xref: /openbmc/linux/kernel/printk/printk.c (revision 2634682fdffd9ba6e74b76be8aa91cf8b2e05c41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 EXPORT_SYMBOL_GPL(console_printk);
69 
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72 
73 /*
74  * Low level drivers may need that to know if they can schedule in
75  * their unblank() callback or not. So let's export it.
76  */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79 
80 /*
81  * console_sem protects the console_drivers list, and also
82  * provides serialisation for access to the entire console
83  * driver system.
84  */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88 
89 /*
90  * System may need to suppress printk message under certain
91  * circumstances, like after kernel panic happens.
92  */
93 int __read_mostly suppress_printk;
94 
95 #ifdef CONFIG_LOCKDEP
96 static struct lockdep_map console_lock_dep_map = {
97 	.name = "console_lock"
98 };
99 #endif
100 
101 enum devkmsg_log_bits {
102 	__DEVKMSG_LOG_BIT_ON = 0,
103 	__DEVKMSG_LOG_BIT_OFF,
104 	__DEVKMSG_LOG_BIT_LOCK,
105 };
106 
107 enum devkmsg_log_masks {
108 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
109 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
110 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
111 };
112 
113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
114 #define DEVKMSG_LOG_MASK_DEFAULT	0
115 
116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
117 
118 static int __control_devkmsg(char *str)
119 {
120 	size_t len;
121 
122 	if (!str)
123 		return -EINVAL;
124 
125 	len = str_has_prefix(str, "on");
126 	if (len) {
127 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
128 		return len;
129 	}
130 
131 	len = str_has_prefix(str, "off");
132 	if (len) {
133 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
134 		return len;
135 	}
136 
137 	len = str_has_prefix(str, "ratelimit");
138 	if (len) {
139 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
140 		return len;
141 	}
142 
143 	return -EINVAL;
144 }
145 
146 static int __init control_devkmsg(char *str)
147 {
148 	if (__control_devkmsg(str) < 0)
149 		return 1;
150 
151 	/*
152 	 * Set sysctl string accordingly:
153 	 */
154 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
155 		strcpy(devkmsg_log_str, "on");
156 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
157 		strcpy(devkmsg_log_str, "off");
158 	/* else "ratelimit" which is set by default. */
159 
160 	/*
161 	 * Sysctl cannot change it anymore. The kernel command line setting of
162 	 * this parameter is to force the setting to be permanent throughout the
163 	 * runtime of the system. This is a precation measure against userspace
164 	 * trying to be a smarta** and attempting to change it up on us.
165 	 */
166 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
167 
168 	return 0;
169 }
170 __setup("printk.devkmsg=", control_devkmsg);
171 
172 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
173 
174 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
175 			      void *buffer, size_t *lenp, loff_t *ppos)
176 {
177 	char old_str[DEVKMSG_STR_MAX_SIZE];
178 	unsigned int old;
179 	int err;
180 
181 	if (write) {
182 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
183 			return -EINVAL;
184 
185 		old = devkmsg_log;
186 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
187 	}
188 
189 	err = proc_dostring(table, write, buffer, lenp, ppos);
190 	if (err)
191 		return err;
192 
193 	if (write) {
194 		err = __control_devkmsg(devkmsg_log_str);
195 
196 		/*
197 		 * Do not accept an unknown string OR a known string with
198 		 * trailing crap...
199 		 */
200 		if (err < 0 || (err + 1 != *lenp)) {
201 
202 			/* ... and restore old setting. */
203 			devkmsg_log = old;
204 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
205 
206 			return -EINVAL;
207 		}
208 	}
209 
210 	return 0;
211 }
212 
213 /* Number of registered extended console drivers. */
214 static int nr_ext_console_drivers;
215 
216 /*
217  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
218  * macros instead of functions so that _RET_IP_ contains useful information.
219  */
220 #define down_console_sem() do { \
221 	down(&console_sem);\
222 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
223 } while (0)
224 
225 static int __down_trylock_console_sem(unsigned long ip)
226 {
227 	int lock_failed;
228 	unsigned long flags;
229 
230 	/*
231 	 * Here and in __up_console_sem() we need to be in safe mode,
232 	 * because spindump/WARN/etc from under console ->lock will
233 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
234 	 */
235 	printk_safe_enter_irqsave(flags);
236 	lock_failed = down_trylock(&console_sem);
237 	printk_safe_exit_irqrestore(flags);
238 
239 	if (lock_failed)
240 		return 1;
241 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
242 	return 0;
243 }
244 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
245 
246 static void __up_console_sem(unsigned long ip)
247 {
248 	unsigned long flags;
249 
250 	mutex_release(&console_lock_dep_map, ip);
251 
252 	printk_safe_enter_irqsave(flags);
253 	up(&console_sem);
254 	printk_safe_exit_irqrestore(flags);
255 }
256 #define up_console_sem() __up_console_sem(_RET_IP_)
257 
258 /*
259  * This is used for debugging the mess that is the VT code by
260  * keeping track if we have the console semaphore held. It's
261  * definitely not the perfect debug tool (we don't know if _WE_
262  * hold it and are racing, but it helps tracking those weird code
263  * paths in the console code where we end up in places I want
264  * locked without the console sempahore held).
265  */
266 static int console_locked, console_suspended;
267 
268 /*
269  * If exclusive_console is non-NULL then only this console is to be printed to.
270  */
271 static struct console *exclusive_console;
272 
273 /*
274  *	Array of consoles built from command line options (console=)
275  */
276 
277 #define MAX_CMDLINECONSOLES 8
278 
279 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
280 
281 static int preferred_console = -1;
282 static bool has_preferred_console;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285 
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288 
289 enum con_msg_format_flags {
290 	MSG_FORMAT_DEFAULT	= 0,
291 	MSG_FORMAT_SYSLOG	= (1 << 0),
292 };
293 
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295 
296 /*
297  * The printk log buffer consists of a chain of concatenated variable
298  * length records. Every record starts with a record header, containing
299  * the overall length of the record.
300  *
301  * The heads to the first and last entry in the buffer, as well as the
302  * sequence numbers of these entries are maintained when messages are
303  * stored.
304  *
305  * If the heads indicate available messages, the length in the header
306  * tells the start next message. A length == 0 for the next message
307  * indicates a wrap-around to the beginning of the buffer.
308  *
309  * Every record carries the monotonic timestamp in microseconds, as well as
310  * the standard userspace syslog level and syslog facility. The usual
311  * kernel messages use LOG_KERN; userspace-injected messages always carry
312  * a matching syslog facility, by default LOG_USER. The origin of every
313  * message can be reliably determined that way.
314  *
315  * The human readable log message directly follows the message header. The
316  * length of the message text is stored in the header, the stored message
317  * is not terminated.
318  *
319  * Optionally, a message can carry a dictionary of properties (key/value pairs),
320  * to provide userspace with a machine-readable message context.
321  *
322  * Examples for well-defined, commonly used property names are:
323  *   DEVICE=b12:8               device identifier
324  *                                b12:8         block dev_t
325  *                                c127:3        char dev_t
326  *                                n8            netdev ifindex
327  *                                +sound:card0  subsystem:devname
328  *   SUBSYSTEM=pci              driver-core subsystem name
329  *
330  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
331  * follows directly after a '=' character. Every property is terminated by
332  * a '\0' character. The last property is not terminated.
333  *
334  * Example of a message structure:
335  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
336  *   0008  34 00                        record is 52 bytes long
337  *   000a        0b 00                  text is 11 bytes long
338  *   000c              1f 00            dictionary is 23 bytes long
339  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
340  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
341  *         69 6e 65                     "ine"
342  *   001b           44 45 56 49 43      "DEVIC"
343  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
344  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
345  *         67                           "g"
346  *   0032     00 00 00                  padding to next message header
347  *
348  * The 'struct printk_log' buffer header must never be directly exported to
349  * userspace, it is a kernel-private implementation detail that might
350  * need to be changed in the future, when the requirements change.
351  *
352  * /dev/kmsg exports the structured data in the following line format:
353  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
354  *
355  * Users of the export format should ignore possible additional values
356  * separated by ',', and find the message after the ';' character.
357  *
358  * The optional key/value pairs are attached as continuation lines starting
359  * with a space character and terminated by a newline. All possible
360  * non-prinatable characters are escaped in the "\xff" notation.
361  */
362 
363 enum log_flags {
364 	LOG_NEWLINE	= 2,	/* text ended with a newline */
365 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
366 };
367 
368 struct printk_log {
369 	u64 ts_nsec;		/* timestamp in nanoseconds */
370 	u16 len;		/* length of entire record */
371 	u16 text_len;		/* length of text buffer */
372 	u16 dict_len;		/* length of dictionary buffer */
373 	u8 facility;		/* syslog facility */
374 	u8 flags:5;		/* internal record flags */
375 	u8 level:3;		/* syslog level */
376 #ifdef CONFIG_PRINTK_CALLER
377 	u32 caller_id;            /* thread id or processor id */
378 #endif
379 }
380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
381 __packed __aligned(4)
382 #endif
383 ;
384 
385 /*
386  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
387  * within the scheduler's rq lock. It must be released before calling
388  * console_unlock() or anything else that might wake up a process.
389  */
390 DEFINE_RAW_SPINLOCK(logbuf_lock);
391 
392 /*
393  * Helper macros to lock/unlock logbuf_lock and switch between
394  * printk-safe/unsafe modes.
395  */
396 #define logbuf_lock_irq()				\
397 	do {						\
398 		printk_safe_enter_irq();		\
399 		raw_spin_lock(&logbuf_lock);		\
400 	} while (0)
401 
402 #define logbuf_unlock_irq()				\
403 	do {						\
404 		raw_spin_unlock(&logbuf_lock);		\
405 		printk_safe_exit_irq();			\
406 	} while (0)
407 
408 #define logbuf_lock_irqsave(flags)			\
409 	do {						\
410 		printk_safe_enter_irqsave(flags);	\
411 		raw_spin_lock(&logbuf_lock);		\
412 	} while (0)
413 
414 #define logbuf_unlock_irqrestore(flags)		\
415 	do {						\
416 		raw_spin_unlock(&logbuf_lock);		\
417 		printk_safe_exit_irqrestore(flags);	\
418 	} while (0)
419 
420 #ifdef CONFIG_PRINTK
421 DECLARE_WAIT_QUEUE_HEAD(log_wait);
422 /* the next printk record to read by syslog(READ) or /proc/kmsg */
423 static u64 syslog_seq;
424 static u32 syslog_idx;
425 static size_t syslog_partial;
426 static bool syslog_time;
427 
428 /* index and sequence number of the first record stored in the buffer */
429 static u64 log_first_seq;
430 static u32 log_first_idx;
431 
432 /* index and sequence number of the next record to store in the buffer */
433 static u64 log_next_seq;
434 static u32 log_next_idx;
435 
436 /* the next printk record to write to the console */
437 static u64 console_seq;
438 static u32 console_idx;
439 static u64 exclusive_console_stop_seq;
440 
441 /* the next printk record to read after the last 'clear' command */
442 static u64 clear_seq;
443 static u32 clear_idx;
444 
445 #ifdef CONFIG_PRINTK_CALLER
446 #define PREFIX_MAX		48
447 #else
448 #define PREFIX_MAX		32
449 #endif
450 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
451 
452 #define LOG_LEVEL(v)		((v) & 0x07)
453 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
454 
455 /* record buffer */
456 #define LOG_ALIGN __alignof__(struct printk_log)
457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
458 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
460 static char *log_buf = __log_buf;
461 static u32 log_buf_len = __LOG_BUF_LEN;
462 
463 /*
464  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
465  * per_cpu_areas are initialised. This variable is set to true when
466  * it's safe to access per-CPU data.
467  */
468 static bool __printk_percpu_data_ready __read_mostly;
469 
470 bool printk_percpu_data_ready(void)
471 {
472 	return __printk_percpu_data_ready;
473 }
474 
475 /* Return log buffer address */
476 char *log_buf_addr_get(void)
477 {
478 	return log_buf;
479 }
480 
481 /* Return log buffer size */
482 u32 log_buf_len_get(void)
483 {
484 	return log_buf_len;
485 }
486 
487 /* human readable text of the record */
488 static char *log_text(const struct printk_log *msg)
489 {
490 	return (char *)msg + sizeof(struct printk_log);
491 }
492 
493 /* optional key/value pair dictionary attached to the record */
494 static char *log_dict(const struct printk_log *msg)
495 {
496 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
497 }
498 
499 /* get record by index; idx must point to valid msg */
500 static struct printk_log *log_from_idx(u32 idx)
501 {
502 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
503 
504 	/*
505 	 * A length == 0 record is the end of buffer marker. Wrap around and
506 	 * read the message at the start of the buffer.
507 	 */
508 	if (!msg->len)
509 		return (struct printk_log *)log_buf;
510 	return msg;
511 }
512 
513 /* get next record; idx must point to valid msg */
514 static u32 log_next(u32 idx)
515 {
516 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
517 
518 	/* length == 0 indicates the end of the buffer; wrap */
519 	/*
520 	 * A length == 0 record is the end of buffer marker. Wrap around and
521 	 * read the message at the start of the buffer as *this* one, and
522 	 * return the one after that.
523 	 */
524 	if (!msg->len) {
525 		msg = (struct printk_log *)log_buf;
526 		return msg->len;
527 	}
528 	return idx + msg->len;
529 }
530 
531 /*
532  * Check whether there is enough free space for the given message.
533  *
534  * The same values of first_idx and next_idx mean that the buffer
535  * is either empty or full.
536  *
537  * If the buffer is empty, we must respect the position of the indexes.
538  * They cannot be reset to the beginning of the buffer.
539  */
540 static int logbuf_has_space(u32 msg_size, bool empty)
541 {
542 	u32 free;
543 
544 	if (log_next_idx > log_first_idx || empty)
545 		free = max(log_buf_len - log_next_idx, log_first_idx);
546 	else
547 		free = log_first_idx - log_next_idx;
548 
549 	/*
550 	 * We need space also for an empty header that signalizes wrapping
551 	 * of the buffer.
552 	 */
553 	return free >= msg_size + sizeof(struct printk_log);
554 }
555 
556 static int log_make_free_space(u32 msg_size)
557 {
558 	while (log_first_seq < log_next_seq &&
559 	       !logbuf_has_space(msg_size, false)) {
560 		/* drop old messages until we have enough contiguous space */
561 		log_first_idx = log_next(log_first_idx);
562 		log_first_seq++;
563 	}
564 
565 	if (clear_seq < log_first_seq) {
566 		clear_seq = log_first_seq;
567 		clear_idx = log_first_idx;
568 	}
569 
570 	/* sequence numbers are equal, so the log buffer is empty */
571 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
572 		return 0;
573 
574 	return -ENOMEM;
575 }
576 
577 /* compute the message size including the padding bytes */
578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
579 {
580 	u32 size;
581 
582 	size = sizeof(struct printk_log) + text_len + dict_len;
583 	*pad_len = (-size) & (LOG_ALIGN - 1);
584 	size += *pad_len;
585 
586 	return size;
587 }
588 
589 /*
590  * Define how much of the log buffer we could take at maximum. The value
591  * must be greater than two. Note that only half of the buffer is available
592  * when the index points to the middle.
593  */
594 #define MAX_LOG_TAKE_PART 4
595 static const char trunc_msg[] = "<truncated>";
596 
597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
598 			u16 *dict_len, u32 *pad_len)
599 {
600 	/*
601 	 * The message should not take the whole buffer. Otherwise, it might
602 	 * get removed too soon.
603 	 */
604 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
605 	if (*text_len > max_text_len)
606 		*text_len = max_text_len;
607 	/* enable the warning message */
608 	*trunc_msg_len = strlen(trunc_msg);
609 	/* disable the "dict" completely */
610 	*dict_len = 0;
611 	/* compute the size again, count also the warning message */
612 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
613 }
614 
615 /* insert record into the buffer, discard old ones, update heads */
616 static int log_store(u32 caller_id, int facility, int level,
617 		     enum log_flags flags, u64 ts_nsec,
618 		     const char *dict, u16 dict_len,
619 		     const char *text, u16 text_len)
620 {
621 	struct printk_log *msg;
622 	u32 size, pad_len;
623 	u16 trunc_msg_len = 0;
624 
625 	/* number of '\0' padding bytes to next message */
626 	size = msg_used_size(text_len, dict_len, &pad_len);
627 
628 	if (log_make_free_space(size)) {
629 		/* truncate the message if it is too long for empty buffer */
630 		size = truncate_msg(&text_len, &trunc_msg_len,
631 				    &dict_len, &pad_len);
632 		/* survive when the log buffer is too small for trunc_msg */
633 		if (log_make_free_space(size))
634 			return 0;
635 	}
636 
637 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
638 		/*
639 		 * This message + an additional empty header does not fit
640 		 * at the end of the buffer. Add an empty header with len == 0
641 		 * to signify a wrap around.
642 		 */
643 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
644 		log_next_idx = 0;
645 	}
646 
647 	/* fill message */
648 	msg = (struct printk_log *)(log_buf + log_next_idx);
649 	memcpy(log_text(msg), text, text_len);
650 	msg->text_len = text_len;
651 	if (trunc_msg_len) {
652 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
653 		msg->text_len += trunc_msg_len;
654 	}
655 	memcpy(log_dict(msg), dict, dict_len);
656 	msg->dict_len = dict_len;
657 	msg->facility = facility;
658 	msg->level = level & 7;
659 	msg->flags = flags & 0x1f;
660 	if (ts_nsec > 0)
661 		msg->ts_nsec = ts_nsec;
662 	else
663 		msg->ts_nsec = local_clock();
664 #ifdef CONFIG_PRINTK_CALLER
665 	msg->caller_id = caller_id;
666 #endif
667 	memset(log_dict(msg) + dict_len, 0, pad_len);
668 	msg->len = size;
669 
670 	/* insert message */
671 	log_next_idx += msg->len;
672 	log_next_seq++;
673 
674 	return msg->text_len;
675 }
676 
677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
678 
679 static int syslog_action_restricted(int type)
680 {
681 	if (dmesg_restrict)
682 		return 1;
683 	/*
684 	 * Unless restricted, we allow "read all" and "get buffer size"
685 	 * for everybody.
686 	 */
687 	return type != SYSLOG_ACTION_READ_ALL &&
688 	       type != SYSLOG_ACTION_SIZE_BUFFER;
689 }
690 
691 static int check_syslog_permissions(int type, int source)
692 {
693 	/*
694 	 * If this is from /proc/kmsg and we've already opened it, then we've
695 	 * already done the capabilities checks at open time.
696 	 */
697 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
698 		goto ok;
699 
700 	if (syslog_action_restricted(type)) {
701 		if (capable(CAP_SYSLOG))
702 			goto ok;
703 		/*
704 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
705 		 * a warning.
706 		 */
707 		if (capable(CAP_SYS_ADMIN)) {
708 			pr_warn_once("%s (%d): Attempt to access syslog with "
709 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
710 				     "(deprecated).\n",
711 				 current->comm, task_pid_nr(current));
712 			goto ok;
713 		}
714 		return -EPERM;
715 	}
716 ok:
717 	return security_syslog(type);
718 }
719 
720 static void append_char(char **pp, char *e, char c)
721 {
722 	if (*pp < e)
723 		*(*pp)++ = c;
724 }
725 
726 static ssize_t msg_print_ext_header(char *buf, size_t size,
727 				    struct printk_log *msg, u64 seq)
728 {
729 	u64 ts_usec = msg->ts_nsec;
730 	char caller[20];
731 #ifdef CONFIG_PRINTK_CALLER
732 	u32 id = msg->caller_id;
733 
734 	snprintf(caller, sizeof(caller), ",caller=%c%u",
735 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
736 #else
737 	caller[0] = '\0';
738 #endif
739 
740 	do_div(ts_usec, 1000);
741 
742 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
743 			 (msg->facility << 3) | msg->level, seq, ts_usec,
744 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
745 }
746 
747 static ssize_t msg_print_ext_body(char *buf, size_t size,
748 				  char *dict, size_t dict_len,
749 				  char *text, size_t text_len)
750 {
751 	char *p = buf, *e = buf + size;
752 	size_t i;
753 
754 	/* escape non-printable characters */
755 	for (i = 0; i < text_len; i++) {
756 		unsigned char c = text[i];
757 
758 		if (c < ' ' || c >= 127 || c == '\\')
759 			p += scnprintf(p, e - p, "\\x%02x", c);
760 		else
761 			append_char(&p, e, c);
762 	}
763 	append_char(&p, e, '\n');
764 
765 	if (dict_len) {
766 		bool line = true;
767 
768 		for (i = 0; i < dict_len; i++) {
769 			unsigned char c = dict[i];
770 
771 			if (line) {
772 				append_char(&p, e, ' ');
773 				line = false;
774 			}
775 
776 			if (c == '\0') {
777 				append_char(&p, e, '\n');
778 				line = true;
779 				continue;
780 			}
781 
782 			if (c < ' ' || c >= 127 || c == '\\') {
783 				p += scnprintf(p, e - p, "\\x%02x", c);
784 				continue;
785 			}
786 
787 			append_char(&p, e, c);
788 		}
789 		append_char(&p, e, '\n');
790 	}
791 
792 	return p - buf;
793 }
794 
795 /* /dev/kmsg - userspace message inject/listen interface */
796 struct devkmsg_user {
797 	u64 seq;
798 	u32 idx;
799 	struct ratelimit_state rs;
800 	struct mutex lock;
801 	char buf[CONSOLE_EXT_LOG_MAX];
802 };
803 
804 static __printf(3, 4) __cold
805 int devkmsg_emit(int facility, int level, const char *fmt, ...)
806 {
807 	va_list args;
808 	int r;
809 
810 	va_start(args, fmt);
811 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
812 	va_end(args);
813 
814 	return r;
815 }
816 
817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
818 {
819 	char *buf, *line;
820 	int level = default_message_loglevel;
821 	int facility = 1;	/* LOG_USER */
822 	struct file *file = iocb->ki_filp;
823 	struct devkmsg_user *user = file->private_data;
824 	size_t len = iov_iter_count(from);
825 	ssize_t ret = len;
826 
827 	if (!user || len > LOG_LINE_MAX)
828 		return -EINVAL;
829 
830 	/* Ignore when user logging is disabled. */
831 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
832 		return len;
833 
834 	/* Ratelimit when not explicitly enabled. */
835 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
836 		if (!___ratelimit(&user->rs, current->comm))
837 			return ret;
838 	}
839 
840 	buf = kmalloc(len+1, GFP_KERNEL);
841 	if (buf == NULL)
842 		return -ENOMEM;
843 
844 	buf[len] = '\0';
845 	if (!copy_from_iter_full(buf, len, from)) {
846 		kfree(buf);
847 		return -EFAULT;
848 	}
849 
850 	/*
851 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
852 	 * the decimal value represents 32bit, the lower 3 bit are the log
853 	 * level, the rest are the log facility.
854 	 *
855 	 * If no prefix or no userspace facility is specified, we
856 	 * enforce LOG_USER, to be able to reliably distinguish
857 	 * kernel-generated messages from userspace-injected ones.
858 	 */
859 	line = buf;
860 	if (line[0] == '<') {
861 		char *endp = NULL;
862 		unsigned int u;
863 
864 		u = simple_strtoul(line + 1, &endp, 10);
865 		if (endp && endp[0] == '>') {
866 			level = LOG_LEVEL(u);
867 			if (LOG_FACILITY(u) != 0)
868 				facility = LOG_FACILITY(u);
869 			endp++;
870 			len -= endp - line;
871 			line = endp;
872 		}
873 	}
874 
875 	devkmsg_emit(facility, level, "%s", line);
876 	kfree(buf);
877 	return ret;
878 }
879 
880 static ssize_t devkmsg_read(struct file *file, char __user *buf,
881 			    size_t count, loff_t *ppos)
882 {
883 	struct devkmsg_user *user = file->private_data;
884 	struct printk_log *msg;
885 	size_t len;
886 	ssize_t ret;
887 
888 	if (!user)
889 		return -EBADF;
890 
891 	ret = mutex_lock_interruptible(&user->lock);
892 	if (ret)
893 		return ret;
894 
895 	logbuf_lock_irq();
896 	while (user->seq == log_next_seq) {
897 		if (file->f_flags & O_NONBLOCK) {
898 			ret = -EAGAIN;
899 			logbuf_unlock_irq();
900 			goto out;
901 		}
902 
903 		logbuf_unlock_irq();
904 		ret = wait_event_interruptible(log_wait,
905 					       user->seq != log_next_seq);
906 		if (ret)
907 			goto out;
908 		logbuf_lock_irq();
909 	}
910 
911 	if (user->seq < log_first_seq) {
912 		/* our last seen message is gone, return error and reset */
913 		user->idx = log_first_idx;
914 		user->seq = log_first_seq;
915 		ret = -EPIPE;
916 		logbuf_unlock_irq();
917 		goto out;
918 	}
919 
920 	msg = log_from_idx(user->idx);
921 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
922 				   msg, user->seq);
923 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
924 				  log_dict(msg), msg->dict_len,
925 				  log_text(msg), msg->text_len);
926 
927 	user->idx = log_next(user->idx);
928 	user->seq++;
929 	logbuf_unlock_irq();
930 
931 	if (len > count) {
932 		ret = -EINVAL;
933 		goto out;
934 	}
935 
936 	if (copy_to_user(buf, user->buf, len)) {
937 		ret = -EFAULT;
938 		goto out;
939 	}
940 	ret = len;
941 out:
942 	mutex_unlock(&user->lock);
943 	return ret;
944 }
945 
946 /*
947  * Be careful when modifying this function!!!
948  *
949  * Only few operations are supported because the device works only with the
950  * entire variable length messages (records). Non-standard values are
951  * returned in the other cases and has been this way for quite some time.
952  * User space applications might depend on this behavior.
953  */
954 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
955 {
956 	struct devkmsg_user *user = file->private_data;
957 	loff_t ret = 0;
958 
959 	if (!user)
960 		return -EBADF;
961 	if (offset)
962 		return -ESPIPE;
963 
964 	logbuf_lock_irq();
965 	switch (whence) {
966 	case SEEK_SET:
967 		/* the first record */
968 		user->idx = log_first_idx;
969 		user->seq = log_first_seq;
970 		break;
971 	case SEEK_DATA:
972 		/*
973 		 * The first record after the last SYSLOG_ACTION_CLEAR,
974 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
975 		 * changes no global state, and does not clear anything.
976 		 */
977 		user->idx = clear_idx;
978 		user->seq = clear_seq;
979 		break;
980 	case SEEK_END:
981 		/* after the last record */
982 		user->idx = log_next_idx;
983 		user->seq = log_next_seq;
984 		break;
985 	default:
986 		ret = -EINVAL;
987 	}
988 	logbuf_unlock_irq();
989 	return ret;
990 }
991 
992 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
993 {
994 	struct devkmsg_user *user = file->private_data;
995 	__poll_t ret = 0;
996 
997 	if (!user)
998 		return EPOLLERR|EPOLLNVAL;
999 
1000 	poll_wait(file, &log_wait, wait);
1001 
1002 	logbuf_lock_irq();
1003 	if (user->seq < log_next_seq) {
1004 		/* return error when data has vanished underneath us */
1005 		if (user->seq < log_first_seq)
1006 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1007 		else
1008 			ret = EPOLLIN|EPOLLRDNORM;
1009 	}
1010 	logbuf_unlock_irq();
1011 
1012 	return ret;
1013 }
1014 
1015 static int devkmsg_open(struct inode *inode, struct file *file)
1016 {
1017 	struct devkmsg_user *user;
1018 	int err;
1019 
1020 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1021 		return -EPERM;
1022 
1023 	/* write-only does not need any file context */
1024 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1025 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1026 					       SYSLOG_FROM_READER);
1027 		if (err)
1028 			return err;
1029 	}
1030 
1031 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1032 	if (!user)
1033 		return -ENOMEM;
1034 
1035 	ratelimit_default_init(&user->rs);
1036 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1037 
1038 	mutex_init(&user->lock);
1039 
1040 	logbuf_lock_irq();
1041 	user->idx = log_first_idx;
1042 	user->seq = log_first_seq;
1043 	logbuf_unlock_irq();
1044 
1045 	file->private_data = user;
1046 	return 0;
1047 }
1048 
1049 static int devkmsg_release(struct inode *inode, struct file *file)
1050 {
1051 	struct devkmsg_user *user = file->private_data;
1052 
1053 	if (!user)
1054 		return 0;
1055 
1056 	ratelimit_state_exit(&user->rs);
1057 
1058 	mutex_destroy(&user->lock);
1059 	kfree(user);
1060 	return 0;
1061 }
1062 
1063 const struct file_operations kmsg_fops = {
1064 	.open = devkmsg_open,
1065 	.read = devkmsg_read,
1066 	.write_iter = devkmsg_write,
1067 	.llseek = devkmsg_llseek,
1068 	.poll = devkmsg_poll,
1069 	.release = devkmsg_release,
1070 };
1071 
1072 #ifdef CONFIG_CRASH_CORE
1073 /*
1074  * This appends the listed symbols to /proc/vmcore
1075  *
1076  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1077  * obtain access to symbols that are otherwise very difficult to locate.  These
1078  * symbols are specifically used so that utilities can access and extract the
1079  * dmesg log from a vmcore file after a crash.
1080  */
1081 void log_buf_vmcoreinfo_setup(void)
1082 {
1083 	VMCOREINFO_SYMBOL(log_buf);
1084 	VMCOREINFO_SYMBOL(log_buf_len);
1085 	VMCOREINFO_SYMBOL(log_first_idx);
1086 	VMCOREINFO_SYMBOL(clear_idx);
1087 	VMCOREINFO_SYMBOL(log_next_idx);
1088 	/*
1089 	 * Export struct printk_log size and field offsets. User space tools can
1090 	 * parse it and detect any changes to structure down the line.
1091 	 */
1092 	VMCOREINFO_STRUCT_SIZE(printk_log);
1093 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1094 	VMCOREINFO_OFFSET(printk_log, len);
1095 	VMCOREINFO_OFFSET(printk_log, text_len);
1096 	VMCOREINFO_OFFSET(printk_log, dict_len);
1097 #ifdef CONFIG_PRINTK_CALLER
1098 	VMCOREINFO_OFFSET(printk_log, caller_id);
1099 #endif
1100 }
1101 #endif
1102 
1103 /* requested log_buf_len from kernel cmdline */
1104 static unsigned long __initdata new_log_buf_len;
1105 
1106 /* we practice scaling the ring buffer by powers of 2 */
1107 static void __init log_buf_len_update(u64 size)
1108 {
1109 	if (size > (u64)LOG_BUF_LEN_MAX) {
1110 		size = (u64)LOG_BUF_LEN_MAX;
1111 		pr_err("log_buf over 2G is not supported.\n");
1112 	}
1113 
1114 	if (size)
1115 		size = roundup_pow_of_two(size);
1116 	if (size > log_buf_len)
1117 		new_log_buf_len = (unsigned long)size;
1118 }
1119 
1120 /* save requested log_buf_len since it's too early to process it */
1121 static int __init log_buf_len_setup(char *str)
1122 {
1123 	u64 size;
1124 
1125 	if (!str)
1126 		return -EINVAL;
1127 
1128 	size = memparse(str, &str);
1129 
1130 	log_buf_len_update(size);
1131 
1132 	return 0;
1133 }
1134 early_param("log_buf_len", log_buf_len_setup);
1135 
1136 #ifdef CONFIG_SMP
1137 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1138 
1139 static void __init log_buf_add_cpu(void)
1140 {
1141 	unsigned int cpu_extra;
1142 
1143 	/*
1144 	 * archs should set up cpu_possible_bits properly with
1145 	 * set_cpu_possible() after setup_arch() but just in
1146 	 * case lets ensure this is valid.
1147 	 */
1148 	if (num_possible_cpus() == 1)
1149 		return;
1150 
1151 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1152 
1153 	/* by default this will only continue through for large > 64 CPUs */
1154 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1155 		return;
1156 
1157 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1158 		__LOG_CPU_MAX_BUF_LEN);
1159 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1160 		cpu_extra);
1161 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1162 
1163 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1164 }
1165 #else /* !CONFIG_SMP */
1166 static inline void log_buf_add_cpu(void) {}
1167 #endif /* CONFIG_SMP */
1168 
1169 static void __init set_percpu_data_ready(void)
1170 {
1171 	printk_safe_init();
1172 	/* Make sure we set this flag only after printk_safe() init is done */
1173 	barrier();
1174 	__printk_percpu_data_ready = true;
1175 }
1176 
1177 void __init setup_log_buf(int early)
1178 {
1179 	unsigned long flags;
1180 	char *new_log_buf;
1181 	unsigned int free;
1182 
1183 	/*
1184 	 * Some archs call setup_log_buf() multiple times - first is very
1185 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1186 	 * are initialised.
1187 	 */
1188 	if (!early)
1189 		set_percpu_data_ready();
1190 
1191 	if (log_buf != __log_buf)
1192 		return;
1193 
1194 	if (!early && !new_log_buf_len)
1195 		log_buf_add_cpu();
1196 
1197 	if (!new_log_buf_len)
1198 		return;
1199 
1200 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1201 	if (unlikely(!new_log_buf)) {
1202 		pr_err("log_buf_len: %lu bytes not available\n",
1203 			new_log_buf_len);
1204 		return;
1205 	}
1206 
1207 	logbuf_lock_irqsave(flags);
1208 	log_buf_len = new_log_buf_len;
1209 	log_buf = new_log_buf;
1210 	new_log_buf_len = 0;
1211 	free = __LOG_BUF_LEN - log_next_idx;
1212 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1213 	logbuf_unlock_irqrestore(flags);
1214 
1215 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1216 	pr_info("early log buf free: %u(%u%%)\n",
1217 		free, (free * 100) / __LOG_BUF_LEN);
1218 }
1219 
1220 static bool __read_mostly ignore_loglevel;
1221 
1222 static int __init ignore_loglevel_setup(char *str)
1223 {
1224 	ignore_loglevel = true;
1225 	pr_info("debug: ignoring loglevel setting.\n");
1226 
1227 	return 0;
1228 }
1229 
1230 early_param("ignore_loglevel", ignore_loglevel_setup);
1231 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1232 MODULE_PARM_DESC(ignore_loglevel,
1233 		 "ignore loglevel setting (prints all kernel messages to the console)");
1234 
1235 static bool suppress_message_printing(int level)
1236 {
1237 	return (level >= console_loglevel && !ignore_loglevel);
1238 }
1239 
1240 #ifdef CONFIG_BOOT_PRINTK_DELAY
1241 
1242 static int boot_delay; /* msecs delay after each printk during bootup */
1243 static unsigned long long loops_per_msec;	/* based on boot_delay */
1244 
1245 static int __init boot_delay_setup(char *str)
1246 {
1247 	unsigned long lpj;
1248 
1249 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1250 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1251 
1252 	get_option(&str, &boot_delay);
1253 	if (boot_delay > 10 * 1000)
1254 		boot_delay = 0;
1255 
1256 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1257 		"HZ: %d, loops_per_msec: %llu\n",
1258 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1259 	return 0;
1260 }
1261 early_param("boot_delay", boot_delay_setup);
1262 
1263 static void boot_delay_msec(int level)
1264 {
1265 	unsigned long long k;
1266 	unsigned long timeout;
1267 
1268 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1269 		|| suppress_message_printing(level)) {
1270 		return;
1271 	}
1272 
1273 	k = (unsigned long long)loops_per_msec * boot_delay;
1274 
1275 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1276 	while (k) {
1277 		k--;
1278 		cpu_relax();
1279 		/*
1280 		 * use (volatile) jiffies to prevent
1281 		 * compiler reduction; loop termination via jiffies
1282 		 * is secondary and may or may not happen.
1283 		 */
1284 		if (time_after(jiffies, timeout))
1285 			break;
1286 		touch_nmi_watchdog();
1287 	}
1288 }
1289 #else
1290 static inline void boot_delay_msec(int level)
1291 {
1292 }
1293 #endif
1294 
1295 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1296 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1297 
1298 static size_t print_syslog(unsigned int level, char *buf)
1299 {
1300 	return sprintf(buf, "<%u>", level);
1301 }
1302 
1303 static size_t print_time(u64 ts, char *buf)
1304 {
1305 	unsigned long rem_nsec = do_div(ts, 1000000000);
1306 
1307 	return sprintf(buf, "[%5lu.%06lu]",
1308 		       (unsigned long)ts, rem_nsec / 1000);
1309 }
1310 
1311 #ifdef CONFIG_PRINTK_CALLER
1312 static size_t print_caller(u32 id, char *buf)
1313 {
1314 	char caller[12];
1315 
1316 	snprintf(caller, sizeof(caller), "%c%u",
1317 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1318 	return sprintf(buf, "[%6s]", caller);
1319 }
1320 #else
1321 #define print_caller(id, buf) 0
1322 #endif
1323 
1324 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1325 			   bool time, char *buf)
1326 {
1327 	size_t len = 0;
1328 
1329 	if (syslog)
1330 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1331 
1332 	if (time)
1333 		len += print_time(msg->ts_nsec, buf + len);
1334 
1335 	len += print_caller(msg->caller_id, buf + len);
1336 
1337 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1338 		buf[len++] = ' ';
1339 		buf[len] = '\0';
1340 	}
1341 
1342 	return len;
1343 }
1344 
1345 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1346 			     bool time, char *buf, size_t size)
1347 {
1348 	const char *text = log_text(msg);
1349 	size_t text_size = msg->text_len;
1350 	size_t len = 0;
1351 	char prefix[PREFIX_MAX];
1352 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1353 
1354 	do {
1355 		const char *next = memchr(text, '\n', text_size);
1356 		size_t text_len;
1357 
1358 		if (next) {
1359 			text_len = next - text;
1360 			next++;
1361 			text_size -= next - text;
1362 		} else {
1363 			text_len = text_size;
1364 		}
1365 
1366 		if (buf) {
1367 			if (prefix_len + text_len + 1 >= size - len)
1368 				break;
1369 
1370 			memcpy(buf + len, prefix, prefix_len);
1371 			len += prefix_len;
1372 			memcpy(buf + len, text, text_len);
1373 			len += text_len;
1374 			buf[len++] = '\n';
1375 		} else {
1376 			/* SYSLOG_ACTION_* buffer size only calculation */
1377 			len += prefix_len + text_len + 1;
1378 		}
1379 
1380 		text = next;
1381 	} while (text);
1382 
1383 	return len;
1384 }
1385 
1386 static int syslog_print(char __user *buf, int size)
1387 {
1388 	char *text;
1389 	struct printk_log *msg;
1390 	int len = 0;
1391 
1392 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1393 	if (!text)
1394 		return -ENOMEM;
1395 
1396 	while (size > 0) {
1397 		size_t n;
1398 		size_t skip;
1399 
1400 		logbuf_lock_irq();
1401 		if (syslog_seq < log_first_seq) {
1402 			/* messages are gone, move to first one */
1403 			syslog_seq = log_first_seq;
1404 			syslog_idx = log_first_idx;
1405 			syslog_partial = 0;
1406 		}
1407 		if (syslog_seq == log_next_seq) {
1408 			logbuf_unlock_irq();
1409 			break;
1410 		}
1411 
1412 		/*
1413 		 * To keep reading/counting partial line consistent,
1414 		 * use printk_time value as of the beginning of a line.
1415 		 */
1416 		if (!syslog_partial)
1417 			syslog_time = printk_time;
1418 
1419 		skip = syslog_partial;
1420 		msg = log_from_idx(syslog_idx);
1421 		n = msg_print_text(msg, true, syslog_time, text,
1422 				   LOG_LINE_MAX + PREFIX_MAX);
1423 		if (n - syslog_partial <= size) {
1424 			/* message fits into buffer, move forward */
1425 			syslog_idx = log_next(syslog_idx);
1426 			syslog_seq++;
1427 			n -= syslog_partial;
1428 			syslog_partial = 0;
1429 		} else if (!len){
1430 			/* partial read(), remember position */
1431 			n = size;
1432 			syslog_partial += n;
1433 		} else
1434 			n = 0;
1435 		logbuf_unlock_irq();
1436 
1437 		if (!n)
1438 			break;
1439 
1440 		if (copy_to_user(buf, text + skip, n)) {
1441 			if (!len)
1442 				len = -EFAULT;
1443 			break;
1444 		}
1445 
1446 		len += n;
1447 		size -= n;
1448 		buf += n;
1449 	}
1450 
1451 	kfree(text);
1452 	return len;
1453 }
1454 
1455 static int syslog_print_all(char __user *buf, int size, bool clear)
1456 {
1457 	char *text;
1458 	int len = 0;
1459 	u64 next_seq;
1460 	u64 seq;
1461 	u32 idx;
1462 	bool time;
1463 
1464 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1465 	if (!text)
1466 		return -ENOMEM;
1467 
1468 	time = printk_time;
1469 	logbuf_lock_irq();
1470 	/*
1471 	 * Find first record that fits, including all following records,
1472 	 * into the user-provided buffer for this dump.
1473 	 */
1474 	seq = clear_seq;
1475 	idx = clear_idx;
1476 	while (seq < log_next_seq) {
1477 		struct printk_log *msg = log_from_idx(idx);
1478 
1479 		len += msg_print_text(msg, true, time, NULL, 0);
1480 		idx = log_next(idx);
1481 		seq++;
1482 	}
1483 
1484 	/* move first record forward until length fits into the buffer */
1485 	seq = clear_seq;
1486 	idx = clear_idx;
1487 	while (len > size && seq < log_next_seq) {
1488 		struct printk_log *msg = log_from_idx(idx);
1489 
1490 		len -= msg_print_text(msg, true, time, NULL, 0);
1491 		idx = log_next(idx);
1492 		seq++;
1493 	}
1494 
1495 	/* last message fitting into this dump */
1496 	next_seq = log_next_seq;
1497 
1498 	len = 0;
1499 	while (len >= 0 && seq < next_seq) {
1500 		struct printk_log *msg = log_from_idx(idx);
1501 		int textlen = msg_print_text(msg, true, time, text,
1502 					     LOG_LINE_MAX + PREFIX_MAX);
1503 
1504 		idx = log_next(idx);
1505 		seq++;
1506 
1507 		logbuf_unlock_irq();
1508 		if (copy_to_user(buf + len, text, textlen))
1509 			len = -EFAULT;
1510 		else
1511 			len += textlen;
1512 		logbuf_lock_irq();
1513 
1514 		if (seq < log_first_seq) {
1515 			/* messages are gone, move to next one */
1516 			seq = log_first_seq;
1517 			idx = log_first_idx;
1518 		}
1519 	}
1520 
1521 	if (clear) {
1522 		clear_seq = log_next_seq;
1523 		clear_idx = log_next_idx;
1524 	}
1525 	logbuf_unlock_irq();
1526 
1527 	kfree(text);
1528 	return len;
1529 }
1530 
1531 static void syslog_clear(void)
1532 {
1533 	logbuf_lock_irq();
1534 	clear_seq = log_next_seq;
1535 	clear_idx = log_next_idx;
1536 	logbuf_unlock_irq();
1537 }
1538 
1539 int do_syslog(int type, char __user *buf, int len, int source)
1540 {
1541 	bool clear = false;
1542 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1543 	int error;
1544 
1545 	error = check_syslog_permissions(type, source);
1546 	if (error)
1547 		return error;
1548 
1549 	switch (type) {
1550 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1551 		break;
1552 	case SYSLOG_ACTION_OPEN:	/* Open log */
1553 		break;
1554 	case SYSLOG_ACTION_READ:	/* Read from log */
1555 		if (!buf || len < 0)
1556 			return -EINVAL;
1557 		if (!len)
1558 			return 0;
1559 		if (!access_ok(buf, len))
1560 			return -EFAULT;
1561 		error = wait_event_interruptible(log_wait,
1562 						 syslog_seq != log_next_seq);
1563 		if (error)
1564 			return error;
1565 		error = syslog_print(buf, len);
1566 		break;
1567 	/* Read/clear last kernel messages */
1568 	case SYSLOG_ACTION_READ_CLEAR:
1569 		clear = true;
1570 		/* FALL THRU */
1571 	/* Read last kernel messages */
1572 	case SYSLOG_ACTION_READ_ALL:
1573 		if (!buf || len < 0)
1574 			return -EINVAL;
1575 		if (!len)
1576 			return 0;
1577 		if (!access_ok(buf, len))
1578 			return -EFAULT;
1579 		error = syslog_print_all(buf, len, clear);
1580 		break;
1581 	/* Clear ring buffer */
1582 	case SYSLOG_ACTION_CLEAR:
1583 		syslog_clear();
1584 		break;
1585 	/* Disable logging to console */
1586 	case SYSLOG_ACTION_CONSOLE_OFF:
1587 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1588 			saved_console_loglevel = console_loglevel;
1589 		console_loglevel = minimum_console_loglevel;
1590 		break;
1591 	/* Enable logging to console */
1592 	case SYSLOG_ACTION_CONSOLE_ON:
1593 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1594 			console_loglevel = saved_console_loglevel;
1595 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1596 		}
1597 		break;
1598 	/* Set level of messages printed to console */
1599 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1600 		if (len < 1 || len > 8)
1601 			return -EINVAL;
1602 		if (len < minimum_console_loglevel)
1603 			len = minimum_console_loglevel;
1604 		console_loglevel = len;
1605 		/* Implicitly re-enable logging to console */
1606 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1607 		break;
1608 	/* Number of chars in the log buffer */
1609 	case SYSLOG_ACTION_SIZE_UNREAD:
1610 		logbuf_lock_irq();
1611 		if (syslog_seq < log_first_seq) {
1612 			/* messages are gone, move to first one */
1613 			syslog_seq = log_first_seq;
1614 			syslog_idx = log_first_idx;
1615 			syslog_partial = 0;
1616 		}
1617 		if (source == SYSLOG_FROM_PROC) {
1618 			/*
1619 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1620 			 * for pending data, not the size; return the count of
1621 			 * records, not the length.
1622 			 */
1623 			error = log_next_seq - syslog_seq;
1624 		} else {
1625 			u64 seq = syslog_seq;
1626 			u32 idx = syslog_idx;
1627 			bool time = syslog_partial ? syslog_time : printk_time;
1628 
1629 			while (seq < log_next_seq) {
1630 				struct printk_log *msg = log_from_idx(idx);
1631 
1632 				error += msg_print_text(msg, true, time, NULL,
1633 							0);
1634 				time = printk_time;
1635 				idx = log_next(idx);
1636 				seq++;
1637 			}
1638 			error -= syslog_partial;
1639 		}
1640 		logbuf_unlock_irq();
1641 		break;
1642 	/* Size of the log buffer */
1643 	case SYSLOG_ACTION_SIZE_BUFFER:
1644 		error = log_buf_len;
1645 		break;
1646 	default:
1647 		error = -EINVAL;
1648 		break;
1649 	}
1650 
1651 	return error;
1652 }
1653 
1654 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1655 {
1656 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1657 }
1658 
1659 /*
1660  * Special console_lock variants that help to reduce the risk of soft-lockups.
1661  * They allow to pass console_lock to another printk() call using a busy wait.
1662  */
1663 
1664 #ifdef CONFIG_LOCKDEP
1665 static struct lockdep_map console_owner_dep_map = {
1666 	.name = "console_owner"
1667 };
1668 #endif
1669 
1670 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1671 static struct task_struct *console_owner;
1672 static bool console_waiter;
1673 
1674 /**
1675  * console_lock_spinning_enable - mark beginning of code where another
1676  *	thread might safely busy wait
1677  *
1678  * This basically converts console_lock into a spinlock. This marks
1679  * the section where the console_lock owner can not sleep, because
1680  * there may be a waiter spinning (like a spinlock). Also it must be
1681  * ready to hand over the lock at the end of the section.
1682  */
1683 static void console_lock_spinning_enable(void)
1684 {
1685 	raw_spin_lock(&console_owner_lock);
1686 	console_owner = current;
1687 	raw_spin_unlock(&console_owner_lock);
1688 
1689 	/* The waiter may spin on us after setting console_owner */
1690 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1691 }
1692 
1693 /**
1694  * console_lock_spinning_disable_and_check - mark end of code where another
1695  *	thread was able to busy wait and check if there is a waiter
1696  *
1697  * This is called at the end of the section where spinning is allowed.
1698  * It has two functions. First, it is a signal that it is no longer
1699  * safe to start busy waiting for the lock. Second, it checks if
1700  * there is a busy waiter and passes the lock rights to her.
1701  *
1702  * Important: Callers lose the lock if there was a busy waiter.
1703  *	They must not touch items synchronized by console_lock
1704  *	in this case.
1705  *
1706  * Return: 1 if the lock rights were passed, 0 otherwise.
1707  */
1708 static int console_lock_spinning_disable_and_check(void)
1709 {
1710 	int waiter;
1711 
1712 	raw_spin_lock(&console_owner_lock);
1713 	waiter = READ_ONCE(console_waiter);
1714 	console_owner = NULL;
1715 	raw_spin_unlock(&console_owner_lock);
1716 
1717 	if (!waiter) {
1718 		spin_release(&console_owner_dep_map, _THIS_IP_);
1719 		return 0;
1720 	}
1721 
1722 	/* The waiter is now free to continue */
1723 	WRITE_ONCE(console_waiter, false);
1724 
1725 	spin_release(&console_owner_dep_map, _THIS_IP_);
1726 
1727 	/*
1728 	 * Hand off console_lock to waiter. The waiter will perform
1729 	 * the up(). After this, the waiter is the console_lock owner.
1730 	 */
1731 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1732 	return 1;
1733 }
1734 
1735 /**
1736  * console_trylock_spinning - try to get console_lock by busy waiting
1737  *
1738  * This allows to busy wait for the console_lock when the current
1739  * owner is running in specially marked sections. It means that
1740  * the current owner is running and cannot reschedule until it
1741  * is ready to lose the lock.
1742  *
1743  * Return: 1 if we got the lock, 0 othrewise
1744  */
1745 static int console_trylock_spinning(void)
1746 {
1747 	struct task_struct *owner = NULL;
1748 	bool waiter;
1749 	bool spin = false;
1750 	unsigned long flags;
1751 
1752 	if (console_trylock())
1753 		return 1;
1754 
1755 	printk_safe_enter_irqsave(flags);
1756 
1757 	raw_spin_lock(&console_owner_lock);
1758 	owner = READ_ONCE(console_owner);
1759 	waiter = READ_ONCE(console_waiter);
1760 	if (!waiter && owner && owner != current) {
1761 		WRITE_ONCE(console_waiter, true);
1762 		spin = true;
1763 	}
1764 	raw_spin_unlock(&console_owner_lock);
1765 
1766 	/*
1767 	 * If there is an active printk() writing to the
1768 	 * consoles, instead of having it write our data too,
1769 	 * see if we can offload that load from the active
1770 	 * printer, and do some printing ourselves.
1771 	 * Go into a spin only if there isn't already a waiter
1772 	 * spinning, and there is an active printer, and
1773 	 * that active printer isn't us (recursive printk?).
1774 	 */
1775 	if (!spin) {
1776 		printk_safe_exit_irqrestore(flags);
1777 		return 0;
1778 	}
1779 
1780 	/* We spin waiting for the owner to release us */
1781 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1782 	/* Owner will clear console_waiter on hand off */
1783 	while (READ_ONCE(console_waiter))
1784 		cpu_relax();
1785 	spin_release(&console_owner_dep_map, _THIS_IP_);
1786 
1787 	printk_safe_exit_irqrestore(flags);
1788 	/*
1789 	 * The owner passed the console lock to us.
1790 	 * Since we did not spin on console lock, annotate
1791 	 * this as a trylock. Otherwise lockdep will
1792 	 * complain.
1793 	 */
1794 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1795 
1796 	return 1;
1797 }
1798 
1799 /*
1800  * Call the console drivers, asking them to write out
1801  * log_buf[start] to log_buf[end - 1].
1802  * The console_lock must be held.
1803  */
1804 static void call_console_drivers(const char *ext_text, size_t ext_len,
1805 				 const char *text, size_t len)
1806 {
1807 	struct console *con;
1808 
1809 	trace_console_rcuidle(text, len);
1810 
1811 	for_each_console(con) {
1812 		if (exclusive_console && con != exclusive_console)
1813 			continue;
1814 		if (!(con->flags & CON_ENABLED))
1815 			continue;
1816 		if (!con->write)
1817 			continue;
1818 		if (!cpu_online(smp_processor_id()) &&
1819 		    !(con->flags & CON_ANYTIME))
1820 			continue;
1821 		if (con->flags & CON_EXTENDED)
1822 			con->write(con, ext_text, ext_len);
1823 		else
1824 			con->write(con, text, len);
1825 	}
1826 }
1827 
1828 int printk_delay_msec __read_mostly;
1829 
1830 static inline void printk_delay(void)
1831 {
1832 	if (unlikely(printk_delay_msec)) {
1833 		int m = printk_delay_msec;
1834 
1835 		while (m--) {
1836 			mdelay(1);
1837 			touch_nmi_watchdog();
1838 		}
1839 	}
1840 }
1841 
1842 static inline u32 printk_caller_id(void)
1843 {
1844 	return in_task() ? task_pid_nr(current) :
1845 		0x80000000 + raw_smp_processor_id();
1846 }
1847 
1848 /*
1849  * Continuation lines are buffered, and not committed to the record buffer
1850  * until the line is complete, or a race forces it. The line fragments
1851  * though, are printed immediately to the consoles to ensure everything has
1852  * reached the console in case of a kernel crash.
1853  */
1854 static struct cont {
1855 	char buf[LOG_LINE_MAX];
1856 	size_t len;			/* length == 0 means unused buffer */
1857 	u32 caller_id;			/* printk_caller_id() of first print */
1858 	u64 ts_nsec;			/* time of first print */
1859 	u8 level;			/* log level of first message */
1860 	u8 facility;			/* log facility of first message */
1861 	enum log_flags flags;		/* prefix, newline flags */
1862 } cont;
1863 
1864 static void cont_flush(void)
1865 {
1866 	if (cont.len == 0)
1867 		return;
1868 
1869 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1870 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1871 	cont.len = 0;
1872 }
1873 
1874 static bool cont_add(u32 caller_id, int facility, int level,
1875 		     enum log_flags flags, const char *text, size_t len)
1876 {
1877 	/* If the line gets too long, split it up in separate records. */
1878 	if (cont.len + len > sizeof(cont.buf)) {
1879 		cont_flush();
1880 		return false;
1881 	}
1882 
1883 	if (!cont.len) {
1884 		cont.facility = facility;
1885 		cont.level = level;
1886 		cont.caller_id = caller_id;
1887 		cont.ts_nsec = local_clock();
1888 		cont.flags = flags;
1889 	}
1890 
1891 	memcpy(cont.buf + cont.len, text, len);
1892 	cont.len += len;
1893 
1894 	// The original flags come from the first line,
1895 	// but later continuations can add a newline.
1896 	if (flags & LOG_NEWLINE) {
1897 		cont.flags |= LOG_NEWLINE;
1898 		cont_flush();
1899 	}
1900 
1901 	return true;
1902 }
1903 
1904 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1905 {
1906 	const u32 caller_id = printk_caller_id();
1907 
1908 	/*
1909 	 * If an earlier line was buffered, and we're a continuation
1910 	 * write from the same context, try to add it to the buffer.
1911 	 */
1912 	if (cont.len) {
1913 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1914 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1915 				return text_len;
1916 		}
1917 		/* Otherwise, make sure it's flushed */
1918 		cont_flush();
1919 	}
1920 
1921 	/* Skip empty continuation lines that couldn't be added - they just flush */
1922 	if (!text_len && (lflags & LOG_CONT))
1923 		return 0;
1924 
1925 	/* If it doesn't end in a newline, try to buffer the current line */
1926 	if (!(lflags & LOG_NEWLINE)) {
1927 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1928 			return text_len;
1929 	}
1930 
1931 	/* Store it in the record log */
1932 	return log_store(caller_id, facility, level, lflags, 0,
1933 			 dict, dictlen, text, text_len);
1934 }
1935 
1936 /* Must be called under logbuf_lock. */
1937 int vprintk_store(int facility, int level,
1938 		  const char *dict, size_t dictlen,
1939 		  const char *fmt, va_list args)
1940 {
1941 	static char textbuf[LOG_LINE_MAX];
1942 	char *text = textbuf;
1943 	size_t text_len;
1944 	enum log_flags lflags = 0;
1945 
1946 	/*
1947 	 * The printf needs to come first; we need the syslog
1948 	 * prefix which might be passed-in as a parameter.
1949 	 */
1950 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1951 
1952 	/* mark and strip a trailing newline */
1953 	if (text_len && text[text_len-1] == '\n') {
1954 		text_len--;
1955 		lflags |= LOG_NEWLINE;
1956 	}
1957 
1958 	/* strip kernel syslog prefix and extract log level or control flags */
1959 	if (facility == 0) {
1960 		int kern_level;
1961 
1962 		while ((kern_level = printk_get_level(text)) != 0) {
1963 			switch (kern_level) {
1964 			case '0' ... '7':
1965 				if (level == LOGLEVEL_DEFAULT)
1966 					level = kern_level - '0';
1967 				break;
1968 			case 'c':	/* KERN_CONT */
1969 				lflags |= LOG_CONT;
1970 			}
1971 
1972 			text_len -= 2;
1973 			text += 2;
1974 		}
1975 	}
1976 
1977 	if (level == LOGLEVEL_DEFAULT)
1978 		level = default_message_loglevel;
1979 
1980 	if (dict)
1981 		lflags |= LOG_NEWLINE;
1982 
1983 	return log_output(facility, level, lflags,
1984 			  dict, dictlen, text, text_len);
1985 }
1986 
1987 asmlinkage int vprintk_emit(int facility, int level,
1988 			    const char *dict, size_t dictlen,
1989 			    const char *fmt, va_list args)
1990 {
1991 	int printed_len;
1992 	bool in_sched = false, pending_output;
1993 	unsigned long flags;
1994 	u64 curr_log_seq;
1995 
1996 	/* Suppress unimportant messages after panic happens */
1997 	if (unlikely(suppress_printk))
1998 		return 0;
1999 
2000 	if (level == LOGLEVEL_SCHED) {
2001 		level = LOGLEVEL_DEFAULT;
2002 		in_sched = true;
2003 	}
2004 
2005 	boot_delay_msec(level);
2006 	printk_delay();
2007 
2008 	/* This stops the holder of console_sem just where we want him */
2009 	logbuf_lock_irqsave(flags);
2010 	curr_log_seq = log_next_seq;
2011 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2012 	pending_output = (curr_log_seq != log_next_seq);
2013 	logbuf_unlock_irqrestore(flags);
2014 
2015 	/* If called from the scheduler, we can not call up(). */
2016 	if (!in_sched && pending_output) {
2017 		/*
2018 		 * Disable preemption to avoid being preempted while holding
2019 		 * console_sem which would prevent anyone from printing to
2020 		 * console
2021 		 */
2022 		preempt_disable();
2023 		/*
2024 		 * Try to acquire and then immediately release the console
2025 		 * semaphore.  The release will print out buffers and wake up
2026 		 * /dev/kmsg and syslog() users.
2027 		 */
2028 		if (console_trylock_spinning())
2029 			console_unlock();
2030 		preempt_enable();
2031 	}
2032 
2033 	if (pending_output)
2034 		wake_up_klogd();
2035 	return printed_len;
2036 }
2037 EXPORT_SYMBOL(vprintk_emit);
2038 
2039 asmlinkage int vprintk(const char *fmt, va_list args)
2040 {
2041 	return vprintk_func(fmt, args);
2042 }
2043 EXPORT_SYMBOL(vprintk);
2044 
2045 int vprintk_default(const char *fmt, va_list args)
2046 {
2047 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2048 }
2049 EXPORT_SYMBOL_GPL(vprintk_default);
2050 
2051 /**
2052  * printk - print a kernel message
2053  * @fmt: format string
2054  *
2055  * This is printk(). It can be called from any context. We want it to work.
2056  *
2057  * We try to grab the console_lock. If we succeed, it's easy - we log the
2058  * output and call the console drivers.  If we fail to get the semaphore, we
2059  * place the output into the log buffer and return. The current holder of
2060  * the console_sem will notice the new output in console_unlock(); and will
2061  * send it to the consoles before releasing the lock.
2062  *
2063  * One effect of this deferred printing is that code which calls printk() and
2064  * then changes console_loglevel may break. This is because console_loglevel
2065  * is inspected when the actual printing occurs.
2066  *
2067  * See also:
2068  * printf(3)
2069  *
2070  * See the vsnprintf() documentation for format string extensions over C99.
2071  */
2072 asmlinkage __visible int printk(const char *fmt, ...)
2073 {
2074 	va_list args;
2075 	int r;
2076 
2077 	va_start(args, fmt);
2078 	r = vprintk_func(fmt, args);
2079 	va_end(args);
2080 
2081 	return r;
2082 }
2083 EXPORT_SYMBOL(printk);
2084 
2085 #else /* CONFIG_PRINTK */
2086 
2087 #define LOG_LINE_MAX		0
2088 #define PREFIX_MAX		0
2089 #define printk_time		false
2090 
2091 static u64 syslog_seq;
2092 static u32 syslog_idx;
2093 static u64 console_seq;
2094 static u32 console_idx;
2095 static u64 exclusive_console_stop_seq;
2096 static u64 log_first_seq;
2097 static u32 log_first_idx;
2098 static u64 log_next_seq;
2099 static char *log_text(const struct printk_log *msg) { return NULL; }
2100 static char *log_dict(const struct printk_log *msg) { return NULL; }
2101 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2102 static u32 log_next(u32 idx) { return 0; }
2103 static ssize_t msg_print_ext_header(char *buf, size_t size,
2104 				    struct printk_log *msg,
2105 				    u64 seq) { return 0; }
2106 static ssize_t msg_print_ext_body(char *buf, size_t size,
2107 				  char *dict, size_t dict_len,
2108 				  char *text, size_t text_len) { return 0; }
2109 static void console_lock_spinning_enable(void) { }
2110 static int console_lock_spinning_disable_and_check(void) { return 0; }
2111 static void call_console_drivers(const char *ext_text, size_t ext_len,
2112 				 const char *text, size_t len) {}
2113 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2114 			     bool time, char *buf, size_t size) { return 0; }
2115 static bool suppress_message_printing(int level) { return false; }
2116 
2117 #endif /* CONFIG_PRINTK */
2118 
2119 #ifdef CONFIG_EARLY_PRINTK
2120 struct console *early_console;
2121 
2122 asmlinkage __visible void early_printk(const char *fmt, ...)
2123 {
2124 	va_list ap;
2125 	char buf[512];
2126 	int n;
2127 
2128 	if (!early_console)
2129 		return;
2130 
2131 	va_start(ap, fmt);
2132 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2133 	va_end(ap);
2134 
2135 	early_console->write(early_console, buf, n);
2136 }
2137 #endif
2138 
2139 static int __add_preferred_console(char *name, int idx, char *options,
2140 				   char *brl_options, bool user_specified)
2141 {
2142 	struct console_cmdline *c;
2143 	int i;
2144 
2145 	/*
2146 	 *	See if this tty is not yet registered, and
2147 	 *	if we have a slot free.
2148 	 */
2149 	for (i = 0, c = console_cmdline;
2150 	     i < MAX_CMDLINECONSOLES && c->name[0];
2151 	     i++, c++) {
2152 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2153 			if (!brl_options)
2154 				preferred_console = i;
2155 			if (user_specified)
2156 				c->user_specified = true;
2157 			return 0;
2158 		}
2159 	}
2160 	if (i == MAX_CMDLINECONSOLES)
2161 		return -E2BIG;
2162 	if (!brl_options)
2163 		preferred_console = i;
2164 	strlcpy(c->name, name, sizeof(c->name));
2165 	c->options = options;
2166 	c->user_specified = user_specified;
2167 	braille_set_options(c, brl_options);
2168 
2169 	c->index = idx;
2170 	return 0;
2171 }
2172 
2173 static int __init console_msg_format_setup(char *str)
2174 {
2175 	if (!strcmp(str, "syslog"))
2176 		console_msg_format = MSG_FORMAT_SYSLOG;
2177 	if (!strcmp(str, "default"))
2178 		console_msg_format = MSG_FORMAT_DEFAULT;
2179 	return 1;
2180 }
2181 __setup("console_msg_format=", console_msg_format_setup);
2182 
2183 /*
2184  * Set up a console.  Called via do_early_param() in init/main.c
2185  * for each "console=" parameter in the boot command line.
2186  */
2187 static int __init console_setup(char *str)
2188 {
2189 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2190 	char *s, *options, *brl_options = NULL;
2191 	int idx;
2192 
2193 	if (str[0] == 0)
2194 		return 1;
2195 
2196 	if (_braille_console_setup(&str, &brl_options))
2197 		return 1;
2198 
2199 	/*
2200 	 * Decode str into name, index, options.
2201 	 */
2202 	if (str[0] >= '0' && str[0] <= '9') {
2203 		strcpy(buf, "ttyS");
2204 		strncpy(buf + 4, str, sizeof(buf) - 5);
2205 	} else {
2206 		strncpy(buf, str, sizeof(buf) - 1);
2207 	}
2208 	buf[sizeof(buf) - 1] = 0;
2209 	options = strchr(str, ',');
2210 	if (options)
2211 		*(options++) = 0;
2212 #ifdef __sparc__
2213 	if (!strcmp(str, "ttya"))
2214 		strcpy(buf, "ttyS0");
2215 	if (!strcmp(str, "ttyb"))
2216 		strcpy(buf, "ttyS1");
2217 #endif
2218 	for (s = buf; *s; s++)
2219 		if (isdigit(*s) || *s == ',')
2220 			break;
2221 	idx = simple_strtoul(s, NULL, 10);
2222 	*s = 0;
2223 
2224 	__add_preferred_console(buf, idx, options, brl_options, true);
2225 	console_set_on_cmdline = 1;
2226 	return 1;
2227 }
2228 __setup("console=", console_setup);
2229 
2230 /**
2231  * add_preferred_console - add a device to the list of preferred consoles.
2232  * @name: device name
2233  * @idx: device index
2234  * @options: options for this console
2235  *
2236  * The last preferred console added will be used for kernel messages
2237  * and stdin/out/err for init.  Normally this is used by console_setup
2238  * above to handle user-supplied console arguments; however it can also
2239  * be used by arch-specific code either to override the user or more
2240  * commonly to provide a default console (ie from PROM variables) when
2241  * the user has not supplied one.
2242  */
2243 int add_preferred_console(char *name, int idx, char *options)
2244 {
2245 	return __add_preferred_console(name, idx, options, NULL, false);
2246 }
2247 
2248 bool console_suspend_enabled = true;
2249 EXPORT_SYMBOL(console_suspend_enabled);
2250 
2251 static int __init console_suspend_disable(char *str)
2252 {
2253 	console_suspend_enabled = false;
2254 	return 1;
2255 }
2256 __setup("no_console_suspend", console_suspend_disable);
2257 module_param_named(console_suspend, console_suspend_enabled,
2258 		bool, S_IRUGO | S_IWUSR);
2259 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2260 	" and hibernate operations");
2261 
2262 /**
2263  * suspend_console - suspend the console subsystem
2264  *
2265  * This disables printk() while we go into suspend states
2266  */
2267 void suspend_console(void)
2268 {
2269 	if (!console_suspend_enabled)
2270 		return;
2271 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2272 	console_lock();
2273 	console_suspended = 1;
2274 	up_console_sem();
2275 }
2276 
2277 void resume_console(void)
2278 {
2279 	if (!console_suspend_enabled)
2280 		return;
2281 	down_console_sem();
2282 	console_suspended = 0;
2283 	console_unlock();
2284 }
2285 
2286 /**
2287  * console_cpu_notify - print deferred console messages after CPU hotplug
2288  * @cpu: unused
2289  *
2290  * If printk() is called from a CPU that is not online yet, the messages
2291  * will be printed on the console only if there are CON_ANYTIME consoles.
2292  * This function is called when a new CPU comes online (or fails to come
2293  * up) or goes offline.
2294  */
2295 static int console_cpu_notify(unsigned int cpu)
2296 {
2297 	if (!cpuhp_tasks_frozen) {
2298 		/* If trylock fails, someone else is doing the printing */
2299 		if (console_trylock())
2300 			console_unlock();
2301 	}
2302 	return 0;
2303 }
2304 
2305 /**
2306  * console_lock - lock the console system for exclusive use.
2307  *
2308  * Acquires a lock which guarantees that the caller has
2309  * exclusive access to the console system and the console_drivers list.
2310  *
2311  * Can sleep, returns nothing.
2312  */
2313 void console_lock(void)
2314 {
2315 	might_sleep();
2316 
2317 	down_console_sem();
2318 	if (console_suspended)
2319 		return;
2320 	console_locked = 1;
2321 	console_may_schedule = 1;
2322 }
2323 EXPORT_SYMBOL(console_lock);
2324 
2325 /**
2326  * console_trylock - try to lock the console system for exclusive use.
2327  *
2328  * Try to acquire a lock which guarantees that the caller has exclusive
2329  * access to the console system and the console_drivers list.
2330  *
2331  * returns 1 on success, and 0 on failure to acquire the lock.
2332  */
2333 int console_trylock(void)
2334 {
2335 	if (down_trylock_console_sem())
2336 		return 0;
2337 	if (console_suspended) {
2338 		up_console_sem();
2339 		return 0;
2340 	}
2341 	console_locked = 1;
2342 	console_may_schedule = 0;
2343 	return 1;
2344 }
2345 EXPORT_SYMBOL(console_trylock);
2346 
2347 int is_console_locked(void)
2348 {
2349 	return console_locked;
2350 }
2351 EXPORT_SYMBOL(is_console_locked);
2352 
2353 /*
2354  * Check if we have any console that is capable of printing while cpu is
2355  * booting or shutting down. Requires console_sem.
2356  */
2357 static int have_callable_console(void)
2358 {
2359 	struct console *con;
2360 
2361 	for_each_console(con)
2362 		if ((con->flags & CON_ENABLED) &&
2363 				(con->flags & CON_ANYTIME))
2364 			return 1;
2365 
2366 	return 0;
2367 }
2368 
2369 /*
2370  * Can we actually use the console at this time on this cpu?
2371  *
2372  * Console drivers may assume that per-cpu resources have been allocated. So
2373  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2374  * call them until this CPU is officially up.
2375  */
2376 static inline int can_use_console(void)
2377 {
2378 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2379 }
2380 
2381 /**
2382  * console_unlock - unlock the console system
2383  *
2384  * Releases the console_lock which the caller holds on the console system
2385  * and the console driver list.
2386  *
2387  * While the console_lock was held, console output may have been buffered
2388  * by printk().  If this is the case, console_unlock(); emits
2389  * the output prior to releasing the lock.
2390  *
2391  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2392  *
2393  * console_unlock(); may be called from any context.
2394  */
2395 void console_unlock(void)
2396 {
2397 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2398 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2399 	unsigned long flags;
2400 	bool do_cond_resched, retry;
2401 
2402 	if (console_suspended) {
2403 		up_console_sem();
2404 		return;
2405 	}
2406 
2407 	/*
2408 	 * Console drivers are called with interrupts disabled, so
2409 	 * @console_may_schedule should be cleared before; however, we may
2410 	 * end up dumping a lot of lines, for example, if called from
2411 	 * console registration path, and should invoke cond_resched()
2412 	 * between lines if allowable.  Not doing so can cause a very long
2413 	 * scheduling stall on a slow console leading to RCU stall and
2414 	 * softlockup warnings which exacerbate the issue with more
2415 	 * messages practically incapacitating the system.
2416 	 *
2417 	 * console_trylock() is not able to detect the preemptive
2418 	 * context reliably. Therefore the value must be stored before
2419 	 * and cleared after the the "again" goto label.
2420 	 */
2421 	do_cond_resched = console_may_schedule;
2422 again:
2423 	console_may_schedule = 0;
2424 
2425 	/*
2426 	 * We released the console_sem lock, so we need to recheck if
2427 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2428 	 * console.
2429 	 */
2430 	if (!can_use_console()) {
2431 		console_locked = 0;
2432 		up_console_sem();
2433 		return;
2434 	}
2435 
2436 	for (;;) {
2437 		struct printk_log *msg;
2438 		size_t ext_len = 0;
2439 		size_t len;
2440 
2441 		printk_safe_enter_irqsave(flags);
2442 		raw_spin_lock(&logbuf_lock);
2443 		if (console_seq < log_first_seq) {
2444 			len = snprintf(text, sizeof(text),
2445 				       "** %llu printk messages dropped **\n",
2446 				       log_first_seq - console_seq);
2447 
2448 			/* messages are gone, move to first one */
2449 			console_seq = log_first_seq;
2450 			console_idx = log_first_idx;
2451 		} else {
2452 			len = 0;
2453 		}
2454 skip:
2455 		if (console_seq == log_next_seq)
2456 			break;
2457 
2458 		msg = log_from_idx(console_idx);
2459 		if (suppress_message_printing(msg->level)) {
2460 			/*
2461 			 * Skip record we have buffered and already printed
2462 			 * directly to the console when we received it, and
2463 			 * record that has level above the console loglevel.
2464 			 */
2465 			console_idx = log_next(console_idx);
2466 			console_seq++;
2467 			goto skip;
2468 		}
2469 
2470 		/* Output to all consoles once old messages replayed. */
2471 		if (unlikely(exclusive_console &&
2472 			     console_seq >= exclusive_console_stop_seq)) {
2473 			exclusive_console = NULL;
2474 		}
2475 
2476 		len += msg_print_text(msg,
2477 				console_msg_format & MSG_FORMAT_SYSLOG,
2478 				printk_time, text + len, sizeof(text) - len);
2479 		if (nr_ext_console_drivers) {
2480 			ext_len = msg_print_ext_header(ext_text,
2481 						sizeof(ext_text),
2482 						msg, console_seq);
2483 			ext_len += msg_print_ext_body(ext_text + ext_len,
2484 						sizeof(ext_text) - ext_len,
2485 						log_dict(msg), msg->dict_len,
2486 						log_text(msg), msg->text_len);
2487 		}
2488 		console_idx = log_next(console_idx);
2489 		console_seq++;
2490 		raw_spin_unlock(&logbuf_lock);
2491 
2492 		/*
2493 		 * While actively printing out messages, if another printk()
2494 		 * were to occur on another CPU, it may wait for this one to
2495 		 * finish. This task can not be preempted if there is a
2496 		 * waiter waiting to take over.
2497 		 */
2498 		console_lock_spinning_enable();
2499 
2500 		stop_critical_timings();	/* don't trace print latency */
2501 		call_console_drivers(ext_text, ext_len, text, len);
2502 		start_critical_timings();
2503 
2504 		if (console_lock_spinning_disable_and_check()) {
2505 			printk_safe_exit_irqrestore(flags);
2506 			return;
2507 		}
2508 
2509 		printk_safe_exit_irqrestore(flags);
2510 
2511 		if (do_cond_resched)
2512 			cond_resched();
2513 	}
2514 
2515 	console_locked = 0;
2516 
2517 	raw_spin_unlock(&logbuf_lock);
2518 
2519 	up_console_sem();
2520 
2521 	/*
2522 	 * Someone could have filled up the buffer again, so re-check if there's
2523 	 * something to flush. In case we cannot trylock the console_sem again,
2524 	 * there's a new owner and the console_unlock() from them will do the
2525 	 * flush, no worries.
2526 	 */
2527 	raw_spin_lock(&logbuf_lock);
2528 	retry = console_seq != log_next_seq;
2529 	raw_spin_unlock(&logbuf_lock);
2530 	printk_safe_exit_irqrestore(flags);
2531 
2532 	if (retry && console_trylock())
2533 		goto again;
2534 }
2535 EXPORT_SYMBOL(console_unlock);
2536 
2537 /**
2538  * console_conditional_schedule - yield the CPU if required
2539  *
2540  * If the console code is currently allowed to sleep, and
2541  * if this CPU should yield the CPU to another task, do
2542  * so here.
2543  *
2544  * Must be called within console_lock();.
2545  */
2546 void __sched console_conditional_schedule(void)
2547 {
2548 	if (console_may_schedule)
2549 		cond_resched();
2550 }
2551 EXPORT_SYMBOL(console_conditional_schedule);
2552 
2553 void console_unblank(void)
2554 {
2555 	struct console *c;
2556 
2557 	/*
2558 	 * console_unblank can no longer be called in interrupt context unless
2559 	 * oops_in_progress is set to 1..
2560 	 */
2561 	if (oops_in_progress) {
2562 		if (down_trylock_console_sem() != 0)
2563 			return;
2564 	} else
2565 		console_lock();
2566 
2567 	console_locked = 1;
2568 	console_may_schedule = 0;
2569 	for_each_console(c)
2570 		if ((c->flags & CON_ENABLED) && c->unblank)
2571 			c->unblank();
2572 	console_unlock();
2573 }
2574 
2575 /**
2576  * console_flush_on_panic - flush console content on panic
2577  * @mode: flush all messages in buffer or just the pending ones
2578  *
2579  * Immediately output all pending messages no matter what.
2580  */
2581 void console_flush_on_panic(enum con_flush_mode mode)
2582 {
2583 	/*
2584 	 * If someone else is holding the console lock, trylock will fail
2585 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2586 	 * that messages are flushed out.  As this can be called from any
2587 	 * context and we don't want to get preempted while flushing,
2588 	 * ensure may_schedule is cleared.
2589 	 */
2590 	console_trylock();
2591 	console_may_schedule = 0;
2592 
2593 	if (mode == CONSOLE_REPLAY_ALL) {
2594 		unsigned long flags;
2595 
2596 		logbuf_lock_irqsave(flags);
2597 		console_seq = log_first_seq;
2598 		console_idx = log_first_idx;
2599 		logbuf_unlock_irqrestore(flags);
2600 	}
2601 	console_unlock();
2602 }
2603 
2604 /*
2605  * Return the console tty driver structure and its associated index
2606  */
2607 struct tty_driver *console_device(int *index)
2608 {
2609 	struct console *c;
2610 	struct tty_driver *driver = NULL;
2611 
2612 	console_lock();
2613 	for_each_console(c) {
2614 		if (!c->device)
2615 			continue;
2616 		driver = c->device(c, index);
2617 		if (driver)
2618 			break;
2619 	}
2620 	console_unlock();
2621 	return driver;
2622 }
2623 
2624 /*
2625  * Prevent further output on the passed console device so that (for example)
2626  * serial drivers can disable console output before suspending a port, and can
2627  * re-enable output afterwards.
2628  */
2629 void console_stop(struct console *console)
2630 {
2631 	console_lock();
2632 	console->flags &= ~CON_ENABLED;
2633 	console_unlock();
2634 }
2635 EXPORT_SYMBOL(console_stop);
2636 
2637 void console_start(struct console *console)
2638 {
2639 	console_lock();
2640 	console->flags |= CON_ENABLED;
2641 	console_unlock();
2642 }
2643 EXPORT_SYMBOL(console_start);
2644 
2645 static int __read_mostly keep_bootcon;
2646 
2647 static int __init keep_bootcon_setup(char *str)
2648 {
2649 	keep_bootcon = 1;
2650 	pr_info("debug: skip boot console de-registration.\n");
2651 
2652 	return 0;
2653 }
2654 
2655 early_param("keep_bootcon", keep_bootcon_setup);
2656 
2657 /*
2658  * This is called by register_console() to try to match
2659  * the newly registered console with any of the ones selected
2660  * by either the command line or add_preferred_console() and
2661  * setup/enable it.
2662  *
2663  * Care need to be taken with consoles that are statically
2664  * enabled such as netconsole
2665  */
2666 static int try_enable_new_console(struct console *newcon, bool user_specified)
2667 {
2668 	struct console_cmdline *c;
2669 	int i, err;
2670 
2671 	for (i = 0, c = console_cmdline;
2672 	     i < MAX_CMDLINECONSOLES && c->name[0];
2673 	     i++, c++) {
2674 		if (c->user_specified != user_specified)
2675 			continue;
2676 		if (!newcon->match ||
2677 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2678 			/* default matching */
2679 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2680 			if (strcmp(c->name, newcon->name) != 0)
2681 				continue;
2682 			if (newcon->index >= 0 &&
2683 			    newcon->index != c->index)
2684 				continue;
2685 			if (newcon->index < 0)
2686 				newcon->index = c->index;
2687 
2688 			if (_braille_register_console(newcon, c))
2689 				return 0;
2690 
2691 			if (newcon->setup &&
2692 			    (err = newcon->setup(newcon, c->options)) != 0)
2693 				return err;
2694 		}
2695 		newcon->flags |= CON_ENABLED;
2696 		if (i == preferred_console) {
2697 			newcon->flags |= CON_CONSDEV;
2698 			has_preferred_console = true;
2699 		}
2700 		return 0;
2701 	}
2702 
2703 	/*
2704 	 * Some consoles, such as pstore and netconsole, can be enabled even
2705 	 * without matching. Accept the pre-enabled consoles only when match()
2706 	 * and setup() had a chance to be called.
2707 	 */
2708 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2709 		return 0;
2710 
2711 	return -ENOENT;
2712 }
2713 
2714 /*
2715  * The console driver calls this routine during kernel initialization
2716  * to register the console printing procedure with printk() and to
2717  * print any messages that were printed by the kernel before the
2718  * console driver was initialized.
2719  *
2720  * This can happen pretty early during the boot process (because of
2721  * early_printk) - sometimes before setup_arch() completes - be careful
2722  * of what kernel features are used - they may not be initialised yet.
2723  *
2724  * There are two types of consoles - bootconsoles (early_printk) and
2725  * "real" consoles (everything which is not a bootconsole) which are
2726  * handled differently.
2727  *  - Any number of bootconsoles can be registered at any time.
2728  *  - As soon as a "real" console is registered, all bootconsoles
2729  *    will be unregistered automatically.
2730  *  - Once a "real" console is registered, any attempt to register a
2731  *    bootconsoles will be rejected
2732  */
2733 void register_console(struct console *newcon)
2734 {
2735 	unsigned long flags;
2736 	struct console *bcon = NULL;
2737 	int err;
2738 
2739 	for_each_console(bcon) {
2740 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2741 					 bcon->name, bcon->index))
2742 			return;
2743 	}
2744 
2745 	/*
2746 	 * before we register a new CON_BOOT console, make sure we don't
2747 	 * already have a valid console
2748 	 */
2749 	if (newcon->flags & CON_BOOT) {
2750 		for_each_console(bcon) {
2751 			if (!(bcon->flags & CON_BOOT)) {
2752 				pr_info("Too late to register bootconsole %s%d\n",
2753 					newcon->name, newcon->index);
2754 				return;
2755 			}
2756 		}
2757 	}
2758 
2759 	if (console_drivers && console_drivers->flags & CON_BOOT)
2760 		bcon = console_drivers;
2761 
2762 	if (!has_preferred_console || bcon || !console_drivers)
2763 		has_preferred_console = preferred_console >= 0;
2764 
2765 	/*
2766 	 *	See if we want to use this console driver. If we
2767 	 *	didn't select a console we take the first one
2768 	 *	that registers here.
2769 	 */
2770 	if (!has_preferred_console) {
2771 		if (newcon->index < 0)
2772 			newcon->index = 0;
2773 		if (newcon->setup == NULL ||
2774 		    newcon->setup(newcon, NULL) == 0) {
2775 			newcon->flags |= CON_ENABLED;
2776 			if (newcon->device) {
2777 				newcon->flags |= CON_CONSDEV;
2778 				has_preferred_console = true;
2779 			}
2780 		}
2781 	}
2782 
2783 	/* See if this console matches one we selected on the command line */
2784 	err = try_enable_new_console(newcon, true);
2785 
2786 	/* If not, try to match against the platform default(s) */
2787 	if (err == -ENOENT)
2788 		err = try_enable_new_console(newcon, false);
2789 
2790 	/* printk() messages are not printed to the Braille console. */
2791 	if (err || newcon->flags & CON_BRL)
2792 		return;
2793 
2794 	/*
2795 	 * If we have a bootconsole, and are switching to a real console,
2796 	 * don't print everything out again, since when the boot console, and
2797 	 * the real console are the same physical device, it's annoying to
2798 	 * see the beginning boot messages twice
2799 	 */
2800 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2801 		newcon->flags &= ~CON_PRINTBUFFER;
2802 
2803 	/*
2804 	 *	Put this console in the list - keep the
2805 	 *	preferred driver at the head of the list.
2806 	 */
2807 	console_lock();
2808 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2809 		newcon->next = console_drivers;
2810 		console_drivers = newcon;
2811 		if (newcon->next)
2812 			newcon->next->flags &= ~CON_CONSDEV;
2813 		/* Ensure this flag is always set for the head of the list */
2814 		newcon->flags |= CON_CONSDEV;
2815 	} else {
2816 		newcon->next = console_drivers->next;
2817 		console_drivers->next = newcon;
2818 	}
2819 
2820 	if (newcon->flags & CON_EXTENDED)
2821 		nr_ext_console_drivers++;
2822 
2823 	if (newcon->flags & CON_PRINTBUFFER) {
2824 		/*
2825 		 * console_unlock(); will print out the buffered messages
2826 		 * for us.
2827 		 */
2828 		logbuf_lock_irqsave(flags);
2829 		/*
2830 		 * We're about to replay the log buffer.  Only do this to the
2831 		 * just-registered console to avoid excessive message spam to
2832 		 * the already-registered consoles.
2833 		 *
2834 		 * Set exclusive_console with disabled interrupts to reduce
2835 		 * race window with eventual console_flush_on_panic() that
2836 		 * ignores console_lock.
2837 		 */
2838 		exclusive_console = newcon;
2839 		exclusive_console_stop_seq = console_seq;
2840 		console_seq = syslog_seq;
2841 		console_idx = syslog_idx;
2842 		logbuf_unlock_irqrestore(flags);
2843 	}
2844 	console_unlock();
2845 	console_sysfs_notify();
2846 
2847 	/*
2848 	 * By unregistering the bootconsoles after we enable the real console
2849 	 * we get the "console xxx enabled" message on all the consoles -
2850 	 * boot consoles, real consoles, etc - this is to ensure that end
2851 	 * users know there might be something in the kernel's log buffer that
2852 	 * went to the bootconsole (that they do not see on the real console)
2853 	 */
2854 	pr_info("%sconsole [%s%d] enabled\n",
2855 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2856 		newcon->name, newcon->index);
2857 	if (bcon &&
2858 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2859 	    !keep_bootcon) {
2860 		/* We need to iterate through all boot consoles, to make
2861 		 * sure we print everything out, before we unregister them.
2862 		 */
2863 		for_each_console(bcon)
2864 			if (bcon->flags & CON_BOOT)
2865 				unregister_console(bcon);
2866 	}
2867 }
2868 EXPORT_SYMBOL(register_console);
2869 
2870 int unregister_console(struct console *console)
2871 {
2872 	struct console *con;
2873 	int res;
2874 
2875 	pr_info("%sconsole [%s%d] disabled\n",
2876 		(console->flags & CON_BOOT) ? "boot" : "" ,
2877 		console->name, console->index);
2878 
2879 	res = _braille_unregister_console(console);
2880 	if (res < 0)
2881 		return res;
2882 	if (res > 0)
2883 		return 0;
2884 
2885 	res = -ENODEV;
2886 	console_lock();
2887 	if (console_drivers == console) {
2888 		console_drivers=console->next;
2889 		res = 0;
2890 	} else {
2891 		for_each_console(con) {
2892 			if (con->next == console) {
2893 				con->next = console->next;
2894 				res = 0;
2895 				break;
2896 			}
2897 		}
2898 	}
2899 
2900 	if (res)
2901 		goto out_disable_unlock;
2902 
2903 	if (console->flags & CON_EXTENDED)
2904 		nr_ext_console_drivers--;
2905 
2906 	/*
2907 	 * If this isn't the last console and it has CON_CONSDEV set, we
2908 	 * need to set it on the next preferred console.
2909 	 */
2910 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2911 		console_drivers->flags |= CON_CONSDEV;
2912 
2913 	console->flags &= ~CON_ENABLED;
2914 	console_unlock();
2915 	console_sysfs_notify();
2916 
2917 	if (console->exit)
2918 		res = console->exit(console);
2919 
2920 	return res;
2921 
2922 out_disable_unlock:
2923 	console->flags &= ~CON_ENABLED;
2924 	console_unlock();
2925 
2926 	return res;
2927 }
2928 EXPORT_SYMBOL(unregister_console);
2929 
2930 /*
2931  * Initialize the console device. This is called *early*, so
2932  * we can't necessarily depend on lots of kernel help here.
2933  * Just do some early initializations, and do the complex setup
2934  * later.
2935  */
2936 void __init console_init(void)
2937 {
2938 	int ret;
2939 	initcall_t call;
2940 	initcall_entry_t *ce;
2941 
2942 	/* Setup the default TTY line discipline. */
2943 	n_tty_init();
2944 
2945 	/*
2946 	 * set up the console device so that later boot sequences can
2947 	 * inform about problems etc..
2948 	 */
2949 	ce = __con_initcall_start;
2950 	trace_initcall_level("console");
2951 	while (ce < __con_initcall_end) {
2952 		call = initcall_from_entry(ce);
2953 		trace_initcall_start(call);
2954 		ret = call();
2955 		trace_initcall_finish(call, ret);
2956 		ce++;
2957 	}
2958 }
2959 
2960 /*
2961  * Some boot consoles access data that is in the init section and which will
2962  * be discarded after the initcalls have been run. To make sure that no code
2963  * will access this data, unregister the boot consoles in a late initcall.
2964  *
2965  * If for some reason, such as deferred probe or the driver being a loadable
2966  * module, the real console hasn't registered yet at this point, there will
2967  * be a brief interval in which no messages are logged to the console, which
2968  * makes it difficult to diagnose problems that occur during this time.
2969  *
2970  * To mitigate this problem somewhat, only unregister consoles whose memory
2971  * intersects with the init section. Note that all other boot consoles will
2972  * get unregistred when the real preferred console is registered.
2973  */
2974 static int __init printk_late_init(void)
2975 {
2976 	struct console *con;
2977 	int ret;
2978 
2979 	for_each_console(con) {
2980 		if (!(con->flags & CON_BOOT))
2981 			continue;
2982 
2983 		/* Check addresses that might be used for enabled consoles. */
2984 		if (init_section_intersects(con, sizeof(*con)) ||
2985 		    init_section_contains(con->write, 0) ||
2986 		    init_section_contains(con->read, 0) ||
2987 		    init_section_contains(con->device, 0) ||
2988 		    init_section_contains(con->unblank, 0) ||
2989 		    init_section_contains(con->data, 0)) {
2990 			/*
2991 			 * Please, consider moving the reported consoles out
2992 			 * of the init section.
2993 			 */
2994 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2995 				con->name, con->index);
2996 			unregister_console(con);
2997 		}
2998 	}
2999 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3000 					console_cpu_notify);
3001 	WARN_ON(ret < 0);
3002 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3003 					console_cpu_notify, NULL);
3004 	WARN_ON(ret < 0);
3005 	return 0;
3006 }
3007 late_initcall(printk_late_init);
3008 
3009 #if defined CONFIG_PRINTK
3010 /*
3011  * Delayed printk version, for scheduler-internal messages:
3012  */
3013 #define PRINTK_PENDING_WAKEUP	0x01
3014 #define PRINTK_PENDING_OUTPUT	0x02
3015 
3016 static DEFINE_PER_CPU(int, printk_pending);
3017 
3018 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3019 {
3020 	int pending = __this_cpu_xchg(printk_pending, 0);
3021 
3022 	if (pending & PRINTK_PENDING_OUTPUT) {
3023 		/* If trylock fails, someone else is doing the printing */
3024 		if (console_trylock())
3025 			console_unlock();
3026 	}
3027 
3028 	if (pending & PRINTK_PENDING_WAKEUP)
3029 		wake_up_interruptible(&log_wait);
3030 }
3031 
3032 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3033 	.func = wake_up_klogd_work_func,
3034 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3035 };
3036 
3037 void wake_up_klogd(void)
3038 {
3039 	if (!printk_percpu_data_ready())
3040 		return;
3041 
3042 	preempt_disable();
3043 	if (waitqueue_active(&log_wait)) {
3044 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3045 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3046 	}
3047 	preempt_enable();
3048 }
3049 
3050 void defer_console_output(void)
3051 {
3052 	if (!printk_percpu_data_ready())
3053 		return;
3054 
3055 	preempt_disable();
3056 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3057 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3058 	preempt_enable();
3059 }
3060 
3061 int vprintk_deferred(const char *fmt, va_list args)
3062 {
3063 	int r;
3064 
3065 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3066 	defer_console_output();
3067 
3068 	return r;
3069 }
3070 
3071 int printk_deferred(const char *fmt, ...)
3072 {
3073 	va_list args;
3074 	int r;
3075 
3076 	va_start(args, fmt);
3077 	r = vprintk_deferred(fmt, args);
3078 	va_end(args);
3079 
3080 	return r;
3081 }
3082 
3083 /*
3084  * printk rate limiting, lifted from the networking subsystem.
3085  *
3086  * This enforces a rate limit: not more than 10 kernel messages
3087  * every 5s to make a denial-of-service attack impossible.
3088  */
3089 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3090 
3091 int __printk_ratelimit(const char *func)
3092 {
3093 	return ___ratelimit(&printk_ratelimit_state, func);
3094 }
3095 EXPORT_SYMBOL(__printk_ratelimit);
3096 
3097 /**
3098  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3099  * @caller_jiffies: pointer to caller's state
3100  * @interval_msecs: minimum interval between prints
3101  *
3102  * printk_timed_ratelimit() returns true if more than @interval_msecs
3103  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3104  * returned true.
3105  */
3106 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3107 			unsigned int interval_msecs)
3108 {
3109 	unsigned long elapsed = jiffies - *caller_jiffies;
3110 
3111 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3112 		return false;
3113 
3114 	*caller_jiffies = jiffies;
3115 	return true;
3116 }
3117 EXPORT_SYMBOL(printk_timed_ratelimit);
3118 
3119 static DEFINE_SPINLOCK(dump_list_lock);
3120 static LIST_HEAD(dump_list);
3121 
3122 /**
3123  * kmsg_dump_register - register a kernel log dumper.
3124  * @dumper: pointer to the kmsg_dumper structure
3125  *
3126  * Adds a kernel log dumper to the system. The dump callback in the
3127  * structure will be called when the kernel oopses or panics and must be
3128  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3129  */
3130 int kmsg_dump_register(struct kmsg_dumper *dumper)
3131 {
3132 	unsigned long flags;
3133 	int err = -EBUSY;
3134 
3135 	/* The dump callback needs to be set */
3136 	if (!dumper->dump)
3137 		return -EINVAL;
3138 
3139 	spin_lock_irqsave(&dump_list_lock, flags);
3140 	/* Don't allow registering multiple times */
3141 	if (!dumper->registered) {
3142 		dumper->registered = 1;
3143 		list_add_tail_rcu(&dumper->list, &dump_list);
3144 		err = 0;
3145 	}
3146 	spin_unlock_irqrestore(&dump_list_lock, flags);
3147 
3148 	return err;
3149 }
3150 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3151 
3152 /**
3153  * kmsg_dump_unregister - unregister a kmsg dumper.
3154  * @dumper: pointer to the kmsg_dumper structure
3155  *
3156  * Removes a dump device from the system. Returns zero on success and
3157  * %-EINVAL otherwise.
3158  */
3159 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3160 {
3161 	unsigned long flags;
3162 	int err = -EINVAL;
3163 
3164 	spin_lock_irqsave(&dump_list_lock, flags);
3165 	if (dumper->registered) {
3166 		dumper->registered = 0;
3167 		list_del_rcu(&dumper->list);
3168 		err = 0;
3169 	}
3170 	spin_unlock_irqrestore(&dump_list_lock, flags);
3171 	synchronize_rcu();
3172 
3173 	return err;
3174 }
3175 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3176 
3177 static bool always_kmsg_dump;
3178 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3179 
3180 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3181 {
3182 	switch (reason) {
3183 	case KMSG_DUMP_PANIC:
3184 		return "Panic";
3185 	case KMSG_DUMP_OOPS:
3186 		return "Oops";
3187 	case KMSG_DUMP_EMERG:
3188 		return "Emergency";
3189 	case KMSG_DUMP_SHUTDOWN:
3190 		return "Shutdown";
3191 	default:
3192 		return "Unknown";
3193 	}
3194 }
3195 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3196 
3197 /**
3198  * kmsg_dump - dump kernel log to kernel message dumpers.
3199  * @reason: the reason (oops, panic etc) for dumping
3200  *
3201  * Call each of the registered dumper's dump() callback, which can
3202  * retrieve the kmsg records with kmsg_dump_get_line() or
3203  * kmsg_dump_get_buffer().
3204  */
3205 void kmsg_dump(enum kmsg_dump_reason reason)
3206 {
3207 	struct kmsg_dumper *dumper;
3208 	unsigned long flags;
3209 
3210 	rcu_read_lock();
3211 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3212 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3213 
3214 		/*
3215 		 * If client has not provided a specific max_reason, default
3216 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3217 		 */
3218 		if (max_reason == KMSG_DUMP_UNDEF) {
3219 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3220 							KMSG_DUMP_OOPS;
3221 		}
3222 		if (reason > max_reason)
3223 			continue;
3224 
3225 		/* initialize iterator with data about the stored records */
3226 		dumper->active = true;
3227 
3228 		logbuf_lock_irqsave(flags);
3229 		dumper->cur_seq = clear_seq;
3230 		dumper->cur_idx = clear_idx;
3231 		dumper->next_seq = log_next_seq;
3232 		dumper->next_idx = log_next_idx;
3233 		logbuf_unlock_irqrestore(flags);
3234 
3235 		/* invoke dumper which will iterate over records */
3236 		dumper->dump(dumper, reason);
3237 
3238 		/* reset iterator */
3239 		dumper->active = false;
3240 	}
3241 	rcu_read_unlock();
3242 }
3243 
3244 /**
3245  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3246  * @dumper: registered kmsg dumper
3247  * @syslog: include the "<4>" prefixes
3248  * @line: buffer to copy the line to
3249  * @size: maximum size of the buffer
3250  * @len: length of line placed into buffer
3251  *
3252  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3253  * record, and copy one record into the provided buffer.
3254  *
3255  * Consecutive calls will return the next available record moving
3256  * towards the end of the buffer with the youngest messages.
3257  *
3258  * A return value of FALSE indicates that there are no more records to
3259  * read.
3260  *
3261  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3262  */
3263 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3264 			       char *line, size_t size, size_t *len)
3265 {
3266 	struct printk_log *msg;
3267 	size_t l = 0;
3268 	bool ret = false;
3269 
3270 	if (!dumper->active)
3271 		goto out;
3272 
3273 	if (dumper->cur_seq < log_first_seq) {
3274 		/* messages are gone, move to first available one */
3275 		dumper->cur_seq = log_first_seq;
3276 		dumper->cur_idx = log_first_idx;
3277 	}
3278 
3279 	/* last entry */
3280 	if (dumper->cur_seq >= log_next_seq)
3281 		goto out;
3282 
3283 	msg = log_from_idx(dumper->cur_idx);
3284 	l = msg_print_text(msg, syslog, printk_time, line, size);
3285 
3286 	dumper->cur_idx = log_next(dumper->cur_idx);
3287 	dumper->cur_seq++;
3288 	ret = true;
3289 out:
3290 	if (len)
3291 		*len = l;
3292 	return ret;
3293 }
3294 
3295 /**
3296  * kmsg_dump_get_line - retrieve one kmsg log line
3297  * @dumper: registered kmsg dumper
3298  * @syslog: include the "<4>" prefixes
3299  * @line: buffer to copy the line to
3300  * @size: maximum size of the buffer
3301  * @len: length of line placed into buffer
3302  *
3303  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3304  * record, and copy one record into the provided buffer.
3305  *
3306  * Consecutive calls will return the next available record moving
3307  * towards the end of the buffer with the youngest messages.
3308  *
3309  * A return value of FALSE indicates that there are no more records to
3310  * read.
3311  */
3312 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3313 			char *line, size_t size, size_t *len)
3314 {
3315 	unsigned long flags;
3316 	bool ret;
3317 
3318 	logbuf_lock_irqsave(flags);
3319 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3320 	logbuf_unlock_irqrestore(flags);
3321 
3322 	return ret;
3323 }
3324 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3325 
3326 /**
3327  * kmsg_dump_get_buffer - copy kmsg log lines
3328  * @dumper: registered kmsg dumper
3329  * @syslog: include the "<4>" prefixes
3330  * @buf: buffer to copy the line to
3331  * @size: maximum size of the buffer
3332  * @len: length of line placed into buffer
3333  *
3334  * Start at the end of the kmsg buffer and fill the provided buffer
3335  * with as many of the the *youngest* kmsg records that fit into it.
3336  * If the buffer is large enough, all available kmsg records will be
3337  * copied with a single call.
3338  *
3339  * Consecutive calls will fill the buffer with the next block of
3340  * available older records, not including the earlier retrieved ones.
3341  *
3342  * A return value of FALSE indicates that there are no more records to
3343  * read.
3344  */
3345 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3346 			  char *buf, size_t size, size_t *len)
3347 {
3348 	unsigned long flags;
3349 	u64 seq;
3350 	u32 idx;
3351 	u64 next_seq;
3352 	u32 next_idx;
3353 	size_t l = 0;
3354 	bool ret = false;
3355 	bool time = printk_time;
3356 
3357 	if (!dumper->active)
3358 		goto out;
3359 
3360 	logbuf_lock_irqsave(flags);
3361 	if (dumper->cur_seq < log_first_seq) {
3362 		/* messages are gone, move to first available one */
3363 		dumper->cur_seq = log_first_seq;
3364 		dumper->cur_idx = log_first_idx;
3365 	}
3366 
3367 	/* last entry */
3368 	if (dumper->cur_seq >= dumper->next_seq) {
3369 		logbuf_unlock_irqrestore(flags);
3370 		goto out;
3371 	}
3372 
3373 	/* calculate length of entire buffer */
3374 	seq = dumper->cur_seq;
3375 	idx = dumper->cur_idx;
3376 	while (seq < dumper->next_seq) {
3377 		struct printk_log *msg = log_from_idx(idx);
3378 
3379 		l += msg_print_text(msg, true, time, NULL, 0);
3380 		idx = log_next(idx);
3381 		seq++;
3382 	}
3383 
3384 	/* move first record forward until length fits into the buffer */
3385 	seq = dumper->cur_seq;
3386 	idx = dumper->cur_idx;
3387 	while (l >= size && seq < dumper->next_seq) {
3388 		struct printk_log *msg = log_from_idx(idx);
3389 
3390 		l -= msg_print_text(msg, true, time, NULL, 0);
3391 		idx = log_next(idx);
3392 		seq++;
3393 	}
3394 
3395 	/* last message in next interation */
3396 	next_seq = seq;
3397 	next_idx = idx;
3398 
3399 	l = 0;
3400 	while (seq < dumper->next_seq) {
3401 		struct printk_log *msg = log_from_idx(idx);
3402 
3403 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3404 		idx = log_next(idx);
3405 		seq++;
3406 	}
3407 
3408 	dumper->next_seq = next_seq;
3409 	dumper->next_idx = next_idx;
3410 	ret = true;
3411 	logbuf_unlock_irqrestore(flags);
3412 out:
3413 	if (len)
3414 		*len = l;
3415 	return ret;
3416 }
3417 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3418 
3419 /**
3420  * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3421  * @dumper: registered kmsg dumper
3422  *
3423  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3424  * kmsg_dump_get_buffer() can be called again and used multiple
3425  * times within the same dumper.dump() callback.
3426  *
3427  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3428  */
3429 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3430 {
3431 	dumper->cur_seq = clear_seq;
3432 	dumper->cur_idx = clear_idx;
3433 	dumper->next_seq = log_next_seq;
3434 	dumper->next_idx = log_next_idx;
3435 }
3436 
3437 /**
3438  * kmsg_dump_rewind - reset the iterator
3439  * @dumper: registered kmsg dumper
3440  *
3441  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3442  * kmsg_dump_get_buffer() can be called again and used multiple
3443  * times within the same dumper.dump() callback.
3444  */
3445 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3446 {
3447 	unsigned long flags;
3448 
3449 	logbuf_lock_irqsave(flags);
3450 	kmsg_dump_rewind_nolock(dumper);
3451 	logbuf_unlock_irqrestore(flags);
3452 }
3453 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3454 
3455 #endif
3456