmsg_dump_get_buffer().
2751  */
2752 void kmsg_dump(enum kmsg_dump_reason reason)
2753 {
2754 	struct kmsg_dumper *dumper;
2755 	unsigned long flags;
2756 
2757 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2758 		return;
2759 
2760 	rcu_read_lock();
2761 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2762 		if (dumper->max_reason && reason > dumper->max_reason)
2763 			continue;
2764 
2765 		/* initialize iterator with data about the stored records */
2766 		dumper->active = true;
2767 
2768 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2769 		dumper->cur_seq = clear_seq;
2770 		dumper->cur_idx = clear_idx;
2771 		dumper->next_seq = log_next_seq;
2772 		dumper->next_idx = log_next_idx;
2773 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2774 
2775 		/* invoke dumper which will iterate over records */
2776 		dumper->dump(dumper, reason);
2777 
2778 		/* reset iterator */
2779 		dumper->active = false;
2780 	}
2781 	rcu_read_unlock();
2782 }
2783 
2784 /**
2785  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2786  * @dumper: registered kmsg dumper
2787  * @syslog: include the "<4>" prefixes
2788  * @line: buffer to copy the line to
2789  * @size: maximum size of the buffer
2790  * @len: length of line placed into buffer
2791  *
2792  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2793  * record, and copy one record into the provided buffer.
2794  *
2795  * Consecutive calls will return the next available record moving
2796  * towards the end of the buffer with the youngest messages.
2797  *
2798  * A return value of FALSE indicates that there are no more records to
2799  * read.
2800  *
2801  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2802  */
2803 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2804 			       char *line, size_t size, size_t *len)
2805 {
2806 	struct printk_log *msg;
2807 	size_t l = 0;
2808 	bool ret = false;
2809 
2810 	if (!dumper->active)
2811 		goto out;
2812 
2813 	if (dumper->cur_seq < log_first_seq) {
2814 		/* messages are gone, move to first available one */
2815 		dumper->cur_seq = log_first_seq;
2816 		dumper->cur_idx = log_first_idx;
2817 	}
2818 
2819 	/* last entry */
2820 	if (dumper->cur_seq >= log_next_seq)
2821 		goto out;
2822 
2823 	msg = log_from_idx(dumper->cur_idx);
2824 	l = msg_print_text(msg, 0, syslog, line, size);
2825 
2826 	dumper->cur_idx = log_next(dumper->cur_idx);
2827 	dumper->cur_seq++;
2828 	ret = true;
2829 out:
2830 	if (len)
2831 		*len = l;
2832 	return ret;
2833 }
2834 
2835 /**
2836  * kmsg_dump_get_line - retrieve one kmsg log line
2837  * @dumper: registered kmsg dumper
2838  * @syslog: include the "<4>" prefixes
2839  * @line: buffer to copy the line to
2840  * @size: maximum size of the buffer
2841  * @len: length of line placed into buffer
2842  *
2843  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2844  * record, and copy one record into the provided buffer.
2845  *
2846  * Consecutive calls will return the next available record moving
2847  * towards the end of the buffer with the youngest messages.
2848  *
2849  * A return value of FALSE indicates that there are no more records to
2850  * read.
2851  */
2852 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2853 			char *line, size_t size, size_t *len)
2854 {
2855 	unsigned long flags;
2856 	bool ret;
2857 
2858 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2859 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2860 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2861 
2862 	return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2865 
2866 /**
2867  * kmsg_dump_get_buffer - copy kmsg log lines
2868  * @dumper: registered kmsg dumper
2869  * @syslog: include the "<4>" prefixes
2870  * @buf: buffer to copy the line to
2871  * @size: maximum size of the buffer
2872  * @len: length of line placed into buffer
2873  *
2874  * Start at the end of the kmsg buffer and fill the provided buffer
2875  * with as many of the the *youngest* kmsg records that fit into it.
2876  * If the buffer is large enough, all available kmsg records will be
2877  * copied with a single call.
2878  *
2879  * Consecutive calls will fill the buffer with the next block of
2880  * available older records, not including the earlier retrieved ones.
2881  *
2882  * A return value of FALSE indicates that there are no more records to
2883  * read.
2884  */
2885 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2886 			  char *buf, size_t size, size_t *len)
2887 {
2888 	unsigned long flags;
2889 	u64 seq;
2890 	u32 idx;
2891 	u64 next_seq;
2892 	u32 next_idx;
2893 	enum log_flags prev;
2894 	size_t l = 0;
2895 	bool ret = false;
2896 
2897 	if (!dumper->active)
2898 		goto out;
2899 
2900 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2901 	if (dumper->cur_seq < log_first_seq) {
2902 		/* messages are gone, move to first available one */
2903 		dumper->cur_seq = log_first_seq;
2904 		dumper->cur_idx = log_first_idx;
2905 	}
2906 
2907 	/* last entry */
2908 	if (dumper->cur_seq >= dumper->next_seq) {
2909 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2910 		goto out;
2911 	}
2912 
2913 	/* calculate length of entire buffer */
2914 	seq = dumper->cur_seq;
2915 	idx = dumper->cur_idx;
2916 	prev = 0;
2917 	while (seq < dumper->next_seq) {
2918 		struct printk_log *msg = log_from_idx(idx);
2919 
2920 		l += msg_print_text(msg, prev, true, NULL, 0);
2921 		idx = log_next(idx);
2922 		seq++;
2923 		prev = msg->flags;
2924 	}
2925 
2926 	/* move first record forward until length fits into the buffer */
2927 	seq = dumper->cur_seq;
2928 	idx = dumper->cur_idx;
2929 	prev = 0;
2930 	while (l > size && seq < dumper->next_seq) {
2931 		struct printk_log *msg = log_from_idx(idx);
2932 
2933 		l -= msg_print_text(msg, prev, true, NULL, 0);
2934 		idx = log_next(idx);
2935 		seq++;
2936 		prev = msg->flags;
2937 	}
2938 
2939 	/* last message in next interation */
2940 	next_seq = seq;
2941 	next_idx = idx;
2942 
2943 	l = 0;
2944 	while (seq < dumper->next_seq) {
2945 		struct printk_log *msg = log_from_idx(idx);
2946 
2947 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2948 		idx = log_next(idx);
2949 		seq++;
2950 		prev = msg->flags;
2951 	}
2952 
2953 	dumper->next_seq = next_seq;
2954 	dumper->next_idx = next_idx;
2955 	ret = true;
2956 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2957 out:
2958 	if (len)
2959 		*len = l;
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2963 
2964 /**
2965  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2966  * @dumper: registered kmsg dumper
2967  *
2968  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2969  * kmsg_dump_get_buffer() can be called again and used multiple
2970  * times within the same dumper.dump() callback.
2971  *
2972  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2973  */
2974 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2975 {
2976 	dumper->cur_seq = clear_seq;
2977 	dumper->cur_idx = clear_idx;
2978 	dumper->next_seq = log_next_seq;
2979 	dumper->next_idx = log_next_idx;
2980 }
2981 
2982 /**
2983  * kmsg_dump_rewind - reset the interator
2984  * @dumper: registered kmsg dumper
2985  *
2986  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2987  * kmsg_dump_get_buffer() can be called again and used multiple
2988  * times within the same dumper.dump() callback.
2989  */
2990 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2991 {
2992 	unsigned long flags;
2993 
2994 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2995 	kmsg_dump_rewind_nolock(dumper);
2996 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2997 }
2998 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2999 
3000 static char dump_stack_arch_desc_str[128];
3001 
3002 /**
3003  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3004  * @fmt: printf-style format string
3005  * @...: arguments for the format string
3006  *
3007  * The configured string will be printed right after utsname during task
3008  * dumps.  Usually used to add arch-specific system identifiers.  If an
3009  * arch wants to make use of such an ID string, it should initialize this
3010  * as soon as possible during boot.
3011  */
3012 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3013 {
3014 	va_list args;
3015 
3016 	va_start(args, fmt);
3017 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3018 		  fmt, args);
3019 	va_end(args);
3020 }
3021 
3022 /**
3023  * dump_stack_print_info - print generic debug info for dump_stack()
3024  * @log_lvl: log level
3025  *
3026  * Arch-specific dump_stack() implementations can use this function to
3027  * print out the same debug information as the generic dump_stack().
3028  */
3029 void dump_stack_print_info(const char *log_lvl)
3030 {
3031 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3032 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3033 	       print_tainted(), init_utsname()->release,
3034 	       (int)strcspn(init_utsname()->version, " "),
3035 	       init_utsname()->version);
3036 
3037 	if (dump_stack_arch_desc_str[0] != '\0')
3038 		printk("%sHardware name: %s\n",
3039 		       log_lvl, dump_stack_arch_desc_str);
3040 
3041 	print_worker_info(log_lvl, current);
3042 }
3043 
3044 /**
3045  * show_regs_print_info - print generic debug info for show_regs()
3046  * @log_lvl: log level
3047  *
3048  * show_regs() implementations can use this function to print out generic
3049  * debug information.
3050  */
3051 void show_regs_print_info(const char *log_lvl)
3052 {
3053 	dump_stack_print_info(log_lvl);
3054 
3055 	printk("%stask: %p ti: %p task.ti: %p\n",
3056 	       log_lvl, current, current_thread_info(),
3057 	       task_thread_info(current));
3058 }
3059 
3060 #endif
3061