1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/kexec.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 49 #include <asm/uaccess.h> 50 #include <asm/sections.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 #include "internal.h" 58 59 int console_printk[4] = { 60 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 61 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 62 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 63 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 64 }; 65 66 /* 67 * Low level drivers may need that to know if they can schedule in 68 * their unblank() callback or not. So let's export it. 69 */ 70 int oops_in_progress; 71 EXPORT_SYMBOL(oops_in_progress); 72 73 /* 74 * console_sem protects the console_drivers list, and also 75 * provides serialisation for access to the entire console 76 * driver system. 77 */ 78 static DEFINE_SEMAPHORE(console_sem); 79 struct console *console_drivers; 80 EXPORT_SYMBOL_GPL(console_drivers); 81 82 #ifdef CONFIG_LOCKDEP 83 static struct lockdep_map console_lock_dep_map = { 84 .name = "console_lock" 85 }; 86 #endif 87 88 enum devkmsg_log_bits { 89 __DEVKMSG_LOG_BIT_ON = 0, 90 __DEVKMSG_LOG_BIT_OFF, 91 __DEVKMSG_LOG_BIT_LOCK, 92 }; 93 94 enum devkmsg_log_masks { 95 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 96 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 97 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 98 }; 99 100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 101 #define DEVKMSG_LOG_MASK_DEFAULT 0 102 103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 104 105 static int __control_devkmsg(char *str) 106 { 107 if (!str) 108 return -EINVAL; 109 110 if (!strncmp(str, "on", 2)) { 111 devkmsg_log = DEVKMSG_LOG_MASK_ON; 112 return 2; 113 } else if (!strncmp(str, "off", 3)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 115 return 3; 116 } else if (!strncmp(str, "ratelimit", 9)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 return 9; 119 } 120 return -EINVAL; 121 } 122 123 static int __init control_devkmsg(char *str) 124 { 125 if (__control_devkmsg(str) < 0) 126 return 1; 127 128 /* 129 * Set sysctl string accordingly: 130 */ 131 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 132 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 133 strncpy(devkmsg_log_str, "on", 2); 134 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "off", 3); 137 } 138 /* else "ratelimit" which is set by default. */ 139 140 /* 141 * Sysctl cannot change it anymore. The kernel command line setting of 142 * this parameter is to force the setting to be permanent throughout the 143 * runtime of the system. This is a precation measure against userspace 144 * trying to be a smarta** and attempting to change it up on us. 145 */ 146 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 147 148 return 0; 149 } 150 __setup("printk.devkmsg=", control_devkmsg); 151 152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 153 154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 155 void __user *buffer, size_t *lenp, loff_t *ppos) 156 { 157 char old_str[DEVKMSG_STR_MAX_SIZE]; 158 unsigned int old; 159 int err; 160 161 if (write) { 162 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 163 return -EINVAL; 164 165 old = devkmsg_log; 166 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 167 } 168 169 err = proc_dostring(table, write, buffer, lenp, ppos); 170 if (err) 171 return err; 172 173 if (write) { 174 err = __control_devkmsg(devkmsg_log_str); 175 176 /* 177 * Do not accept an unknown string OR a known string with 178 * trailing crap... 179 */ 180 if (err < 0 || (err + 1 != *lenp)) { 181 182 /* ... and restore old setting. */ 183 devkmsg_log = old; 184 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 185 186 return -EINVAL; 187 } 188 } 189 190 return 0; 191 } 192 193 /* 194 * Number of registered extended console drivers. 195 * 196 * If extended consoles are present, in-kernel cont reassembly is disabled 197 * and each fragment is stored as a separate log entry with proper 198 * continuation flag so that every emitted message has full metadata. This 199 * doesn't change the result for regular consoles or /proc/kmsg. For 200 * /dev/kmsg, as long as the reader concatenates messages according to 201 * consecutive continuation flags, the end result should be the same too. 202 */ 203 static int nr_ext_console_drivers; 204 205 /* 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 207 * macros instead of functions so that _RET_IP_ contains useful information. 208 */ 209 #define down_console_sem() do { \ 210 down(&console_sem);\ 211 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 212 } while (0) 213 214 static int __down_trylock_console_sem(unsigned long ip) 215 { 216 if (down_trylock(&console_sem)) 217 return 1; 218 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 219 return 0; 220 } 221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 222 223 #define up_console_sem() do { \ 224 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 225 up(&console_sem);\ 226 } while (0) 227 228 /* 229 * This is used for debugging the mess that is the VT code by 230 * keeping track if we have the console semaphore held. It's 231 * definitely not the perfect debug tool (we don't know if _WE_ 232 * hold it and are racing, but it helps tracking those weird code 233 * paths in the console code where we end up in places I want 234 * locked without the console sempahore held). 235 */ 236 static int console_locked, console_suspended; 237 238 /* 239 * If exclusive_console is non-NULL then only this console is to be printed to. 240 */ 241 static struct console *exclusive_console; 242 243 /* 244 * Array of consoles built from command line options (console=) 245 */ 246 247 #define MAX_CMDLINECONSOLES 8 248 249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 250 251 static int selected_console = -1; 252 static int preferred_console = -1; 253 int console_set_on_cmdline; 254 EXPORT_SYMBOL(console_set_on_cmdline); 255 256 /* Flag: console code may call schedule() */ 257 static int console_may_schedule; 258 259 /* 260 * The printk log buffer consists of a chain of concatenated variable 261 * length records. Every record starts with a record header, containing 262 * the overall length of the record. 263 * 264 * The heads to the first and last entry in the buffer, as well as the 265 * sequence numbers of these entries are maintained when messages are 266 * stored. 267 * 268 * If the heads indicate available messages, the length in the header 269 * tells the start next message. A length == 0 for the next message 270 * indicates a wrap-around to the beginning of the buffer. 271 * 272 * Every record carries the monotonic timestamp in microseconds, as well as 273 * the standard userspace syslog level and syslog facility. The usual 274 * kernel messages use LOG_KERN; userspace-injected messages always carry 275 * a matching syslog facility, by default LOG_USER. The origin of every 276 * message can be reliably determined that way. 277 * 278 * The human readable log message directly follows the message header. The 279 * length of the message text is stored in the header, the stored message 280 * is not terminated. 281 * 282 * Optionally, a message can carry a dictionary of properties (key/value pairs), 283 * to provide userspace with a machine-readable message context. 284 * 285 * Examples for well-defined, commonly used property names are: 286 * DEVICE=b12:8 device identifier 287 * b12:8 block dev_t 288 * c127:3 char dev_t 289 * n8 netdev ifindex 290 * +sound:card0 subsystem:devname 291 * SUBSYSTEM=pci driver-core subsystem name 292 * 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 294 * follows directly after a '=' character. Every property is terminated by 295 * a '\0' character. The last property is not terminated. 296 * 297 * Example of a message structure: 298 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 299 * 0008 34 00 record is 52 bytes long 300 * 000a 0b 00 text is 11 bytes long 301 * 000c 1f 00 dictionary is 23 bytes long 302 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 303 * 0010 69 74 27 73 20 61 20 6c "it's a l" 304 * 69 6e 65 "ine" 305 * 001b 44 45 56 49 43 "DEVIC" 306 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 307 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 308 * 67 "g" 309 * 0032 00 00 00 padding to next message header 310 * 311 * The 'struct printk_log' buffer header must never be directly exported to 312 * userspace, it is a kernel-private implementation detail that might 313 * need to be changed in the future, when the requirements change. 314 * 315 * /dev/kmsg exports the structured data in the following line format: 316 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 317 * 318 * Users of the export format should ignore possible additional values 319 * separated by ',', and find the message after the ';' character. 320 * 321 * The optional key/value pairs are attached as continuation lines starting 322 * with a space character and terminated by a newline. All possible 323 * non-prinatable characters are escaped in the "\xff" notation. 324 */ 325 326 enum log_flags { 327 LOG_NOCONS = 1, /* already flushed, do not print to console */ 328 LOG_NEWLINE = 2, /* text ended with a newline */ 329 LOG_PREFIX = 4, /* text started with a prefix */ 330 LOG_CONT = 8, /* text is a fragment of a continuation line */ 331 }; 332 333 struct printk_log { 334 u64 ts_nsec; /* timestamp in nanoseconds */ 335 u16 len; /* length of entire record */ 336 u16 text_len; /* length of text buffer */ 337 u16 dict_len; /* length of dictionary buffer */ 338 u8 facility; /* syslog facility */ 339 u8 flags:5; /* internal record flags */ 340 u8 level:3; /* syslog level */ 341 } 342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 343 __packed __aligned(4) 344 #endif 345 ; 346 347 /* 348 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 349 * within the scheduler's rq lock. It must be released before calling 350 * console_unlock() or anything else that might wake up a process. 351 */ 352 DEFINE_RAW_SPINLOCK(logbuf_lock); 353 354 #ifdef CONFIG_PRINTK 355 DECLARE_WAIT_QUEUE_HEAD(log_wait); 356 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 357 static u64 syslog_seq; 358 static u32 syslog_idx; 359 static enum log_flags syslog_prev; 360 static size_t syslog_partial; 361 362 /* index and sequence number of the first record stored in the buffer */ 363 static u64 log_first_seq; 364 static u32 log_first_idx; 365 366 /* index and sequence number of the next record to store in the buffer */ 367 static u64 log_next_seq; 368 static u32 log_next_idx; 369 370 /* the next printk record to write to the console */ 371 static u64 console_seq; 372 static u32 console_idx; 373 static enum log_flags console_prev; 374 375 /* the next printk record to read after the last 'clear' command */ 376 static u64 clear_seq; 377 static u32 clear_idx; 378 379 #define PREFIX_MAX 32 380 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 381 382 #define LOG_LEVEL(v) ((v) & 0x07) 383 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 384 385 /* record buffer */ 386 #define LOG_ALIGN __alignof__(struct printk_log) 387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 389 static char *log_buf = __log_buf; 390 static u32 log_buf_len = __LOG_BUF_LEN; 391 392 /* Return log buffer address */ 393 char *log_buf_addr_get(void) 394 { 395 return log_buf; 396 } 397 398 /* Return log buffer size */ 399 u32 log_buf_len_get(void) 400 { 401 return log_buf_len; 402 } 403 404 /* human readable text of the record */ 405 static char *log_text(const struct printk_log *msg) 406 { 407 return (char *)msg + sizeof(struct printk_log); 408 } 409 410 /* optional key/value pair dictionary attached to the record */ 411 static char *log_dict(const struct printk_log *msg) 412 { 413 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 414 } 415 416 /* get record by index; idx must point to valid msg */ 417 static struct printk_log *log_from_idx(u32 idx) 418 { 419 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 420 421 /* 422 * A length == 0 record is the end of buffer marker. Wrap around and 423 * read the message at the start of the buffer. 424 */ 425 if (!msg->len) 426 return (struct printk_log *)log_buf; 427 return msg; 428 } 429 430 /* get next record; idx must point to valid msg */ 431 static u32 log_next(u32 idx) 432 { 433 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 434 435 /* length == 0 indicates the end of the buffer; wrap */ 436 /* 437 * A length == 0 record is the end of buffer marker. Wrap around and 438 * read the message at the start of the buffer as *this* one, and 439 * return the one after that. 440 */ 441 if (!msg->len) { 442 msg = (struct printk_log *)log_buf; 443 return msg->len; 444 } 445 return idx + msg->len; 446 } 447 448 /* 449 * Check whether there is enough free space for the given message. 450 * 451 * The same values of first_idx and next_idx mean that the buffer 452 * is either empty or full. 453 * 454 * If the buffer is empty, we must respect the position of the indexes. 455 * They cannot be reset to the beginning of the buffer. 456 */ 457 static int logbuf_has_space(u32 msg_size, bool empty) 458 { 459 u32 free; 460 461 if (log_next_idx > log_first_idx || empty) 462 free = max(log_buf_len - log_next_idx, log_first_idx); 463 else 464 free = log_first_idx - log_next_idx; 465 466 /* 467 * We need space also for an empty header that signalizes wrapping 468 * of the buffer. 469 */ 470 return free >= msg_size + sizeof(struct printk_log); 471 } 472 473 static int log_make_free_space(u32 msg_size) 474 { 475 while (log_first_seq < log_next_seq && 476 !logbuf_has_space(msg_size, false)) { 477 /* drop old messages until we have enough contiguous space */ 478 log_first_idx = log_next(log_first_idx); 479 log_first_seq++; 480 } 481 482 if (clear_seq < log_first_seq) { 483 clear_seq = log_first_seq; 484 clear_idx = log_first_idx; 485 } 486 487 /* sequence numbers are equal, so the log buffer is empty */ 488 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 489 return 0; 490 491 return -ENOMEM; 492 } 493 494 /* compute the message size including the padding bytes */ 495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 496 { 497 u32 size; 498 499 size = sizeof(struct printk_log) + text_len + dict_len; 500 *pad_len = (-size) & (LOG_ALIGN - 1); 501 size += *pad_len; 502 503 return size; 504 } 505 506 /* 507 * Define how much of the log buffer we could take at maximum. The value 508 * must be greater than two. Note that only half of the buffer is available 509 * when the index points to the middle. 510 */ 511 #define MAX_LOG_TAKE_PART 4 512 static const char trunc_msg[] = "<truncated>"; 513 514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 515 u16 *dict_len, u32 *pad_len) 516 { 517 /* 518 * The message should not take the whole buffer. Otherwise, it might 519 * get removed too soon. 520 */ 521 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 522 if (*text_len > max_text_len) 523 *text_len = max_text_len; 524 /* enable the warning message */ 525 *trunc_msg_len = strlen(trunc_msg); 526 /* disable the "dict" completely */ 527 *dict_len = 0; 528 /* compute the size again, count also the warning message */ 529 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 530 } 531 532 /* insert record into the buffer, discard old ones, update heads */ 533 static int log_store(int facility, int level, 534 enum log_flags flags, u64 ts_nsec, 535 const char *dict, u16 dict_len, 536 const char *text, u16 text_len) 537 { 538 struct printk_log *msg; 539 u32 size, pad_len; 540 u16 trunc_msg_len = 0; 541 542 /* number of '\0' padding bytes to next message */ 543 size = msg_used_size(text_len, dict_len, &pad_len); 544 545 if (log_make_free_space(size)) { 546 /* truncate the message if it is too long for empty buffer */ 547 size = truncate_msg(&text_len, &trunc_msg_len, 548 &dict_len, &pad_len); 549 /* survive when the log buffer is too small for trunc_msg */ 550 if (log_make_free_space(size)) 551 return 0; 552 } 553 554 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 555 /* 556 * This message + an additional empty header does not fit 557 * at the end of the buffer. Add an empty header with len == 0 558 * to signify a wrap around. 559 */ 560 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 561 log_next_idx = 0; 562 } 563 564 /* fill message */ 565 msg = (struct printk_log *)(log_buf + log_next_idx); 566 memcpy(log_text(msg), text, text_len); 567 msg->text_len = text_len; 568 if (trunc_msg_len) { 569 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 570 msg->text_len += trunc_msg_len; 571 } 572 memcpy(log_dict(msg), dict, dict_len); 573 msg->dict_len = dict_len; 574 msg->facility = facility; 575 msg->level = level & 7; 576 msg->flags = flags & 0x1f; 577 if (ts_nsec > 0) 578 msg->ts_nsec = ts_nsec; 579 else 580 msg->ts_nsec = local_clock(); 581 memset(log_dict(msg) + dict_len, 0, pad_len); 582 msg->len = size; 583 584 /* insert message */ 585 log_next_idx += msg->len; 586 log_next_seq++; 587 588 return msg->text_len; 589 } 590 591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 592 593 static int syslog_action_restricted(int type) 594 { 595 if (dmesg_restrict) 596 return 1; 597 /* 598 * Unless restricted, we allow "read all" and "get buffer size" 599 * for everybody. 600 */ 601 return type != SYSLOG_ACTION_READ_ALL && 602 type != SYSLOG_ACTION_SIZE_BUFFER; 603 } 604 605 int check_syslog_permissions(int type, int source) 606 { 607 /* 608 * If this is from /proc/kmsg and we've already opened it, then we've 609 * already done the capabilities checks at open time. 610 */ 611 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 612 goto ok; 613 614 if (syslog_action_restricted(type)) { 615 if (capable(CAP_SYSLOG)) 616 goto ok; 617 /* 618 * For historical reasons, accept CAP_SYS_ADMIN too, with 619 * a warning. 620 */ 621 if (capable(CAP_SYS_ADMIN)) { 622 pr_warn_once("%s (%d): Attempt to access syslog with " 623 "CAP_SYS_ADMIN but no CAP_SYSLOG " 624 "(deprecated).\n", 625 current->comm, task_pid_nr(current)); 626 goto ok; 627 } 628 return -EPERM; 629 } 630 ok: 631 return security_syslog(type); 632 } 633 EXPORT_SYMBOL_GPL(check_syslog_permissions); 634 635 static void append_char(char **pp, char *e, char c) 636 { 637 if (*pp < e) 638 *(*pp)++ = c; 639 } 640 641 static ssize_t msg_print_ext_header(char *buf, size_t size, 642 struct printk_log *msg, u64 seq, 643 enum log_flags prev_flags) 644 { 645 u64 ts_usec = msg->ts_nsec; 646 char cont = '-'; 647 648 do_div(ts_usec, 1000); 649 650 /* 651 * If we couldn't merge continuation line fragments during the print, 652 * export the stored flags to allow an optional external merge of the 653 * records. Merging the records isn't always neccessarily correct, like 654 * when we hit a race during printing. In most cases though, it produces 655 * better readable output. 'c' in the record flags mark the first 656 * fragment of a line, '+' the following. 657 */ 658 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT)) 659 cont = 'c'; 660 else if ((msg->flags & LOG_CONT) || 661 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 662 cont = '+'; 663 664 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 665 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 666 } 667 668 static ssize_t msg_print_ext_body(char *buf, size_t size, 669 char *dict, size_t dict_len, 670 char *text, size_t text_len) 671 { 672 char *p = buf, *e = buf + size; 673 size_t i; 674 675 /* escape non-printable characters */ 676 for (i = 0; i < text_len; i++) { 677 unsigned char c = text[i]; 678 679 if (c < ' ' || c >= 127 || c == '\\') 680 p += scnprintf(p, e - p, "\\x%02x", c); 681 else 682 append_char(&p, e, c); 683 } 684 append_char(&p, e, '\n'); 685 686 if (dict_len) { 687 bool line = true; 688 689 for (i = 0; i < dict_len; i++) { 690 unsigned char c = dict[i]; 691 692 if (line) { 693 append_char(&p, e, ' '); 694 line = false; 695 } 696 697 if (c == '\0') { 698 append_char(&p, e, '\n'); 699 line = true; 700 continue; 701 } 702 703 if (c < ' ' || c >= 127 || c == '\\') { 704 p += scnprintf(p, e - p, "\\x%02x", c); 705 continue; 706 } 707 708 append_char(&p, e, c); 709 } 710 append_char(&p, e, '\n'); 711 } 712 713 return p - buf; 714 } 715 716 /* /dev/kmsg - userspace message inject/listen interface */ 717 struct devkmsg_user { 718 u64 seq; 719 u32 idx; 720 enum log_flags prev; 721 struct ratelimit_state rs; 722 struct mutex lock; 723 char buf[CONSOLE_EXT_LOG_MAX]; 724 }; 725 726 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 727 { 728 char *buf, *line; 729 int level = default_message_loglevel; 730 int facility = 1; /* LOG_USER */ 731 struct file *file = iocb->ki_filp; 732 struct devkmsg_user *user = file->private_data; 733 size_t len = iov_iter_count(from); 734 ssize_t ret = len; 735 736 if (!user || len > LOG_LINE_MAX) 737 return -EINVAL; 738 739 /* Ignore when user logging is disabled. */ 740 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 741 return len; 742 743 /* Ratelimit when not explicitly enabled. */ 744 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 745 if (!___ratelimit(&user->rs, current->comm)) 746 return ret; 747 } 748 749 buf = kmalloc(len+1, GFP_KERNEL); 750 if (buf == NULL) 751 return -ENOMEM; 752 753 buf[len] = '\0'; 754 if (copy_from_iter(buf, len, from) != len) { 755 kfree(buf); 756 return -EFAULT; 757 } 758 759 /* 760 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 761 * the decimal value represents 32bit, the lower 3 bit are the log 762 * level, the rest are the log facility. 763 * 764 * If no prefix or no userspace facility is specified, we 765 * enforce LOG_USER, to be able to reliably distinguish 766 * kernel-generated messages from userspace-injected ones. 767 */ 768 line = buf; 769 if (line[0] == '<') { 770 char *endp = NULL; 771 unsigned int u; 772 773 u = simple_strtoul(line + 1, &endp, 10); 774 if (endp && endp[0] == '>') { 775 level = LOG_LEVEL(u); 776 if (LOG_FACILITY(u) != 0) 777 facility = LOG_FACILITY(u); 778 endp++; 779 len -= endp - line; 780 line = endp; 781 } 782 } 783 784 printk_emit(facility, level, NULL, 0, "%s", line); 785 kfree(buf); 786 return ret; 787 } 788 789 static ssize_t devkmsg_read(struct file *file, char __user *buf, 790 size_t count, loff_t *ppos) 791 { 792 struct devkmsg_user *user = file->private_data; 793 struct printk_log *msg; 794 size_t len; 795 ssize_t ret; 796 797 if (!user) 798 return -EBADF; 799 800 ret = mutex_lock_interruptible(&user->lock); 801 if (ret) 802 return ret; 803 raw_spin_lock_irq(&logbuf_lock); 804 while (user->seq == log_next_seq) { 805 if (file->f_flags & O_NONBLOCK) { 806 ret = -EAGAIN; 807 raw_spin_unlock_irq(&logbuf_lock); 808 goto out; 809 } 810 811 raw_spin_unlock_irq(&logbuf_lock); 812 ret = wait_event_interruptible(log_wait, 813 user->seq != log_next_seq); 814 if (ret) 815 goto out; 816 raw_spin_lock_irq(&logbuf_lock); 817 } 818 819 if (user->seq < log_first_seq) { 820 /* our last seen message is gone, return error and reset */ 821 user->idx = log_first_idx; 822 user->seq = log_first_seq; 823 ret = -EPIPE; 824 raw_spin_unlock_irq(&logbuf_lock); 825 goto out; 826 } 827 828 msg = log_from_idx(user->idx); 829 len = msg_print_ext_header(user->buf, sizeof(user->buf), 830 msg, user->seq, user->prev); 831 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 832 log_dict(msg), msg->dict_len, 833 log_text(msg), msg->text_len); 834 835 user->prev = msg->flags; 836 user->idx = log_next(user->idx); 837 user->seq++; 838 raw_spin_unlock_irq(&logbuf_lock); 839 840 if (len > count) { 841 ret = -EINVAL; 842 goto out; 843 } 844 845 if (copy_to_user(buf, user->buf, len)) { 846 ret = -EFAULT; 847 goto out; 848 } 849 ret = len; 850 out: 851 mutex_unlock(&user->lock); 852 return ret; 853 } 854 855 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 856 { 857 struct devkmsg_user *user = file->private_data; 858 loff_t ret = 0; 859 860 if (!user) 861 return -EBADF; 862 if (offset) 863 return -ESPIPE; 864 865 raw_spin_lock_irq(&logbuf_lock); 866 switch (whence) { 867 case SEEK_SET: 868 /* the first record */ 869 user->idx = log_first_idx; 870 user->seq = log_first_seq; 871 break; 872 case SEEK_DATA: 873 /* 874 * The first record after the last SYSLOG_ACTION_CLEAR, 875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 876 * changes no global state, and does not clear anything. 877 */ 878 user->idx = clear_idx; 879 user->seq = clear_seq; 880 break; 881 case SEEK_END: 882 /* after the last record */ 883 user->idx = log_next_idx; 884 user->seq = log_next_seq; 885 break; 886 default: 887 ret = -EINVAL; 888 } 889 raw_spin_unlock_irq(&logbuf_lock); 890 return ret; 891 } 892 893 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 894 { 895 struct devkmsg_user *user = file->private_data; 896 int ret = 0; 897 898 if (!user) 899 return POLLERR|POLLNVAL; 900 901 poll_wait(file, &log_wait, wait); 902 903 raw_spin_lock_irq(&logbuf_lock); 904 if (user->seq < log_next_seq) { 905 /* return error when data has vanished underneath us */ 906 if (user->seq < log_first_seq) 907 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 908 else 909 ret = POLLIN|POLLRDNORM; 910 } 911 raw_spin_unlock_irq(&logbuf_lock); 912 913 return ret; 914 } 915 916 static int devkmsg_open(struct inode *inode, struct file *file) 917 { 918 struct devkmsg_user *user; 919 int err; 920 921 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 922 return -EPERM; 923 924 /* write-only does not need any file context */ 925 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 926 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 927 SYSLOG_FROM_READER); 928 if (err) 929 return err; 930 } 931 932 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 933 if (!user) 934 return -ENOMEM; 935 936 ratelimit_default_init(&user->rs); 937 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 938 939 mutex_init(&user->lock); 940 941 raw_spin_lock_irq(&logbuf_lock); 942 user->idx = log_first_idx; 943 user->seq = log_first_seq; 944 raw_spin_unlock_irq(&logbuf_lock); 945 946 file->private_data = user; 947 return 0; 948 } 949 950 static int devkmsg_release(struct inode *inode, struct file *file) 951 { 952 struct devkmsg_user *user = file->private_data; 953 954 if (!user) 955 return 0; 956 957 ratelimit_state_exit(&user->rs); 958 959 mutex_destroy(&user->lock); 960 kfree(user); 961 return 0; 962 } 963 964 const struct file_operations kmsg_fops = { 965 .open = devkmsg_open, 966 .read = devkmsg_read, 967 .write_iter = devkmsg_write, 968 .llseek = devkmsg_llseek, 969 .poll = devkmsg_poll, 970 .release = devkmsg_release, 971 }; 972 973 #ifdef CONFIG_KEXEC_CORE 974 /* 975 * This appends the listed symbols to /proc/vmcore 976 * 977 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 978 * obtain access to symbols that are otherwise very difficult to locate. These 979 * symbols are specifically used so that utilities can access and extract the 980 * dmesg log from a vmcore file after a crash. 981 */ 982 void log_buf_kexec_setup(void) 983 { 984 VMCOREINFO_SYMBOL(log_buf); 985 VMCOREINFO_SYMBOL(log_buf_len); 986 VMCOREINFO_SYMBOL(log_first_idx); 987 VMCOREINFO_SYMBOL(clear_idx); 988 VMCOREINFO_SYMBOL(log_next_idx); 989 /* 990 * Export struct printk_log size and field offsets. User space tools can 991 * parse it and detect any changes to structure down the line. 992 */ 993 VMCOREINFO_STRUCT_SIZE(printk_log); 994 VMCOREINFO_OFFSET(printk_log, ts_nsec); 995 VMCOREINFO_OFFSET(printk_log, len); 996 VMCOREINFO_OFFSET(printk_log, text_len); 997 VMCOREINFO_OFFSET(printk_log, dict_len); 998 } 999 #endif 1000 1001 /* requested log_buf_len from kernel cmdline */ 1002 static unsigned long __initdata new_log_buf_len; 1003 1004 /* we practice scaling the ring buffer by powers of 2 */ 1005 static void __init log_buf_len_update(unsigned size) 1006 { 1007 if (size) 1008 size = roundup_pow_of_two(size); 1009 if (size > log_buf_len) 1010 new_log_buf_len = size; 1011 } 1012 1013 /* save requested log_buf_len since it's too early to process it */ 1014 static int __init log_buf_len_setup(char *str) 1015 { 1016 unsigned size = memparse(str, &str); 1017 1018 log_buf_len_update(size); 1019 1020 return 0; 1021 } 1022 early_param("log_buf_len", log_buf_len_setup); 1023 1024 #ifdef CONFIG_SMP 1025 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1026 1027 static void __init log_buf_add_cpu(void) 1028 { 1029 unsigned int cpu_extra; 1030 1031 /* 1032 * archs should set up cpu_possible_bits properly with 1033 * set_cpu_possible() after setup_arch() but just in 1034 * case lets ensure this is valid. 1035 */ 1036 if (num_possible_cpus() == 1) 1037 return; 1038 1039 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1040 1041 /* by default this will only continue through for large > 64 CPUs */ 1042 if (cpu_extra <= __LOG_BUF_LEN / 2) 1043 return; 1044 1045 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1046 __LOG_CPU_MAX_BUF_LEN); 1047 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1048 cpu_extra); 1049 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1050 1051 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1052 } 1053 #else /* !CONFIG_SMP */ 1054 static inline void log_buf_add_cpu(void) {} 1055 #endif /* CONFIG_SMP */ 1056 1057 void __init setup_log_buf(int early) 1058 { 1059 unsigned long flags; 1060 char *new_log_buf; 1061 int free; 1062 1063 if (log_buf != __log_buf) 1064 return; 1065 1066 if (!early && !new_log_buf_len) 1067 log_buf_add_cpu(); 1068 1069 if (!new_log_buf_len) 1070 return; 1071 1072 if (early) { 1073 new_log_buf = 1074 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1075 } else { 1076 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1077 LOG_ALIGN); 1078 } 1079 1080 if (unlikely(!new_log_buf)) { 1081 pr_err("log_buf_len: %ld bytes not available\n", 1082 new_log_buf_len); 1083 return; 1084 } 1085 1086 raw_spin_lock_irqsave(&logbuf_lock, flags); 1087 log_buf_len = new_log_buf_len; 1088 log_buf = new_log_buf; 1089 new_log_buf_len = 0; 1090 free = __LOG_BUF_LEN - log_next_idx; 1091 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1092 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1093 1094 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1095 pr_info("early log buf free: %d(%d%%)\n", 1096 free, (free * 100) / __LOG_BUF_LEN); 1097 } 1098 1099 static bool __read_mostly ignore_loglevel; 1100 1101 static int __init ignore_loglevel_setup(char *str) 1102 { 1103 ignore_loglevel = true; 1104 pr_info("debug: ignoring loglevel setting.\n"); 1105 1106 return 0; 1107 } 1108 1109 early_param("ignore_loglevel", ignore_loglevel_setup); 1110 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1111 MODULE_PARM_DESC(ignore_loglevel, 1112 "ignore loglevel setting (prints all kernel messages to the console)"); 1113 1114 static bool suppress_message_printing(int level) 1115 { 1116 return (level >= console_loglevel && !ignore_loglevel); 1117 } 1118 1119 #ifdef CONFIG_BOOT_PRINTK_DELAY 1120 1121 static int boot_delay; /* msecs delay after each printk during bootup */ 1122 static unsigned long long loops_per_msec; /* based on boot_delay */ 1123 1124 static int __init boot_delay_setup(char *str) 1125 { 1126 unsigned long lpj; 1127 1128 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1129 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1130 1131 get_option(&str, &boot_delay); 1132 if (boot_delay > 10 * 1000) 1133 boot_delay = 0; 1134 1135 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1136 "HZ: %d, loops_per_msec: %llu\n", 1137 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1138 return 0; 1139 } 1140 early_param("boot_delay", boot_delay_setup); 1141 1142 static void boot_delay_msec(int level) 1143 { 1144 unsigned long long k; 1145 unsigned long timeout; 1146 1147 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1148 || suppress_message_printing(level)) { 1149 return; 1150 } 1151 1152 k = (unsigned long long)loops_per_msec * boot_delay; 1153 1154 timeout = jiffies + msecs_to_jiffies(boot_delay); 1155 while (k) { 1156 k--; 1157 cpu_relax(); 1158 /* 1159 * use (volatile) jiffies to prevent 1160 * compiler reduction; loop termination via jiffies 1161 * is secondary and may or may not happen. 1162 */ 1163 if (time_after(jiffies, timeout)) 1164 break; 1165 touch_nmi_watchdog(); 1166 } 1167 } 1168 #else 1169 static inline void boot_delay_msec(int level) 1170 { 1171 } 1172 #endif 1173 1174 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1175 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1176 1177 static size_t print_time(u64 ts, char *buf) 1178 { 1179 unsigned long rem_nsec; 1180 1181 if (!printk_time) 1182 return 0; 1183 1184 rem_nsec = do_div(ts, 1000000000); 1185 1186 if (!buf) 1187 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1188 1189 return sprintf(buf, "[%5lu.%06lu] ", 1190 (unsigned long)ts, rem_nsec / 1000); 1191 } 1192 1193 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1194 { 1195 size_t len = 0; 1196 unsigned int prefix = (msg->facility << 3) | msg->level; 1197 1198 if (syslog) { 1199 if (buf) { 1200 len += sprintf(buf, "<%u>", prefix); 1201 } else { 1202 len += 3; 1203 if (prefix > 999) 1204 len += 3; 1205 else if (prefix > 99) 1206 len += 2; 1207 else if (prefix > 9) 1208 len++; 1209 } 1210 } 1211 1212 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1213 return len; 1214 } 1215 1216 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1217 bool syslog, char *buf, size_t size) 1218 { 1219 const char *text = log_text(msg); 1220 size_t text_size = msg->text_len; 1221 bool prefix = true; 1222 bool newline = true; 1223 size_t len = 0; 1224 1225 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1226 prefix = false; 1227 1228 if (msg->flags & LOG_CONT) { 1229 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1230 prefix = false; 1231 1232 if (!(msg->flags & LOG_NEWLINE)) 1233 newline = false; 1234 } 1235 1236 do { 1237 const char *next = memchr(text, '\n', text_size); 1238 size_t text_len; 1239 1240 if (next) { 1241 text_len = next - text; 1242 next++; 1243 text_size -= next - text; 1244 } else { 1245 text_len = text_size; 1246 } 1247 1248 if (buf) { 1249 if (print_prefix(msg, syslog, NULL) + 1250 text_len + 1 >= size - len) 1251 break; 1252 1253 if (prefix) 1254 len += print_prefix(msg, syslog, buf + len); 1255 memcpy(buf + len, text, text_len); 1256 len += text_len; 1257 if (next || newline) 1258 buf[len++] = '\n'; 1259 } else { 1260 /* SYSLOG_ACTION_* buffer size only calculation */ 1261 if (prefix) 1262 len += print_prefix(msg, syslog, NULL); 1263 len += text_len; 1264 if (next || newline) 1265 len++; 1266 } 1267 1268 prefix = true; 1269 text = next; 1270 } while (text); 1271 1272 return len; 1273 } 1274 1275 static int syslog_print(char __user *buf, int size) 1276 { 1277 char *text; 1278 struct printk_log *msg; 1279 int len = 0; 1280 1281 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1282 if (!text) 1283 return -ENOMEM; 1284 1285 while (size > 0) { 1286 size_t n; 1287 size_t skip; 1288 1289 raw_spin_lock_irq(&logbuf_lock); 1290 if (syslog_seq < log_first_seq) { 1291 /* messages are gone, move to first one */ 1292 syslog_seq = log_first_seq; 1293 syslog_idx = log_first_idx; 1294 syslog_prev = 0; 1295 syslog_partial = 0; 1296 } 1297 if (syslog_seq == log_next_seq) { 1298 raw_spin_unlock_irq(&logbuf_lock); 1299 break; 1300 } 1301 1302 skip = syslog_partial; 1303 msg = log_from_idx(syslog_idx); 1304 n = msg_print_text(msg, syslog_prev, true, text, 1305 LOG_LINE_MAX + PREFIX_MAX); 1306 if (n - syslog_partial <= size) { 1307 /* message fits into buffer, move forward */ 1308 syslog_idx = log_next(syslog_idx); 1309 syslog_seq++; 1310 syslog_prev = msg->flags; 1311 n -= syslog_partial; 1312 syslog_partial = 0; 1313 } else if (!len){ 1314 /* partial read(), remember position */ 1315 n = size; 1316 syslog_partial += n; 1317 } else 1318 n = 0; 1319 raw_spin_unlock_irq(&logbuf_lock); 1320 1321 if (!n) 1322 break; 1323 1324 if (copy_to_user(buf, text + skip, n)) { 1325 if (!len) 1326 len = -EFAULT; 1327 break; 1328 } 1329 1330 len += n; 1331 size -= n; 1332 buf += n; 1333 } 1334 1335 kfree(text); 1336 return len; 1337 } 1338 1339 static int syslog_print_all(char __user *buf, int size, bool clear) 1340 { 1341 char *text; 1342 int len = 0; 1343 1344 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1345 if (!text) 1346 return -ENOMEM; 1347 1348 raw_spin_lock_irq(&logbuf_lock); 1349 if (buf) { 1350 u64 next_seq; 1351 u64 seq; 1352 u32 idx; 1353 enum log_flags prev; 1354 1355 /* 1356 * Find first record that fits, including all following records, 1357 * into the user-provided buffer for this dump. 1358 */ 1359 seq = clear_seq; 1360 idx = clear_idx; 1361 prev = 0; 1362 while (seq < log_next_seq) { 1363 struct printk_log *msg = log_from_idx(idx); 1364 1365 len += msg_print_text(msg, prev, true, NULL, 0); 1366 prev = msg->flags; 1367 idx = log_next(idx); 1368 seq++; 1369 } 1370 1371 /* move first record forward until length fits into the buffer */ 1372 seq = clear_seq; 1373 idx = clear_idx; 1374 prev = 0; 1375 while (len > size && seq < log_next_seq) { 1376 struct printk_log *msg = log_from_idx(idx); 1377 1378 len -= msg_print_text(msg, prev, true, NULL, 0); 1379 prev = msg->flags; 1380 idx = log_next(idx); 1381 seq++; 1382 } 1383 1384 /* last message fitting into this dump */ 1385 next_seq = log_next_seq; 1386 1387 len = 0; 1388 while (len >= 0 && seq < next_seq) { 1389 struct printk_log *msg = log_from_idx(idx); 1390 int textlen; 1391 1392 textlen = msg_print_text(msg, prev, true, text, 1393 LOG_LINE_MAX + PREFIX_MAX); 1394 if (textlen < 0) { 1395 len = textlen; 1396 break; 1397 } 1398 idx = log_next(idx); 1399 seq++; 1400 prev = msg->flags; 1401 1402 raw_spin_unlock_irq(&logbuf_lock); 1403 if (copy_to_user(buf + len, text, textlen)) 1404 len = -EFAULT; 1405 else 1406 len += textlen; 1407 raw_spin_lock_irq(&logbuf_lock); 1408 1409 if (seq < log_first_seq) { 1410 /* messages are gone, move to next one */ 1411 seq = log_first_seq; 1412 idx = log_first_idx; 1413 prev = 0; 1414 } 1415 } 1416 } 1417 1418 if (clear) { 1419 clear_seq = log_next_seq; 1420 clear_idx = log_next_idx; 1421 } 1422 raw_spin_unlock_irq(&logbuf_lock); 1423 1424 kfree(text); 1425 return len; 1426 } 1427 1428 int do_syslog(int type, char __user *buf, int len, int source) 1429 { 1430 bool clear = false; 1431 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1432 int error; 1433 1434 error = check_syslog_permissions(type, source); 1435 if (error) 1436 goto out; 1437 1438 switch (type) { 1439 case SYSLOG_ACTION_CLOSE: /* Close log */ 1440 break; 1441 case SYSLOG_ACTION_OPEN: /* Open log */ 1442 break; 1443 case SYSLOG_ACTION_READ: /* Read from log */ 1444 error = -EINVAL; 1445 if (!buf || len < 0) 1446 goto out; 1447 error = 0; 1448 if (!len) 1449 goto out; 1450 if (!access_ok(VERIFY_WRITE, buf, len)) { 1451 error = -EFAULT; 1452 goto out; 1453 } 1454 error = wait_event_interruptible(log_wait, 1455 syslog_seq != log_next_seq); 1456 if (error) 1457 goto out; 1458 error = syslog_print(buf, len); 1459 break; 1460 /* Read/clear last kernel messages */ 1461 case SYSLOG_ACTION_READ_CLEAR: 1462 clear = true; 1463 /* FALL THRU */ 1464 /* Read last kernel messages */ 1465 case SYSLOG_ACTION_READ_ALL: 1466 error = -EINVAL; 1467 if (!buf || len < 0) 1468 goto out; 1469 error = 0; 1470 if (!len) 1471 goto out; 1472 if (!access_ok(VERIFY_WRITE, buf, len)) { 1473 error = -EFAULT; 1474 goto out; 1475 } 1476 error = syslog_print_all(buf, len, clear); 1477 break; 1478 /* Clear ring buffer */ 1479 case SYSLOG_ACTION_CLEAR: 1480 syslog_print_all(NULL, 0, true); 1481 break; 1482 /* Disable logging to console */ 1483 case SYSLOG_ACTION_CONSOLE_OFF: 1484 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1485 saved_console_loglevel = console_loglevel; 1486 console_loglevel = minimum_console_loglevel; 1487 break; 1488 /* Enable logging to console */ 1489 case SYSLOG_ACTION_CONSOLE_ON: 1490 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1491 console_loglevel = saved_console_loglevel; 1492 saved_console_loglevel = LOGLEVEL_DEFAULT; 1493 } 1494 break; 1495 /* Set level of messages printed to console */ 1496 case SYSLOG_ACTION_CONSOLE_LEVEL: 1497 error = -EINVAL; 1498 if (len < 1 || len > 8) 1499 goto out; 1500 if (len < minimum_console_loglevel) 1501 len = minimum_console_loglevel; 1502 console_loglevel = len; 1503 /* Implicitly re-enable logging to console */ 1504 saved_console_loglevel = LOGLEVEL_DEFAULT; 1505 error = 0; 1506 break; 1507 /* Number of chars in the log buffer */ 1508 case SYSLOG_ACTION_SIZE_UNREAD: 1509 raw_spin_lock_irq(&logbuf_lock); 1510 if (syslog_seq < log_first_seq) { 1511 /* messages are gone, move to first one */ 1512 syslog_seq = log_first_seq; 1513 syslog_idx = log_first_idx; 1514 syslog_prev = 0; 1515 syslog_partial = 0; 1516 } 1517 if (source == SYSLOG_FROM_PROC) { 1518 /* 1519 * Short-cut for poll(/"proc/kmsg") which simply checks 1520 * for pending data, not the size; return the count of 1521 * records, not the length. 1522 */ 1523 error = log_next_seq - syslog_seq; 1524 } else { 1525 u64 seq = syslog_seq; 1526 u32 idx = syslog_idx; 1527 enum log_flags prev = syslog_prev; 1528 1529 error = 0; 1530 while (seq < log_next_seq) { 1531 struct printk_log *msg = log_from_idx(idx); 1532 1533 error += msg_print_text(msg, prev, true, NULL, 0); 1534 idx = log_next(idx); 1535 seq++; 1536 prev = msg->flags; 1537 } 1538 error -= syslog_partial; 1539 } 1540 raw_spin_unlock_irq(&logbuf_lock); 1541 break; 1542 /* Size of the log buffer */ 1543 case SYSLOG_ACTION_SIZE_BUFFER: 1544 error = log_buf_len; 1545 break; 1546 default: 1547 error = -EINVAL; 1548 break; 1549 } 1550 out: 1551 return error; 1552 } 1553 1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1555 { 1556 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1557 } 1558 1559 /* 1560 * Call the console drivers, asking them to write out 1561 * log_buf[start] to log_buf[end - 1]. 1562 * The console_lock must be held. 1563 */ 1564 static void call_console_drivers(int level, 1565 const char *ext_text, size_t ext_len, 1566 const char *text, size_t len) 1567 { 1568 struct console *con; 1569 1570 trace_console(text, len); 1571 1572 if (!console_drivers) 1573 return; 1574 1575 for_each_console(con) { 1576 if (exclusive_console && con != exclusive_console) 1577 continue; 1578 if (!(con->flags & CON_ENABLED)) 1579 continue; 1580 if (!con->write) 1581 continue; 1582 if (!cpu_online(smp_processor_id()) && 1583 !(con->flags & CON_ANYTIME)) 1584 continue; 1585 if (con->flags & CON_EXTENDED) 1586 con->write(con, ext_text, ext_len); 1587 else 1588 con->write(con, text, len); 1589 } 1590 } 1591 1592 /* 1593 * Zap console related locks when oopsing. 1594 * To leave time for slow consoles to print a full oops, 1595 * only zap at most once every 30 seconds. 1596 */ 1597 static void zap_locks(void) 1598 { 1599 static unsigned long oops_timestamp; 1600 1601 if (time_after_eq(jiffies, oops_timestamp) && 1602 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1603 return; 1604 1605 oops_timestamp = jiffies; 1606 1607 debug_locks_off(); 1608 /* If a crash is occurring, make sure we can't deadlock */ 1609 raw_spin_lock_init(&logbuf_lock); 1610 /* And make sure that we print immediately */ 1611 sema_init(&console_sem, 1); 1612 } 1613 1614 int printk_delay_msec __read_mostly; 1615 1616 static inline void printk_delay(void) 1617 { 1618 if (unlikely(printk_delay_msec)) { 1619 int m = printk_delay_msec; 1620 1621 while (m--) { 1622 mdelay(1); 1623 touch_nmi_watchdog(); 1624 } 1625 } 1626 } 1627 1628 /* 1629 * Continuation lines are buffered, and not committed to the record buffer 1630 * until the line is complete, or a race forces it. The line fragments 1631 * though, are printed immediately to the consoles to ensure everything has 1632 * reached the console in case of a kernel crash. 1633 */ 1634 static struct cont { 1635 char buf[LOG_LINE_MAX]; 1636 size_t len; /* length == 0 means unused buffer */ 1637 size_t cons; /* bytes written to console */ 1638 struct task_struct *owner; /* task of first print*/ 1639 u64 ts_nsec; /* time of first print */ 1640 u8 level; /* log level of first message */ 1641 u8 facility; /* log facility of first message */ 1642 enum log_flags flags; /* prefix, newline flags */ 1643 bool flushed:1; /* buffer sealed and committed */ 1644 } cont; 1645 1646 static void cont_flush(enum log_flags flags) 1647 { 1648 if (cont.flushed) 1649 return; 1650 if (cont.len == 0) 1651 return; 1652 1653 if (cont.cons) { 1654 /* 1655 * If a fragment of this line was directly flushed to the 1656 * console; wait for the console to pick up the rest of the 1657 * line. LOG_NOCONS suppresses a duplicated output. 1658 */ 1659 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1660 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1661 cont.flags = flags; 1662 cont.flushed = true; 1663 } else { 1664 /* 1665 * If no fragment of this line ever reached the console, 1666 * just submit it to the store and free the buffer. 1667 */ 1668 log_store(cont.facility, cont.level, flags, 0, 1669 NULL, 0, cont.buf, cont.len); 1670 cont.len = 0; 1671 } 1672 } 1673 1674 static bool cont_add(int facility, int level, const char *text, size_t len) 1675 { 1676 if (cont.len && cont.flushed) 1677 return false; 1678 1679 /* 1680 * If ext consoles are present, flush and skip in-kernel 1681 * continuation. See nr_ext_console_drivers definition. Also, if 1682 * the line gets too long, split it up in separate records. 1683 */ 1684 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1685 cont_flush(LOG_CONT); 1686 return false; 1687 } 1688 1689 if (!cont.len) { 1690 cont.facility = facility; 1691 cont.level = level; 1692 cont.owner = current; 1693 cont.ts_nsec = local_clock(); 1694 cont.flags = 0; 1695 cont.cons = 0; 1696 cont.flushed = false; 1697 } 1698 1699 memcpy(cont.buf + cont.len, text, len); 1700 cont.len += len; 1701 1702 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1703 cont_flush(LOG_CONT); 1704 1705 return true; 1706 } 1707 1708 static size_t cont_print_text(char *text, size_t size) 1709 { 1710 size_t textlen = 0; 1711 size_t len; 1712 1713 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1714 textlen += print_time(cont.ts_nsec, text); 1715 size -= textlen; 1716 } 1717 1718 len = cont.len - cont.cons; 1719 if (len > 0) { 1720 if (len+1 > size) 1721 len = size-1; 1722 memcpy(text + textlen, cont.buf + cont.cons, len); 1723 textlen += len; 1724 cont.cons = cont.len; 1725 } 1726 1727 if (cont.flushed) { 1728 if (cont.flags & LOG_NEWLINE) 1729 text[textlen++] = '\n'; 1730 /* got everything, release buffer */ 1731 cont.len = 0; 1732 } 1733 return textlen; 1734 } 1735 1736 asmlinkage int vprintk_emit(int facility, int level, 1737 const char *dict, size_t dictlen, 1738 const char *fmt, va_list args) 1739 { 1740 static bool recursion_bug; 1741 static char textbuf[LOG_LINE_MAX]; 1742 char *text = textbuf; 1743 size_t text_len = 0; 1744 enum log_flags lflags = 0; 1745 unsigned long flags; 1746 int this_cpu; 1747 int printed_len = 0; 1748 int nmi_message_lost; 1749 bool in_sched = false; 1750 /* cpu currently holding logbuf_lock in this function */ 1751 static unsigned int logbuf_cpu = UINT_MAX; 1752 1753 if (level == LOGLEVEL_SCHED) { 1754 level = LOGLEVEL_DEFAULT; 1755 in_sched = true; 1756 } 1757 1758 boot_delay_msec(level); 1759 printk_delay(); 1760 1761 local_irq_save(flags); 1762 this_cpu = smp_processor_id(); 1763 1764 /* 1765 * Ouch, printk recursed into itself! 1766 */ 1767 if (unlikely(logbuf_cpu == this_cpu)) { 1768 /* 1769 * If a crash is occurring during printk() on this CPU, 1770 * then try to get the crash message out but make sure 1771 * we can't deadlock. Otherwise just return to avoid the 1772 * recursion and return - but flag the recursion so that 1773 * it can be printed at the next appropriate moment: 1774 */ 1775 if (!oops_in_progress && !lockdep_recursing(current)) { 1776 recursion_bug = true; 1777 local_irq_restore(flags); 1778 return 0; 1779 } 1780 zap_locks(); 1781 } 1782 1783 lockdep_off(); 1784 /* This stops the holder of console_sem just where we want him */ 1785 raw_spin_lock(&logbuf_lock); 1786 logbuf_cpu = this_cpu; 1787 1788 if (unlikely(recursion_bug)) { 1789 static const char recursion_msg[] = 1790 "BUG: recent printk recursion!"; 1791 1792 recursion_bug = false; 1793 /* emit KERN_CRIT message */ 1794 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1795 NULL, 0, recursion_msg, 1796 strlen(recursion_msg)); 1797 } 1798 1799 nmi_message_lost = get_nmi_message_lost(); 1800 if (unlikely(nmi_message_lost)) { 1801 text_len = scnprintf(textbuf, sizeof(textbuf), 1802 "BAD LUCK: lost %d message(s) from NMI context!", 1803 nmi_message_lost); 1804 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1805 NULL, 0, textbuf, text_len); 1806 } 1807 1808 /* 1809 * The printf needs to come first; we need the syslog 1810 * prefix which might be passed-in as a parameter. 1811 */ 1812 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1813 1814 /* mark and strip a trailing newline */ 1815 if (text_len && text[text_len-1] == '\n') { 1816 text_len--; 1817 lflags |= LOG_NEWLINE; 1818 } 1819 1820 /* strip kernel syslog prefix and extract log level or control flags */ 1821 if (facility == 0) { 1822 int kern_level = printk_get_level(text); 1823 1824 if (kern_level) { 1825 const char *end_of_header = printk_skip_level(text); 1826 switch (kern_level) { 1827 case '0' ... '7': 1828 if (level == LOGLEVEL_DEFAULT) 1829 level = kern_level - '0'; 1830 /* fallthrough */ 1831 case 'd': /* KERN_DEFAULT */ 1832 lflags |= LOG_PREFIX; 1833 } 1834 /* 1835 * No need to check length here because vscnprintf 1836 * put '\0' at the end of the string. Only valid and 1837 * newly printed level is detected. 1838 */ 1839 text_len -= end_of_header - text; 1840 text = (char *)end_of_header; 1841 } 1842 } 1843 1844 if (level == LOGLEVEL_DEFAULT) 1845 level = default_message_loglevel; 1846 1847 if (dict) 1848 lflags |= LOG_PREFIX|LOG_NEWLINE; 1849 1850 if (!(lflags & LOG_NEWLINE)) { 1851 /* 1852 * Flush the conflicting buffer. An earlier newline was missing, 1853 * or another task also prints continuation lines. 1854 */ 1855 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1856 cont_flush(LOG_NEWLINE); 1857 1858 /* buffer line if possible, otherwise store it right away */ 1859 if (cont_add(facility, level, text, text_len)) 1860 printed_len += text_len; 1861 else 1862 printed_len += log_store(facility, level, 1863 lflags | LOG_CONT, 0, 1864 dict, dictlen, text, text_len); 1865 } else { 1866 bool stored = false; 1867 1868 /* 1869 * If an earlier newline was missing and it was the same task, 1870 * either merge it with the current buffer and flush, or if 1871 * there was a race with interrupts (prefix == true) then just 1872 * flush it out and store this line separately. 1873 * If the preceding printk was from a different task and missed 1874 * a newline, flush and append the newline. 1875 */ 1876 if (cont.len) { 1877 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1878 stored = cont_add(facility, level, text, 1879 text_len); 1880 cont_flush(LOG_NEWLINE); 1881 } 1882 1883 if (stored) 1884 printed_len += text_len; 1885 else 1886 printed_len += log_store(facility, level, lflags, 0, 1887 dict, dictlen, text, text_len); 1888 } 1889 1890 logbuf_cpu = UINT_MAX; 1891 raw_spin_unlock(&logbuf_lock); 1892 lockdep_on(); 1893 local_irq_restore(flags); 1894 1895 /* If called from the scheduler, we can not call up(). */ 1896 if (!in_sched) { 1897 lockdep_off(); 1898 /* 1899 * Try to acquire and then immediately release the console 1900 * semaphore. The release will print out buffers and wake up 1901 * /dev/kmsg and syslog() users. 1902 */ 1903 if (console_trylock()) 1904 console_unlock(); 1905 lockdep_on(); 1906 } 1907 1908 return printed_len; 1909 } 1910 EXPORT_SYMBOL(vprintk_emit); 1911 1912 asmlinkage int vprintk(const char *fmt, va_list args) 1913 { 1914 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1915 } 1916 EXPORT_SYMBOL(vprintk); 1917 1918 asmlinkage int printk_emit(int facility, int level, 1919 const char *dict, size_t dictlen, 1920 const char *fmt, ...) 1921 { 1922 va_list args; 1923 int r; 1924 1925 va_start(args, fmt); 1926 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1927 va_end(args); 1928 1929 return r; 1930 } 1931 EXPORT_SYMBOL(printk_emit); 1932 1933 int vprintk_default(const char *fmt, va_list args) 1934 { 1935 int r; 1936 1937 #ifdef CONFIG_KGDB_KDB 1938 if (unlikely(kdb_trap_printk)) { 1939 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1940 return r; 1941 } 1942 #endif 1943 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1944 1945 return r; 1946 } 1947 EXPORT_SYMBOL_GPL(vprintk_default); 1948 1949 /** 1950 * printk - print a kernel message 1951 * @fmt: format string 1952 * 1953 * This is printk(). It can be called from any context. We want it to work. 1954 * 1955 * We try to grab the console_lock. If we succeed, it's easy - we log the 1956 * output and call the console drivers. If we fail to get the semaphore, we 1957 * place the output into the log buffer and return. The current holder of 1958 * the console_sem will notice the new output in console_unlock(); and will 1959 * send it to the consoles before releasing the lock. 1960 * 1961 * One effect of this deferred printing is that code which calls printk() and 1962 * then changes console_loglevel may break. This is because console_loglevel 1963 * is inspected when the actual printing occurs. 1964 * 1965 * See also: 1966 * printf(3) 1967 * 1968 * See the vsnprintf() documentation for format string extensions over C99. 1969 */ 1970 asmlinkage __visible int printk(const char *fmt, ...) 1971 { 1972 va_list args; 1973 int r; 1974 1975 va_start(args, fmt); 1976 r = vprintk_func(fmt, args); 1977 va_end(args); 1978 1979 return r; 1980 } 1981 EXPORT_SYMBOL(printk); 1982 1983 #else /* CONFIG_PRINTK */ 1984 1985 #define LOG_LINE_MAX 0 1986 #define PREFIX_MAX 0 1987 1988 static u64 syslog_seq; 1989 static u32 syslog_idx; 1990 static u64 console_seq; 1991 static u32 console_idx; 1992 static enum log_flags syslog_prev; 1993 static u64 log_first_seq; 1994 static u32 log_first_idx; 1995 static u64 log_next_seq; 1996 static enum log_flags console_prev; 1997 static struct cont { 1998 size_t len; 1999 size_t cons; 2000 u8 level; 2001 bool flushed:1; 2002 } cont; 2003 static char *log_text(const struct printk_log *msg) { return NULL; } 2004 static char *log_dict(const struct printk_log *msg) { return NULL; } 2005 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2006 static u32 log_next(u32 idx) { return 0; } 2007 static ssize_t msg_print_ext_header(char *buf, size_t size, 2008 struct printk_log *msg, u64 seq, 2009 enum log_flags prev_flags) { return 0; } 2010 static ssize_t msg_print_ext_body(char *buf, size_t size, 2011 char *dict, size_t dict_len, 2012 char *text, size_t text_len) { return 0; } 2013 static void call_console_drivers(int level, 2014 const char *ext_text, size_t ext_len, 2015 const char *text, size_t len) {} 2016 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 2017 bool syslog, char *buf, size_t size) { return 0; } 2018 static size_t cont_print_text(char *text, size_t size) { return 0; } 2019 static bool suppress_message_printing(int level) { return false; } 2020 2021 /* Still needs to be defined for users */ 2022 DEFINE_PER_CPU(printk_func_t, printk_func); 2023 2024 #endif /* CONFIG_PRINTK */ 2025 2026 #ifdef CONFIG_EARLY_PRINTK 2027 struct console *early_console; 2028 2029 asmlinkage __visible void early_printk(const char *fmt, ...) 2030 { 2031 va_list ap; 2032 char buf[512]; 2033 int n; 2034 2035 if (!early_console) 2036 return; 2037 2038 va_start(ap, fmt); 2039 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2040 va_end(ap); 2041 2042 early_console->write(early_console, buf, n); 2043 } 2044 #endif 2045 2046 static int __add_preferred_console(char *name, int idx, char *options, 2047 char *brl_options) 2048 { 2049 struct console_cmdline *c; 2050 int i; 2051 2052 /* 2053 * See if this tty is not yet registered, and 2054 * if we have a slot free. 2055 */ 2056 for (i = 0, c = console_cmdline; 2057 i < MAX_CMDLINECONSOLES && c->name[0]; 2058 i++, c++) { 2059 if (strcmp(c->name, name) == 0 && c->index == idx) { 2060 if (!brl_options) 2061 selected_console = i; 2062 return 0; 2063 } 2064 } 2065 if (i == MAX_CMDLINECONSOLES) 2066 return -E2BIG; 2067 if (!brl_options) 2068 selected_console = i; 2069 strlcpy(c->name, name, sizeof(c->name)); 2070 c->options = options; 2071 braille_set_options(c, brl_options); 2072 2073 c->index = idx; 2074 return 0; 2075 } 2076 /* 2077 * Set up a console. Called via do_early_param() in init/main.c 2078 * for each "console=" parameter in the boot command line. 2079 */ 2080 static int __init console_setup(char *str) 2081 { 2082 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2083 char *s, *options, *brl_options = NULL; 2084 int idx; 2085 2086 if (_braille_console_setup(&str, &brl_options)) 2087 return 1; 2088 2089 /* 2090 * Decode str into name, index, options. 2091 */ 2092 if (str[0] >= '0' && str[0] <= '9') { 2093 strcpy(buf, "ttyS"); 2094 strncpy(buf + 4, str, sizeof(buf) - 5); 2095 } else { 2096 strncpy(buf, str, sizeof(buf) - 1); 2097 } 2098 buf[sizeof(buf) - 1] = 0; 2099 options = strchr(str, ','); 2100 if (options) 2101 *(options++) = 0; 2102 #ifdef __sparc__ 2103 if (!strcmp(str, "ttya")) 2104 strcpy(buf, "ttyS0"); 2105 if (!strcmp(str, "ttyb")) 2106 strcpy(buf, "ttyS1"); 2107 #endif 2108 for (s = buf; *s; s++) 2109 if (isdigit(*s) || *s == ',') 2110 break; 2111 idx = simple_strtoul(s, NULL, 10); 2112 *s = 0; 2113 2114 __add_preferred_console(buf, idx, options, brl_options); 2115 console_set_on_cmdline = 1; 2116 return 1; 2117 } 2118 __setup("console=", console_setup); 2119 2120 /** 2121 * add_preferred_console - add a device to the list of preferred consoles. 2122 * @name: device name 2123 * @idx: device index 2124 * @options: options for this console 2125 * 2126 * The last preferred console added will be used for kernel messages 2127 * and stdin/out/err for init. Normally this is used by console_setup 2128 * above to handle user-supplied console arguments; however it can also 2129 * be used by arch-specific code either to override the user or more 2130 * commonly to provide a default console (ie from PROM variables) when 2131 * the user has not supplied one. 2132 */ 2133 int add_preferred_console(char *name, int idx, char *options) 2134 { 2135 return __add_preferred_console(name, idx, options, NULL); 2136 } 2137 2138 bool console_suspend_enabled = true; 2139 EXPORT_SYMBOL(console_suspend_enabled); 2140 2141 static int __init console_suspend_disable(char *str) 2142 { 2143 console_suspend_enabled = false; 2144 return 1; 2145 } 2146 __setup("no_console_suspend", console_suspend_disable); 2147 module_param_named(console_suspend, console_suspend_enabled, 2148 bool, S_IRUGO | S_IWUSR); 2149 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2150 " and hibernate operations"); 2151 2152 /** 2153 * suspend_console - suspend the console subsystem 2154 * 2155 * This disables printk() while we go into suspend states 2156 */ 2157 void suspend_console(void) 2158 { 2159 if (!console_suspend_enabled) 2160 return; 2161 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2162 console_lock(); 2163 console_suspended = 1; 2164 up_console_sem(); 2165 } 2166 2167 void resume_console(void) 2168 { 2169 if (!console_suspend_enabled) 2170 return; 2171 down_console_sem(); 2172 console_suspended = 0; 2173 console_unlock(); 2174 } 2175 2176 /** 2177 * console_cpu_notify - print deferred console messages after CPU hotplug 2178 * @self: notifier struct 2179 * @action: CPU hotplug event 2180 * @hcpu: unused 2181 * 2182 * If printk() is called from a CPU that is not online yet, the messages 2183 * will be spooled but will not show up on the console. This function is 2184 * called when a new CPU comes online (or fails to come up), and ensures 2185 * that any such output gets printed. 2186 */ 2187 static int console_cpu_notify(struct notifier_block *self, 2188 unsigned long action, void *hcpu) 2189 { 2190 switch (action) { 2191 case CPU_ONLINE: 2192 case CPU_DEAD: 2193 case CPU_DOWN_FAILED: 2194 case CPU_UP_CANCELED: 2195 console_lock(); 2196 console_unlock(); 2197 } 2198 return NOTIFY_OK; 2199 } 2200 2201 /** 2202 * console_lock - lock the console system for exclusive use. 2203 * 2204 * Acquires a lock which guarantees that the caller has 2205 * exclusive access to the console system and the console_drivers list. 2206 * 2207 * Can sleep, returns nothing. 2208 */ 2209 void console_lock(void) 2210 { 2211 might_sleep(); 2212 2213 down_console_sem(); 2214 if (console_suspended) 2215 return; 2216 console_locked = 1; 2217 console_may_schedule = 1; 2218 } 2219 EXPORT_SYMBOL(console_lock); 2220 2221 /** 2222 * console_trylock - try to lock the console system for exclusive use. 2223 * 2224 * Try to acquire a lock which guarantees that the caller has exclusive 2225 * access to the console system and the console_drivers list. 2226 * 2227 * returns 1 on success, and 0 on failure to acquire the lock. 2228 */ 2229 int console_trylock(void) 2230 { 2231 if (down_trylock_console_sem()) 2232 return 0; 2233 if (console_suspended) { 2234 up_console_sem(); 2235 return 0; 2236 } 2237 console_locked = 1; 2238 /* 2239 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2240 * safe to schedule (e.g. calling printk while holding a spin_lock), 2241 * because preempt_disable()/preempt_enable() are just barriers there 2242 * and preempt_count() is always 0. 2243 * 2244 * RCU read sections have a separate preemption counter when 2245 * PREEMPT_RCU enabled thus we must take extra care and check 2246 * rcu_preempt_depth(), otherwise RCU read sections modify 2247 * preempt_count(). 2248 */ 2249 console_may_schedule = !oops_in_progress && 2250 preemptible() && 2251 !rcu_preempt_depth(); 2252 return 1; 2253 } 2254 EXPORT_SYMBOL(console_trylock); 2255 2256 int is_console_locked(void) 2257 { 2258 return console_locked; 2259 } 2260 2261 /* 2262 * Check if we have any console that is capable of printing while cpu is 2263 * booting or shutting down. Requires console_sem. 2264 */ 2265 static int have_callable_console(void) 2266 { 2267 struct console *con; 2268 2269 for_each_console(con) 2270 if ((con->flags & CON_ENABLED) && 2271 (con->flags & CON_ANYTIME)) 2272 return 1; 2273 2274 return 0; 2275 } 2276 2277 /* 2278 * Can we actually use the console at this time on this cpu? 2279 * 2280 * Console drivers may assume that per-cpu resources have been allocated. So 2281 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2282 * call them until this CPU is officially up. 2283 */ 2284 static inline int can_use_console(void) 2285 { 2286 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2287 } 2288 2289 static void console_cont_flush(char *text, size_t size) 2290 { 2291 unsigned long flags; 2292 size_t len; 2293 2294 raw_spin_lock_irqsave(&logbuf_lock, flags); 2295 2296 if (!cont.len) 2297 goto out; 2298 2299 if (suppress_message_printing(cont.level)) { 2300 cont.cons = cont.len; 2301 if (cont.flushed) 2302 cont.len = 0; 2303 goto out; 2304 } 2305 2306 /* 2307 * We still queue earlier records, likely because the console was 2308 * busy. The earlier ones need to be printed before this one, we 2309 * did not flush any fragment so far, so just let it queue up. 2310 */ 2311 if (console_seq < log_next_seq && !cont.cons) 2312 goto out; 2313 2314 len = cont_print_text(text, size); 2315 raw_spin_unlock(&logbuf_lock); 2316 stop_critical_timings(); 2317 call_console_drivers(cont.level, NULL, 0, text, len); 2318 start_critical_timings(); 2319 local_irq_restore(flags); 2320 return; 2321 out: 2322 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2323 } 2324 2325 /** 2326 * console_unlock - unlock the console system 2327 * 2328 * Releases the console_lock which the caller holds on the console system 2329 * and the console driver list. 2330 * 2331 * While the console_lock was held, console output may have been buffered 2332 * by printk(). If this is the case, console_unlock(); emits 2333 * the output prior to releasing the lock. 2334 * 2335 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2336 * 2337 * console_unlock(); may be called from any context. 2338 */ 2339 void console_unlock(void) 2340 { 2341 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2342 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2343 static u64 seen_seq; 2344 unsigned long flags; 2345 bool wake_klogd = false; 2346 bool do_cond_resched, retry; 2347 2348 if (console_suspended) { 2349 up_console_sem(); 2350 return; 2351 } 2352 2353 /* 2354 * Console drivers are called under logbuf_lock, so 2355 * @console_may_schedule should be cleared before; however, we may 2356 * end up dumping a lot of lines, for example, if called from 2357 * console registration path, and should invoke cond_resched() 2358 * between lines if allowable. Not doing so can cause a very long 2359 * scheduling stall on a slow console leading to RCU stall and 2360 * softlockup warnings which exacerbate the issue with more 2361 * messages practically incapacitating the system. 2362 */ 2363 do_cond_resched = console_may_schedule; 2364 console_may_schedule = 0; 2365 2366 again: 2367 /* 2368 * We released the console_sem lock, so we need to recheck if 2369 * cpu is online and (if not) is there at least one CON_ANYTIME 2370 * console. 2371 */ 2372 if (!can_use_console()) { 2373 console_locked = 0; 2374 up_console_sem(); 2375 return; 2376 } 2377 2378 /* flush buffered message fragment immediately to console */ 2379 console_cont_flush(text, sizeof(text)); 2380 2381 for (;;) { 2382 struct printk_log *msg; 2383 size_t ext_len = 0; 2384 size_t len; 2385 int level; 2386 2387 raw_spin_lock_irqsave(&logbuf_lock, flags); 2388 if (seen_seq != log_next_seq) { 2389 wake_klogd = true; 2390 seen_seq = log_next_seq; 2391 } 2392 2393 if (console_seq < log_first_seq) { 2394 len = sprintf(text, "** %u printk messages dropped ** ", 2395 (unsigned)(log_first_seq - console_seq)); 2396 2397 /* messages are gone, move to first one */ 2398 console_seq = log_first_seq; 2399 console_idx = log_first_idx; 2400 console_prev = 0; 2401 } else { 2402 len = 0; 2403 } 2404 skip: 2405 if (console_seq == log_next_seq) 2406 break; 2407 2408 msg = log_from_idx(console_idx); 2409 level = msg->level; 2410 if ((msg->flags & LOG_NOCONS) || 2411 suppress_message_printing(level)) { 2412 /* 2413 * Skip record we have buffered and already printed 2414 * directly to the console when we received it, and 2415 * record that has level above the console loglevel. 2416 */ 2417 console_idx = log_next(console_idx); 2418 console_seq++; 2419 /* 2420 * We will get here again when we register a new 2421 * CON_PRINTBUFFER console. Clear the flag so we 2422 * will properly dump everything later. 2423 */ 2424 msg->flags &= ~LOG_NOCONS; 2425 console_prev = msg->flags; 2426 goto skip; 2427 } 2428 2429 len += msg_print_text(msg, console_prev, false, 2430 text + len, sizeof(text) - len); 2431 if (nr_ext_console_drivers) { 2432 ext_len = msg_print_ext_header(ext_text, 2433 sizeof(ext_text), 2434 msg, console_seq, console_prev); 2435 ext_len += msg_print_ext_body(ext_text + ext_len, 2436 sizeof(ext_text) - ext_len, 2437 log_dict(msg), msg->dict_len, 2438 log_text(msg), msg->text_len); 2439 } 2440 console_idx = log_next(console_idx); 2441 console_seq++; 2442 console_prev = msg->flags; 2443 raw_spin_unlock(&logbuf_lock); 2444 2445 stop_critical_timings(); /* don't trace print latency */ 2446 call_console_drivers(level, ext_text, ext_len, text, len); 2447 start_critical_timings(); 2448 local_irq_restore(flags); 2449 2450 if (do_cond_resched) 2451 cond_resched(); 2452 } 2453 console_locked = 0; 2454 2455 /* Release the exclusive_console once it is used */ 2456 if (unlikely(exclusive_console)) 2457 exclusive_console = NULL; 2458 2459 raw_spin_unlock(&logbuf_lock); 2460 2461 up_console_sem(); 2462 2463 /* 2464 * Someone could have filled up the buffer again, so re-check if there's 2465 * something to flush. In case we cannot trylock the console_sem again, 2466 * there's a new owner and the console_unlock() from them will do the 2467 * flush, no worries. 2468 */ 2469 raw_spin_lock(&logbuf_lock); 2470 retry = console_seq != log_next_seq; 2471 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2472 2473 if (retry && console_trylock()) 2474 goto again; 2475 2476 if (wake_klogd) 2477 wake_up_klogd(); 2478 } 2479 EXPORT_SYMBOL(console_unlock); 2480 2481 /** 2482 * console_conditional_schedule - yield the CPU if required 2483 * 2484 * If the console code is currently allowed to sleep, and 2485 * if this CPU should yield the CPU to another task, do 2486 * so here. 2487 * 2488 * Must be called within console_lock();. 2489 */ 2490 void __sched console_conditional_schedule(void) 2491 { 2492 if (console_may_schedule) 2493 cond_resched(); 2494 } 2495 EXPORT_SYMBOL(console_conditional_schedule); 2496 2497 void console_unblank(void) 2498 { 2499 struct console *c; 2500 2501 /* 2502 * console_unblank can no longer be called in interrupt context unless 2503 * oops_in_progress is set to 1.. 2504 */ 2505 if (oops_in_progress) { 2506 if (down_trylock_console_sem() != 0) 2507 return; 2508 } else 2509 console_lock(); 2510 2511 console_locked = 1; 2512 console_may_schedule = 0; 2513 for_each_console(c) 2514 if ((c->flags & CON_ENABLED) && c->unblank) 2515 c->unblank(); 2516 console_unlock(); 2517 } 2518 2519 /** 2520 * console_flush_on_panic - flush console content on panic 2521 * 2522 * Immediately output all pending messages no matter what. 2523 */ 2524 void console_flush_on_panic(void) 2525 { 2526 /* 2527 * If someone else is holding the console lock, trylock will fail 2528 * and may_schedule may be set. Ignore and proceed to unlock so 2529 * that messages are flushed out. As this can be called from any 2530 * context and we don't want to get preempted while flushing, 2531 * ensure may_schedule is cleared. 2532 */ 2533 console_trylock(); 2534 console_may_schedule = 0; 2535 console_unlock(); 2536 } 2537 2538 /* 2539 * Return the console tty driver structure and its associated index 2540 */ 2541 struct tty_driver *console_device(int *index) 2542 { 2543 struct console *c; 2544 struct tty_driver *driver = NULL; 2545 2546 console_lock(); 2547 for_each_console(c) { 2548 if (!c->device) 2549 continue; 2550 driver = c->device(c, index); 2551 if (driver) 2552 break; 2553 } 2554 console_unlock(); 2555 return driver; 2556 } 2557 2558 /* 2559 * Prevent further output on the passed console device so that (for example) 2560 * serial drivers can disable console output before suspending a port, and can 2561 * re-enable output afterwards. 2562 */ 2563 void console_stop(struct console *console) 2564 { 2565 console_lock(); 2566 console->flags &= ~CON_ENABLED; 2567 console_unlock(); 2568 } 2569 EXPORT_SYMBOL(console_stop); 2570 2571 void console_start(struct console *console) 2572 { 2573 console_lock(); 2574 console->flags |= CON_ENABLED; 2575 console_unlock(); 2576 } 2577 EXPORT_SYMBOL(console_start); 2578 2579 static int __read_mostly keep_bootcon; 2580 2581 static int __init keep_bootcon_setup(char *str) 2582 { 2583 keep_bootcon = 1; 2584 pr_info("debug: skip boot console de-registration.\n"); 2585 2586 return 0; 2587 } 2588 2589 early_param("keep_bootcon", keep_bootcon_setup); 2590 2591 /* 2592 * The console driver calls this routine during kernel initialization 2593 * to register the console printing procedure with printk() and to 2594 * print any messages that were printed by the kernel before the 2595 * console driver was initialized. 2596 * 2597 * This can happen pretty early during the boot process (because of 2598 * early_printk) - sometimes before setup_arch() completes - be careful 2599 * of what kernel features are used - they may not be initialised yet. 2600 * 2601 * There are two types of consoles - bootconsoles (early_printk) and 2602 * "real" consoles (everything which is not a bootconsole) which are 2603 * handled differently. 2604 * - Any number of bootconsoles can be registered at any time. 2605 * - As soon as a "real" console is registered, all bootconsoles 2606 * will be unregistered automatically. 2607 * - Once a "real" console is registered, any attempt to register a 2608 * bootconsoles will be rejected 2609 */ 2610 void register_console(struct console *newcon) 2611 { 2612 int i; 2613 unsigned long flags; 2614 struct console *bcon = NULL; 2615 struct console_cmdline *c; 2616 2617 if (console_drivers) 2618 for_each_console(bcon) 2619 if (WARN(bcon == newcon, 2620 "console '%s%d' already registered\n", 2621 bcon->name, bcon->index)) 2622 return; 2623 2624 /* 2625 * before we register a new CON_BOOT console, make sure we don't 2626 * already have a valid console 2627 */ 2628 if (console_drivers && newcon->flags & CON_BOOT) { 2629 /* find the last or real console */ 2630 for_each_console(bcon) { 2631 if (!(bcon->flags & CON_BOOT)) { 2632 pr_info("Too late to register bootconsole %s%d\n", 2633 newcon->name, newcon->index); 2634 return; 2635 } 2636 } 2637 } 2638 2639 if (console_drivers && console_drivers->flags & CON_BOOT) 2640 bcon = console_drivers; 2641 2642 if (preferred_console < 0 || bcon || !console_drivers) 2643 preferred_console = selected_console; 2644 2645 /* 2646 * See if we want to use this console driver. If we 2647 * didn't select a console we take the first one 2648 * that registers here. 2649 */ 2650 if (preferred_console < 0) { 2651 if (newcon->index < 0) 2652 newcon->index = 0; 2653 if (newcon->setup == NULL || 2654 newcon->setup(newcon, NULL) == 0) { 2655 newcon->flags |= CON_ENABLED; 2656 if (newcon->device) { 2657 newcon->flags |= CON_CONSDEV; 2658 preferred_console = 0; 2659 } 2660 } 2661 } 2662 2663 /* 2664 * See if this console matches one we selected on 2665 * the command line. 2666 */ 2667 for (i = 0, c = console_cmdline; 2668 i < MAX_CMDLINECONSOLES && c->name[0]; 2669 i++, c++) { 2670 if (!newcon->match || 2671 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2672 /* default matching */ 2673 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2674 if (strcmp(c->name, newcon->name) != 0) 2675 continue; 2676 if (newcon->index >= 0 && 2677 newcon->index != c->index) 2678 continue; 2679 if (newcon->index < 0) 2680 newcon->index = c->index; 2681 2682 if (_braille_register_console(newcon, c)) 2683 return; 2684 2685 if (newcon->setup && 2686 newcon->setup(newcon, c->options) != 0) 2687 break; 2688 } 2689 2690 newcon->flags |= CON_ENABLED; 2691 if (i == selected_console) { 2692 newcon->flags |= CON_CONSDEV; 2693 preferred_console = selected_console; 2694 } 2695 break; 2696 } 2697 2698 if (!(newcon->flags & CON_ENABLED)) 2699 return; 2700 2701 /* 2702 * If we have a bootconsole, and are switching to a real console, 2703 * don't print everything out again, since when the boot console, and 2704 * the real console are the same physical device, it's annoying to 2705 * see the beginning boot messages twice 2706 */ 2707 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2708 newcon->flags &= ~CON_PRINTBUFFER; 2709 2710 /* 2711 * Put this console in the list - keep the 2712 * preferred driver at the head of the list. 2713 */ 2714 console_lock(); 2715 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2716 newcon->next = console_drivers; 2717 console_drivers = newcon; 2718 if (newcon->next) 2719 newcon->next->flags &= ~CON_CONSDEV; 2720 } else { 2721 newcon->next = console_drivers->next; 2722 console_drivers->next = newcon; 2723 } 2724 2725 if (newcon->flags & CON_EXTENDED) 2726 if (!nr_ext_console_drivers++) 2727 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2728 2729 if (newcon->flags & CON_PRINTBUFFER) { 2730 /* 2731 * console_unlock(); will print out the buffered messages 2732 * for us. 2733 */ 2734 raw_spin_lock_irqsave(&logbuf_lock, flags); 2735 console_seq = syslog_seq; 2736 console_idx = syslog_idx; 2737 console_prev = syslog_prev; 2738 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2739 /* 2740 * We're about to replay the log buffer. Only do this to the 2741 * just-registered console to avoid excessive message spam to 2742 * the already-registered consoles. 2743 */ 2744 exclusive_console = newcon; 2745 } 2746 console_unlock(); 2747 console_sysfs_notify(); 2748 2749 /* 2750 * By unregistering the bootconsoles after we enable the real console 2751 * we get the "console xxx enabled" message on all the consoles - 2752 * boot consoles, real consoles, etc - this is to ensure that end 2753 * users know there might be something in the kernel's log buffer that 2754 * went to the bootconsole (that they do not see on the real console) 2755 */ 2756 pr_info("%sconsole [%s%d] enabled\n", 2757 (newcon->flags & CON_BOOT) ? "boot" : "" , 2758 newcon->name, newcon->index); 2759 if (bcon && 2760 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2761 !keep_bootcon) { 2762 /* We need to iterate through all boot consoles, to make 2763 * sure we print everything out, before we unregister them. 2764 */ 2765 for_each_console(bcon) 2766 if (bcon->flags & CON_BOOT) 2767 unregister_console(bcon); 2768 } 2769 } 2770 EXPORT_SYMBOL(register_console); 2771 2772 int unregister_console(struct console *console) 2773 { 2774 struct console *a, *b; 2775 int res; 2776 2777 pr_info("%sconsole [%s%d] disabled\n", 2778 (console->flags & CON_BOOT) ? "boot" : "" , 2779 console->name, console->index); 2780 2781 res = _braille_unregister_console(console); 2782 if (res) 2783 return res; 2784 2785 res = 1; 2786 console_lock(); 2787 if (console_drivers == console) { 2788 console_drivers=console->next; 2789 res = 0; 2790 } else if (console_drivers) { 2791 for (a=console_drivers->next, b=console_drivers ; 2792 a; b=a, a=b->next) { 2793 if (a == console) { 2794 b->next = a->next; 2795 res = 0; 2796 break; 2797 } 2798 } 2799 } 2800 2801 if (!res && (console->flags & CON_EXTENDED)) 2802 nr_ext_console_drivers--; 2803 2804 /* 2805 * If this isn't the last console and it has CON_CONSDEV set, we 2806 * need to set it on the next preferred console. 2807 */ 2808 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2809 console_drivers->flags |= CON_CONSDEV; 2810 2811 console->flags &= ~CON_ENABLED; 2812 console_unlock(); 2813 console_sysfs_notify(); 2814 return res; 2815 } 2816 EXPORT_SYMBOL(unregister_console); 2817 2818 /* 2819 * Some boot consoles access data that is in the init section and which will 2820 * be discarded after the initcalls have been run. To make sure that no code 2821 * will access this data, unregister the boot consoles in a late initcall. 2822 * 2823 * If for some reason, such as deferred probe or the driver being a loadable 2824 * module, the real console hasn't registered yet at this point, there will 2825 * be a brief interval in which no messages are logged to the console, which 2826 * makes it difficult to diagnose problems that occur during this time. 2827 * 2828 * To mitigate this problem somewhat, only unregister consoles whose memory 2829 * intersects with the init section. Note that code exists elsewhere to get 2830 * rid of the boot console as soon as the proper console shows up, so there 2831 * won't be side-effects from postponing the removal. 2832 */ 2833 static int __init printk_late_init(void) 2834 { 2835 struct console *con; 2836 2837 for_each_console(con) { 2838 if (!keep_bootcon && con->flags & CON_BOOT) { 2839 /* 2840 * Make sure to unregister boot consoles whose data 2841 * resides in the init section before the init section 2842 * is discarded. Boot consoles whose data will stick 2843 * around will automatically be unregistered when the 2844 * proper console replaces them. 2845 */ 2846 if (init_section_intersects(con, sizeof(*con))) 2847 unregister_console(con); 2848 } 2849 } 2850 hotcpu_notifier(console_cpu_notify, 0); 2851 return 0; 2852 } 2853 late_initcall(printk_late_init); 2854 2855 #if defined CONFIG_PRINTK 2856 /* 2857 * Delayed printk version, for scheduler-internal messages: 2858 */ 2859 #define PRINTK_PENDING_WAKEUP 0x01 2860 #define PRINTK_PENDING_OUTPUT 0x02 2861 2862 static DEFINE_PER_CPU(int, printk_pending); 2863 2864 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2865 { 2866 int pending = __this_cpu_xchg(printk_pending, 0); 2867 2868 if (pending & PRINTK_PENDING_OUTPUT) { 2869 /* If trylock fails, someone else is doing the printing */ 2870 if (console_trylock()) 2871 console_unlock(); 2872 } 2873 2874 if (pending & PRINTK_PENDING_WAKEUP) 2875 wake_up_interruptible(&log_wait); 2876 } 2877 2878 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2879 .func = wake_up_klogd_work_func, 2880 .flags = IRQ_WORK_LAZY, 2881 }; 2882 2883 void wake_up_klogd(void) 2884 { 2885 preempt_disable(); 2886 if (waitqueue_active(&log_wait)) { 2887 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2888 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2889 } 2890 preempt_enable(); 2891 } 2892 2893 int printk_deferred(const char *fmt, ...) 2894 { 2895 va_list args; 2896 int r; 2897 2898 preempt_disable(); 2899 va_start(args, fmt); 2900 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2901 va_end(args); 2902 2903 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2904 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2905 preempt_enable(); 2906 2907 return r; 2908 } 2909 2910 /* 2911 * printk rate limiting, lifted from the networking subsystem. 2912 * 2913 * This enforces a rate limit: not more than 10 kernel messages 2914 * every 5s to make a denial-of-service attack impossible. 2915 */ 2916 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2917 2918 int __printk_ratelimit(const char *func) 2919 { 2920 return ___ratelimit(&printk_ratelimit_state, func); 2921 } 2922 EXPORT_SYMBOL(__printk_ratelimit); 2923 2924 /** 2925 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2926 * @caller_jiffies: pointer to caller's state 2927 * @interval_msecs: minimum interval between prints 2928 * 2929 * printk_timed_ratelimit() returns true if more than @interval_msecs 2930 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2931 * returned true. 2932 */ 2933 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2934 unsigned int interval_msecs) 2935 { 2936 unsigned long elapsed = jiffies - *caller_jiffies; 2937 2938 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2939 return false; 2940 2941 *caller_jiffies = jiffies; 2942 return true; 2943 } 2944 EXPORT_SYMBOL(printk_timed_ratelimit); 2945 2946 static DEFINE_SPINLOCK(dump_list_lock); 2947 static LIST_HEAD(dump_list); 2948 2949 /** 2950 * kmsg_dump_register - register a kernel log dumper. 2951 * @dumper: pointer to the kmsg_dumper structure 2952 * 2953 * Adds a kernel log dumper to the system. The dump callback in the 2954 * structure will be called when the kernel oopses or panics and must be 2955 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2956 */ 2957 int kmsg_dump_register(struct kmsg_dumper *dumper) 2958 { 2959 unsigned long flags; 2960 int err = -EBUSY; 2961 2962 /* The dump callback needs to be set */ 2963 if (!dumper->dump) 2964 return -EINVAL; 2965 2966 spin_lock_irqsave(&dump_list_lock, flags); 2967 /* Don't allow registering multiple times */ 2968 if (!dumper->registered) { 2969 dumper->registered = 1; 2970 list_add_tail_rcu(&dumper->list, &dump_list); 2971 err = 0; 2972 } 2973 spin_unlock_irqrestore(&dump_list_lock, flags); 2974 2975 return err; 2976 } 2977 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2978 2979 /** 2980 * kmsg_dump_unregister - unregister a kmsg dumper. 2981 * @dumper: pointer to the kmsg_dumper structure 2982 * 2983 * Removes a dump device from the system. Returns zero on success and 2984 * %-EINVAL otherwise. 2985 */ 2986 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2987 { 2988 unsigned long flags; 2989 int err = -EINVAL; 2990 2991 spin_lock_irqsave(&dump_list_lock, flags); 2992 if (dumper->registered) { 2993 dumper->registered = 0; 2994 list_del_rcu(&dumper->list); 2995 err = 0; 2996 } 2997 spin_unlock_irqrestore(&dump_list_lock, flags); 2998 synchronize_rcu(); 2999 3000 return err; 3001 } 3002 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3003 3004 static bool always_kmsg_dump; 3005 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3006 3007 /** 3008 * kmsg_dump - dump kernel log to kernel message dumpers. 3009 * @reason: the reason (oops, panic etc) for dumping 3010 * 3011 * Call each of the registered dumper's dump() callback, which can 3012 * retrieve the kmsg records with kmsg_dump_get_line() or 3013 * kmsg_dump_get_buffer(). 3014 */ 3015 void kmsg_dump(enum kmsg_dump_reason reason) 3016 { 3017 struct kmsg_dumper *dumper; 3018 unsigned long flags; 3019 3020 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3021 return; 3022 3023 rcu_read_lock(); 3024 list_for_each_entry_rcu(dumper, &dump_list, list) { 3025 if (dumper->max_reason && reason > dumper->max_reason) 3026 continue; 3027 3028 /* initialize iterator with data about the stored records */ 3029 dumper->active = true; 3030 3031 raw_spin_lock_irqsave(&logbuf_lock, flags); 3032 dumper->cur_seq = clear_seq; 3033 dumper->cur_idx = clear_idx; 3034 dumper->next_seq = log_next_seq; 3035 dumper->next_idx = log_next_idx; 3036 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3037 3038 /* invoke dumper which will iterate over records */ 3039 dumper->dump(dumper, reason); 3040 3041 /* reset iterator */ 3042 dumper->active = false; 3043 } 3044 rcu_read_unlock(); 3045 } 3046 3047 /** 3048 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3049 * @dumper: registered kmsg dumper 3050 * @syslog: include the "<4>" prefixes 3051 * @line: buffer to copy the line to 3052 * @size: maximum size of the buffer 3053 * @len: length of line placed into buffer 3054 * 3055 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3056 * record, and copy one record into the provided buffer. 3057 * 3058 * Consecutive calls will return the next available record moving 3059 * towards the end of the buffer with the youngest messages. 3060 * 3061 * A return value of FALSE indicates that there are no more records to 3062 * read. 3063 * 3064 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3065 */ 3066 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3067 char *line, size_t size, size_t *len) 3068 { 3069 struct printk_log *msg; 3070 size_t l = 0; 3071 bool ret = false; 3072 3073 if (!dumper->active) 3074 goto out; 3075 3076 if (dumper->cur_seq < log_first_seq) { 3077 /* messages are gone, move to first available one */ 3078 dumper->cur_seq = log_first_seq; 3079 dumper->cur_idx = log_first_idx; 3080 } 3081 3082 /* last entry */ 3083 if (dumper->cur_seq >= log_next_seq) 3084 goto out; 3085 3086 msg = log_from_idx(dumper->cur_idx); 3087 l = msg_print_text(msg, 0, syslog, line, size); 3088 3089 dumper->cur_idx = log_next(dumper->cur_idx); 3090 dumper->cur_seq++; 3091 ret = true; 3092 out: 3093 if (len) 3094 *len = l; 3095 return ret; 3096 } 3097 3098 /** 3099 * kmsg_dump_get_line - retrieve one kmsg log line 3100 * @dumper: registered kmsg dumper 3101 * @syslog: include the "<4>" prefixes 3102 * @line: buffer to copy the line to 3103 * @size: maximum size of the buffer 3104 * @len: length of line placed into buffer 3105 * 3106 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3107 * record, and copy one record into the provided buffer. 3108 * 3109 * Consecutive calls will return the next available record moving 3110 * towards the end of the buffer with the youngest messages. 3111 * 3112 * A return value of FALSE indicates that there are no more records to 3113 * read. 3114 */ 3115 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3116 char *line, size_t size, size_t *len) 3117 { 3118 unsigned long flags; 3119 bool ret; 3120 3121 raw_spin_lock_irqsave(&logbuf_lock, flags); 3122 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3123 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3124 3125 return ret; 3126 } 3127 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3128 3129 /** 3130 * kmsg_dump_get_buffer - copy kmsg log lines 3131 * @dumper: registered kmsg dumper 3132 * @syslog: include the "<4>" prefixes 3133 * @buf: buffer to copy the line to 3134 * @size: maximum size of the buffer 3135 * @len: length of line placed into buffer 3136 * 3137 * Start at the end of the kmsg buffer and fill the provided buffer 3138 * with as many of the the *youngest* kmsg records that fit into it. 3139 * If the buffer is large enough, all available kmsg records will be 3140 * copied with a single call. 3141 * 3142 * Consecutive calls will fill the buffer with the next block of 3143 * available older records, not including the earlier retrieved ones. 3144 * 3145 * A return value of FALSE indicates that there are no more records to 3146 * read. 3147 */ 3148 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3149 char *buf, size_t size, size_t *len) 3150 { 3151 unsigned long flags; 3152 u64 seq; 3153 u32 idx; 3154 u64 next_seq; 3155 u32 next_idx; 3156 enum log_flags prev; 3157 size_t l = 0; 3158 bool ret = false; 3159 3160 if (!dumper->active) 3161 goto out; 3162 3163 raw_spin_lock_irqsave(&logbuf_lock, flags); 3164 if (dumper->cur_seq < log_first_seq) { 3165 /* messages are gone, move to first available one */ 3166 dumper->cur_seq = log_first_seq; 3167 dumper->cur_idx = log_first_idx; 3168 } 3169 3170 /* last entry */ 3171 if (dumper->cur_seq >= dumper->next_seq) { 3172 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3173 goto out; 3174 } 3175 3176 /* calculate length of entire buffer */ 3177 seq = dumper->cur_seq; 3178 idx = dumper->cur_idx; 3179 prev = 0; 3180 while (seq < dumper->next_seq) { 3181 struct printk_log *msg = log_from_idx(idx); 3182 3183 l += msg_print_text(msg, prev, true, NULL, 0); 3184 idx = log_next(idx); 3185 seq++; 3186 prev = msg->flags; 3187 } 3188 3189 /* move first record forward until length fits into the buffer */ 3190 seq = dumper->cur_seq; 3191 idx = dumper->cur_idx; 3192 prev = 0; 3193 while (l > size && seq < dumper->next_seq) { 3194 struct printk_log *msg = log_from_idx(idx); 3195 3196 l -= msg_print_text(msg, prev, true, NULL, 0); 3197 idx = log_next(idx); 3198 seq++; 3199 prev = msg->flags; 3200 } 3201 3202 /* last message in next interation */ 3203 next_seq = seq; 3204 next_idx = idx; 3205 3206 l = 0; 3207 while (seq < dumper->next_seq) { 3208 struct printk_log *msg = log_from_idx(idx); 3209 3210 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3211 idx = log_next(idx); 3212 seq++; 3213 prev = msg->flags; 3214 } 3215 3216 dumper->next_seq = next_seq; 3217 dumper->next_idx = next_idx; 3218 ret = true; 3219 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3220 out: 3221 if (len) 3222 *len = l; 3223 return ret; 3224 } 3225 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3226 3227 /** 3228 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3229 * @dumper: registered kmsg dumper 3230 * 3231 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3232 * kmsg_dump_get_buffer() can be called again and used multiple 3233 * times within the same dumper.dump() callback. 3234 * 3235 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3236 */ 3237 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3238 { 3239 dumper->cur_seq = clear_seq; 3240 dumper->cur_idx = clear_idx; 3241 dumper->next_seq = log_next_seq; 3242 dumper->next_idx = log_next_idx; 3243 } 3244 3245 /** 3246 * kmsg_dump_rewind - reset the interator 3247 * @dumper: registered kmsg dumper 3248 * 3249 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3250 * kmsg_dump_get_buffer() can be called again and used multiple 3251 * times within the same dumper.dump() callback. 3252 */ 3253 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3254 { 3255 unsigned long flags; 3256 3257 raw_spin_lock_irqsave(&logbuf_lock, flags); 3258 kmsg_dump_rewind_nolock(dumper); 3259 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3260 } 3261 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3262 3263 static char dump_stack_arch_desc_str[128]; 3264 3265 /** 3266 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3267 * @fmt: printf-style format string 3268 * @...: arguments for the format string 3269 * 3270 * The configured string will be printed right after utsname during task 3271 * dumps. Usually used to add arch-specific system identifiers. If an 3272 * arch wants to make use of such an ID string, it should initialize this 3273 * as soon as possible during boot. 3274 */ 3275 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3276 { 3277 va_list args; 3278 3279 va_start(args, fmt); 3280 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3281 fmt, args); 3282 va_end(args); 3283 } 3284 3285 /** 3286 * dump_stack_print_info - print generic debug info for dump_stack() 3287 * @log_lvl: log level 3288 * 3289 * Arch-specific dump_stack() implementations can use this function to 3290 * print out the same debug information as the generic dump_stack(). 3291 */ 3292 void dump_stack_print_info(const char *log_lvl) 3293 { 3294 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3295 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3296 print_tainted(), init_utsname()->release, 3297 (int)strcspn(init_utsname()->version, " "), 3298 init_utsname()->version); 3299 3300 if (dump_stack_arch_desc_str[0] != '\0') 3301 printk("%sHardware name: %s\n", 3302 log_lvl, dump_stack_arch_desc_str); 3303 3304 print_worker_info(log_lvl, current); 3305 } 3306 3307 /** 3308 * show_regs_print_info - print generic debug info for show_regs() 3309 * @log_lvl: log level 3310 * 3311 * show_regs() implementations can use this function to print out generic 3312 * debug information. 3313 */ 3314 void show_regs_print_info(const char *log_lvl) 3315 { 3316 dump_stack_print_info(log_lvl); 3317 3318 printk("%stask: %p task.stack: %p\n", 3319 log_lvl, current, task_stack_page(current)); 3320 } 3321 3322 #endif 3323