xref: /openbmc/linux/kernel/printk/printk.c (revision 232b0b08)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 /*
70  * Low level drivers may need that to know if they can schedule in
71  * their unblank() callback or not. So let's export it.
72  */
73 int oops_in_progress;
74 EXPORT_SYMBOL(oops_in_progress);
75 
76 /*
77  * console_sem protects the console_drivers list, and also
78  * provides serialisation for access to the entire console
79  * driver system.
80  */
81 static DEFINE_SEMAPHORE(console_sem);
82 struct console *console_drivers;
83 EXPORT_SYMBOL_GPL(console_drivers);
84 
85 #ifdef CONFIG_LOCKDEP
86 static struct lockdep_map console_lock_dep_map = {
87 	.name = "console_lock"
88 };
89 #endif
90 
91 enum devkmsg_log_bits {
92 	__DEVKMSG_LOG_BIT_ON = 0,
93 	__DEVKMSG_LOG_BIT_OFF,
94 	__DEVKMSG_LOG_BIT_LOCK,
95 };
96 
97 enum devkmsg_log_masks {
98 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
99 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
100 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
101 };
102 
103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
104 #define DEVKMSG_LOG_MASK_DEFAULT	0
105 
106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
107 
108 static int __control_devkmsg(char *str)
109 {
110 	if (!str)
111 		return -EINVAL;
112 
113 	if (!strncmp(str, "on", 2)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
115 		return 2;
116 	} else if (!strncmp(str, "off", 3)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
118 		return 3;
119 	} else if (!strncmp(str, "ratelimit", 9)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
121 		return 9;
122 	}
123 	return -EINVAL;
124 }
125 
126 static int __init control_devkmsg(char *str)
127 {
128 	if (__control_devkmsg(str) < 0)
129 		return 1;
130 
131 	/*
132 	 * Set sysctl string accordingly:
133 	 */
134 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "on", 2);
137 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
138 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
139 		strncpy(devkmsg_log_str, "off", 3);
140 	}
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /*
197  * Number of registered extended console drivers.
198  *
199  * If extended consoles are present, in-kernel cont reassembly is disabled
200  * and each fragment is stored as a separate log entry with proper
201  * continuation flag so that every emitted message has full metadata.  This
202  * doesn't change the result for regular consoles or /proc/kmsg.  For
203  * /dev/kmsg, as long as the reader concatenates messages according to
204  * consecutive continuation flags, the end result should be the same too.
205  */
206 static int nr_ext_console_drivers;
207 
208 /*
209  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
210  * macros instead of functions so that _RET_IP_ contains useful information.
211  */
212 #define down_console_sem() do { \
213 	down(&console_sem);\
214 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
215 } while (0)
216 
217 static int __down_trylock_console_sem(unsigned long ip)
218 {
219 	int lock_failed;
220 	unsigned long flags;
221 
222 	/*
223 	 * Here and in __up_console_sem() we need to be in safe mode,
224 	 * because spindump/WARN/etc from under console ->lock will
225 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
226 	 */
227 	printk_safe_enter_irqsave(flags);
228 	lock_failed = down_trylock(&console_sem);
229 	printk_safe_exit_irqrestore(flags);
230 
231 	if (lock_failed)
232 		return 1;
233 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
234 	return 0;
235 }
236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
237 
238 static void __up_console_sem(unsigned long ip)
239 {
240 	unsigned long flags;
241 
242 	mutex_release(&console_lock_dep_map, 1, ip);
243 
244 	printk_safe_enter_irqsave(flags);
245 	up(&console_sem);
246 	printk_safe_exit_irqrestore(flags);
247 }
248 #define up_console_sem() __up_console_sem(_RET_IP_)
249 
250 /*
251  * This is used for debugging the mess that is the VT code by
252  * keeping track if we have the console semaphore held. It's
253  * definitely not the perfect debug tool (we don't know if _WE_
254  * hold it and are racing, but it helps tracking those weird code
255  * paths in the console code where we end up in places I want
256  * locked without the console sempahore held).
257  */
258 static int console_locked, console_suspended;
259 
260 /*
261  * If exclusive_console is non-NULL then only this console is to be printed to.
262  */
263 static struct console *exclusive_console;
264 
265 /*
266  *	Array of consoles built from command line options (console=)
267  */
268 
269 #define MAX_CMDLINECONSOLES 8
270 
271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
272 
273 static int selected_console = -1;
274 static int preferred_console = -1;
275 int console_set_on_cmdline;
276 EXPORT_SYMBOL(console_set_on_cmdline);
277 
278 /* Flag: console code may call schedule() */
279 static int console_may_schedule;
280 
281 /*
282  * The printk log buffer consists of a chain of concatenated variable
283  * length records. Every record starts with a record header, containing
284  * the overall length of the record.
285  *
286  * The heads to the first and last entry in the buffer, as well as the
287  * sequence numbers of these entries are maintained when messages are
288  * stored.
289  *
290  * If the heads indicate available messages, the length in the header
291  * tells the start next message. A length == 0 for the next message
292  * indicates a wrap-around to the beginning of the buffer.
293  *
294  * Every record carries the monotonic timestamp in microseconds, as well as
295  * the standard userspace syslog level and syslog facility. The usual
296  * kernel messages use LOG_KERN; userspace-injected messages always carry
297  * a matching syslog facility, by default LOG_USER. The origin of every
298  * message can be reliably determined that way.
299  *
300  * The human readable log message directly follows the message header. The
301  * length of the message text is stored in the header, the stored message
302  * is not terminated.
303  *
304  * Optionally, a message can carry a dictionary of properties (key/value pairs),
305  * to provide userspace with a machine-readable message context.
306  *
307  * Examples for well-defined, commonly used property names are:
308  *   DEVICE=b12:8               device identifier
309  *                                b12:8         block dev_t
310  *                                c127:3        char dev_t
311  *                                n8            netdev ifindex
312  *                                +sound:card0  subsystem:devname
313  *   SUBSYSTEM=pci              driver-core subsystem name
314  *
315  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
316  * follows directly after a '=' character. Every property is terminated by
317  * a '\0' character. The last property is not terminated.
318  *
319  * Example of a message structure:
320  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
321  *   0008  34 00                        record is 52 bytes long
322  *   000a        0b 00                  text is 11 bytes long
323  *   000c              1f 00            dictionary is 23 bytes long
324  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
325  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
326  *         69 6e 65                     "ine"
327  *   001b           44 45 56 49 43      "DEVIC"
328  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
329  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
330  *         67                           "g"
331  *   0032     00 00 00                  padding to next message header
332  *
333  * The 'struct printk_log' buffer header must never be directly exported to
334  * userspace, it is a kernel-private implementation detail that might
335  * need to be changed in the future, when the requirements change.
336  *
337  * /dev/kmsg exports the structured data in the following line format:
338  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
339  *
340  * Users of the export format should ignore possible additional values
341  * separated by ',', and find the message after the ';' character.
342  *
343  * The optional key/value pairs are attached as continuation lines starting
344  * with a space character and terminated by a newline. All possible
345  * non-prinatable characters are escaped in the "\xff" notation.
346  */
347 
348 enum log_flags {
349 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
350 	LOG_NEWLINE	= 2,	/* text ended with a newline */
351 	LOG_PREFIX	= 4,	/* text started with a prefix */
352 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
353 };
354 
355 struct printk_log {
356 	u64 ts_nsec;		/* timestamp in nanoseconds */
357 	u16 len;		/* length of entire record */
358 	u16 text_len;		/* length of text buffer */
359 	u16 dict_len;		/* length of dictionary buffer */
360 	u8 facility;		/* syslog facility */
361 	u8 flags:5;		/* internal record flags */
362 	u8 level:3;		/* syslog level */
363 }
364 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
365 __packed __aligned(4)
366 #endif
367 ;
368 
369 /*
370  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
371  * within the scheduler's rq lock. It must be released before calling
372  * console_unlock() or anything else that might wake up a process.
373  */
374 DEFINE_RAW_SPINLOCK(logbuf_lock);
375 
376 /*
377  * Helper macros to lock/unlock logbuf_lock and switch between
378  * printk-safe/unsafe modes.
379  */
380 #define logbuf_lock_irq()				\
381 	do {						\
382 		printk_safe_enter_irq();		\
383 		raw_spin_lock(&logbuf_lock);		\
384 	} while (0)
385 
386 #define logbuf_unlock_irq()				\
387 	do {						\
388 		raw_spin_unlock(&logbuf_lock);		\
389 		printk_safe_exit_irq();			\
390 	} while (0)
391 
392 #define logbuf_lock_irqsave(flags)			\
393 	do {						\
394 		printk_safe_enter_irqsave(flags);	\
395 		raw_spin_lock(&logbuf_lock);		\
396 	} while (0)
397 
398 #define logbuf_unlock_irqrestore(flags)		\
399 	do {						\
400 		raw_spin_unlock(&logbuf_lock);		\
401 		printk_safe_exit_irqrestore(flags);	\
402 	} while (0)
403 
404 #ifdef CONFIG_PRINTK
405 DECLARE_WAIT_QUEUE_HEAD(log_wait);
406 /* the next printk record to read by syslog(READ) or /proc/kmsg */
407 static u64 syslog_seq;
408 static u32 syslog_idx;
409 static size_t syslog_partial;
410 
411 /* index and sequence number of the first record stored in the buffer */
412 static u64 log_first_seq;
413 static u32 log_first_idx;
414 
415 /* index and sequence number of the next record to store in the buffer */
416 static u64 log_next_seq;
417 static u32 log_next_idx;
418 
419 /* the next printk record to write to the console */
420 static u64 console_seq;
421 static u32 console_idx;
422 
423 /* the next printk record to read after the last 'clear' command */
424 static u64 clear_seq;
425 static u32 clear_idx;
426 
427 #define PREFIX_MAX		32
428 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
429 
430 #define LOG_LEVEL(v)		((v) & 0x07)
431 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
432 
433 /* record buffer */
434 #define LOG_ALIGN __alignof__(struct printk_log)
435 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
436 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
437 static char *log_buf = __log_buf;
438 static u32 log_buf_len = __LOG_BUF_LEN;
439 
440 /* Return log buffer address */
441 char *log_buf_addr_get(void)
442 {
443 	return log_buf;
444 }
445 
446 /* Return log buffer size */
447 u32 log_buf_len_get(void)
448 {
449 	return log_buf_len;
450 }
451 
452 /* human readable text of the record */
453 static char *log_text(const struct printk_log *msg)
454 {
455 	return (char *)msg + sizeof(struct printk_log);
456 }
457 
458 /* optional key/value pair dictionary attached to the record */
459 static char *log_dict(const struct printk_log *msg)
460 {
461 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
462 }
463 
464 /* get record by index; idx must point to valid msg */
465 static struct printk_log *log_from_idx(u32 idx)
466 {
467 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
468 
469 	/*
470 	 * A length == 0 record is the end of buffer marker. Wrap around and
471 	 * read the message at the start of the buffer.
472 	 */
473 	if (!msg->len)
474 		return (struct printk_log *)log_buf;
475 	return msg;
476 }
477 
478 /* get next record; idx must point to valid msg */
479 static u32 log_next(u32 idx)
480 {
481 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
482 
483 	/* length == 0 indicates the end of the buffer; wrap */
484 	/*
485 	 * A length == 0 record is the end of buffer marker. Wrap around and
486 	 * read the message at the start of the buffer as *this* one, and
487 	 * return the one after that.
488 	 */
489 	if (!msg->len) {
490 		msg = (struct printk_log *)log_buf;
491 		return msg->len;
492 	}
493 	return idx + msg->len;
494 }
495 
496 /*
497  * Check whether there is enough free space for the given message.
498  *
499  * The same values of first_idx and next_idx mean that the buffer
500  * is either empty or full.
501  *
502  * If the buffer is empty, we must respect the position of the indexes.
503  * They cannot be reset to the beginning of the buffer.
504  */
505 static int logbuf_has_space(u32 msg_size, bool empty)
506 {
507 	u32 free;
508 
509 	if (log_next_idx > log_first_idx || empty)
510 		free = max(log_buf_len - log_next_idx, log_first_idx);
511 	else
512 		free = log_first_idx - log_next_idx;
513 
514 	/*
515 	 * We need space also for an empty header that signalizes wrapping
516 	 * of the buffer.
517 	 */
518 	return free >= msg_size + sizeof(struct printk_log);
519 }
520 
521 static int log_make_free_space(u32 msg_size)
522 {
523 	while (log_first_seq < log_next_seq &&
524 	       !logbuf_has_space(msg_size, false)) {
525 		/* drop old messages until we have enough contiguous space */
526 		log_first_idx = log_next(log_first_idx);
527 		log_first_seq++;
528 	}
529 
530 	if (clear_seq < log_first_seq) {
531 		clear_seq = log_first_seq;
532 		clear_idx = log_first_idx;
533 	}
534 
535 	/* sequence numbers are equal, so the log buffer is empty */
536 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
537 		return 0;
538 
539 	return -ENOMEM;
540 }
541 
542 /* compute the message size including the padding bytes */
543 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
544 {
545 	u32 size;
546 
547 	size = sizeof(struct printk_log) + text_len + dict_len;
548 	*pad_len = (-size) & (LOG_ALIGN - 1);
549 	size += *pad_len;
550 
551 	return size;
552 }
553 
554 /*
555  * Define how much of the log buffer we could take at maximum. The value
556  * must be greater than two. Note that only half of the buffer is available
557  * when the index points to the middle.
558  */
559 #define MAX_LOG_TAKE_PART 4
560 static const char trunc_msg[] = "<truncated>";
561 
562 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
563 			u16 *dict_len, u32 *pad_len)
564 {
565 	/*
566 	 * The message should not take the whole buffer. Otherwise, it might
567 	 * get removed too soon.
568 	 */
569 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
570 	if (*text_len > max_text_len)
571 		*text_len = max_text_len;
572 	/* enable the warning message */
573 	*trunc_msg_len = strlen(trunc_msg);
574 	/* disable the "dict" completely */
575 	*dict_len = 0;
576 	/* compute the size again, count also the warning message */
577 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
578 }
579 
580 /* insert record into the buffer, discard old ones, update heads */
581 static int log_store(int facility, int level,
582 		     enum log_flags flags, u64 ts_nsec,
583 		     const char *dict, u16 dict_len,
584 		     const char *text, u16 text_len)
585 {
586 	struct printk_log *msg;
587 	u32 size, pad_len;
588 	u16 trunc_msg_len = 0;
589 
590 	/* number of '\0' padding bytes to next message */
591 	size = msg_used_size(text_len, dict_len, &pad_len);
592 
593 	if (log_make_free_space(size)) {
594 		/* truncate the message if it is too long for empty buffer */
595 		size = truncate_msg(&text_len, &trunc_msg_len,
596 				    &dict_len, &pad_len);
597 		/* survive when the log buffer is too small for trunc_msg */
598 		if (log_make_free_space(size))
599 			return 0;
600 	}
601 
602 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
603 		/*
604 		 * This message + an additional empty header does not fit
605 		 * at the end of the buffer. Add an empty header with len == 0
606 		 * to signify a wrap around.
607 		 */
608 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
609 		log_next_idx = 0;
610 	}
611 
612 	/* fill message */
613 	msg = (struct printk_log *)(log_buf + log_next_idx);
614 	memcpy(log_text(msg), text, text_len);
615 	msg->text_len = text_len;
616 	if (trunc_msg_len) {
617 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
618 		msg->text_len += trunc_msg_len;
619 	}
620 	memcpy(log_dict(msg), dict, dict_len);
621 	msg->dict_len = dict_len;
622 	msg->facility = facility;
623 	msg->level = level & 7;
624 	msg->flags = flags & 0x1f;
625 	if (ts_nsec > 0)
626 		msg->ts_nsec = ts_nsec;
627 	else
628 		msg->ts_nsec = local_clock();
629 	memset(log_dict(msg) + dict_len, 0, pad_len);
630 	msg->len = size;
631 
632 	/* insert message */
633 	log_next_idx += msg->len;
634 	log_next_seq++;
635 
636 	return msg->text_len;
637 }
638 
639 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
640 
641 static int syslog_action_restricted(int type)
642 {
643 	if (dmesg_restrict)
644 		return 1;
645 	/*
646 	 * Unless restricted, we allow "read all" and "get buffer size"
647 	 * for everybody.
648 	 */
649 	return type != SYSLOG_ACTION_READ_ALL &&
650 	       type != SYSLOG_ACTION_SIZE_BUFFER;
651 }
652 
653 int check_syslog_permissions(int type, int source)
654 {
655 	/*
656 	 * If this is from /proc/kmsg and we've already opened it, then we've
657 	 * already done the capabilities checks at open time.
658 	 */
659 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
660 		goto ok;
661 
662 	if (syslog_action_restricted(type)) {
663 		if (capable(CAP_SYSLOG))
664 			goto ok;
665 		/*
666 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
667 		 * a warning.
668 		 */
669 		if (capable(CAP_SYS_ADMIN)) {
670 			pr_warn_once("%s (%d): Attempt to access syslog with "
671 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
672 				     "(deprecated).\n",
673 				 current->comm, task_pid_nr(current));
674 			goto ok;
675 		}
676 		return -EPERM;
677 	}
678 ok:
679 	return security_syslog(type);
680 }
681 EXPORT_SYMBOL_GPL(check_syslog_permissions);
682 
683 static void append_char(char **pp, char *e, char c)
684 {
685 	if (*pp < e)
686 		*(*pp)++ = c;
687 }
688 
689 static ssize_t msg_print_ext_header(char *buf, size_t size,
690 				    struct printk_log *msg, u64 seq)
691 {
692 	u64 ts_usec = msg->ts_nsec;
693 
694 	do_div(ts_usec, 1000);
695 
696 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
697 		       (msg->facility << 3) | msg->level, seq, ts_usec,
698 		       msg->flags & LOG_CONT ? 'c' : '-');
699 }
700 
701 static ssize_t msg_print_ext_body(char *buf, size_t size,
702 				  char *dict, size_t dict_len,
703 				  char *text, size_t text_len)
704 {
705 	char *p = buf, *e = buf + size;
706 	size_t i;
707 
708 	/* escape non-printable characters */
709 	for (i = 0; i < text_len; i++) {
710 		unsigned char c = text[i];
711 
712 		if (c < ' ' || c >= 127 || c == '\\')
713 			p += scnprintf(p, e - p, "\\x%02x", c);
714 		else
715 			append_char(&p, e, c);
716 	}
717 	append_char(&p, e, '\n');
718 
719 	if (dict_len) {
720 		bool line = true;
721 
722 		for (i = 0; i < dict_len; i++) {
723 			unsigned char c = dict[i];
724 
725 			if (line) {
726 				append_char(&p, e, ' ');
727 				line = false;
728 			}
729 
730 			if (c == '\0') {
731 				append_char(&p, e, '\n');
732 				line = true;
733 				continue;
734 			}
735 
736 			if (c < ' ' || c >= 127 || c == '\\') {
737 				p += scnprintf(p, e - p, "\\x%02x", c);
738 				continue;
739 			}
740 
741 			append_char(&p, e, c);
742 		}
743 		append_char(&p, e, '\n');
744 	}
745 
746 	return p - buf;
747 }
748 
749 /* /dev/kmsg - userspace message inject/listen interface */
750 struct devkmsg_user {
751 	u64 seq;
752 	u32 idx;
753 	struct ratelimit_state rs;
754 	struct mutex lock;
755 	char buf[CONSOLE_EXT_LOG_MAX];
756 };
757 
758 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
759 {
760 	char *buf, *line;
761 	int level = default_message_loglevel;
762 	int facility = 1;	/* LOG_USER */
763 	struct file *file = iocb->ki_filp;
764 	struct devkmsg_user *user = file->private_data;
765 	size_t len = iov_iter_count(from);
766 	ssize_t ret = len;
767 
768 	if (!user || len > LOG_LINE_MAX)
769 		return -EINVAL;
770 
771 	/* Ignore when user logging is disabled. */
772 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
773 		return len;
774 
775 	/* Ratelimit when not explicitly enabled. */
776 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
777 		if (!___ratelimit(&user->rs, current->comm))
778 			return ret;
779 	}
780 
781 	buf = kmalloc(len+1, GFP_KERNEL);
782 	if (buf == NULL)
783 		return -ENOMEM;
784 
785 	buf[len] = '\0';
786 	if (!copy_from_iter_full(buf, len, from)) {
787 		kfree(buf);
788 		return -EFAULT;
789 	}
790 
791 	/*
792 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
793 	 * the decimal value represents 32bit, the lower 3 bit are the log
794 	 * level, the rest are the log facility.
795 	 *
796 	 * If no prefix or no userspace facility is specified, we
797 	 * enforce LOG_USER, to be able to reliably distinguish
798 	 * kernel-generated messages from userspace-injected ones.
799 	 */
800 	line = buf;
801 	if (line[0] == '<') {
802 		char *endp = NULL;
803 		unsigned int u;
804 
805 		u = simple_strtoul(line + 1, &endp, 10);
806 		if (endp && endp[0] == '>') {
807 			level = LOG_LEVEL(u);
808 			if (LOG_FACILITY(u) != 0)
809 				facility = LOG_FACILITY(u);
810 			endp++;
811 			len -= endp - line;
812 			line = endp;
813 		}
814 	}
815 
816 	printk_emit(facility, level, NULL, 0, "%s", line);
817 	kfree(buf);
818 	return ret;
819 }
820 
821 static ssize_t devkmsg_read(struct file *file, char __user *buf,
822 			    size_t count, loff_t *ppos)
823 {
824 	struct devkmsg_user *user = file->private_data;
825 	struct printk_log *msg;
826 	size_t len;
827 	ssize_t ret;
828 
829 	if (!user)
830 		return -EBADF;
831 
832 	ret = mutex_lock_interruptible(&user->lock);
833 	if (ret)
834 		return ret;
835 
836 	logbuf_lock_irq();
837 	while (user->seq == log_next_seq) {
838 		if (file->f_flags & O_NONBLOCK) {
839 			ret = -EAGAIN;
840 			logbuf_unlock_irq();
841 			goto out;
842 		}
843 
844 		logbuf_unlock_irq();
845 		ret = wait_event_interruptible(log_wait,
846 					       user->seq != log_next_seq);
847 		if (ret)
848 			goto out;
849 		logbuf_lock_irq();
850 	}
851 
852 	if (user->seq < log_first_seq) {
853 		/* our last seen message is gone, return error and reset */
854 		user->idx = log_first_idx;
855 		user->seq = log_first_seq;
856 		ret = -EPIPE;
857 		logbuf_unlock_irq();
858 		goto out;
859 	}
860 
861 	msg = log_from_idx(user->idx);
862 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
863 				   msg, user->seq);
864 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
865 				  log_dict(msg), msg->dict_len,
866 				  log_text(msg), msg->text_len);
867 
868 	user->idx = log_next(user->idx);
869 	user->seq++;
870 	logbuf_unlock_irq();
871 
872 	if (len > count) {
873 		ret = -EINVAL;
874 		goto out;
875 	}
876 
877 	if (copy_to_user(buf, user->buf, len)) {
878 		ret = -EFAULT;
879 		goto out;
880 	}
881 	ret = len;
882 out:
883 	mutex_unlock(&user->lock);
884 	return ret;
885 }
886 
887 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
888 {
889 	struct devkmsg_user *user = file->private_data;
890 	loff_t ret = 0;
891 
892 	if (!user)
893 		return -EBADF;
894 	if (offset)
895 		return -ESPIPE;
896 
897 	logbuf_lock_irq();
898 	switch (whence) {
899 	case SEEK_SET:
900 		/* the first record */
901 		user->idx = log_first_idx;
902 		user->seq = log_first_seq;
903 		break;
904 	case SEEK_DATA:
905 		/*
906 		 * The first record after the last SYSLOG_ACTION_CLEAR,
907 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
908 		 * changes no global state, and does not clear anything.
909 		 */
910 		user->idx = clear_idx;
911 		user->seq = clear_seq;
912 		break;
913 	case SEEK_END:
914 		/* after the last record */
915 		user->idx = log_next_idx;
916 		user->seq = log_next_seq;
917 		break;
918 	default:
919 		ret = -EINVAL;
920 	}
921 	logbuf_unlock_irq();
922 	return ret;
923 }
924 
925 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
926 {
927 	struct devkmsg_user *user = file->private_data;
928 	int ret = 0;
929 
930 	if (!user)
931 		return POLLERR|POLLNVAL;
932 
933 	poll_wait(file, &log_wait, wait);
934 
935 	logbuf_lock_irq();
936 	if (user->seq < log_next_seq) {
937 		/* return error when data has vanished underneath us */
938 		if (user->seq < log_first_seq)
939 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
940 		else
941 			ret = POLLIN|POLLRDNORM;
942 	}
943 	logbuf_unlock_irq();
944 
945 	return ret;
946 }
947 
948 static int devkmsg_open(struct inode *inode, struct file *file)
949 {
950 	struct devkmsg_user *user;
951 	int err;
952 
953 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
954 		return -EPERM;
955 
956 	/* write-only does not need any file context */
957 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
958 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
959 					       SYSLOG_FROM_READER);
960 		if (err)
961 			return err;
962 	}
963 
964 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
965 	if (!user)
966 		return -ENOMEM;
967 
968 	ratelimit_default_init(&user->rs);
969 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
970 
971 	mutex_init(&user->lock);
972 
973 	logbuf_lock_irq();
974 	user->idx = log_first_idx;
975 	user->seq = log_first_seq;
976 	logbuf_unlock_irq();
977 
978 	file->private_data = user;
979 	return 0;
980 }
981 
982 static int devkmsg_release(struct inode *inode, struct file *file)
983 {
984 	struct devkmsg_user *user = file->private_data;
985 
986 	if (!user)
987 		return 0;
988 
989 	ratelimit_state_exit(&user->rs);
990 
991 	mutex_destroy(&user->lock);
992 	kfree(user);
993 	return 0;
994 }
995 
996 const struct file_operations kmsg_fops = {
997 	.open = devkmsg_open,
998 	.read = devkmsg_read,
999 	.write_iter = devkmsg_write,
1000 	.llseek = devkmsg_llseek,
1001 	.poll = devkmsg_poll,
1002 	.release = devkmsg_release,
1003 };
1004 
1005 #ifdef CONFIG_KEXEC_CORE
1006 /*
1007  * This appends the listed symbols to /proc/vmcore
1008  *
1009  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1010  * obtain access to symbols that are otherwise very difficult to locate.  These
1011  * symbols are specifically used so that utilities can access and extract the
1012  * dmesg log from a vmcore file after a crash.
1013  */
1014 void log_buf_kexec_setup(void)
1015 {
1016 	VMCOREINFO_SYMBOL(log_buf);
1017 	VMCOREINFO_SYMBOL(log_buf_len);
1018 	VMCOREINFO_SYMBOL(log_first_idx);
1019 	VMCOREINFO_SYMBOL(clear_idx);
1020 	VMCOREINFO_SYMBOL(log_next_idx);
1021 	/*
1022 	 * Export struct printk_log size and field offsets. User space tools can
1023 	 * parse it and detect any changes to structure down the line.
1024 	 */
1025 	VMCOREINFO_STRUCT_SIZE(printk_log);
1026 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1027 	VMCOREINFO_OFFSET(printk_log, len);
1028 	VMCOREINFO_OFFSET(printk_log, text_len);
1029 	VMCOREINFO_OFFSET(printk_log, dict_len);
1030 }
1031 #endif
1032 
1033 /* requested log_buf_len from kernel cmdline */
1034 static unsigned long __initdata new_log_buf_len;
1035 
1036 /* we practice scaling the ring buffer by powers of 2 */
1037 static void __init log_buf_len_update(unsigned size)
1038 {
1039 	if (size)
1040 		size = roundup_pow_of_two(size);
1041 	if (size > log_buf_len)
1042 		new_log_buf_len = size;
1043 }
1044 
1045 /* save requested log_buf_len since it's too early to process it */
1046 static int __init log_buf_len_setup(char *str)
1047 {
1048 	unsigned size = memparse(str, &str);
1049 
1050 	log_buf_len_update(size);
1051 
1052 	return 0;
1053 }
1054 early_param("log_buf_len", log_buf_len_setup);
1055 
1056 #ifdef CONFIG_SMP
1057 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1058 
1059 static void __init log_buf_add_cpu(void)
1060 {
1061 	unsigned int cpu_extra;
1062 
1063 	/*
1064 	 * archs should set up cpu_possible_bits properly with
1065 	 * set_cpu_possible() after setup_arch() but just in
1066 	 * case lets ensure this is valid.
1067 	 */
1068 	if (num_possible_cpus() == 1)
1069 		return;
1070 
1071 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1072 
1073 	/* by default this will only continue through for large > 64 CPUs */
1074 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1075 		return;
1076 
1077 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1078 		__LOG_CPU_MAX_BUF_LEN);
1079 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1080 		cpu_extra);
1081 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1082 
1083 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1084 }
1085 #else /* !CONFIG_SMP */
1086 static inline void log_buf_add_cpu(void) {}
1087 #endif /* CONFIG_SMP */
1088 
1089 void __init setup_log_buf(int early)
1090 {
1091 	unsigned long flags;
1092 	char *new_log_buf;
1093 	int free;
1094 
1095 	if (log_buf != __log_buf)
1096 		return;
1097 
1098 	if (!early && !new_log_buf_len)
1099 		log_buf_add_cpu();
1100 
1101 	if (!new_log_buf_len)
1102 		return;
1103 
1104 	if (early) {
1105 		new_log_buf =
1106 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1107 	} else {
1108 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1109 							  LOG_ALIGN);
1110 	}
1111 
1112 	if (unlikely(!new_log_buf)) {
1113 		pr_err("log_buf_len: %ld bytes not available\n",
1114 			new_log_buf_len);
1115 		return;
1116 	}
1117 
1118 	logbuf_lock_irqsave(flags);
1119 	log_buf_len = new_log_buf_len;
1120 	log_buf = new_log_buf;
1121 	new_log_buf_len = 0;
1122 	free = __LOG_BUF_LEN - log_next_idx;
1123 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1124 	logbuf_unlock_irqrestore(flags);
1125 
1126 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1127 	pr_info("early log buf free: %d(%d%%)\n",
1128 		free, (free * 100) / __LOG_BUF_LEN);
1129 }
1130 
1131 static bool __read_mostly ignore_loglevel;
1132 
1133 static int __init ignore_loglevel_setup(char *str)
1134 {
1135 	ignore_loglevel = true;
1136 	pr_info("debug: ignoring loglevel setting.\n");
1137 
1138 	return 0;
1139 }
1140 
1141 early_param("ignore_loglevel", ignore_loglevel_setup);
1142 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1143 MODULE_PARM_DESC(ignore_loglevel,
1144 		 "ignore loglevel setting (prints all kernel messages to the console)");
1145 
1146 static bool suppress_message_printing(int level)
1147 {
1148 	return (level >= console_loglevel && !ignore_loglevel);
1149 }
1150 
1151 #ifdef CONFIG_BOOT_PRINTK_DELAY
1152 
1153 static int boot_delay; /* msecs delay after each printk during bootup */
1154 static unsigned long long loops_per_msec;	/* based on boot_delay */
1155 
1156 static int __init boot_delay_setup(char *str)
1157 {
1158 	unsigned long lpj;
1159 
1160 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1161 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1162 
1163 	get_option(&str, &boot_delay);
1164 	if (boot_delay > 10 * 1000)
1165 		boot_delay = 0;
1166 
1167 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1168 		"HZ: %d, loops_per_msec: %llu\n",
1169 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1170 	return 0;
1171 }
1172 early_param("boot_delay", boot_delay_setup);
1173 
1174 static void boot_delay_msec(int level)
1175 {
1176 	unsigned long long k;
1177 	unsigned long timeout;
1178 
1179 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1180 		|| suppress_message_printing(level)) {
1181 		return;
1182 	}
1183 
1184 	k = (unsigned long long)loops_per_msec * boot_delay;
1185 
1186 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1187 	while (k) {
1188 		k--;
1189 		cpu_relax();
1190 		/*
1191 		 * use (volatile) jiffies to prevent
1192 		 * compiler reduction; loop termination via jiffies
1193 		 * is secondary and may or may not happen.
1194 		 */
1195 		if (time_after(jiffies, timeout))
1196 			break;
1197 		touch_nmi_watchdog();
1198 	}
1199 }
1200 #else
1201 static inline void boot_delay_msec(int level)
1202 {
1203 }
1204 #endif
1205 
1206 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1207 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1208 
1209 static size_t print_time(u64 ts, char *buf)
1210 {
1211 	unsigned long rem_nsec;
1212 
1213 	if (!printk_time)
1214 		return 0;
1215 
1216 	rem_nsec = do_div(ts, 1000000000);
1217 
1218 	if (!buf)
1219 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1220 
1221 	return sprintf(buf, "[%5lu.%06lu] ",
1222 		       (unsigned long)ts, rem_nsec / 1000);
1223 }
1224 
1225 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1226 {
1227 	size_t len = 0;
1228 	unsigned int prefix = (msg->facility << 3) | msg->level;
1229 
1230 	if (syslog) {
1231 		if (buf) {
1232 			len += sprintf(buf, "<%u>", prefix);
1233 		} else {
1234 			len += 3;
1235 			if (prefix > 999)
1236 				len += 3;
1237 			else if (prefix > 99)
1238 				len += 2;
1239 			else if (prefix > 9)
1240 				len++;
1241 		}
1242 	}
1243 
1244 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1245 	return len;
1246 }
1247 
1248 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1249 {
1250 	const char *text = log_text(msg);
1251 	size_t text_size = msg->text_len;
1252 	size_t len = 0;
1253 
1254 	do {
1255 		const char *next = memchr(text, '\n', text_size);
1256 		size_t text_len;
1257 
1258 		if (next) {
1259 			text_len = next - text;
1260 			next++;
1261 			text_size -= next - text;
1262 		} else {
1263 			text_len = text_size;
1264 		}
1265 
1266 		if (buf) {
1267 			if (print_prefix(msg, syslog, NULL) +
1268 			    text_len + 1 >= size - len)
1269 				break;
1270 
1271 			len += print_prefix(msg, syslog, buf + len);
1272 			memcpy(buf + len, text, text_len);
1273 			len += text_len;
1274 			buf[len++] = '\n';
1275 		} else {
1276 			/* SYSLOG_ACTION_* buffer size only calculation */
1277 			len += print_prefix(msg, syslog, NULL);
1278 			len += text_len;
1279 			len++;
1280 		}
1281 
1282 		text = next;
1283 	} while (text);
1284 
1285 	return len;
1286 }
1287 
1288 static int syslog_print(char __user *buf, int size)
1289 {
1290 	char *text;
1291 	struct printk_log *msg;
1292 	int len = 0;
1293 
1294 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1295 	if (!text)
1296 		return -ENOMEM;
1297 
1298 	while (size > 0) {
1299 		size_t n;
1300 		size_t skip;
1301 
1302 		logbuf_lock_irq();
1303 		if (syslog_seq < log_first_seq) {
1304 			/* messages are gone, move to first one */
1305 			syslog_seq = log_first_seq;
1306 			syslog_idx = log_first_idx;
1307 			syslog_partial = 0;
1308 		}
1309 		if (syslog_seq == log_next_seq) {
1310 			logbuf_unlock_irq();
1311 			break;
1312 		}
1313 
1314 		skip = syslog_partial;
1315 		msg = log_from_idx(syslog_idx);
1316 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1317 		if (n - syslog_partial <= size) {
1318 			/* message fits into buffer, move forward */
1319 			syslog_idx = log_next(syslog_idx);
1320 			syslog_seq++;
1321 			n -= syslog_partial;
1322 			syslog_partial = 0;
1323 		} else if (!len){
1324 			/* partial read(), remember position */
1325 			n = size;
1326 			syslog_partial += n;
1327 		} else
1328 			n = 0;
1329 		logbuf_unlock_irq();
1330 
1331 		if (!n)
1332 			break;
1333 
1334 		if (copy_to_user(buf, text + skip, n)) {
1335 			if (!len)
1336 				len = -EFAULT;
1337 			break;
1338 		}
1339 
1340 		len += n;
1341 		size -= n;
1342 		buf += n;
1343 	}
1344 
1345 	kfree(text);
1346 	return len;
1347 }
1348 
1349 static int syslog_print_all(char __user *buf, int size, bool clear)
1350 {
1351 	char *text;
1352 	int len = 0;
1353 
1354 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1355 	if (!text)
1356 		return -ENOMEM;
1357 
1358 	logbuf_lock_irq();
1359 	if (buf) {
1360 		u64 next_seq;
1361 		u64 seq;
1362 		u32 idx;
1363 
1364 		/*
1365 		 * Find first record that fits, including all following records,
1366 		 * into the user-provided buffer for this dump.
1367 		 */
1368 		seq = clear_seq;
1369 		idx = clear_idx;
1370 		while (seq < log_next_seq) {
1371 			struct printk_log *msg = log_from_idx(idx);
1372 
1373 			len += msg_print_text(msg, true, NULL, 0);
1374 			idx = log_next(idx);
1375 			seq++;
1376 		}
1377 
1378 		/* move first record forward until length fits into the buffer */
1379 		seq = clear_seq;
1380 		idx = clear_idx;
1381 		while (len > size && seq < log_next_seq) {
1382 			struct printk_log *msg = log_from_idx(idx);
1383 
1384 			len -= msg_print_text(msg, true, NULL, 0);
1385 			idx = log_next(idx);
1386 			seq++;
1387 		}
1388 
1389 		/* last message fitting into this dump */
1390 		next_seq = log_next_seq;
1391 
1392 		len = 0;
1393 		while (len >= 0 && seq < next_seq) {
1394 			struct printk_log *msg = log_from_idx(idx);
1395 			int textlen;
1396 
1397 			textlen = msg_print_text(msg, true, text,
1398 						 LOG_LINE_MAX + PREFIX_MAX);
1399 			if (textlen < 0) {
1400 				len = textlen;
1401 				break;
1402 			}
1403 			idx = log_next(idx);
1404 			seq++;
1405 
1406 			logbuf_unlock_irq();
1407 			if (copy_to_user(buf + len, text, textlen))
1408 				len = -EFAULT;
1409 			else
1410 				len += textlen;
1411 			logbuf_lock_irq();
1412 
1413 			if (seq < log_first_seq) {
1414 				/* messages are gone, move to next one */
1415 				seq = log_first_seq;
1416 				idx = log_first_idx;
1417 			}
1418 		}
1419 	}
1420 
1421 	if (clear) {
1422 		clear_seq = log_next_seq;
1423 		clear_idx = log_next_idx;
1424 	}
1425 	logbuf_unlock_irq();
1426 
1427 	kfree(text);
1428 	return len;
1429 }
1430 
1431 int do_syslog(int type, char __user *buf, int len, int source)
1432 {
1433 	bool clear = false;
1434 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1435 	int error;
1436 
1437 	error = check_syslog_permissions(type, source);
1438 	if (error)
1439 		goto out;
1440 
1441 	switch (type) {
1442 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1443 		break;
1444 	case SYSLOG_ACTION_OPEN:	/* Open log */
1445 		break;
1446 	case SYSLOG_ACTION_READ:	/* Read from log */
1447 		error = -EINVAL;
1448 		if (!buf || len < 0)
1449 			goto out;
1450 		error = 0;
1451 		if (!len)
1452 			goto out;
1453 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1454 			error = -EFAULT;
1455 			goto out;
1456 		}
1457 		error = wait_event_interruptible(log_wait,
1458 						 syslog_seq != log_next_seq);
1459 		if (error)
1460 			goto out;
1461 		error = syslog_print(buf, len);
1462 		break;
1463 	/* Read/clear last kernel messages */
1464 	case SYSLOG_ACTION_READ_CLEAR:
1465 		clear = true;
1466 		/* FALL THRU */
1467 	/* Read last kernel messages */
1468 	case SYSLOG_ACTION_READ_ALL:
1469 		error = -EINVAL;
1470 		if (!buf || len < 0)
1471 			goto out;
1472 		error = 0;
1473 		if (!len)
1474 			goto out;
1475 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1476 			error = -EFAULT;
1477 			goto out;
1478 		}
1479 		error = syslog_print_all(buf, len, clear);
1480 		break;
1481 	/* Clear ring buffer */
1482 	case SYSLOG_ACTION_CLEAR:
1483 		syslog_print_all(NULL, 0, true);
1484 		break;
1485 	/* Disable logging to console */
1486 	case SYSLOG_ACTION_CONSOLE_OFF:
1487 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1488 			saved_console_loglevel = console_loglevel;
1489 		console_loglevel = minimum_console_loglevel;
1490 		break;
1491 	/* Enable logging to console */
1492 	case SYSLOG_ACTION_CONSOLE_ON:
1493 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1494 			console_loglevel = saved_console_loglevel;
1495 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 		}
1497 		break;
1498 	/* Set level of messages printed to console */
1499 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1500 		error = -EINVAL;
1501 		if (len < 1 || len > 8)
1502 			goto out;
1503 		if (len < minimum_console_loglevel)
1504 			len = minimum_console_loglevel;
1505 		console_loglevel = len;
1506 		/* Implicitly re-enable logging to console */
1507 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 		error = 0;
1509 		break;
1510 	/* Number of chars in the log buffer */
1511 	case SYSLOG_ACTION_SIZE_UNREAD:
1512 		logbuf_lock_irq();
1513 		if (syslog_seq < log_first_seq) {
1514 			/* messages are gone, move to first one */
1515 			syslog_seq = log_first_seq;
1516 			syslog_idx = log_first_idx;
1517 			syslog_partial = 0;
1518 		}
1519 		if (source == SYSLOG_FROM_PROC) {
1520 			/*
1521 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1522 			 * for pending data, not the size; return the count of
1523 			 * records, not the length.
1524 			 */
1525 			error = log_next_seq - syslog_seq;
1526 		} else {
1527 			u64 seq = syslog_seq;
1528 			u32 idx = syslog_idx;
1529 
1530 			error = 0;
1531 			while (seq < log_next_seq) {
1532 				struct printk_log *msg = log_from_idx(idx);
1533 
1534 				error += msg_print_text(msg, true, NULL, 0);
1535 				idx = log_next(idx);
1536 				seq++;
1537 			}
1538 			error -= syslog_partial;
1539 		}
1540 		logbuf_unlock_irq();
1541 		break;
1542 	/* Size of the log buffer */
1543 	case SYSLOG_ACTION_SIZE_BUFFER:
1544 		error = log_buf_len;
1545 		break;
1546 	default:
1547 		error = -EINVAL;
1548 		break;
1549 	}
1550 out:
1551 	return error;
1552 }
1553 
1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1555 {
1556 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1557 }
1558 
1559 /*
1560  * Call the console drivers, asking them to write out
1561  * log_buf[start] to log_buf[end - 1].
1562  * The console_lock must be held.
1563  */
1564 static void call_console_drivers(const char *ext_text, size_t ext_len,
1565 				 const char *text, size_t len)
1566 {
1567 	struct console *con;
1568 
1569 	trace_console_rcuidle(text, len);
1570 
1571 	if (!console_drivers)
1572 		return;
1573 
1574 	for_each_console(con) {
1575 		if (exclusive_console && con != exclusive_console)
1576 			continue;
1577 		if (!(con->flags & CON_ENABLED))
1578 			continue;
1579 		if (!con->write)
1580 			continue;
1581 		if (!cpu_online(smp_processor_id()) &&
1582 		    !(con->flags & CON_ANYTIME))
1583 			continue;
1584 		if (con->flags & CON_EXTENDED)
1585 			con->write(con, ext_text, ext_len);
1586 		else
1587 			con->write(con, text, len);
1588 	}
1589 }
1590 
1591 int printk_delay_msec __read_mostly;
1592 
1593 static inline void printk_delay(void)
1594 {
1595 	if (unlikely(printk_delay_msec)) {
1596 		int m = printk_delay_msec;
1597 
1598 		while (m--) {
1599 			mdelay(1);
1600 			touch_nmi_watchdog();
1601 		}
1602 	}
1603 }
1604 
1605 /*
1606  * Continuation lines are buffered, and not committed to the record buffer
1607  * until the line is complete, or a race forces it. The line fragments
1608  * though, are printed immediately to the consoles to ensure everything has
1609  * reached the console in case of a kernel crash.
1610  */
1611 static struct cont {
1612 	char buf[LOG_LINE_MAX];
1613 	size_t len;			/* length == 0 means unused buffer */
1614 	struct task_struct *owner;	/* task of first print*/
1615 	u64 ts_nsec;			/* time of first print */
1616 	u8 level;			/* log level of first message */
1617 	u8 facility;			/* log facility of first message */
1618 	enum log_flags flags;		/* prefix, newline flags */
1619 } cont;
1620 
1621 static void cont_flush(void)
1622 {
1623 	if (cont.len == 0)
1624 		return;
1625 
1626 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1627 		  NULL, 0, cont.buf, cont.len);
1628 	cont.len = 0;
1629 }
1630 
1631 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1632 {
1633 	/*
1634 	 * If ext consoles are present, flush and skip in-kernel
1635 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1636 	 * the line gets too long, split it up in separate records.
1637 	 */
1638 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1639 		cont_flush();
1640 		return false;
1641 	}
1642 
1643 	if (!cont.len) {
1644 		cont.facility = facility;
1645 		cont.level = level;
1646 		cont.owner = current;
1647 		cont.ts_nsec = local_clock();
1648 		cont.flags = flags;
1649 	}
1650 
1651 	memcpy(cont.buf + cont.len, text, len);
1652 	cont.len += len;
1653 
1654 	// The original flags come from the first line,
1655 	// but later continuations can add a newline.
1656 	if (flags & LOG_NEWLINE) {
1657 		cont.flags |= LOG_NEWLINE;
1658 		cont_flush();
1659 	}
1660 
1661 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1662 		cont_flush();
1663 
1664 	return true;
1665 }
1666 
1667 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1668 {
1669 	/*
1670 	 * If an earlier line was buffered, and we're a continuation
1671 	 * write from the same process, try to add it to the buffer.
1672 	 */
1673 	if (cont.len) {
1674 		if (cont.owner == current && (lflags & LOG_CONT)) {
1675 			if (cont_add(facility, level, lflags, text, text_len))
1676 				return text_len;
1677 		}
1678 		/* Otherwise, make sure it's flushed */
1679 		cont_flush();
1680 	}
1681 
1682 	/* Skip empty continuation lines that couldn't be added - they just flush */
1683 	if (!text_len && (lflags & LOG_CONT))
1684 		return 0;
1685 
1686 	/* If it doesn't end in a newline, try to buffer the current line */
1687 	if (!(lflags & LOG_NEWLINE)) {
1688 		if (cont_add(facility, level, lflags, text, text_len))
1689 			return text_len;
1690 	}
1691 
1692 	/* Store it in the record log */
1693 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1694 }
1695 
1696 asmlinkage int vprintk_emit(int facility, int level,
1697 			    const char *dict, size_t dictlen,
1698 			    const char *fmt, va_list args)
1699 {
1700 	static char textbuf[LOG_LINE_MAX];
1701 	char *text = textbuf;
1702 	size_t text_len = 0;
1703 	enum log_flags lflags = 0;
1704 	unsigned long flags;
1705 	int printed_len = 0;
1706 	bool in_sched = false;
1707 
1708 	if (level == LOGLEVEL_SCHED) {
1709 		level = LOGLEVEL_DEFAULT;
1710 		in_sched = true;
1711 	}
1712 
1713 	boot_delay_msec(level);
1714 	printk_delay();
1715 
1716 	/* This stops the holder of console_sem just where we want him */
1717 	logbuf_lock_irqsave(flags);
1718 	/*
1719 	 * The printf needs to come first; we need the syslog
1720 	 * prefix which might be passed-in as a parameter.
1721 	 */
1722 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1723 
1724 	/* mark and strip a trailing newline */
1725 	if (text_len && text[text_len-1] == '\n') {
1726 		text_len--;
1727 		lflags |= LOG_NEWLINE;
1728 	}
1729 
1730 	/* strip kernel syslog prefix and extract log level or control flags */
1731 	if (facility == 0) {
1732 		int kern_level;
1733 
1734 		while ((kern_level = printk_get_level(text)) != 0) {
1735 			switch (kern_level) {
1736 			case '0' ... '7':
1737 				if (level == LOGLEVEL_DEFAULT)
1738 					level = kern_level - '0';
1739 				/* fallthrough */
1740 			case 'd':	/* KERN_DEFAULT */
1741 				lflags |= LOG_PREFIX;
1742 				break;
1743 			case 'c':	/* KERN_CONT */
1744 				lflags |= LOG_CONT;
1745 			}
1746 
1747 			text_len -= 2;
1748 			text += 2;
1749 		}
1750 	}
1751 
1752 	if (level == LOGLEVEL_DEFAULT)
1753 		level = default_message_loglevel;
1754 
1755 	if (dict)
1756 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1757 
1758 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1759 
1760 	logbuf_unlock_irqrestore(flags);
1761 
1762 	/* If called from the scheduler, we can not call up(). */
1763 	if (!in_sched) {
1764 		/*
1765 		 * Try to acquire and then immediately release the console
1766 		 * semaphore.  The release will print out buffers and wake up
1767 		 * /dev/kmsg and syslog() users.
1768 		 */
1769 		if (console_trylock())
1770 			console_unlock();
1771 	}
1772 
1773 	return printed_len;
1774 }
1775 EXPORT_SYMBOL(vprintk_emit);
1776 
1777 asmlinkage int vprintk(const char *fmt, va_list args)
1778 {
1779 	return vprintk_func(fmt, args);
1780 }
1781 EXPORT_SYMBOL(vprintk);
1782 
1783 asmlinkage int printk_emit(int facility, int level,
1784 			   const char *dict, size_t dictlen,
1785 			   const char *fmt, ...)
1786 {
1787 	va_list args;
1788 	int r;
1789 
1790 	va_start(args, fmt);
1791 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1792 	va_end(args);
1793 
1794 	return r;
1795 }
1796 EXPORT_SYMBOL(printk_emit);
1797 
1798 int vprintk_default(const char *fmt, va_list args)
1799 {
1800 	int r;
1801 
1802 #ifdef CONFIG_KGDB_KDB
1803 	/* Allow to pass printk() to kdb but avoid a recursion. */
1804 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1805 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1806 		return r;
1807 	}
1808 #endif
1809 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1810 
1811 	return r;
1812 }
1813 EXPORT_SYMBOL_GPL(vprintk_default);
1814 
1815 /**
1816  * printk - print a kernel message
1817  * @fmt: format string
1818  *
1819  * This is printk(). It can be called from any context. We want it to work.
1820  *
1821  * We try to grab the console_lock. If we succeed, it's easy - we log the
1822  * output and call the console drivers.  If we fail to get the semaphore, we
1823  * place the output into the log buffer and return. The current holder of
1824  * the console_sem will notice the new output in console_unlock(); and will
1825  * send it to the consoles before releasing the lock.
1826  *
1827  * One effect of this deferred printing is that code which calls printk() and
1828  * then changes console_loglevel may break. This is because console_loglevel
1829  * is inspected when the actual printing occurs.
1830  *
1831  * See also:
1832  * printf(3)
1833  *
1834  * See the vsnprintf() documentation for format string extensions over C99.
1835  */
1836 asmlinkage __visible int printk(const char *fmt, ...)
1837 {
1838 	va_list args;
1839 	int r;
1840 
1841 	va_start(args, fmt);
1842 	r = vprintk_func(fmt, args);
1843 	va_end(args);
1844 
1845 	return r;
1846 }
1847 EXPORT_SYMBOL(printk);
1848 
1849 #else /* CONFIG_PRINTK */
1850 
1851 #define LOG_LINE_MAX		0
1852 #define PREFIX_MAX		0
1853 
1854 static u64 syslog_seq;
1855 static u32 syslog_idx;
1856 static u64 console_seq;
1857 static u32 console_idx;
1858 static u64 log_first_seq;
1859 static u32 log_first_idx;
1860 static u64 log_next_seq;
1861 static char *log_text(const struct printk_log *msg) { return NULL; }
1862 static char *log_dict(const struct printk_log *msg) { return NULL; }
1863 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1864 static u32 log_next(u32 idx) { return 0; }
1865 static ssize_t msg_print_ext_header(char *buf, size_t size,
1866 				    struct printk_log *msg,
1867 				    u64 seq) { return 0; }
1868 static ssize_t msg_print_ext_body(char *buf, size_t size,
1869 				  char *dict, size_t dict_len,
1870 				  char *text, size_t text_len) { return 0; }
1871 static void call_console_drivers(const char *ext_text, size_t ext_len,
1872 				 const char *text, size_t len) {}
1873 static size_t msg_print_text(const struct printk_log *msg,
1874 			     bool syslog, char *buf, size_t size) { return 0; }
1875 static bool suppress_message_printing(int level) { return false; }
1876 
1877 #endif /* CONFIG_PRINTK */
1878 
1879 #ifdef CONFIG_EARLY_PRINTK
1880 struct console *early_console;
1881 
1882 asmlinkage __visible void early_printk(const char *fmt, ...)
1883 {
1884 	va_list ap;
1885 	char buf[512];
1886 	int n;
1887 
1888 	if (!early_console)
1889 		return;
1890 
1891 	va_start(ap, fmt);
1892 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1893 	va_end(ap);
1894 
1895 	early_console->write(early_console, buf, n);
1896 }
1897 #endif
1898 
1899 static int __add_preferred_console(char *name, int idx, char *options,
1900 				   char *brl_options)
1901 {
1902 	struct console_cmdline *c;
1903 	int i;
1904 
1905 	/*
1906 	 *	See if this tty is not yet registered, and
1907 	 *	if we have a slot free.
1908 	 */
1909 	for (i = 0, c = console_cmdline;
1910 	     i < MAX_CMDLINECONSOLES && c->name[0];
1911 	     i++, c++) {
1912 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1913 			if (!brl_options)
1914 				selected_console = i;
1915 			return 0;
1916 		}
1917 	}
1918 	if (i == MAX_CMDLINECONSOLES)
1919 		return -E2BIG;
1920 	if (!brl_options)
1921 		selected_console = i;
1922 	strlcpy(c->name, name, sizeof(c->name));
1923 	c->options = options;
1924 	braille_set_options(c, brl_options);
1925 
1926 	c->index = idx;
1927 	return 0;
1928 }
1929 /*
1930  * Set up a console.  Called via do_early_param() in init/main.c
1931  * for each "console=" parameter in the boot command line.
1932  */
1933 static int __init console_setup(char *str)
1934 {
1935 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1936 	char *s, *options, *brl_options = NULL;
1937 	int idx;
1938 
1939 	if (_braille_console_setup(&str, &brl_options))
1940 		return 1;
1941 
1942 	/*
1943 	 * Decode str into name, index, options.
1944 	 */
1945 	if (str[0] >= '0' && str[0] <= '9') {
1946 		strcpy(buf, "ttyS");
1947 		strncpy(buf + 4, str, sizeof(buf) - 5);
1948 	} else {
1949 		strncpy(buf, str, sizeof(buf) - 1);
1950 	}
1951 	buf[sizeof(buf) - 1] = 0;
1952 	options = strchr(str, ',');
1953 	if (options)
1954 		*(options++) = 0;
1955 #ifdef __sparc__
1956 	if (!strcmp(str, "ttya"))
1957 		strcpy(buf, "ttyS0");
1958 	if (!strcmp(str, "ttyb"))
1959 		strcpy(buf, "ttyS1");
1960 #endif
1961 	for (s = buf; *s; s++)
1962 		if (isdigit(*s) || *s == ',')
1963 			break;
1964 	idx = simple_strtoul(s, NULL, 10);
1965 	*s = 0;
1966 
1967 	__add_preferred_console(buf, idx, options, brl_options);
1968 	console_set_on_cmdline = 1;
1969 	return 1;
1970 }
1971 __setup("console=", console_setup);
1972 
1973 /**
1974  * add_preferred_console - add a device to the list of preferred consoles.
1975  * @name: device name
1976  * @idx: device index
1977  * @options: options for this console
1978  *
1979  * The last preferred console added will be used for kernel messages
1980  * and stdin/out/err for init.  Normally this is used by console_setup
1981  * above to handle user-supplied console arguments; however it can also
1982  * be used by arch-specific code either to override the user or more
1983  * commonly to provide a default console (ie from PROM variables) when
1984  * the user has not supplied one.
1985  */
1986 int add_preferred_console(char *name, int idx, char *options)
1987 {
1988 	return __add_preferred_console(name, idx, options, NULL);
1989 }
1990 
1991 bool console_suspend_enabled = true;
1992 EXPORT_SYMBOL(console_suspend_enabled);
1993 
1994 static int __init console_suspend_disable(char *str)
1995 {
1996 	console_suspend_enabled = false;
1997 	return 1;
1998 }
1999 __setup("no_console_suspend", console_suspend_disable);
2000 module_param_named(console_suspend, console_suspend_enabled,
2001 		bool, S_IRUGO | S_IWUSR);
2002 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2003 	" and hibernate operations");
2004 
2005 /**
2006  * suspend_console - suspend the console subsystem
2007  *
2008  * This disables printk() while we go into suspend states
2009  */
2010 void suspend_console(void)
2011 {
2012 	if (!console_suspend_enabled)
2013 		return;
2014 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2015 	console_lock();
2016 	console_suspended = 1;
2017 	up_console_sem();
2018 }
2019 
2020 void resume_console(void)
2021 {
2022 	if (!console_suspend_enabled)
2023 		return;
2024 	down_console_sem();
2025 	console_suspended = 0;
2026 	console_unlock();
2027 }
2028 
2029 /**
2030  * console_cpu_notify - print deferred console messages after CPU hotplug
2031  * @cpu: unused
2032  *
2033  * If printk() is called from a CPU that is not online yet, the messages
2034  * will be spooled but will not show up on the console.  This function is
2035  * called when a new CPU comes online (or fails to come up), and ensures
2036  * that any such output gets printed.
2037  */
2038 static int console_cpu_notify(unsigned int cpu)
2039 {
2040 	if (!cpuhp_tasks_frozen) {
2041 		console_lock();
2042 		console_unlock();
2043 	}
2044 	return 0;
2045 }
2046 
2047 /**
2048  * console_lock - lock the console system for exclusive use.
2049  *
2050  * Acquires a lock which guarantees that the caller has
2051  * exclusive access to the console system and the console_drivers list.
2052  *
2053  * Can sleep, returns nothing.
2054  */
2055 void console_lock(void)
2056 {
2057 	might_sleep();
2058 
2059 	down_console_sem();
2060 	if (console_suspended)
2061 		return;
2062 	console_locked = 1;
2063 	console_may_schedule = 1;
2064 }
2065 EXPORT_SYMBOL(console_lock);
2066 
2067 /**
2068  * console_trylock - try to lock the console system for exclusive use.
2069  *
2070  * Try to acquire a lock which guarantees that the caller has exclusive
2071  * access to the console system and the console_drivers list.
2072  *
2073  * returns 1 on success, and 0 on failure to acquire the lock.
2074  */
2075 int console_trylock(void)
2076 {
2077 	if (down_trylock_console_sem())
2078 		return 0;
2079 	if (console_suspended) {
2080 		up_console_sem();
2081 		return 0;
2082 	}
2083 	console_locked = 1;
2084 	/*
2085 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2086 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2087 	 * because preempt_disable()/preempt_enable() are just barriers there
2088 	 * and preempt_count() is always 0.
2089 	 *
2090 	 * RCU read sections have a separate preemption counter when
2091 	 * PREEMPT_RCU enabled thus we must take extra care and check
2092 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2093 	 * preempt_count().
2094 	 */
2095 	console_may_schedule = !oops_in_progress &&
2096 			preemptible() &&
2097 			!rcu_preempt_depth();
2098 	return 1;
2099 }
2100 EXPORT_SYMBOL(console_trylock);
2101 
2102 int is_console_locked(void)
2103 {
2104 	return console_locked;
2105 }
2106 
2107 /*
2108  * Check if we have any console that is capable of printing while cpu is
2109  * booting or shutting down. Requires console_sem.
2110  */
2111 static int have_callable_console(void)
2112 {
2113 	struct console *con;
2114 
2115 	for_each_console(con)
2116 		if ((con->flags & CON_ENABLED) &&
2117 				(con->flags & CON_ANYTIME))
2118 			return 1;
2119 
2120 	return 0;
2121 }
2122 
2123 /*
2124  * Can we actually use the console at this time on this cpu?
2125  *
2126  * Console drivers may assume that per-cpu resources have been allocated. So
2127  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2128  * call them until this CPU is officially up.
2129  */
2130 static inline int can_use_console(void)
2131 {
2132 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2133 }
2134 
2135 /**
2136  * console_unlock - unlock the console system
2137  *
2138  * Releases the console_lock which the caller holds on the console system
2139  * and the console driver list.
2140  *
2141  * While the console_lock was held, console output may have been buffered
2142  * by printk().  If this is the case, console_unlock(); emits
2143  * the output prior to releasing the lock.
2144  *
2145  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2146  *
2147  * console_unlock(); may be called from any context.
2148  */
2149 void console_unlock(void)
2150 {
2151 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2152 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2153 	static u64 seen_seq;
2154 	unsigned long flags;
2155 	bool wake_klogd = false;
2156 	bool do_cond_resched, retry;
2157 
2158 	if (console_suspended) {
2159 		up_console_sem();
2160 		return;
2161 	}
2162 
2163 	/*
2164 	 * Console drivers are called under logbuf_lock, so
2165 	 * @console_may_schedule should be cleared before; however, we may
2166 	 * end up dumping a lot of lines, for example, if called from
2167 	 * console registration path, and should invoke cond_resched()
2168 	 * between lines if allowable.  Not doing so can cause a very long
2169 	 * scheduling stall on a slow console leading to RCU stall and
2170 	 * softlockup warnings which exacerbate the issue with more
2171 	 * messages practically incapacitating the system.
2172 	 */
2173 	do_cond_resched = console_may_schedule;
2174 	console_may_schedule = 0;
2175 
2176 again:
2177 	/*
2178 	 * We released the console_sem lock, so we need to recheck if
2179 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2180 	 * console.
2181 	 */
2182 	if (!can_use_console()) {
2183 		console_locked = 0;
2184 		up_console_sem();
2185 		return;
2186 	}
2187 
2188 	for (;;) {
2189 		struct printk_log *msg;
2190 		size_t ext_len = 0;
2191 		size_t len;
2192 
2193 		printk_safe_enter_irqsave(flags);
2194 		raw_spin_lock(&logbuf_lock);
2195 		if (seen_seq != log_next_seq) {
2196 			wake_klogd = true;
2197 			seen_seq = log_next_seq;
2198 		}
2199 
2200 		if (console_seq < log_first_seq) {
2201 			len = sprintf(text, "** %u printk messages dropped ** ",
2202 				      (unsigned)(log_first_seq - console_seq));
2203 
2204 			/* messages are gone, move to first one */
2205 			console_seq = log_first_seq;
2206 			console_idx = log_first_idx;
2207 		} else {
2208 			len = 0;
2209 		}
2210 skip:
2211 		if (console_seq == log_next_seq)
2212 			break;
2213 
2214 		msg = log_from_idx(console_idx);
2215 		if (suppress_message_printing(msg->level)) {
2216 			/*
2217 			 * Skip record we have buffered and already printed
2218 			 * directly to the console when we received it, and
2219 			 * record that has level above the console loglevel.
2220 			 */
2221 			console_idx = log_next(console_idx);
2222 			console_seq++;
2223 			goto skip;
2224 		}
2225 
2226 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2227 		if (nr_ext_console_drivers) {
2228 			ext_len = msg_print_ext_header(ext_text,
2229 						sizeof(ext_text),
2230 						msg, console_seq);
2231 			ext_len += msg_print_ext_body(ext_text + ext_len,
2232 						sizeof(ext_text) - ext_len,
2233 						log_dict(msg), msg->dict_len,
2234 						log_text(msg), msg->text_len);
2235 		}
2236 		console_idx = log_next(console_idx);
2237 		console_seq++;
2238 		raw_spin_unlock(&logbuf_lock);
2239 
2240 		stop_critical_timings();	/* don't trace print latency */
2241 		call_console_drivers(ext_text, ext_len, text, len);
2242 		start_critical_timings();
2243 		printk_safe_exit_irqrestore(flags);
2244 
2245 		if (do_cond_resched)
2246 			cond_resched();
2247 	}
2248 	console_locked = 0;
2249 
2250 	/* Release the exclusive_console once it is used */
2251 	if (unlikely(exclusive_console))
2252 		exclusive_console = NULL;
2253 
2254 	raw_spin_unlock(&logbuf_lock);
2255 
2256 	up_console_sem();
2257 
2258 	/*
2259 	 * Someone could have filled up the buffer again, so re-check if there's
2260 	 * something to flush. In case we cannot trylock the console_sem again,
2261 	 * there's a new owner and the console_unlock() from them will do the
2262 	 * flush, no worries.
2263 	 */
2264 	raw_spin_lock(&logbuf_lock);
2265 	retry = console_seq != log_next_seq;
2266 	raw_spin_unlock(&logbuf_lock);
2267 	printk_safe_exit_irqrestore(flags);
2268 
2269 	if (retry && console_trylock())
2270 		goto again;
2271 
2272 	if (wake_klogd)
2273 		wake_up_klogd();
2274 }
2275 EXPORT_SYMBOL(console_unlock);
2276 
2277 /**
2278  * console_conditional_schedule - yield the CPU if required
2279  *
2280  * If the console code is currently allowed to sleep, and
2281  * if this CPU should yield the CPU to another task, do
2282  * so here.
2283  *
2284  * Must be called within console_lock();.
2285  */
2286 void __sched console_conditional_schedule(void)
2287 {
2288 	if (console_may_schedule)
2289 		cond_resched();
2290 }
2291 EXPORT_SYMBOL(console_conditional_schedule);
2292 
2293 void console_unblank(void)
2294 {
2295 	struct console *c;
2296 
2297 	/*
2298 	 * console_unblank can no longer be called in interrupt context unless
2299 	 * oops_in_progress is set to 1..
2300 	 */
2301 	if (oops_in_progress) {
2302 		if (down_trylock_console_sem() != 0)
2303 			return;
2304 	} else
2305 		console_lock();
2306 
2307 	console_locked = 1;
2308 	console_may_schedule = 0;
2309 	for_each_console(c)
2310 		if ((c->flags & CON_ENABLED) && c->unblank)
2311 			c->unblank();
2312 	console_unlock();
2313 }
2314 
2315 /**
2316  * console_flush_on_panic - flush console content on panic
2317  *
2318  * Immediately output all pending messages no matter what.
2319  */
2320 void console_flush_on_panic(void)
2321 {
2322 	/*
2323 	 * If someone else is holding the console lock, trylock will fail
2324 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2325 	 * that messages are flushed out.  As this can be called from any
2326 	 * context and we don't want to get preempted while flushing,
2327 	 * ensure may_schedule is cleared.
2328 	 */
2329 	console_trylock();
2330 	console_may_schedule = 0;
2331 	console_unlock();
2332 }
2333 
2334 /*
2335  * Return the console tty driver structure and its associated index
2336  */
2337 struct tty_driver *console_device(int *index)
2338 {
2339 	struct console *c;
2340 	struct tty_driver *driver = NULL;
2341 
2342 	console_lock();
2343 	for_each_console(c) {
2344 		if (!c->device)
2345 			continue;
2346 		driver = c->device(c, index);
2347 		if (driver)
2348 			break;
2349 	}
2350 	console_unlock();
2351 	return driver;
2352 }
2353 
2354 /*
2355  * Prevent further output on the passed console device so that (for example)
2356  * serial drivers can disable console output before suspending a port, and can
2357  * re-enable output afterwards.
2358  */
2359 void console_stop(struct console *console)
2360 {
2361 	console_lock();
2362 	console->flags &= ~CON_ENABLED;
2363 	console_unlock();
2364 }
2365 EXPORT_SYMBOL(console_stop);
2366 
2367 void console_start(struct console *console)
2368 {
2369 	console_lock();
2370 	console->flags |= CON_ENABLED;
2371 	console_unlock();
2372 }
2373 EXPORT_SYMBOL(console_start);
2374 
2375 static int __read_mostly keep_bootcon;
2376 
2377 static int __init keep_bootcon_setup(char *str)
2378 {
2379 	keep_bootcon = 1;
2380 	pr_info("debug: skip boot console de-registration.\n");
2381 
2382 	return 0;
2383 }
2384 
2385 early_param("keep_bootcon", keep_bootcon_setup);
2386 
2387 /*
2388  * The console driver calls this routine during kernel initialization
2389  * to register the console printing procedure with printk() and to
2390  * print any messages that were printed by the kernel before the
2391  * console driver was initialized.
2392  *
2393  * This can happen pretty early during the boot process (because of
2394  * early_printk) - sometimes before setup_arch() completes - be careful
2395  * of what kernel features are used - they may not be initialised yet.
2396  *
2397  * There are two types of consoles - bootconsoles (early_printk) and
2398  * "real" consoles (everything which is not a bootconsole) which are
2399  * handled differently.
2400  *  - Any number of bootconsoles can be registered at any time.
2401  *  - As soon as a "real" console is registered, all bootconsoles
2402  *    will be unregistered automatically.
2403  *  - Once a "real" console is registered, any attempt to register a
2404  *    bootconsoles will be rejected
2405  */
2406 void register_console(struct console *newcon)
2407 {
2408 	int i;
2409 	unsigned long flags;
2410 	struct console *bcon = NULL;
2411 	struct console_cmdline *c;
2412 
2413 	if (console_drivers)
2414 		for_each_console(bcon)
2415 			if (WARN(bcon == newcon,
2416 					"console '%s%d' already registered\n",
2417 					bcon->name, bcon->index))
2418 				return;
2419 
2420 	/*
2421 	 * before we register a new CON_BOOT console, make sure we don't
2422 	 * already have a valid console
2423 	 */
2424 	if (console_drivers && newcon->flags & CON_BOOT) {
2425 		/* find the last or real console */
2426 		for_each_console(bcon) {
2427 			if (!(bcon->flags & CON_BOOT)) {
2428 				pr_info("Too late to register bootconsole %s%d\n",
2429 					newcon->name, newcon->index);
2430 				return;
2431 			}
2432 		}
2433 	}
2434 
2435 	if (console_drivers && console_drivers->flags & CON_BOOT)
2436 		bcon = console_drivers;
2437 
2438 	if (preferred_console < 0 || bcon || !console_drivers)
2439 		preferred_console = selected_console;
2440 
2441 	/*
2442 	 *	See if we want to use this console driver. If we
2443 	 *	didn't select a console we take the first one
2444 	 *	that registers here.
2445 	 */
2446 	if (preferred_console < 0) {
2447 		if (newcon->index < 0)
2448 			newcon->index = 0;
2449 		if (newcon->setup == NULL ||
2450 		    newcon->setup(newcon, NULL) == 0) {
2451 			newcon->flags |= CON_ENABLED;
2452 			if (newcon->device) {
2453 				newcon->flags |= CON_CONSDEV;
2454 				preferred_console = 0;
2455 			}
2456 		}
2457 	}
2458 
2459 	/*
2460 	 *	See if this console matches one we selected on
2461 	 *	the command line.
2462 	 */
2463 	for (i = 0, c = console_cmdline;
2464 	     i < MAX_CMDLINECONSOLES && c->name[0];
2465 	     i++, c++) {
2466 		if (!newcon->match ||
2467 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2468 			/* default matching */
2469 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2470 			if (strcmp(c->name, newcon->name) != 0)
2471 				continue;
2472 			if (newcon->index >= 0 &&
2473 			    newcon->index != c->index)
2474 				continue;
2475 			if (newcon->index < 0)
2476 				newcon->index = c->index;
2477 
2478 			if (_braille_register_console(newcon, c))
2479 				return;
2480 
2481 			if (newcon->setup &&
2482 			    newcon->setup(newcon, c->options) != 0)
2483 				break;
2484 		}
2485 
2486 		newcon->flags |= CON_ENABLED;
2487 		if (i == selected_console) {
2488 			newcon->flags |= CON_CONSDEV;
2489 			preferred_console = selected_console;
2490 		}
2491 		break;
2492 	}
2493 
2494 	if (!(newcon->flags & CON_ENABLED))
2495 		return;
2496 
2497 	/*
2498 	 * If we have a bootconsole, and are switching to a real console,
2499 	 * don't print everything out again, since when the boot console, and
2500 	 * the real console are the same physical device, it's annoying to
2501 	 * see the beginning boot messages twice
2502 	 */
2503 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2504 		newcon->flags &= ~CON_PRINTBUFFER;
2505 
2506 	/*
2507 	 *	Put this console in the list - keep the
2508 	 *	preferred driver at the head of the list.
2509 	 */
2510 	console_lock();
2511 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2512 		newcon->next = console_drivers;
2513 		console_drivers = newcon;
2514 		if (newcon->next)
2515 			newcon->next->flags &= ~CON_CONSDEV;
2516 	} else {
2517 		newcon->next = console_drivers->next;
2518 		console_drivers->next = newcon;
2519 	}
2520 
2521 	if (newcon->flags & CON_EXTENDED)
2522 		if (!nr_ext_console_drivers++)
2523 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2524 
2525 	if (newcon->flags & CON_PRINTBUFFER) {
2526 		/*
2527 		 * console_unlock(); will print out the buffered messages
2528 		 * for us.
2529 		 */
2530 		logbuf_lock_irqsave(flags);
2531 		console_seq = syslog_seq;
2532 		console_idx = syslog_idx;
2533 		logbuf_unlock_irqrestore(flags);
2534 		/*
2535 		 * We're about to replay the log buffer.  Only do this to the
2536 		 * just-registered console to avoid excessive message spam to
2537 		 * the already-registered consoles.
2538 		 */
2539 		exclusive_console = newcon;
2540 	}
2541 	console_unlock();
2542 	console_sysfs_notify();
2543 
2544 	/*
2545 	 * By unregistering the bootconsoles after we enable the real console
2546 	 * we get the "console xxx enabled" message on all the consoles -
2547 	 * boot consoles, real consoles, etc - this is to ensure that end
2548 	 * users know there might be something in the kernel's log buffer that
2549 	 * went to the bootconsole (that they do not see on the real console)
2550 	 */
2551 	pr_info("%sconsole [%s%d] enabled\n",
2552 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2553 		newcon->name, newcon->index);
2554 	if (bcon &&
2555 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2556 	    !keep_bootcon) {
2557 		/* We need to iterate through all boot consoles, to make
2558 		 * sure we print everything out, before we unregister them.
2559 		 */
2560 		for_each_console(bcon)
2561 			if (bcon->flags & CON_BOOT)
2562 				unregister_console(bcon);
2563 	}
2564 }
2565 EXPORT_SYMBOL(register_console);
2566 
2567 int unregister_console(struct console *console)
2568 {
2569         struct console *a, *b;
2570 	int res;
2571 
2572 	pr_info("%sconsole [%s%d] disabled\n",
2573 		(console->flags & CON_BOOT) ? "boot" : "" ,
2574 		console->name, console->index);
2575 
2576 	res = _braille_unregister_console(console);
2577 	if (res)
2578 		return res;
2579 
2580 	res = 1;
2581 	console_lock();
2582 	if (console_drivers == console) {
2583 		console_drivers=console->next;
2584 		res = 0;
2585 	} else if (console_drivers) {
2586 		for (a=console_drivers->next, b=console_drivers ;
2587 		     a; b=a, a=b->next) {
2588 			if (a == console) {
2589 				b->next = a->next;
2590 				res = 0;
2591 				break;
2592 			}
2593 		}
2594 	}
2595 
2596 	if (!res && (console->flags & CON_EXTENDED))
2597 		nr_ext_console_drivers--;
2598 
2599 	/*
2600 	 * If this isn't the last console and it has CON_CONSDEV set, we
2601 	 * need to set it on the next preferred console.
2602 	 */
2603 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2604 		console_drivers->flags |= CON_CONSDEV;
2605 
2606 	console->flags &= ~CON_ENABLED;
2607 	console_unlock();
2608 	console_sysfs_notify();
2609 	return res;
2610 }
2611 EXPORT_SYMBOL(unregister_console);
2612 
2613 /*
2614  * Some boot consoles access data that is in the init section and which will
2615  * be discarded after the initcalls have been run. To make sure that no code
2616  * will access this data, unregister the boot consoles in a late initcall.
2617  *
2618  * If for some reason, such as deferred probe or the driver being a loadable
2619  * module, the real console hasn't registered yet at this point, there will
2620  * be a brief interval in which no messages are logged to the console, which
2621  * makes it difficult to diagnose problems that occur during this time.
2622  *
2623  * To mitigate this problem somewhat, only unregister consoles whose memory
2624  * intersects with the init section. Note that code exists elsewhere to get
2625  * rid of the boot console as soon as the proper console shows up, so there
2626  * won't be side-effects from postponing the removal.
2627  */
2628 static int __init printk_late_init(void)
2629 {
2630 	struct console *con;
2631 	int ret;
2632 
2633 	for_each_console(con) {
2634 		if (!keep_bootcon && con->flags & CON_BOOT) {
2635 			/*
2636 			 * Make sure to unregister boot consoles whose data
2637 			 * resides in the init section before the init section
2638 			 * is discarded. Boot consoles whose data will stick
2639 			 * around will automatically be unregistered when the
2640 			 * proper console replaces them.
2641 			 */
2642 			if (init_section_intersects(con, sizeof(*con)))
2643 				unregister_console(con);
2644 		}
2645 	}
2646 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2647 					console_cpu_notify);
2648 	WARN_ON(ret < 0);
2649 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2650 					console_cpu_notify, NULL);
2651 	WARN_ON(ret < 0);
2652 	return 0;
2653 }
2654 late_initcall(printk_late_init);
2655 
2656 #if defined CONFIG_PRINTK
2657 /*
2658  * Delayed printk version, for scheduler-internal messages:
2659  */
2660 #define PRINTK_PENDING_WAKEUP	0x01
2661 #define PRINTK_PENDING_OUTPUT	0x02
2662 
2663 static DEFINE_PER_CPU(int, printk_pending);
2664 
2665 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2666 {
2667 	int pending = __this_cpu_xchg(printk_pending, 0);
2668 
2669 	if (pending & PRINTK_PENDING_OUTPUT) {
2670 		/* If trylock fails, someone else is doing the printing */
2671 		if (console_trylock())
2672 			console_unlock();
2673 	}
2674 
2675 	if (pending & PRINTK_PENDING_WAKEUP)
2676 		wake_up_interruptible(&log_wait);
2677 }
2678 
2679 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2680 	.func = wake_up_klogd_work_func,
2681 	.flags = IRQ_WORK_LAZY,
2682 };
2683 
2684 void wake_up_klogd(void)
2685 {
2686 	preempt_disable();
2687 	if (waitqueue_active(&log_wait)) {
2688 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2689 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2690 	}
2691 	preempt_enable();
2692 }
2693 
2694 int printk_deferred(const char *fmt, ...)
2695 {
2696 	va_list args;
2697 	int r;
2698 
2699 	preempt_disable();
2700 	va_start(args, fmt);
2701 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2702 	va_end(args);
2703 
2704 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2705 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2706 	preempt_enable();
2707 
2708 	return r;
2709 }
2710 
2711 /*
2712  * printk rate limiting, lifted from the networking subsystem.
2713  *
2714  * This enforces a rate limit: not more than 10 kernel messages
2715  * every 5s to make a denial-of-service attack impossible.
2716  */
2717 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2718 
2719 int __printk_ratelimit(const char *func)
2720 {
2721 	return ___ratelimit(&printk_ratelimit_state, func);
2722 }
2723 EXPORT_SYMBOL(__printk_ratelimit);
2724 
2725 /**
2726  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2727  * @caller_jiffies: pointer to caller's state
2728  * @interval_msecs: minimum interval between prints
2729  *
2730  * printk_timed_ratelimit() returns true if more than @interval_msecs
2731  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2732  * returned true.
2733  */
2734 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2735 			unsigned int interval_msecs)
2736 {
2737 	unsigned long elapsed = jiffies - *caller_jiffies;
2738 
2739 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2740 		return false;
2741 
2742 	*caller_jiffies = jiffies;
2743 	return true;
2744 }
2745 EXPORT_SYMBOL(printk_timed_ratelimit);
2746 
2747 static DEFINE_SPINLOCK(dump_list_lock);
2748 static LIST_HEAD(dump_list);
2749 
2750 /**
2751  * kmsg_dump_register - register a kernel log dumper.
2752  * @dumper: pointer to the kmsg_dumper structure
2753  *
2754  * Adds a kernel log dumper to the system. The dump callback in the
2755  * structure will be called when the kernel oopses or panics and must be
2756  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2757  */
2758 int kmsg_dump_register(struct kmsg_dumper *dumper)
2759 {
2760 	unsigned long flags;
2761 	int err = -EBUSY;
2762 
2763 	/* The dump callback needs to be set */
2764 	if (!dumper->dump)
2765 		return -EINVAL;
2766 
2767 	spin_lock_irqsave(&dump_list_lock, flags);
2768 	/* Don't allow registering multiple times */
2769 	if (!dumper->registered) {
2770 		dumper->registered = 1;
2771 		list_add_tail_rcu(&dumper->list, &dump_list);
2772 		err = 0;
2773 	}
2774 	spin_unlock_irqrestore(&dump_list_lock, flags);
2775 
2776 	return err;
2777 }
2778 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2779 
2780 /**
2781  * kmsg_dump_unregister - unregister a kmsg dumper.
2782  * @dumper: pointer to the kmsg_dumper structure
2783  *
2784  * Removes a dump device from the system. Returns zero on success and
2785  * %-EINVAL otherwise.
2786  */
2787 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2788 {
2789 	unsigned long flags;
2790 	int err = -EINVAL;
2791 
2792 	spin_lock_irqsave(&dump_list_lock, flags);
2793 	if (dumper->registered) {
2794 		dumper->registered = 0;
2795 		list_del_rcu(&dumper->list);
2796 		err = 0;
2797 	}
2798 	spin_unlock_irqrestore(&dump_list_lock, flags);
2799 	synchronize_rcu();
2800 
2801 	return err;
2802 }
2803 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2804 
2805 static bool always_kmsg_dump;
2806 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2807 
2808 /**
2809  * kmsg_dump - dump kernel log to kernel message dumpers.
2810  * @reason: the reason (oops, panic etc) for dumping
2811  *
2812  * Call each of the registered dumper's dump() callback, which can
2813  * retrieve the kmsg records with kmsg_dump_get_line() or
2814  * kmsg_dump_get_buffer().
2815  */
2816 void kmsg_dump(enum kmsg_dump_reason reason)
2817 {
2818 	struct kmsg_dumper *dumper;
2819 	unsigned long flags;
2820 
2821 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2822 		return;
2823 
2824 	rcu_read_lock();
2825 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2826 		if (dumper->max_reason && reason > dumper->max_reason)
2827 			continue;
2828 
2829 		/* initialize iterator with data about the stored records */
2830 		dumper->active = true;
2831 
2832 		logbuf_lock_irqsave(flags);
2833 		dumper->cur_seq = clear_seq;
2834 		dumper->cur_idx = clear_idx;
2835 		dumper->next_seq = log_next_seq;
2836 		dumper->next_idx = log_next_idx;
2837 		logbuf_unlock_irqrestore(flags);
2838 
2839 		/* invoke dumper which will iterate over records */
2840 		dumper->dump(dumper, reason);
2841 
2842 		/* reset iterator */
2843 		dumper->active = false;
2844 	}
2845 	rcu_read_unlock();
2846 }
2847 
2848 /**
2849  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2850  * @dumper: registered kmsg dumper
2851  * @syslog: include the "<4>" prefixes
2852  * @line: buffer to copy the line to
2853  * @size: maximum size of the buffer
2854  * @len: length of line placed into buffer
2855  *
2856  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2857  * record, and copy one record into the provided buffer.
2858  *
2859  * Consecutive calls will return the next available record moving
2860  * towards the end of the buffer with the youngest messages.
2861  *
2862  * A return value of FALSE indicates that there are no more records to
2863  * read.
2864  *
2865  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2866  */
2867 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2868 			       char *line, size_t size, size_t *len)
2869 {
2870 	struct printk_log *msg;
2871 	size_t l = 0;
2872 	bool ret = false;
2873 
2874 	if (!dumper->active)
2875 		goto out;
2876 
2877 	if (dumper->cur_seq < log_first_seq) {
2878 		/* messages are gone, move to first available one */
2879 		dumper->cur_seq = log_first_seq;
2880 		dumper->cur_idx = log_first_idx;
2881 	}
2882 
2883 	/* last entry */
2884 	if (dumper->cur_seq >= log_next_seq)
2885 		goto out;
2886 
2887 	msg = log_from_idx(dumper->cur_idx);
2888 	l = msg_print_text(msg, syslog, line, size);
2889 
2890 	dumper->cur_idx = log_next(dumper->cur_idx);
2891 	dumper->cur_seq++;
2892 	ret = true;
2893 out:
2894 	if (len)
2895 		*len = l;
2896 	return ret;
2897 }
2898 
2899 /**
2900  * kmsg_dump_get_line - retrieve one kmsg log line
2901  * @dumper: registered kmsg dumper
2902  * @syslog: include the "<4>" prefixes
2903  * @line: buffer to copy the line to
2904  * @size: maximum size of the buffer
2905  * @len: length of line placed into buffer
2906  *
2907  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2908  * record, and copy one record into the provided buffer.
2909  *
2910  * Consecutive calls will return the next available record moving
2911  * towards the end of the buffer with the youngest messages.
2912  *
2913  * A return value of FALSE indicates that there are no more records to
2914  * read.
2915  */
2916 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2917 			char *line, size_t size, size_t *len)
2918 {
2919 	unsigned long flags;
2920 	bool ret;
2921 
2922 	logbuf_lock_irqsave(flags);
2923 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2924 	logbuf_unlock_irqrestore(flags);
2925 
2926 	return ret;
2927 }
2928 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2929 
2930 /**
2931  * kmsg_dump_get_buffer - copy kmsg log lines
2932  * @dumper: registered kmsg dumper
2933  * @syslog: include the "<4>" prefixes
2934  * @buf: buffer to copy the line to
2935  * @size: maximum size of the buffer
2936  * @len: length of line placed into buffer
2937  *
2938  * Start at the end of the kmsg buffer and fill the provided buffer
2939  * with as many of the the *youngest* kmsg records that fit into it.
2940  * If the buffer is large enough, all available kmsg records will be
2941  * copied with a single call.
2942  *
2943  * Consecutive calls will fill the buffer with the next block of
2944  * available older records, not including the earlier retrieved ones.
2945  *
2946  * A return value of FALSE indicates that there are no more records to
2947  * read.
2948  */
2949 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2950 			  char *buf, size_t size, size_t *len)
2951 {
2952 	unsigned long flags;
2953 	u64 seq;
2954 	u32 idx;
2955 	u64 next_seq;
2956 	u32 next_idx;
2957 	size_t l = 0;
2958 	bool ret = false;
2959 
2960 	if (!dumper->active)
2961 		goto out;
2962 
2963 	logbuf_lock_irqsave(flags);
2964 	if (dumper->cur_seq < log_first_seq) {
2965 		/* messages are gone, move to first available one */
2966 		dumper->cur_seq = log_first_seq;
2967 		dumper->cur_idx = log_first_idx;
2968 	}
2969 
2970 	/* last entry */
2971 	if (dumper->cur_seq >= dumper->next_seq) {
2972 		logbuf_unlock_irqrestore(flags);
2973 		goto out;
2974 	}
2975 
2976 	/* calculate length of entire buffer */
2977 	seq = dumper->cur_seq;
2978 	idx = dumper->cur_idx;
2979 	while (seq < dumper->next_seq) {
2980 		struct printk_log *msg = log_from_idx(idx);
2981 
2982 		l += msg_print_text(msg, true, NULL, 0);
2983 		idx = log_next(idx);
2984 		seq++;
2985 	}
2986 
2987 	/* move first record forward until length fits into the buffer */
2988 	seq = dumper->cur_seq;
2989 	idx = dumper->cur_idx;
2990 	while (l > size && seq < dumper->next_seq) {
2991 		struct printk_log *msg = log_from_idx(idx);
2992 
2993 		l -= msg_print_text(msg, true, NULL, 0);
2994 		idx = log_next(idx);
2995 		seq++;
2996 	}
2997 
2998 	/* last message in next interation */
2999 	next_seq = seq;
3000 	next_idx = idx;
3001 
3002 	l = 0;
3003 	while (seq < dumper->next_seq) {
3004 		struct printk_log *msg = log_from_idx(idx);
3005 
3006 		l += msg_print_text(msg, syslog, buf + l, size - l);
3007 		idx = log_next(idx);
3008 		seq++;
3009 	}
3010 
3011 	dumper->next_seq = next_seq;
3012 	dumper->next_idx = next_idx;
3013 	ret = true;
3014 	logbuf_unlock_irqrestore(flags);
3015 out:
3016 	if (len)
3017 		*len = l;
3018 	return ret;
3019 }
3020 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3021 
3022 /**
3023  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3024  * @dumper: registered kmsg dumper
3025  *
3026  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3027  * kmsg_dump_get_buffer() can be called again and used multiple
3028  * times within the same dumper.dump() callback.
3029  *
3030  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3031  */
3032 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3033 {
3034 	dumper->cur_seq = clear_seq;
3035 	dumper->cur_idx = clear_idx;
3036 	dumper->next_seq = log_next_seq;
3037 	dumper->next_idx = log_next_idx;
3038 }
3039 
3040 /**
3041  * kmsg_dump_rewind - reset the interator
3042  * @dumper: registered kmsg dumper
3043  *
3044  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3045  * kmsg_dump_get_buffer() can be called again and used multiple
3046  * times within the same dumper.dump() callback.
3047  */
3048 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3049 {
3050 	unsigned long flags;
3051 
3052 	logbuf_lock_irqsave(flags);
3053 	kmsg_dump_rewind_nolock(dumper);
3054 	logbuf_unlock_irqrestore(flags);
3055 }
3056 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3057 
3058 static char dump_stack_arch_desc_str[128];
3059 
3060 /**
3061  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3062  * @fmt: printf-style format string
3063  * @...: arguments for the format string
3064  *
3065  * The configured string will be printed right after utsname during task
3066  * dumps.  Usually used to add arch-specific system identifiers.  If an
3067  * arch wants to make use of such an ID string, it should initialize this
3068  * as soon as possible during boot.
3069  */
3070 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3071 {
3072 	va_list args;
3073 
3074 	va_start(args, fmt);
3075 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3076 		  fmt, args);
3077 	va_end(args);
3078 }
3079 
3080 /**
3081  * dump_stack_print_info - print generic debug info for dump_stack()
3082  * @log_lvl: log level
3083  *
3084  * Arch-specific dump_stack() implementations can use this function to
3085  * print out the same debug information as the generic dump_stack().
3086  */
3087 void dump_stack_print_info(const char *log_lvl)
3088 {
3089 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3090 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3091 	       print_tainted(), init_utsname()->release,
3092 	       (int)strcspn(init_utsname()->version, " "),
3093 	       init_utsname()->version);
3094 
3095 	if (dump_stack_arch_desc_str[0] != '\0')
3096 		printk("%sHardware name: %s\n",
3097 		       log_lvl, dump_stack_arch_desc_str);
3098 
3099 	print_worker_info(log_lvl, current);
3100 }
3101 
3102 /**
3103  * show_regs_print_info - print generic debug info for show_regs()
3104  * @log_lvl: log level
3105  *
3106  * show_regs() implementations can use this function to print out generic
3107  * debug information.
3108  */
3109 void show_regs_print_info(const char *log_lvl)
3110 {
3111 	dump_stack_print_info(log_lvl);
3112 
3113 	printk("%stask: %p task.stack: %p\n",
3114 	       log_lvl, current, task_stack_page(current));
3115 }
3116 
3117 #endif
3118