xref: /openbmc/linux/kernel/printk/printk.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /*
66  * Low level drivers may need that to know if they can schedule in
67  * their unblank() callback or not. So let's export it.
68  */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71 
72 /*
73  * console_sem protects the console_drivers list, and also
74  * provides serialisation for access to the entire console
75  * driver system.
76  */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80 
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 	.name = "console_lock"
84 };
85 #endif
86 
87 /*
88  * Number of registered extended console drivers.
89  *
90  * If extended consoles are present, in-kernel cont reassembly is disabled
91  * and each fragment is stored as a separate log entry with proper
92  * continuation flag so that every emitted message has full metadata.  This
93  * doesn't change the result for regular consoles or /proc/kmsg.  For
94  * /dev/kmsg, as long as the reader concatenates messages according to
95  * consecutive continuation flags, the end result should be the same too.
96  */
97 static int nr_ext_console_drivers;
98 
99 /*
100  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
101  * macros instead of functions so that _RET_IP_ contains useful information.
102  */
103 #define down_console_sem() do { \
104 	down(&console_sem);\
105 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
106 } while (0)
107 
108 static int __down_trylock_console_sem(unsigned long ip)
109 {
110 	if (down_trylock(&console_sem))
111 		return 1;
112 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
113 	return 0;
114 }
115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
116 
117 #define up_console_sem() do { \
118 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
119 	up(&console_sem);\
120 } while (0)
121 
122 /*
123  * This is used for debugging the mess that is the VT code by
124  * keeping track if we have the console semaphore held. It's
125  * definitely not the perfect debug tool (we don't know if _WE_
126  * hold it and are racing, but it helps tracking those weird code
127  * paths in the console code where we end up in places I want
128  * locked without the console sempahore held).
129  */
130 static int console_locked, console_suspended;
131 
132 /*
133  * If exclusive_console is non-NULL then only this console is to be printed to.
134  */
135 static struct console *exclusive_console;
136 
137 /*
138  *	Array of consoles built from command line options (console=)
139  */
140 
141 #define MAX_CMDLINECONSOLES 8
142 
143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
144 
145 static int selected_console = -1;
146 static int preferred_console = -1;
147 int console_set_on_cmdline;
148 EXPORT_SYMBOL(console_set_on_cmdline);
149 
150 /* Flag: console code may call schedule() */
151 static int console_may_schedule;
152 
153 /*
154  * The printk log buffer consists of a chain of concatenated variable
155  * length records. Every record starts with a record header, containing
156  * the overall length of the record.
157  *
158  * The heads to the first and last entry in the buffer, as well as the
159  * sequence numbers of these entries are maintained when messages are
160  * stored.
161  *
162  * If the heads indicate available messages, the length in the header
163  * tells the start next message. A length == 0 for the next message
164  * indicates a wrap-around to the beginning of the buffer.
165  *
166  * Every record carries the monotonic timestamp in microseconds, as well as
167  * the standard userspace syslog level and syslog facility. The usual
168  * kernel messages use LOG_KERN; userspace-injected messages always carry
169  * a matching syslog facility, by default LOG_USER. The origin of every
170  * message can be reliably determined that way.
171  *
172  * The human readable log message directly follows the message header. The
173  * length of the message text is stored in the header, the stored message
174  * is not terminated.
175  *
176  * Optionally, a message can carry a dictionary of properties (key/value pairs),
177  * to provide userspace with a machine-readable message context.
178  *
179  * Examples for well-defined, commonly used property names are:
180  *   DEVICE=b12:8               device identifier
181  *                                b12:8         block dev_t
182  *                                c127:3        char dev_t
183  *                                n8            netdev ifindex
184  *                                +sound:card0  subsystem:devname
185  *   SUBSYSTEM=pci              driver-core subsystem name
186  *
187  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
188  * follows directly after a '=' character. Every property is terminated by
189  * a '\0' character. The last property is not terminated.
190  *
191  * Example of a message structure:
192  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
193  *   0008  34 00                        record is 52 bytes long
194  *   000a        0b 00                  text is 11 bytes long
195  *   000c              1f 00            dictionary is 23 bytes long
196  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
197  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
198  *         69 6e 65                     "ine"
199  *   001b           44 45 56 49 43      "DEVIC"
200  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
201  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
202  *         67                           "g"
203  *   0032     00 00 00                  padding to next message header
204  *
205  * The 'struct printk_log' buffer header must never be directly exported to
206  * userspace, it is a kernel-private implementation detail that might
207  * need to be changed in the future, when the requirements change.
208  *
209  * /dev/kmsg exports the structured data in the following line format:
210  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
211  *
212  * Users of the export format should ignore possible additional values
213  * separated by ',', and find the message after the ';' character.
214  *
215  * The optional key/value pairs are attached as continuation lines starting
216  * with a space character and terminated by a newline. All possible
217  * non-prinatable characters are escaped in the "\xff" notation.
218  */
219 
220 enum log_flags {
221 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
222 	LOG_NEWLINE	= 2,	/* text ended with a newline */
223 	LOG_PREFIX	= 4,	/* text started with a prefix */
224 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
225 };
226 
227 struct printk_log {
228 	u64 ts_nsec;		/* timestamp in nanoseconds */
229 	u16 len;		/* length of entire record */
230 	u16 text_len;		/* length of text buffer */
231 	u16 dict_len;		/* length of dictionary buffer */
232 	u8 facility;		/* syslog facility */
233 	u8 flags:5;		/* internal record flags */
234 	u8 level:3;		/* syslog level */
235 };
236 
237 /*
238  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
239  * within the scheduler's rq lock. It must be released before calling
240  * console_unlock() or anything else that might wake up a process.
241  */
242 static DEFINE_RAW_SPINLOCK(logbuf_lock);
243 
244 #ifdef CONFIG_PRINTK
245 DECLARE_WAIT_QUEUE_HEAD(log_wait);
246 /* the next printk record to read by syslog(READ) or /proc/kmsg */
247 static u64 syslog_seq;
248 static u32 syslog_idx;
249 static enum log_flags syslog_prev;
250 static size_t syslog_partial;
251 
252 /* index and sequence number of the first record stored in the buffer */
253 static u64 log_first_seq;
254 static u32 log_first_idx;
255 
256 /* index and sequence number of the next record to store in the buffer */
257 static u64 log_next_seq;
258 static u32 log_next_idx;
259 
260 /* the next printk record to write to the console */
261 static u64 console_seq;
262 static u32 console_idx;
263 static enum log_flags console_prev;
264 
265 /* the next printk record to read after the last 'clear' command */
266 static u64 clear_seq;
267 static u32 clear_idx;
268 
269 #define PREFIX_MAX		32
270 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
271 
272 /* record buffer */
273 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
274 #define LOG_ALIGN 4
275 #else
276 #define LOG_ALIGN __alignof__(struct printk_log)
277 #endif
278 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
279 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
280 static char *log_buf = __log_buf;
281 static u32 log_buf_len = __LOG_BUF_LEN;
282 
283 /* Return log buffer address */
284 char *log_buf_addr_get(void)
285 {
286 	return log_buf;
287 }
288 
289 /* Return log buffer size */
290 u32 log_buf_len_get(void)
291 {
292 	return log_buf_len;
293 }
294 
295 /* human readable text of the record */
296 static char *log_text(const struct printk_log *msg)
297 {
298 	return (char *)msg + sizeof(struct printk_log);
299 }
300 
301 /* optional key/value pair dictionary attached to the record */
302 static char *log_dict(const struct printk_log *msg)
303 {
304 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
305 }
306 
307 /* get record by index; idx must point to valid msg */
308 static struct printk_log *log_from_idx(u32 idx)
309 {
310 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
311 
312 	/*
313 	 * A length == 0 record is the end of buffer marker. Wrap around and
314 	 * read the message at the start of the buffer.
315 	 */
316 	if (!msg->len)
317 		return (struct printk_log *)log_buf;
318 	return msg;
319 }
320 
321 /* get next record; idx must point to valid msg */
322 static u32 log_next(u32 idx)
323 {
324 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
325 
326 	/* length == 0 indicates the end of the buffer; wrap */
327 	/*
328 	 * A length == 0 record is the end of buffer marker. Wrap around and
329 	 * read the message at the start of the buffer as *this* one, and
330 	 * return the one after that.
331 	 */
332 	if (!msg->len) {
333 		msg = (struct printk_log *)log_buf;
334 		return msg->len;
335 	}
336 	return idx + msg->len;
337 }
338 
339 /*
340  * Check whether there is enough free space for the given message.
341  *
342  * The same values of first_idx and next_idx mean that the buffer
343  * is either empty or full.
344  *
345  * If the buffer is empty, we must respect the position of the indexes.
346  * They cannot be reset to the beginning of the buffer.
347  */
348 static int logbuf_has_space(u32 msg_size, bool empty)
349 {
350 	u32 free;
351 
352 	if (log_next_idx > log_first_idx || empty)
353 		free = max(log_buf_len - log_next_idx, log_first_idx);
354 	else
355 		free = log_first_idx - log_next_idx;
356 
357 	/*
358 	 * We need space also for an empty header that signalizes wrapping
359 	 * of the buffer.
360 	 */
361 	return free >= msg_size + sizeof(struct printk_log);
362 }
363 
364 static int log_make_free_space(u32 msg_size)
365 {
366 	while (log_first_seq < log_next_seq) {
367 		if (logbuf_has_space(msg_size, false))
368 			return 0;
369 		/* drop old messages until we have enough contiguous space */
370 		log_first_idx = log_next(log_first_idx);
371 		log_first_seq++;
372 	}
373 
374 	/* sequence numbers are equal, so the log buffer is empty */
375 	if (logbuf_has_space(msg_size, true))
376 		return 0;
377 
378 	return -ENOMEM;
379 }
380 
381 /* compute the message size including the padding bytes */
382 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
383 {
384 	u32 size;
385 
386 	size = sizeof(struct printk_log) + text_len + dict_len;
387 	*pad_len = (-size) & (LOG_ALIGN - 1);
388 	size += *pad_len;
389 
390 	return size;
391 }
392 
393 /*
394  * Define how much of the log buffer we could take at maximum. The value
395  * must be greater than two. Note that only half of the buffer is available
396  * when the index points to the middle.
397  */
398 #define MAX_LOG_TAKE_PART 4
399 static const char trunc_msg[] = "<truncated>";
400 
401 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
402 			u16 *dict_len, u32 *pad_len)
403 {
404 	/*
405 	 * The message should not take the whole buffer. Otherwise, it might
406 	 * get removed too soon.
407 	 */
408 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
409 	if (*text_len > max_text_len)
410 		*text_len = max_text_len;
411 	/* enable the warning message */
412 	*trunc_msg_len = strlen(trunc_msg);
413 	/* disable the "dict" completely */
414 	*dict_len = 0;
415 	/* compute the size again, count also the warning message */
416 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
417 }
418 
419 /* insert record into the buffer, discard old ones, update heads */
420 static int log_store(int facility, int level,
421 		     enum log_flags flags, u64 ts_nsec,
422 		     const char *dict, u16 dict_len,
423 		     const char *text, u16 text_len)
424 {
425 	struct printk_log *msg;
426 	u32 size, pad_len;
427 	u16 trunc_msg_len = 0;
428 
429 	/* number of '\0' padding bytes to next message */
430 	size = msg_used_size(text_len, dict_len, &pad_len);
431 
432 	if (log_make_free_space(size)) {
433 		/* truncate the message if it is too long for empty buffer */
434 		size = truncate_msg(&text_len, &trunc_msg_len,
435 				    &dict_len, &pad_len);
436 		/* survive when the log buffer is too small for trunc_msg */
437 		if (log_make_free_space(size))
438 			return 0;
439 	}
440 
441 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
442 		/*
443 		 * This message + an additional empty header does not fit
444 		 * at the end of the buffer. Add an empty header with len == 0
445 		 * to signify a wrap around.
446 		 */
447 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
448 		log_next_idx = 0;
449 	}
450 
451 	/* fill message */
452 	msg = (struct printk_log *)(log_buf + log_next_idx);
453 	memcpy(log_text(msg), text, text_len);
454 	msg->text_len = text_len;
455 	if (trunc_msg_len) {
456 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
457 		msg->text_len += trunc_msg_len;
458 	}
459 	memcpy(log_dict(msg), dict, dict_len);
460 	msg->dict_len = dict_len;
461 	msg->facility = facility;
462 	msg->level = level & 7;
463 	msg->flags = flags & 0x1f;
464 	if (ts_nsec > 0)
465 		msg->ts_nsec = ts_nsec;
466 	else
467 		msg->ts_nsec = local_clock();
468 	memset(log_dict(msg) + dict_len, 0, pad_len);
469 	msg->len = size;
470 
471 	/* insert message */
472 	log_next_idx += msg->len;
473 	log_next_seq++;
474 
475 	return msg->text_len;
476 }
477 
478 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
479 
480 static int syslog_action_restricted(int type)
481 {
482 	if (dmesg_restrict)
483 		return 1;
484 	/*
485 	 * Unless restricted, we allow "read all" and "get buffer size"
486 	 * for everybody.
487 	 */
488 	return type != SYSLOG_ACTION_READ_ALL &&
489 	       type != SYSLOG_ACTION_SIZE_BUFFER;
490 }
491 
492 int check_syslog_permissions(int type, int source)
493 {
494 	/*
495 	 * If this is from /proc/kmsg and we've already opened it, then we've
496 	 * already done the capabilities checks at open time.
497 	 */
498 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
499 		goto ok;
500 
501 	if (syslog_action_restricted(type)) {
502 		if (capable(CAP_SYSLOG))
503 			goto ok;
504 		/*
505 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
506 		 * a warning.
507 		 */
508 		if (capable(CAP_SYS_ADMIN)) {
509 			pr_warn_once("%s (%d): Attempt to access syslog with "
510 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
511 				     "(deprecated).\n",
512 				 current->comm, task_pid_nr(current));
513 			goto ok;
514 		}
515 		return -EPERM;
516 	}
517 ok:
518 	return security_syslog(type);
519 }
520 
521 static void append_char(char **pp, char *e, char c)
522 {
523 	if (*pp < e)
524 		*(*pp)++ = c;
525 }
526 
527 static ssize_t msg_print_ext_header(char *buf, size_t size,
528 				    struct printk_log *msg, u64 seq,
529 				    enum log_flags prev_flags)
530 {
531 	u64 ts_usec = msg->ts_nsec;
532 	char cont = '-';
533 
534 	do_div(ts_usec, 1000);
535 
536 	/*
537 	 * If we couldn't merge continuation line fragments during the print,
538 	 * export the stored flags to allow an optional external merge of the
539 	 * records. Merging the records isn't always neccessarily correct, like
540 	 * when we hit a race during printing. In most cases though, it produces
541 	 * better readable output. 'c' in the record flags mark the first
542 	 * fragment of a line, '+' the following.
543 	 */
544 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
545 		cont = 'c';
546 	else if ((msg->flags & LOG_CONT) ||
547 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
548 		cont = '+';
549 
550 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
551 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
552 }
553 
554 static ssize_t msg_print_ext_body(char *buf, size_t size,
555 				  char *dict, size_t dict_len,
556 				  char *text, size_t text_len)
557 {
558 	char *p = buf, *e = buf + size;
559 	size_t i;
560 
561 	/* escape non-printable characters */
562 	for (i = 0; i < text_len; i++) {
563 		unsigned char c = text[i];
564 
565 		if (c < ' ' || c >= 127 || c == '\\')
566 			p += scnprintf(p, e - p, "\\x%02x", c);
567 		else
568 			append_char(&p, e, c);
569 	}
570 	append_char(&p, e, '\n');
571 
572 	if (dict_len) {
573 		bool line = true;
574 
575 		for (i = 0; i < dict_len; i++) {
576 			unsigned char c = dict[i];
577 
578 			if (line) {
579 				append_char(&p, e, ' ');
580 				line = false;
581 			}
582 
583 			if (c == '\0') {
584 				append_char(&p, e, '\n');
585 				line = true;
586 				continue;
587 			}
588 
589 			if (c < ' ' || c >= 127 || c == '\\') {
590 				p += scnprintf(p, e - p, "\\x%02x", c);
591 				continue;
592 			}
593 
594 			append_char(&p, e, c);
595 		}
596 		append_char(&p, e, '\n');
597 	}
598 
599 	return p - buf;
600 }
601 
602 /* /dev/kmsg - userspace message inject/listen interface */
603 struct devkmsg_user {
604 	u64 seq;
605 	u32 idx;
606 	enum log_flags prev;
607 	struct mutex lock;
608 	char buf[CONSOLE_EXT_LOG_MAX];
609 };
610 
611 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
612 {
613 	char *buf, *line;
614 	int i;
615 	int level = default_message_loglevel;
616 	int facility = 1;	/* LOG_USER */
617 	size_t len = iov_iter_count(from);
618 	ssize_t ret = len;
619 
620 	if (len > LOG_LINE_MAX)
621 		return -EINVAL;
622 	buf = kmalloc(len+1, GFP_KERNEL);
623 	if (buf == NULL)
624 		return -ENOMEM;
625 
626 	buf[len] = '\0';
627 	if (copy_from_iter(buf, len, from) != len) {
628 		kfree(buf);
629 		return -EFAULT;
630 	}
631 
632 	/*
633 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
634 	 * the decimal value represents 32bit, the lower 3 bit are the log
635 	 * level, the rest are the log facility.
636 	 *
637 	 * If no prefix or no userspace facility is specified, we
638 	 * enforce LOG_USER, to be able to reliably distinguish
639 	 * kernel-generated messages from userspace-injected ones.
640 	 */
641 	line = buf;
642 	if (line[0] == '<') {
643 		char *endp = NULL;
644 
645 		i = simple_strtoul(line+1, &endp, 10);
646 		if (endp && endp[0] == '>') {
647 			level = i & 7;
648 			if (i >> 3)
649 				facility = i >> 3;
650 			endp++;
651 			len -= endp - line;
652 			line = endp;
653 		}
654 	}
655 
656 	printk_emit(facility, level, NULL, 0, "%s", line);
657 	kfree(buf);
658 	return ret;
659 }
660 
661 static ssize_t devkmsg_read(struct file *file, char __user *buf,
662 			    size_t count, loff_t *ppos)
663 {
664 	struct devkmsg_user *user = file->private_data;
665 	struct printk_log *msg;
666 	size_t len;
667 	ssize_t ret;
668 
669 	if (!user)
670 		return -EBADF;
671 
672 	ret = mutex_lock_interruptible(&user->lock);
673 	if (ret)
674 		return ret;
675 	raw_spin_lock_irq(&logbuf_lock);
676 	while (user->seq == log_next_seq) {
677 		if (file->f_flags & O_NONBLOCK) {
678 			ret = -EAGAIN;
679 			raw_spin_unlock_irq(&logbuf_lock);
680 			goto out;
681 		}
682 
683 		raw_spin_unlock_irq(&logbuf_lock);
684 		ret = wait_event_interruptible(log_wait,
685 					       user->seq != log_next_seq);
686 		if (ret)
687 			goto out;
688 		raw_spin_lock_irq(&logbuf_lock);
689 	}
690 
691 	if (user->seq < log_first_seq) {
692 		/* our last seen message is gone, return error and reset */
693 		user->idx = log_first_idx;
694 		user->seq = log_first_seq;
695 		ret = -EPIPE;
696 		raw_spin_unlock_irq(&logbuf_lock);
697 		goto out;
698 	}
699 
700 	msg = log_from_idx(user->idx);
701 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
702 				   msg, user->seq, user->prev);
703 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
704 				  log_dict(msg), msg->dict_len,
705 				  log_text(msg), msg->text_len);
706 
707 	user->prev = msg->flags;
708 	user->idx = log_next(user->idx);
709 	user->seq++;
710 	raw_spin_unlock_irq(&logbuf_lock);
711 
712 	if (len > count) {
713 		ret = -EINVAL;
714 		goto out;
715 	}
716 
717 	if (copy_to_user(buf, user->buf, len)) {
718 		ret = -EFAULT;
719 		goto out;
720 	}
721 	ret = len;
722 out:
723 	mutex_unlock(&user->lock);
724 	return ret;
725 }
726 
727 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
728 {
729 	struct devkmsg_user *user = file->private_data;
730 	loff_t ret = 0;
731 
732 	if (!user)
733 		return -EBADF;
734 	if (offset)
735 		return -ESPIPE;
736 
737 	raw_spin_lock_irq(&logbuf_lock);
738 	switch (whence) {
739 	case SEEK_SET:
740 		/* the first record */
741 		user->idx = log_first_idx;
742 		user->seq = log_first_seq;
743 		break;
744 	case SEEK_DATA:
745 		/*
746 		 * The first record after the last SYSLOG_ACTION_CLEAR,
747 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
748 		 * changes no global state, and does not clear anything.
749 		 */
750 		user->idx = clear_idx;
751 		user->seq = clear_seq;
752 		break;
753 	case SEEK_END:
754 		/* after the last record */
755 		user->idx = log_next_idx;
756 		user->seq = log_next_seq;
757 		break;
758 	default:
759 		ret = -EINVAL;
760 	}
761 	raw_spin_unlock_irq(&logbuf_lock);
762 	return ret;
763 }
764 
765 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
766 {
767 	struct devkmsg_user *user = file->private_data;
768 	int ret = 0;
769 
770 	if (!user)
771 		return POLLERR|POLLNVAL;
772 
773 	poll_wait(file, &log_wait, wait);
774 
775 	raw_spin_lock_irq(&logbuf_lock);
776 	if (user->seq < log_next_seq) {
777 		/* return error when data has vanished underneath us */
778 		if (user->seq < log_first_seq)
779 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
780 		else
781 			ret = POLLIN|POLLRDNORM;
782 	}
783 	raw_spin_unlock_irq(&logbuf_lock);
784 
785 	return ret;
786 }
787 
788 static int devkmsg_open(struct inode *inode, struct file *file)
789 {
790 	struct devkmsg_user *user;
791 	int err;
792 
793 	/* write-only does not need any file context */
794 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
795 		return 0;
796 
797 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
798 				       SYSLOG_FROM_READER);
799 	if (err)
800 		return err;
801 
802 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
803 	if (!user)
804 		return -ENOMEM;
805 
806 	mutex_init(&user->lock);
807 
808 	raw_spin_lock_irq(&logbuf_lock);
809 	user->idx = log_first_idx;
810 	user->seq = log_first_seq;
811 	raw_spin_unlock_irq(&logbuf_lock);
812 
813 	file->private_data = user;
814 	return 0;
815 }
816 
817 static int devkmsg_release(struct inode *inode, struct file *file)
818 {
819 	struct devkmsg_user *user = file->private_data;
820 
821 	if (!user)
822 		return 0;
823 
824 	mutex_destroy(&user->lock);
825 	kfree(user);
826 	return 0;
827 }
828 
829 const struct file_operations kmsg_fops = {
830 	.open = devkmsg_open,
831 	.read = devkmsg_read,
832 	.write_iter = devkmsg_write,
833 	.llseek = devkmsg_llseek,
834 	.poll = devkmsg_poll,
835 	.release = devkmsg_release,
836 };
837 
838 #ifdef CONFIG_KEXEC
839 /*
840  * This appends the listed symbols to /proc/vmcore
841  *
842  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
843  * obtain access to symbols that are otherwise very difficult to locate.  These
844  * symbols are specifically used so that utilities can access and extract the
845  * dmesg log from a vmcore file after a crash.
846  */
847 void log_buf_kexec_setup(void)
848 {
849 	VMCOREINFO_SYMBOL(log_buf);
850 	VMCOREINFO_SYMBOL(log_buf_len);
851 	VMCOREINFO_SYMBOL(log_first_idx);
852 	VMCOREINFO_SYMBOL(log_next_idx);
853 	/*
854 	 * Export struct printk_log size and field offsets. User space tools can
855 	 * parse it and detect any changes to structure down the line.
856 	 */
857 	VMCOREINFO_STRUCT_SIZE(printk_log);
858 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
859 	VMCOREINFO_OFFSET(printk_log, len);
860 	VMCOREINFO_OFFSET(printk_log, text_len);
861 	VMCOREINFO_OFFSET(printk_log, dict_len);
862 }
863 #endif
864 
865 /* requested log_buf_len from kernel cmdline */
866 static unsigned long __initdata new_log_buf_len;
867 
868 /* we practice scaling the ring buffer by powers of 2 */
869 static void __init log_buf_len_update(unsigned size)
870 {
871 	if (size)
872 		size = roundup_pow_of_two(size);
873 	if (size > log_buf_len)
874 		new_log_buf_len = size;
875 }
876 
877 /* save requested log_buf_len since it's too early to process it */
878 static int __init log_buf_len_setup(char *str)
879 {
880 	unsigned size = memparse(str, &str);
881 
882 	log_buf_len_update(size);
883 
884 	return 0;
885 }
886 early_param("log_buf_len", log_buf_len_setup);
887 
888 #ifdef CONFIG_SMP
889 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
890 
891 static void __init log_buf_add_cpu(void)
892 {
893 	unsigned int cpu_extra;
894 
895 	/*
896 	 * archs should set up cpu_possible_bits properly with
897 	 * set_cpu_possible() after setup_arch() but just in
898 	 * case lets ensure this is valid.
899 	 */
900 	if (num_possible_cpus() == 1)
901 		return;
902 
903 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
904 
905 	/* by default this will only continue through for large > 64 CPUs */
906 	if (cpu_extra <= __LOG_BUF_LEN / 2)
907 		return;
908 
909 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
910 		__LOG_CPU_MAX_BUF_LEN);
911 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
912 		cpu_extra);
913 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
914 
915 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
916 }
917 #else /* !CONFIG_SMP */
918 static inline void log_buf_add_cpu(void) {}
919 #endif /* CONFIG_SMP */
920 
921 void __init setup_log_buf(int early)
922 {
923 	unsigned long flags;
924 	char *new_log_buf;
925 	int free;
926 
927 	if (log_buf != __log_buf)
928 		return;
929 
930 	if (!early && !new_log_buf_len)
931 		log_buf_add_cpu();
932 
933 	if (!new_log_buf_len)
934 		return;
935 
936 	if (early) {
937 		new_log_buf =
938 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
939 	} else {
940 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
941 							  LOG_ALIGN);
942 	}
943 
944 	if (unlikely(!new_log_buf)) {
945 		pr_err("log_buf_len: %ld bytes not available\n",
946 			new_log_buf_len);
947 		return;
948 	}
949 
950 	raw_spin_lock_irqsave(&logbuf_lock, flags);
951 	log_buf_len = new_log_buf_len;
952 	log_buf = new_log_buf;
953 	new_log_buf_len = 0;
954 	free = __LOG_BUF_LEN - log_next_idx;
955 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
956 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
957 
958 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
959 	pr_info("early log buf free: %d(%d%%)\n",
960 		free, (free * 100) / __LOG_BUF_LEN);
961 }
962 
963 static bool __read_mostly ignore_loglevel;
964 
965 static int __init ignore_loglevel_setup(char *str)
966 {
967 	ignore_loglevel = true;
968 	pr_info("debug: ignoring loglevel setting.\n");
969 
970 	return 0;
971 }
972 
973 early_param("ignore_loglevel", ignore_loglevel_setup);
974 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
975 MODULE_PARM_DESC(ignore_loglevel,
976 		 "ignore loglevel setting (prints all kernel messages to the console)");
977 
978 #ifdef CONFIG_BOOT_PRINTK_DELAY
979 
980 static int boot_delay; /* msecs delay after each printk during bootup */
981 static unsigned long long loops_per_msec;	/* based on boot_delay */
982 
983 static int __init boot_delay_setup(char *str)
984 {
985 	unsigned long lpj;
986 
987 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
988 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
989 
990 	get_option(&str, &boot_delay);
991 	if (boot_delay > 10 * 1000)
992 		boot_delay = 0;
993 
994 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
995 		"HZ: %d, loops_per_msec: %llu\n",
996 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
997 	return 0;
998 }
999 early_param("boot_delay", boot_delay_setup);
1000 
1001 static void boot_delay_msec(int level)
1002 {
1003 	unsigned long long k;
1004 	unsigned long timeout;
1005 
1006 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1007 		|| (level >= console_loglevel && !ignore_loglevel)) {
1008 		return;
1009 	}
1010 
1011 	k = (unsigned long long)loops_per_msec * boot_delay;
1012 
1013 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1014 	while (k) {
1015 		k--;
1016 		cpu_relax();
1017 		/*
1018 		 * use (volatile) jiffies to prevent
1019 		 * compiler reduction; loop termination via jiffies
1020 		 * is secondary and may or may not happen.
1021 		 */
1022 		if (time_after(jiffies, timeout))
1023 			break;
1024 		touch_nmi_watchdog();
1025 	}
1026 }
1027 #else
1028 static inline void boot_delay_msec(int level)
1029 {
1030 }
1031 #endif
1032 
1033 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1034 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1035 
1036 static size_t print_time(u64 ts, char *buf)
1037 {
1038 	unsigned long rem_nsec;
1039 
1040 	if (!printk_time)
1041 		return 0;
1042 
1043 	rem_nsec = do_div(ts, 1000000000);
1044 
1045 	if (!buf)
1046 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1047 
1048 	return sprintf(buf, "[%5lu.%06lu] ",
1049 		       (unsigned long)ts, rem_nsec / 1000);
1050 }
1051 
1052 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1053 {
1054 	size_t len = 0;
1055 	unsigned int prefix = (msg->facility << 3) | msg->level;
1056 
1057 	if (syslog) {
1058 		if (buf) {
1059 			len += sprintf(buf, "<%u>", prefix);
1060 		} else {
1061 			len += 3;
1062 			if (prefix > 999)
1063 				len += 3;
1064 			else if (prefix > 99)
1065 				len += 2;
1066 			else if (prefix > 9)
1067 				len++;
1068 		}
1069 	}
1070 
1071 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1072 	return len;
1073 }
1074 
1075 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1076 			     bool syslog, char *buf, size_t size)
1077 {
1078 	const char *text = log_text(msg);
1079 	size_t text_size = msg->text_len;
1080 	bool prefix = true;
1081 	bool newline = true;
1082 	size_t len = 0;
1083 
1084 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1085 		prefix = false;
1086 
1087 	if (msg->flags & LOG_CONT) {
1088 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1089 			prefix = false;
1090 
1091 		if (!(msg->flags & LOG_NEWLINE))
1092 			newline = false;
1093 	}
1094 
1095 	do {
1096 		const char *next = memchr(text, '\n', text_size);
1097 		size_t text_len;
1098 
1099 		if (next) {
1100 			text_len = next - text;
1101 			next++;
1102 			text_size -= next - text;
1103 		} else {
1104 			text_len = text_size;
1105 		}
1106 
1107 		if (buf) {
1108 			if (print_prefix(msg, syslog, NULL) +
1109 			    text_len + 1 >= size - len)
1110 				break;
1111 
1112 			if (prefix)
1113 				len += print_prefix(msg, syslog, buf + len);
1114 			memcpy(buf + len, text, text_len);
1115 			len += text_len;
1116 			if (next || newline)
1117 				buf[len++] = '\n';
1118 		} else {
1119 			/* SYSLOG_ACTION_* buffer size only calculation */
1120 			if (prefix)
1121 				len += print_prefix(msg, syslog, NULL);
1122 			len += text_len;
1123 			if (next || newline)
1124 				len++;
1125 		}
1126 
1127 		prefix = true;
1128 		text = next;
1129 	} while (text);
1130 
1131 	return len;
1132 }
1133 
1134 static int syslog_print(char __user *buf, int size)
1135 {
1136 	char *text;
1137 	struct printk_log *msg;
1138 	int len = 0;
1139 
1140 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1141 	if (!text)
1142 		return -ENOMEM;
1143 
1144 	while (size > 0) {
1145 		size_t n;
1146 		size_t skip;
1147 
1148 		raw_spin_lock_irq(&logbuf_lock);
1149 		if (syslog_seq < log_first_seq) {
1150 			/* messages are gone, move to first one */
1151 			syslog_seq = log_first_seq;
1152 			syslog_idx = log_first_idx;
1153 			syslog_prev = 0;
1154 			syslog_partial = 0;
1155 		}
1156 		if (syslog_seq == log_next_seq) {
1157 			raw_spin_unlock_irq(&logbuf_lock);
1158 			break;
1159 		}
1160 
1161 		skip = syslog_partial;
1162 		msg = log_from_idx(syslog_idx);
1163 		n = msg_print_text(msg, syslog_prev, true, text,
1164 				   LOG_LINE_MAX + PREFIX_MAX);
1165 		if (n - syslog_partial <= size) {
1166 			/* message fits into buffer, move forward */
1167 			syslog_idx = log_next(syslog_idx);
1168 			syslog_seq++;
1169 			syslog_prev = msg->flags;
1170 			n -= syslog_partial;
1171 			syslog_partial = 0;
1172 		} else if (!len){
1173 			/* partial read(), remember position */
1174 			n = size;
1175 			syslog_partial += n;
1176 		} else
1177 			n = 0;
1178 		raw_spin_unlock_irq(&logbuf_lock);
1179 
1180 		if (!n)
1181 			break;
1182 
1183 		if (copy_to_user(buf, text + skip, n)) {
1184 			if (!len)
1185 				len = -EFAULT;
1186 			break;
1187 		}
1188 
1189 		len += n;
1190 		size -= n;
1191 		buf += n;
1192 	}
1193 
1194 	kfree(text);
1195 	return len;
1196 }
1197 
1198 static int syslog_print_all(char __user *buf, int size, bool clear)
1199 {
1200 	char *text;
1201 	int len = 0;
1202 
1203 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1204 	if (!text)
1205 		return -ENOMEM;
1206 
1207 	raw_spin_lock_irq(&logbuf_lock);
1208 	if (buf) {
1209 		u64 next_seq;
1210 		u64 seq;
1211 		u32 idx;
1212 		enum log_flags prev;
1213 
1214 		if (clear_seq < log_first_seq) {
1215 			/* messages are gone, move to first available one */
1216 			clear_seq = log_first_seq;
1217 			clear_idx = log_first_idx;
1218 		}
1219 
1220 		/*
1221 		 * Find first record that fits, including all following records,
1222 		 * into the user-provided buffer for this dump.
1223 		 */
1224 		seq = clear_seq;
1225 		idx = clear_idx;
1226 		prev = 0;
1227 		while (seq < log_next_seq) {
1228 			struct printk_log *msg = log_from_idx(idx);
1229 
1230 			len += msg_print_text(msg, prev, true, NULL, 0);
1231 			prev = msg->flags;
1232 			idx = log_next(idx);
1233 			seq++;
1234 		}
1235 
1236 		/* move first record forward until length fits into the buffer */
1237 		seq = clear_seq;
1238 		idx = clear_idx;
1239 		prev = 0;
1240 		while (len > size && seq < log_next_seq) {
1241 			struct printk_log *msg = log_from_idx(idx);
1242 
1243 			len -= msg_print_text(msg, prev, true, NULL, 0);
1244 			prev = msg->flags;
1245 			idx = log_next(idx);
1246 			seq++;
1247 		}
1248 
1249 		/* last message fitting into this dump */
1250 		next_seq = log_next_seq;
1251 
1252 		len = 0;
1253 		while (len >= 0 && seq < next_seq) {
1254 			struct printk_log *msg = log_from_idx(idx);
1255 			int textlen;
1256 
1257 			textlen = msg_print_text(msg, prev, true, text,
1258 						 LOG_LINE_MAX + PREFIX_MAX);
1259 			if (textlen < 0) {
1260 				len = textlen;
1261 				break;
1262 			}
1263 			idx = log_next(idx);
1264 			seq++;
1265 			prev = msg->flags;
1266 
1267 			raw_spin_unlock_irq(&logbuf_lock);
1268 			if (copy_to_user(buf + len, text, textlen))
1269 				len = -EFAULT;
1270 			else
1271 				len += textlen;
1272 			raw_spin_lock_irq(&logbuf_lock);
1273 
1274 			if (seq < log_first_seq) {
1275 				/* messages are gone, move to next one */
1276 				seq = log_first_seq;
1277 				idx = log_first_idx;
1278 				prev = 0;
1279 			}
1280 		}
1281 	}
1282 
1283 	if (clear) {
1284 		clear_seq = log_next_seq;
1285 		clear_idx = log_next_idx;
1286 	}
1287 	raw_spin_unlock_irq(&logbuf_lock);
1288 
1289 	kfree(text);
1290 	return len;
1291 }
1292 
1293 int do_syslog(int type, char __user *buf, int len, int source)
1294 {
1295 	bool clear = false;
1296 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1297 	int error;
1298 
1299 	error = check_syslog_permissions(type, source);
1300 	if (error)
1301 		goto out;
1302 
1303 	switch (type) {
1304 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1305 		break;
1306 	case SYSLOG_ACTION_OPEN:	/* Open log */
1307 		break;
1308 	case SYSLOG_ACTION_READ:	/* Read from log */
1309 		error = -EINVAL;
1310 		if (!buf || len < 0)
1311 			goto out;
1312 		error = 0;
1313 		if (!len)
1314 			goto out;
1315 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1316 			error = -EFAULT;
1317 			goto out;
1318 		}
1319 		error = wait_event_interruptible(log_wait,
1320 						 syslog_seq != log_next_seq);
1321 		if (error)
1322 			goto out;
1323 		error = syslog_print(buf, len);
1324 		break;
1325 	/* Read/clear last kernel messages */
1326 	case SYSLOG_ACTION_READ_CLEAR:
1327 		clear = true;
1328 		/* FALL THRU */
1329 	/* Read last kernel messages */
1330 	case SYSLOG_ACTION_READ_ALL:
1331 		error = -EINVAL;
1332 		if (!buf || len < 0)
1333 			goto out;
1334 		error = 0;
1335 		if (!len)
1336 			goto out;
1337 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1338 			error = -EFAULT;
1339 			goto out;
1340 		}
1341 		error = syslog_print_all(buf, len, clear);
1342 		break;
1343 	/* Clear ring buffer */
1344 	case SYSLOG_ACTION_CLEAR:
1345 		syslog_print_all(NULL, 0, true);
1346 		break;
1347 	/* Disable logging to console */
1348 	case SYSLOG_ACTION_CONSOLE_OFF:
1349 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1350 			saved_console_loglevel = console_loglevel;
1351 		console_loglevel = minimum_console_loglevel;
1352 		break;
1353 	/* Enable logging to console */
1354 	case SYSLOG_ACTION_CONSOLE_ON:
1355 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1356 			console_loglevel = saved_console_loglevel;
1357 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1358 		}
1359 		break;
1360 	/* Set level of messages printed to console */
1361 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1362 		error = -EINVAL;
1363 		if (len < 1 || len > 8)
1364 			goto out;
1365 		if (len < minimum_console_loglevel)
1366 			len = minimum_console_loglevel;
1367 		console_loglevel = len;
1368 		/* Implicitly re-enable logging to console */
1369 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1370 		error = 0;
1371 		break;
1372 	/* Number of chars in the log buffer */
1373 	case SYSLOG_ACTION_SIZE_UNREAD:
1374 		raw_spin_lock_irq(&logbuf_lock);
1375 		if (syslog_seq < log_first_seq) {
1376 			/* messages are gone, move to first one */
1377 			syslog_seq = log_first_seq;
1378 			syslog_idx = log_first_idx;
1379 			syslog_prev = 0;
1380 			syslog_partial = 0;
1381 		}
1382 		if (source == SYSLOG_FROM_PROC) {
1383 			/*
1384 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1385 			 * for pending data, not the size; return the count of
1386 			 * records, not the length.
1387 			 */
1388 			error = log_next_seq - syslog_seq;
1389 		} else {
1390 			u64 seq = syslog_seq;
1391 			u32 idx = syslog_idx;
1392 			enum log_flags prev = syslog_prev;
1393 
1394 			error = 0;
1395 			while (seq < log_next_seq) {
1396 				struct printk_log *msg = log_from_idx(idx);
1397 
1398 				error += msg_print_text(msg, prev, true, NULL, 0);
1399 				idx = log_next(idx);
1400 				seq++;
1401 				prev = msg->flags;
1402 			}
1403 			error -= syslog_partial;
1404 		}
1405 		raw_spin_unlock_irq(&logbuf_lock);
1406 		break;
1407 	/* Size of the log buffer */
1408 	case SYSLOG_ACTION_SIZE_BUFFER:
1409 		error = log_buf_len;
1410 		break;
1411 	default:
1412 		error = -EINVAL;
1413 		break;
1414 	}
1415 out:
1416 	return error;
1417 }
1418 
1419 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1420 {
1421 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1422 }
1423 
1424 /*
1425  * Call the console drivers, asking them to write out
1426  * log_buf[start] to log_buf[end - 1].
1427  * The console_lock must be held.
1428  */
1429 static void call_console_drivers(int level,
1430 				 const char *ext_text, size_t ext_len,
1431 				 const char *text, size_t len)
1432 {
1433 	struct console *con;
1434 
1435 	trace_console(text, len);
1436 
1437 	if (level >= console_loglevel && !ignore_loglevel)
1438 		return;
1439 	if (!console_drivers)
1440 		return;
1441 
1442 	for_each_console(con) {
1443 		if (exclusive_console && con != exclusive_console)
1444 			continue;
1445 		if (!(con->flags & CON_ENABLED))
1446 			continue;
1447 		if (!con->write)
1448 			continue;
1449 		if (!cpu_online(smp_processor_id()) &&
1450 		    !(con->flags & CON_ANYTIME))
1451 			continue;
1452 		if (con->flags & CON_EXTENDED)
1453 			con->write(con, ext_text, ext_len);
1454 		else
1455 			con->write(con, text, len);
1456 	}
1457 }
1458 
1459 /*
1460  * Zap console related locks when oopsing.
1461  * To leave time for slow consoles to print a full oops,
1462  * only zap at most once every 30 seconds.
1463  */
1464 static void zap_locks(void)
1465 {
1466 	static unsigned long oops_timestamp;
1467 
1468 	if (time_after_eq(jiffies, oops_timestamp) &&
1469 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1470 		return;
1471 
1472 	oops_timestamp = jiffies;
1473 
1474 	debug_locks_off();
1475 	/* If a crash is occurring, make sure we can't deadlock */
1476 	raw_spin_lock_init(&logbuf_lock);
1477 	/* And make sure that we print immediately */
1478 	sema_init(&console_sem, 1);
1479 }
1480 
1481 /*
1482  * Check if we have any console that is capable of printing while cpu is
1483  * booting or shutting down. Requires console_sem.
1484  */
1485 static int have_callable_console(void)
1486 {
1487 	struct console *con;
1488 
1489 	for_each_console(con)
1490 		if (con->flags & CON_ANYTIME)
1491 			return 1;
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Can we actually use the console at this time on this cpu?
1498  *
1499  * Console drivers may assume that per-cpu resources have been allocated. So
1500  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1501  * call them until this CPU is officially up.
1502  */
1503 static inline int can_use_console(unsigned int cpu)
1504 {
1505 	return cpu_online(cpu) || have_callable_console();
1506 }
1507 
1508 /*
1509  * Try to get console ownership to actually show the kernel
1510  * messages from a 'printk'. Return true (and with the
1511  * console_lock held, and 'console_locked' set) if it
1512  * is successful, false otherwise.
1513  */
1514 static int console_trylock_for_printk(void)
1515 {
1516 	unsigned int cpu = smp_processor_id();
1517 
1518 	if (!console_trylock())
1519 		return 0;
1520 	/*
1521 	 * If we can't use the console, we need to release the console
1522 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1523 	 * console semaphore in order to do this test safely.
1524 	 */
1525 	if (!can_use_console(cpu)) {
1526 		console_locked = 0;
1527 		up_console_sem();
1528 		return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 int printk_delay_msec __read_mostly;
1534 
1535 static inline void printk_delay(void)
1536 {
1537 	if (unlikely(printk_delay_msec)) {
1538 		int m = printk_delay_msec;
1539 
1540 		while (m--) {
1541 			mdelay(1);
1542 			touch_nmi_watchdog();
1543 		}
1544 	}
1545 }
1546 
1547 /*
1548  * Continuation lines are buffered, and not committed to the record buffer
1549  * until the line is complete, or a race forces it. The line fragments
1550  * though, are printed immediately to the consoles to ensure everything has
1551  * reached the console in case of a kernel crash.
1552  */
1553 static struct cont {
1554 	char buf[LOG_LINE_MAX];
1555 	size_t len;			/* length == 0 means unused buffer */
1556 	size_t cons;			/* bytes written to console */
1557 	struct task_struct *owner;	/* task of first print*/
1558 	u64 ts_nsec;			/* time of first print */
1559 	u8 level;			/* log level of first message */
1560 	u8 facility;			/* log facility of first message */
1561 	enum log_flags flags;		/* prefix, newline flags */
1562 	bool flushed:1;			/* buffer sealed and committed */
1563 } cont;
1564 
1565 static void cont_flush(enum log_flags flags)
1566 {
1567 	if (cont.flushed)
1568 		return;
1569 	if (cont.len == 0)
1570 		return;
1571 
1572 	if (cont.cons) {
1573 		/*
1574 		 * If a fragment of this line was directly flushed to the
1575 		 * console; wait for the console to pick up the rest of the
1576 		 * line. LOG_NOCONS suppresses a duplicated output.
1577 		 */
1578 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1579 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1580 		cont.flags = flags;
1581 		cont.flushed = true;
1582 	} else {
1583 		/*
1584 		 * If no fragment of this line ever reached the console,
1585 		 * just submit it to the store and free the buffer.
1586 		 */
1587 		log_store(cont.facility, cont.level, flags, 0,
1588 			  NULL, 0, cont.buf, cont.len);
1589 		cont.len = 0;
1590 	}
1591 }
1592 
1593 static bool cont_add(int facility, int level, const char *text, size_t len)
1594 {
1595 	if (cont.len && cont.flushed)
1596 		return false;
1597 
1598 	/*
1599 	 * If ext consoles are present, flush and skip in-kernel
1600 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1601 	 * the line gets too long, split it up in separate records.
1602 	 */
1603 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1604 		cont_flush(LOG_CONT);
1605 		return false;
1606 	}
1607 
1608 	if (!cont.len) {
1609 		cont.facility = facility;
1610 		cont.level = level;
1611 		cont.owner = current;
1612 		cont.ts_nsec = local_clock();
1613 		cont.flags = 0;
1614 		cont.cons = 0;
1615 		cont.flushed = false;
1616 	}
1617 
1618 	memcpy(cont.buf + cont.len, text, len);
1619 	cont.len += len;
1620 
1621 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1622 		cont_flush(LOG_CONT);
1623 
1624 	return true;
1625 }
1626 
1627 static size_t cont_print_text(char *text, size_t size)
1628 {
1629 	size_t textlen = 0;
1630 	size_t len;
1631 
1632 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1633 		textlen += print_time(cont.ts_nsec, text);
1634 		size -= textlen;
1635 	}
1636 
1637 	len = cont.len - cont.cons;
1638 	if (len > 0) {
1639 		if (len+1 > size)
1640 			len = size-1;
1641 		memcpy(text + textlen, cont.buf + cont.cons, len);
1642 		textlen += len;
1643 		cont.cons = cont.len;
1644 	}
1645 
1646 	if (cont.flushed) {
1647 		if (cont.flags & LOG_NEWLINE)
1648 			text[textlen++] = '\n';
1649 		/* got everything, release buffer */
1650 		cont.len = 0;
1651 	}
1652 	return textlen;
1653 }
1654 
1655 asmlinkage int vprintk_emit(int facility, int level,
1656 			    const char *dict, size_t dictlen,
1657 			    const char *fmt, va_list args)
1658 {
1659 	static int recursion_bug;
1660 	static char textbuf[LOG_LINE_MAX];
1661 	char *text = textbuf;
1662 	size_t text_len = 0;
1663 	enum log_flags lflags = 0;
1664 	unsigned long flags;
1665 	int this_cpu;
1666 	int printed_len = 0;
1667 	bool in_sched = false;
1668 	/* cpu currently holding logbuf_lock in this function */
1669 	static unsigned int logbuf_cpu = UINT_MAX;
1670 
1671 	if (level == LOGLEVEL_SCHED) {
1672 		level = LOGLEVEL_DEFAULT;
1673 		in_sched = true;
1674 	}
1675 
1676 	boot_delay_msec(level);
1677 	printk_delay();
1678 
1679 	/* This stops the holder of console_sem just where we want him */
1680 	local_irq_save(flags);
1681 	this_cpu = smp_processor_id();
1682 
1683 	/*
1684 	 * Ouch, printk recursed into itself!
1685 	 */
1686 	if (unlikely(logbuf_cpu == this_cpu)) {
1687 		/*
1688 		 * If a crash is occurring during printk() on this CPU,
1689 		 * then try to get the crash message out but make sure
1690 		 * we can't deadlock. Otherwise just return to avoid the
1691 		 * recursion and return - but flag the recursion so that
1692 		 * it can be printed at the next appropriate moment:
1693 		 */
1694 		if (!oops_in_progress && !lockdep_recursing(current)) {
1695 			recursion_bug = 1;
1696 			local_irq_restore(flags);
1697 			return 0;
1698 		}
1699 		zap_locks();
1700 	}
1701 
1702 	lockdep_off();
1703 	raw_spin_lock(&logbuf_lock);
1704 	logbuf_cpu = this_cpu;
1705 
1706 	if (unlikely(recursion_bug)) {
1707 		static const char recursion_msg[] =
1708 			"BUG: recent printk recursion!";
1709 
1710 		recursion_bug = 0;
1711 		/* emit KERN_CRIT message */
1712 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1713 					 NULL, 0, recursion_msg,
1714 					 strlen(recursion_msg));
1715 	}
1716 
1717 	/*
1718 	 * The printf needs to come first; we need the syslog
1719 	 * prefix which might be passed-in as a parameter.
1720 	 */
1721 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1722 
1723 	/* mark and strip a trailing newline */
1724 	if (text_len && text[text_len-1] == '\n') {
1725 		text_len--;
1726 		lflags |= LOG_NEWLINE;
1727 	}
1728 
1729 	/* strip kernel syslog prefix and extract log level or control flags */
1730 	if (facility == 0) {
1731 		int kern_level = printk_get_level(text);
1732 
1733 		if (kern_level) {
1734 			const char *end_of_header = printk_skip_level(text);
1735 			switch (kern_level) {
1736 			case '0' ... '7':
1737 				if (level == LOGLEVEL_DEFAULT)
1738 					level = kern_level - '0';
1739 				/* fallthrough */
1740 			case 'd':	/* KERN_DEFAULT */
1741 				lflags |= LOG_PREFIX;
1742 			}
1743 			/*
1744 			 * No need to check length here because vscnprintf
1745 			 * put '\0' at the end of the string. Only valid and
1746 			 * newly printed level is detected.
1747 			 */
1748 			text_len -= end_of_header - text;
1749 			text = (char *)end_of_header;
1750 		}
1751 	}
1752 
1753 	if (level == LOGLEVEL_DEFAULT)
1754 		level = default_message_loglevel;
1755 
1756 	if (dict)
1757 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1758 
1759 	if (!(lflags & LOG_NEWLINE)) {
1760 		/*
1761 		 * Flush the conflicting buffer. An earlier newline was missing,
1762 		 * or another task also prints continuation lines.
1763 		 */
1764 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1765 			cont_flush(LOG_NEWLINE);
1766 
1767 		/* buffer line if possible, otherwise store it right away */
1768 		if (cont_add(facility, level, text, text_len))
1769 			printed_len += text_len;
1770 		else
1771 			printed_len += log_store(facility, level,
1772 						 lflags | LOG_CONT, 0,
1773 						 dict, dictlen, text, text_len);
1774 	} else {
1775 		bool stored = false;
1776 
1777 		/*
1778 		 * If an earlier newline was missing and it was the same task,
1779 		 * either merge it with the current buffer and flush, or if
1780 		 * there was a race with interrupts (prefix == true) then just
1781 		 * flush it out and store this line separately.
1782 		 * If the preceding printk was from a different task and missed
1783 		 * a newline, flush and append the newline.
1784 		 */
1785 		if (cont.len) {
1786 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1787 				stored = cont_add(facility, level, text,
1788 						  text_len);
1789 			cont_flush(LOG_NEWLINE);
1790 		}
1791 
1792 		if (stored)
1793 			printed_len += text_len;
1794 		else
1795 			printed_len += log_store(facility, level, lflags, 0,
1796 						 dict, dictlen, text, text_len);
1797 	}
1798 
1799 	logbuf_cpu = UINT_MAX;
1800 	raw_spin_unlock(&logbuf_lock);
1801 	lockdep_on();
1802 	local_irq_restore(flags);
1803 
1804 	/* If called from the scheduler, we can not call up(). */
1805 	if (!in_sched) {
1806 		lockdep_off();
1807 		/*
1808 		 * Disable preemption to avoid being preempted while holding
1809 		 * console_sem which would prevent anyone from printing to
1810 		 * console
1811 		 */
1812 		preempt_disable();
1813 
1814 		/*
1815 		 * Try to acquire and then immediately release the console
1816 		 * semaphore.  The release will print out buffers and wake up
1817 		 * /dev/kmsg and syslog() users.
1818 		 */
1819 		if (console_trylock_for_printk())
1820 			console_unlock();
1821 		preempt_enable();
1822 		lockdep_on();
1823 	}
1824 
1825 	return printed_len;
1826 }
1827 EXPORT_SYMBOL(vprintk_emit);
1828 
1829 asmlinkage int vprintk(const char *fmt, va_list args)
1830 {
1831 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1832 }
1833 EXPORT_SYMBOL(vprintk);
1834 
1835 asmlinkage int printk_emit(int facility, int level,
1836 			   const char *dict, size_t dictlen,
1837 			   const char *fmt, ...)
1838 {
1839 	va_list args;
1840 	int r;
1841 
1842 	va_start(args, fmt);
1843 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1844 	va_end(args);
1845 
1846 	return r;
1847 }
1848 EXPORT_SYMBOL(printk_emit);
1849 
1850 int vprintk_default(const char *fmt, va_list args)
1851 {
1852 	int r;
1853 
1854 #ifdef CONFIG_KGDB_KDB
1855 	if (unlikely(kdb_trap_printk)) {
1856 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1857 		return r;
1858 	}
1859 #endif
1860 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1861 
1862 	return r;
1863 }
1864 EXPORT_SYMBOL_GPL(vprintk_default);
1865 
1866 /*
1867  * This allows printk to be diverted to another function per cpu.
1868  * This is useful for calling printk functions from within NMI
1869  * without worrying about race conditions that can lock up the
1870  * box.
1871  */
1872 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1873 
1874 /**
1875  * printk - print a kernel message
1876  * @fmt: format string
1877  *
1878  * This is printk(). It can be called from any context. We want it to work.
1879  *
1880  * We try to grab the console_lock. If we succeed, it's easy - we log the
1881  * output and call the console drivers.  If we fail to get the semaphore, we
1882  * place the output into the log buffer and return. The current holder of
1883  * the console_sem will notice the new output in console_unlock(); and will
1884  * send it to the consoles before releasing the lock.
1885  *
1886  * One effect of this deferred printing is that code which calls printk() and
1887  * then changes console_loglevel may break. This is because console_loglevel
1888  * is inspected when the actual printing occurs.
1889  *
1890  * See also:
1891  * printf(3)
1892  *
1893  * See the vsnprintf() documentation for format string extensions over C99.
1894  */
1895 asmlinkage __visible int printk(const char *fmt, ...)
1896 {
1897 	printk_func_t vprintk_func;
1898 	va_list args;
1899 	int r;
1900 
1901 	va_start(args, fmt);
1902 
1903 	/*
1904 	 * If a caller overrides the per_cpu printk_func, then it needs
1905 	 * to disable preemption when calling printk(). Otherwise
1906 	 * the printk_func should be set to the default. No need to
1907 	 * disable preemption here.
1908 	 */
1909 	vprintk_func = this_cpu_read(printk_func);
1910 	r = vprintk_func(fmt, args);
1911 
1912 	va_end(args);
1913 
1914 	return r;
1915 }
1916 EXPORT_SYMBOL(printk);
1917 
1918 #else /* CONFIG_PRINTK */
1919 
1920 #define LOG_LINE_MAX		0
1921 #define PREFIX_MAX		0
1922 
1923 static u64 syslog_seq;
1924 static u32 syslog_idx;
1925 static u64 console_seq;
1926 static u32 console_idx;
1927 static enum log_flags syslog_prev;
1928 static u64 log_first_seq;
1929 static u32 log_first_idx;
1930 static u64 log_next_seq;
1931 static enum log_flags console_prev;
1932 static struct cont {
1933 	size_t len;
1934 	size_t cons;
1935 	u8 level;
1936 	bool flushed:1;
1937 } cont;
1938 static char *log_text(const struct printk_log *msg) { return NULL; }
1939 static char *log_dict(const struct printk_log *msg) { return NULL; }
1940 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1941 static u32 log_next(u32 idx) { return 0; }
1942 static ssize_t msg_print_ext_header(char *buf, size_t size,
1943 				    struct printk_log *msg, u64 seq,
1944 				    enum log_flags prev_flags) { return 0; }
1945 static ssize_t msg_print_ext_body(char *buf, size_t size,
1946 				  char *dict, size_t dict_len,
1947 				  char *text, size_t text_len) { return 0; }
1948 static void call_console_drivers(int level,
1949 				 const char *ext_text, size_t ext_len,
1950 				 const char *text, size_t len) {}
1951 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1952 			     bool syslog, char *buf, size_t size) { return 0; }
1953 static size_t cont_print_text(char *text, size_t size) { return 0; }
1954 
1955 /* Still needs to be defined for users */
1956 DEFINE_PER_CPU(printk_func_t, printk_func);
1957 
1958 #endif /* CONFIG_PRINTK */
1959 
1960 #ifdef CONFIG_EARLY_PRINTK
1961 struct console *early_console;
1962 
1963 asmlinkage __visible void early_printk(const char *fmt, ...)
1964 {
1965 	va_list ap;
1966 	char buf[512];
1967 	int n;
1968 
1969 	if (!early_console)
1970 		return;
1971 
1972 	va_start(ap, fmt);
1973 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1974 	va_end(ap);
1975 
1976 	early_console->write(early_console, buf, n);
1977 }
1978 #endif
1979 
1980 static int __add_preferred_console(char *name, int idx, char *options,
1981 				   char *brl_options)
1982 {
1983 	struct console_cmdline *c;
1984 	int i;
1985 
1986 	/*
1987 	 *	See if this tty is not yet registered, and
1988 	 *	if we have a slot free.
1989 	 */
1990 	for (i = 0, c = console_cmdline;
1991 	     i < MAX_CMDLINECONSOLES && c->name[0];
1992 	     i++, c++) {
1993 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1994 			if (!brl_options)
1995 				selected_console = i;
1996 			return 0;
1997 		}
1998 	}
1999 	if (i == MAX_CMDLINECONSOLES)
2000 		return -E2BIG;
2001 	if (!brl_options)
2002 		selected_console = i;
2003 	strlcpy(c->name, name, sizeof(c->name));
2004 	c->options = options;
2005 	braille_set_options(c, brl_options);
2006 
2007 	c->index = idx;
2008 	return 0;
2009 }
2010 /*
2011  * Set up a console.  Called via do_early_param() in init/main.c
2012  * for each "console=" parameter in the boot command line.
2013  */
2014 static int __init console_setup(char *str)
2015 {
2016 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2017 	char *s, *options, *brl_options = NULL;
2018 	int idx;
2019 
2020 	if (_braille_console_setup(&str, &brl_options))
2021 		return 1;
2022 
2023 	/*
2024 	 * Decode str into name, index, options.
2025 	 */
2026 	if (str[0] >= '0' && str[0] <= '9') {
2027 		strcpy(buf, "ttyS");
2028 		strncpy(buf + 4, str, sizeof(buf) - 5);
2029 	} else {
2030 		strncpy(buf, str, sizeof(buf) - 1);
2031 	}
2032 	buf[sizeof(buf) - 1] = 0;
2033 	options = strchr(str, ',');
2034 	if (options)
2035 		*(options++) = 0;
2036 #ifdef __sparc__
2037 	if (!strcmp(str, "ttya"))
2038 		strcpy(buf, "ttyS0");
2039 	if (!strcmp(str, "ttyb"))
2040 		strcpy(buf, "ttyS1");
2041 #endif
2042 	for (s = buf; *s; s++)
2043 		if (isdigit(*s) || *s == ',')
2044 			break;
2045 	idx = simple_strtoul(s, NULL, 10);
2046 	*s = 0;
2047 
2048 	__add_preferred_console(buf, idx, options, brl_options);
2049 	console_set_on_cmdline = 1;
2050 	return 1;
2051 }
2052 __setup("console=", console_setup);
2053 
2054 /**
2055  * add_preferred_console - add a device to the list of preferred consoles.
2056  * @name: device name
2057  * @idx: device index
2058  * @options: options for this console
2059  *
2060  * The last preferred console added will be used for kernel messages
2061  * and stdin/out/err for init.  Normally this is used by console_setup
2062  * above to handle user-supplied console arguments; however it can also
2063  * be used by arch-specific code either to override the user or more
2064  * commonly to provide a default console (ie from PROM variables) when
2065  * the user has not supplied one.
2066  */
2067 int add_preferred_console(char *name, int idx, char *options)
2068 {
2069 	return __add_preferred_console(name, idx, options, NULL);
2070 }
2071 
2072 bool console_suspend_enabled = true;
2073 EXPORT_SYMBOL(console_suspend_enabled);
2074 
2075 static int __init console_suspend_disable(char *str)
2076 {
2077 	console_suspend_enabled = false;
2078 	return 1;
2079 }
2080 __setup("no_console_suspend", console_suspend_disable);
2081 module_param_named(console_suspend, console_suspend_enabled,
2082 		bool, S_IRUGO | S_IWUSR);
2083 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2084 	" and hibernate operations");
2085 
2086 /**
2087  * suspend_console - suspend the console subsystem
2088  *
2089  * This disables printk() while we go into suspend states
2090  */
2091 void suspend_console(void)
2092 {
2093 	if (!console_suspend_enabled)
2094 		return;
2095 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2096 	console_lock();
2097 	console_suspended = 1;
2098 	up_console_sem();
2099 }
2100 
2101 void resume_console(void)
2102 {
2103 	if (!console_suspend_enabled)
2104 		return;
2105 	down_console_sem();
2106 	console_suspended = 0;
2107 	console_unlock();
2108 }
2109 
2110 /**
2111  * console_cpu_notify - print deferred console messages after CPU hotplug
2112  * @self: notifier struct
2113  * @action: CPU hotplug event
2114  * @hcpu: unused
2115  *
2116  * If printk() is called from a CPU that is not online yet, the messages
2117  * will be spooled but will not show up on the console.  This function is
2118  * called when a new CPU comes online (or fails to come up), and ensures
2119  * that any such output gets printed.
2120  */
2121 static int console_cpu_notify(struct notifier_block *self,
2122 	unsigned long action, void *hcpu)
2123 {
2124 	switch (action) {
2125 	case CPU_ONLINE:
2126 	case CPU_DEAD:
2127 	case CPU_DOWN_FAILED:
2128 	case CPU_UP_CANCELED:
2129 		console_lock();
2130 		console_unlock();
2131 	}
2132 	return NOTIFY_OK;
2133 }
2134 
2135 /**
2136  * console_lock - lock the console system for exclusive use.
2137  *
2138  * Acquires a lock which guarantees that the caller has
2139  * exclusive access to the console system and the console_drivers list.
2140  *
2141  * Can sleep, returns nothing.
2142  */
2143 void console_lock(void)
2144 {
2145 	might_sleep();
2146 
2147 	down_console_sem();
2148 	if (console_suspended)
2149 		return;
2150 	console_locked = 1;
2151 	console_may_schedule = 1;
2152 }
2153 EXPORT_SYMBOL(console_lock);
2154 
2155 /**
2156  * console_trylock - try to lock the console system for exclusive use.
2157  *
2158  * Try to acquire a lock which guarantees that the caller has exclusive
2159  * access to the console system and the console_drivers list.
2160  *
2161  * returns 1 on success, and 0 on failure to acquire the lock.
2162  */
2163 int console_trylock(void)
2164 {
2165 	if (down_trylock_console_sem())
2166 		return 0;
2167 	if (console_suspended) {
2168 		up_console_sem();
2169 		return 0;
2170 	}
2171 	console_locked = 1;
2172 	console_may_schedule = 0;
2173 	return 1;
2174 }
2175 EXPORT_SYMBOL(console_trylock);
2176 
2177 int is_console_locked(void)
2178 {
2179 	return console_locked;
2180 }
2181 
2182 static void console_cont_flush(char *text, size_t size)
2183 {
2184 	unsigned long flags;
2185 	size_t len;
2186 
2187 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2188 
2189 	if (!cont.len)
2190 		goto out;
2191 
2192 	/*
2193 	 * We still queue earlier records, likely because the console was
2194 	 * busy. The earlier ones need to be printed before this one, we
2195 	 * did not flush any fragment so far, so just let it queue up.
2196 	 */
2197 	if (console_seq < log_next_seq && !cont.cons)
2198 		goto out;
2199 
2200 	len = cont_print_text(text, size);
2201 	raw_spin_unlock(&logbuf_lock);
2202 	stop_critical_timings();
2203 	call_console_drivers(cont.level, NULL, 0, text, len);
2204 	start_critical_timings();
2205 	local_irq_restore(flags);
2206 	return;
2207 out:
2208 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2209 }
2210 
2211 /**
2212  * console_unlock - unlock the console system
2213  *
2214  * Releases the console_lock which the caller holds on the console system
2215  * and the console driver list.
2216  *
2217  * While the console_lock was held, console output may have been buffered
2218  * by printk().  If this is the case, console_unlock(); emits
2219  * the output prior to releasing the lock.
2220  *
2221  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2222  *
2223  * console_unlock(); may be called from any context.
2224  */
2225 void console_unlock(void)
2226 {
2227 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2228 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2229 	static u64 seen_seq;
2230 	unsigned long flags;
2231 	bool wake_klogd = false;
2232 	bool retry;
2233 
2234 	if (console_suspended) {
2235 		up_console_sem();
2236 		return;
2237 	}
2238 
2239 	console_may_schedule = 0;
2240 
2241 	/* flush buffered message fragment immediately to console */
2242 	console_cont_flush(text, sizeof(text));
2243 again:
2244 	for (;;) {
2245 		struct printk_log *msg;
2246 		size_t ext_len = 0;
2247 		size_t len;
2248 		int level;
2249 
2250 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2251 		if (seen_seq != log_next_seq) {
2252 			wake_klogd = true;
2253 			seen_seq = log_next_seq;
2254 		}
2255 
2256 		if (console_seq < log_first_seq) {
2257 			len = sprintf(text, "** %u printk messages dropped ** ",
2258 				      (unsigned)(log_first_seq - console_seq));
2259 
2260 			/* messages are gone, move to first one */
2261 			console_seq = log_first_seq;
2262 			console_idx = log_first_idx;
2263 			console_prev = 0;
2264 		} else {
2265 			len = 0;
2266 		}
2267 skip:
2268 		if (console_seq == log_next_seq)
2269 			break;
2270 
2271 		msg = log_from_idx(console_idx);
2272 		if (msg->flags & LOG_NOCONS) {
2273 			/*
2274 			 * Skip record we have buffered and already printed
2275 			 * directly to the console when we received it.
2276 			 */
2277 			console_idx = log_next(console_idx);
2278 			console_seq++;
2279 			/*
2280 			 * We will get here again when we register a new
2281 			 * CON_PRINTBUFFER console. Clear the flag so we
2282 			 * will properly dump everything later.
2283 			 */
2284 			msg->flags &= ~LOG_NOCONS;
2285 			console_prev = msg->flags;
2286 			goto skip;
2287 		}
2288 
2289 		level = msg->level;
2290 		len += msg_print_text(msg, console_prev, false,
2291 				      text + len, sizeof(text) - len);
2292 		if (nr_ext_console_drivers) {
2293 			ext_len = msg_print_ext_header(ext_text,
2294 						sizeof(ext_text),
2295 						msg, console_seq, console_prev);
2296 			ext_len += msg_print_ext_body(ext_text + ext_len,
2297 						sizeof(ext_text) - ext_len,
2298 						log_dict(msg), msg->dict_len,
2299 						log_text(msg), msg->text_len);
2300 		}
2301 		console_idx = log_next(console_idx);
2302 		console_seq++;
2303 		console_prev = msg->flags;
2304 		raw_spin_unlock(&logbuf_lock);
2305 
2306 		stop_critical_timings();	/* don't trace print latency */
2307 		call_console_drivers(level, ext_text, ext_len, text, len);
2308 		start_critical_timings();
2309 		local_irq_restore(flags);
2310 	}
2311 	console_locked = 0;
2312 
2313 	/* Release the exclusive_console once it is used */
2314 	if (unlikely(exclusive_console))
2315 		exclusive_console = NULL;
2316 
2317 	raw_spin_unlock(&logbuf_lock);
2318 
2319 	up_console_sem();
2320 
2321 	/*
2322 	 * Someone could have filled up the buffer again, so re-check if there's
2323 	 * something to flush. In case we cannot trylock the console_sem again,
2324 	 * there's a new owner and the console_unlock() from them will do the
2325 	 * flush, no worries.
2326 	 */
2327 	raw_spin_lock(&logbuf_lock);
2328 	retry = console_seq != log_next_seq;
2329 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2330 
2331 	if (retry && console_trylock())
2332 		goto again;
2333 
2334 	if (wake_klogd)
2335 		wake_up_klogd();
2336 }
2337 EXPORT_SYMBOL(console_unlock);
2338 
2339 /**
2340  * console_conditional_schedule - yield the CPU if required
2341  *
2342  * If the console code is currently allowed to sleep, and
2343  * if this CPU should yield the CPU to another task, do
2344  * so here.
2345  *
2346  * Must be called within console_lock();.
2347  */
2348 void __sched console_conditional_schedule(void)
2349 {
2350 	if (console_may_schedule)
2351 		cond_resched();
2352 }
2353 EXPORT_SYMBOL(console_conditional_schedule);
2354 
2355 void console_unblank(void)
2356 {
2357 	struct console *c;
2358 
2359 	/*
2360 	 * console_unblank can no longer be called in interrupt context unless
2361 	 * oops_in_progress is set to 1..
2362 	 */
2363 	if (oops_in_progress) {
2364 		if (down_trylock_console_sem() != 0)
2365 			return;
2366 	} else
2367 		console_lock();
2368 
2369 	console_locked = 1;
2370 	console_may_schedule = 0;
2371 	for_each_console(c)
2372 		if ((c->flags & CON_ENABLED) && c->unblank)
2373 			c->unblank();
2374 	console_unlock();
2375 }
2376 
2377 /*
2378  * Return the console tty driver structure and its associated index
2379  */
2380 struct tty_driver *console_device(int *index)
2381 {
2382 	struct console *c;
2383 	struct tty_driver *driver = NULL;
2384 
2385 	console_lock();
2386 	for_each_console(c) {
2387 		if (!c->device)
2388 			continue;
2389 		driver = c->device(c, index);
2390 		if (driver)
2391 			break;
2392 	}
2393 	console_unlock();
2394 	return driver;
2395 }
2396 
2397 /*
2398  * Prevent further output on the passed console device so that (for example)
2399  * serial drivers can disable console output before suspending a port, and can
2400  * re-enable output afterwards.
2401  */
2402 void console_stop(struct console *console)
2403 {
2404 	console_lock();
2405 	console->flags &= ~CON_ENABLED;
2406 	console_unlock();
2407 }
2408 EXPORT_SYMBOL(console_stop);
2409 
2410 void console_start(struct console *console)
2411 {
2412 	console_lock();
2413 	console->flags |= CON_ENABLED;
2414 	console_unlock();
2415 }
2416 EXPORT_SYMBOL(console_start);
2417 
2418 static int __read_mostly keep_bootcon;
2419 
2420 static int __init keep_bootcon_setup(char *str)
2421 {
2422 	keep_bootcon = 1;
2423 	pr_info("debug: skip boot console de-registration.\n");
2424 
2425 	return 0;
2426 }
2427 
2428 early_param("keep_bootcon", keep_bootcon_setup);
2429 
2430 /*
2431  * The console driver calls this routine during kernel initialization
2432  * to register the console printing procedure with printk() and to
2433  * print any messages that were printed by the kernel before the
2434  * console driver was initialized.
2435  *
2436  * This can happen pretty early during the boot process (because of
2437  * early_printk) - sometimes before setup_arch() completes - be careful
2438  * of what kernel features are used - they may not be initialised yet.
2439  *
2440  * There are two types of consoles - bootconsoles (early_printk) and
2441  * "real" consoles (everything which is not a bootconsole) which are
2442  * handled differently.
2443  *  - Any number of bootconsoles can be registered at any time.
2444  *  - As soon as a "real" console is registered, all bootconsoles
2445  *    will be unregistered automatically.
2446  *  - Once a "real" console is registered, any attempt to register a
2447  *    bootconsoles will be rejected
2448  */
2449 void register_console(struct console *newcon)
2450 {
2451 	int i;
2452 	unsigned long flags;
2453 	struct console *bcon = NULL;
2454 	struct console_cmdline *c;
2455 
2456 	if (console_drivers)
2457 		for_each_console(bcon)
2458 			if (WARN(bcon == newcon,
2459 					"console '%s%d' already registered\n",
2460 					bcon->name, bcon->index))
2461 				return;
2462 
2463 	/*
2464 	 * before we register a new CON_BOOT console, make sure we don't
2465 	 * already have a valid console
2466 	 */
2467 	if (console_drivers && newcon->flags & CON_BOOT) {
2468 		/* find the last or real console */
2469 		for_each_console(bcon) {
2470 			if (!(bcon->flags & CON_BOOT)) {
2471 				pr_info("Too late to register bootconsole %s%d\n",
2472 					newcon->name, newcon->index);
2473 				return;
2474 			}
2475 		}
2476 	}
2477 
2478 	if (console_drivers && console_drivers->flags & CON_BOOT)
2479 		bcon = console_drivers;
2480 
2481 	if (preferred_console < 0 || bcon || !console_drivers)
2482 		preferred_console = selected_console;
2483 
2484 	/*
2485 	 *	See if we want to use this console driver. If we
2486 	 *	didn't select a console we take the first one
2487 	 *	that registers here.
2488 	 */
2489 	if (preferred_console < 0) {
2490 		if (newcon->index < 0)
2491 			newcon->index = 0;
2492 		if (newcon->setup == NULL ||
2493 		    newcon->setup(newcon, NULL) == 0) {
2494 			newcon->flags |= CON_ENABLED;
2495 			if (newcon->device) {
2496 				newcon->flags |= CON_CONSDEV;
2497 				preferred_console = 0;
2498 			}
2499 		}
2500 	}
2501 
2502 	/*
2503 	 *	See if this console matches one we selected on
2504 	 *	the command line.
2505 	 */
2506 	for (i = 0, c = console_cmdline;
2507 	     i < MAX_CMDLINECONSOLES && c->name[0];
2508 	     i++, c++) {
2509 		if (!newcon->match ||
2510 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2511 			/* default matching */
2512 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2513 			if (strcmp(c->name, newcon->name) != 0)
2514 				continue;
2515 			if (newcon->index >= 0 &&
2516 			    newcon->index != c->index)
2517 				continue;
2518 			if (newcon->index < 0)
2519 				newcon->index = c->index;
2520 
2521 			if (_braille_register_console(newcon, c))
2522 				return;
2523 
2524 			if (newcon->setup &&
2525 			    newcon->setup(newcon, c->options) != 0)
2526 				break;
2527 		}
2528 
2529 		newcon->flags |= CON_ENABLED;
2530 		if (i == selected_console) {
2531 			newcon->flags |= CON_CONSDEV;
2532 			preferred_console = selected_console;
2533 		}
2534 		break;
2535 	}
2536 
2537 	if (!(newcon->flags & CON_ENABLED))
2538 		return;
2539 
2540 	/*
2541 	 * If we have a bootconsole, and are switching to a real console,
2542 	 * don't print everything out again, since when the boot console, and
2543 	 * the real console are the same physical device, it's annoying to
2544 	 * see the beginning boot messages twice
2545 	 */
2546 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2547 		newcon->flags &= ~CON_PRINTBUFFER;
2548 
2549 	/*
2550 	 *	Put this console in the list - keep the
2551 	 *	preferred driver at the head of the list.
2552 	 */
2553 	console_lock();
2554 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2555 		newcon->next = console_drivers;
2556 		console_drivers = newcon;
2557 		if (newcon->next)
2558 			newcon->next->flags &= ~CON_CONSDEV;
2559 	} else {
2560 		newcon->next = console_drivers->next;
2561 		console_drivers->next = newcon;
2562 	}
2563 
2564 	if (newcon->flags & CON_EXTENDED)
2565 		if (!nr_ext_console_drivers++)
2566 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2567 
2568 	if (newcon->flags & CON_PRINTBUFFER) {
2569 		/*
2570 		 * console_unlock(); will print out the buffered messages
2571 		 * for us.
2572 		 */
2573 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2574 		console_seq = syslog_seq;
2575 		console_idx = syslog_idx;
2576 		console_prev = syslog_prev;
2577 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2578 		/*
2579 		 * We're about to replay the log buffer.  Only do this to the
2580 		 * just-registered console to avoid excessive message spam to
2581 		 * the already-registered consoles.
2582 		 */
2583 		exclusive_console = newcon;
2584 	}
2585 	console_unlock();
2586 	console_sysfs_notify();
2587 
2588 	/*
2589 	 * By unregistering the bootconsoles after we enable the real console
2590 	 * we get the "console xxx enabled" message on all the consoles -
2591 	 * boot consoles, real consoles, etc - this is to ensure that end
2592 	 * users know there might be something in the kernel's log buffer that
2593 	 * went to the bootconsole (that they do not see on the real console)
2594 	 */
2595 	pr_info("%sconsole [%s%d] enabled\n",
2596 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2597 		newcon->name, newcon->index);
2598 	if (bcon &&
2599 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2600 	    !keep_bootcon) {
2601 		/* We need to iterate through all boot consoles, to make
2602 		 * sure we print everything out, before we unregister them.
2603 		 */
2604 		for_each_console(bcon)
2605 			if (bcon->flags & CON_BOOT)
2606 				unregister_console(bcon);
2607 	}
2608 }
2609 EXPORT_SYMBOL(register_console);
2610 
2611 int unregister_console(struct console *console)
2612 {
2613         struct console *a, *b;
2614 	int res;
2615 
2616 	pr_info("%sconsole [%s%d] disabled\n",
2617 		(console->flags & CON_BOOT) ? "boot" : "" ,
2618 		console->name, console->index);
2619 
2620 	res = _braille_unregister_console(console);
2621 	if (res)
2622 		return res;
2623 
2624 	res = 1;
2625 	console_lock();
2626 	if (console_drivers == console) {
2627 		console_drivers=console->next;
2628 		res = 0;
2629 	} else if (console_drivers) {
2630 		for (a=console_drivers->next, b=console_drivers ;
2631 		     a; b=a, a=b->next) {
2632 			if (a == console) {
2633 				b->next = a->next;
2634 				res = 0;
2635 				break;
2636 			}
2637 		}
2638 	}
2639 
2640 	if (!res && (console->flags & CON_EXTENDED))
2641 		nr_ext_console_drivers--;
2642 
2643 	/*
2644 	 * If this isn't the last console and it has CON_CONSDEV set, we
2645 	 * need to set it on the next preferred console.
2646 	 */
2647 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2648 		console_drivers->flags |= CON_CONSDEV;
2649 
2650 	console->flags &= ~CON_ENABLED;
2651 	console_unlock();
2652 	console_sysfs_notify();
2653 	return res;
2654 }
2655 EXPORT_SYMBOL(unregister_console);
2656 
2657 static int __init printk_late_init(void)
2658 {
2659 	struct console *con;
2660 
2661 	for_each_console(con) {
2662 		if (!keep_bootcon && con->flags & CON_BOOT) {
2663 			unregister_console(con);
2664 		}
2665 	}
2666 	hotcpu_notifier(console_cpu_notify, 0);
2667 	return 0;
2668 }
2669 late_initcall(printk_late_init);
2670 
2671 #if defined CONFIG_PRINTK
2672 /*
2673  * Delayed printk version, for scheduler-internal messages:
2674  */
2675 #define PRINTK_PENDING_WAKEUP	0x01
2676 #define PRINTK_PENDING_OUTPUT	0x02
2677 
2678 static DEFINE_PER_CPU(int, printk_pending);
2679 
2680 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2681 {
2682 	int pending = __this_cpu_xchg(printk_pending, 0);
2683 
2684 	if (pending & PRINTK_PENDING_OUTPUT) {
2685 		/* If trylock fails, someone else is doing the printing */
2686 		if (console_trylock())
2687 			console_unlock();
2688 	}
2689 
2690 	if (pending & PRINTK_PENDING_WAKEUP)
2691 		wake_up_interruptible(&log_wait);
2692 }
2693 
2694 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2695 	.func = wake_up_klogd_work_func,
2696 	.flags = IRQ_WORK_LAZY,
2697 };
2698 
2699 void wake_up_klogd(void)
2700 {
2701 	preempt_disable();
2702 	if (waitqueue_active(&log_wait)) {
2703 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2704 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2705 	}
2706 	preempt_enable();
2707 }
2708 
2709 int printk_deferred(const char *fmt, ...)
2710 {
2711 	va_list args;
2712 	int r;
2713 
2714 	preempt_disable();
2715 	va_start(args, fmt);
2716 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2717 	va_end(args);
2718 
2719 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2720 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2721 	preempt_enable();
2722 
2723 	return r;
2724 }
2725 
2726 /*
2727  * printk rate limiting, lifted from the networking subsystem.
2728  *
2729  * This enforces a rate limit: not more than 10 kernel messages
2730  * every 5s to make a denial-of-service attack impossible.
2731  */
2732 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2733 
2734 int __printk_ratelimit(const char *func)
2735 {
2736 	return ___ratelimit(&printk_ratelimit_state, func);
2737 }
2738 EXPORT_SYMBOL(__printk_ratelimit);
2739 
2740 /**
2741  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2742  * @caller_jiffies: pointer to caller's state
2743  * @interval_msecs: minimum interval between prints
2744  *
2745  * printk_timed_ratelimit() returns true if more than @interval_msecs
2746  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2747  * returned true.
2748  */
2749 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2750 			unsigned int interval_msecs)
2751 {
2752 	unsigned long elapsed = jiffies - *caller_jiffies;
2753 
2754 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2755 		return false;
2756 
2757 	*caller_jiffies = jiffies;
2758 	return true;
2759 }
2760 EXPORT_SYMBOL(printk_timed_ratelimit);
2761 
2762 static DEFINE_SPINLOCK(dump_list_lock);
2763 static LIST_HEAD(dump_list);
2764 
2765 /**
2766  * kmsg_dump_register - register a kernel log dumper.
2767  * @dumper: pointer to the kmsg_dumper structure
2768  *
2769  * Adds a kernel log dumper to the system. The dump callback in the
2770  * structure will be called when the kernel oopses or panics and must be
2771  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2772  */
2773 int kmsg_dump_register(struct kmsg_dumper *dumper)
2774 {
2775 	unsigned long flags;
2776 	int err = -EBUSY;
2777 
2778 	/* The dump callback needs to be set */
2779 	if (!dumper->dump)
2780 		return -EINVAL;
2781 
2782 	spin_lock_irqsave(&dump_list_lock, flags);
2783 	/* Don't allow registering multiple times */
2784 	if (!dumper->registered) {
2785 		dumper->registered = 1;
2786 		list_add_tail_rcu(&dumper->list, &dump_list);
2787 		err = 0;
2788 	}
2789 	spin_unlock_irqrestore(&dump_list_lock, flags);
2790 
2791 	return err;
2792 }
2793 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2794 
2795 /**
2796  * kmsg_dump_unregister - unregister a kmsg dumper.
2797  * @dumper: pointer to the kmsg_dumper structure
2798  *
2799  * Removes a dump device from the system. Returns zero on success and
2800  * %-EINVAL otherwise.
2801  */
2802 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2803 {
2804 	unsigned long flags;
2805 	int err = -EINVAL;
2806 
2807 	spin_lock_irqsave(&dump_list_lock, flags);
2808 	if (dumper->registered) {
2809 		dumper->registered = 0;
2810 		list_del_rcu(&dumper->list);
2811 		err = 0;
2812 	}
2813 	spin_unlock_irqrestore(&dump_list_lock, flags);
2814 	synchronize_rcu();
2815 
2816 	return err;
2817 }
2818 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2819 
2820 static bool always_kmsg_dump;
2821 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2822 
2823 /**
2824  * kmsg_dump - dump kernel log to kernel message dumpers.
2825  * @reason: the reason (oops, panic etc) for dumping
2826  *
2827  * Call each of the registered dumper's dump() callback, which can
2828  * retrieve the kmsg records with kmsg_dump_get_line() or
2829  * kmsg_dump_get_buffer().
2830  */
2831 void kmsg_dump(enum kmsg_dump_reason reason)
2832 {
2833 	struct kmsg_dumper *dumper;
2834 	unsigned long flags;
2835 
2836 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2837 		return;
2838 
2839 	rcu_read_lock();
2840 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2841 		if (dumper->max_reason && reason > dumper->max_reason)
2842 			continue;
2843 
2844 		/* initialize iterator with data about the stored records */
2845 		dumper->active = true;
2846 
2847 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2848 		dumper->cur_seq = clear_seq;
2849 		dumper->cur_idx = clear_idx;
2850 		dumper->next_seq = log_next_seq;
2851 		dumper->next_idx = log_next_idx;
2852 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2853 
2854 		/* invoke dumper which will iterate over records */
2855 		dumper->dump(dumper, reason);
2856 
2857 		/* reset iterator */
2858 		dumper->active = false;
2859 	}
2860 	rcu_read_unlock();
2861 }
2862 
2863 /**
2864  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2865  * @dumper: registered kmsg dumper
2866  * @syslog: include the "<4>" prefixes
2867  * @line: buffer to copy the line to
2868  * @size: maximum size of the buffer
2869  * @len: length of line placed into buffer
2870  *
2871  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2872  * record, and copy one record into the provided buffer.
2873  *
2874  * Consecutive calls will return the next available record moving
2875  * towards the end of the buffer with the youngest messages.
2876  *
2877  * A return value of FALSE indicates that there are no more records to
2878  * read.
2879  *
2880  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2881  */
2882 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2883 			       char *line, size_t size, size_t *len)
2884 {
2885 	struct printk_log *msg;
2886 	size_t l = 0;
2887 	bool ret = false;
2888 
2889 	if (!dumper->active)
2890 		goto out;
2891 
2892 	if (dumper->cur_seq < log_first_seq) {
2893 		/* messages are gone, move to first available one */
2894 		dumper->cur_seq = log_first_seq;
2895 		dumper->cur_idx = log_first_idx;
2896 	}
2897 
2898 	/* last entry */
2899 	if (dumper->cur_seq >= log_next_seq)
2900 		goto out;
2901 
2902 	msg = log_from_idx(dumper->cur_idx);
2903 	l = msg_print_text(msg, 0, syslog, line, size);
2904 
2905 	dumper->cur_idx = log_next(dumper->cur_idx);
2906 	dumper->cur_seq++;
2907 	ret = true;
2908 out:
2909 	if (len)
2910 		*len = l;
2911 	return ret;
2912 }
2913 
2914 /**
2915  * kmsg_dump_get_line - retrieve one kmsg log line
2916  * @dumper: registered kmsg dumper
2917  * @syslog: include the "<4>" prefixes
2918  * @line: buffer to copy the line to
2919  * @size: maximum size of the buffer
2920  * @len: length of line placed into buffer
2921  *
2922  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2923  * record, and copy one record into the provided buffer.
2924  *
2925  * Consecutive calls will return the next available record moving
2926  * towards the end of the buffer with the youngest messages.
2927  *
2928  * A return value of FALSE indicates that there are no more records to
2929  * read.
2930  */
2931 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2932 			char *line, size_t size, size_t *len)
2933 {
2934 	unsigned long flags;
2935 	bool ret;
2936 
2937 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2938 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2939 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2940 
2941 	return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2944 
2945 /**
2946  * kmsg_dump_get_buffer - copy kmsg log lines
2947  * @dumper: registered kmsg dumper
2948  * @syslog: include the "<4>" prefixes
2949  * @buf: buffer to copy the line to
2950  * @size: maximum size of the buffer
2951  * @len: length of line placed into buffer
2952  *
2953  * Start at the end of the kmsg buffer and fill the provided buffer
2954  * with as many of the the *youngest* kmsg records that fit into it.
2955  * If the buffer is large enough, all available kmsg records will be
2956  * copied with a single call.
2957  *
2958  * Consecutive calls will fill the buffer with the next block of
2959  * available older records, not including the earlier retrieved ones.
2960  *
2961  * A return value of FALSE indicates that there are no more records to
2962  * read.
2963  */
2964 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2965 			  char *buf, size_t size, size_t *len)
2966 {
2967 	unsigned long flags;
2968 	u64 seq;
2969 	u32 idx;
2970 	u64 next_seq;
2971 	u32 next_idx;
2972 	enum log_flags prev;
2973 	size_t l = 0;
2974 	bool ret = false;
2975 
2976 	if (!dumper->active)
2977 		goto out;
2978 
2979 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2980 	if (dumper->cur_seq < log_first_seq) {
2981 		/* messages are gone, move to first available one */
2982 		dumper->cur_seq = log_first_seq;
2983 		dumper->cur_idx = log_first_idx;
2984 	}
2985 
2986 	/* last entry */
2987 	if (dumper->cur_seq >= dumper->next_seq) {
2988 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2989 		goto out;
2990 	}
2991 
2992 	/* calculate length of entire buffer */
2993 	seq = dumper->cur_seq;
2994 	idx = dumper->cur_idx;
2995 	prev = 0;
2996 	while (seq < dumper->next_seq) {
2997 		struct printk_log *msg = log_from_idx(idx);
2998 
2999 		l += msg_print_text(msg, prev, true, NULL, 0);
3000 		idx = log_next(idx);
3001 		seq++;
3002 		prev = msg->flags;
3003 	}
3004 
3005 	/* move first record forward until length fits into the buffer */
3006 	seq = dumper->cur_seq;
3007 	idx = dumper->cur_idx;
3008 	prev = 0;
3009 	while (l > size && seq < dumper->next_seq) {
3010 		struct printk_log *msg = log_from_idx(idx);
3011 
3012 		l -= msg_print_text(msg, prev, true, NULL, 0);
3013 		idx = log_next(idx);
3014 		seq++;
3015 		prev = msg->flags;
3016 	}
3017 
3018 	/* last message in next interation */
3019 	next_seq = seq;
3020 	next_idx = idx;
3021 
3022 	l = 0;
3023 	while (seq < dumper->next_seq) {
3024 		struct printk_log *msg = log_from_idx(idx);
3025 
3026 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3027 		idx = log_next(idx);
3028 		seq++;
3029 		prev = msg->flags;
3030 	}
3031 
3032 	dumper->next_seq = next_seq;
3033 	dumper->next_idx = next_idx;
3034 	ret = true;
3035 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3036 out:
3037 	if (len)
3038 		*len = l;
3039 	return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3042 
3043 /**
3044  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3045  * @dumper: registered kmsg dumper
3046  *
3047  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3048  * kmsg_dump_get_buffer() can be called again and used multiple
3049  * times within the same dumper.dump() callback.
3050  *
3051  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3052  */
3053 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3054 {
3055 	dumper->cur_seq = clear_seq;
3056 	dumper->cur_idx = clear_idx;
3057 	dumper->next_seq = log_next_seq;
3058 	dumper->next_idx = log_next_idx;
3059 }
3060 
3061 /**
3062  * kmsg_dump_rewind - reset the interator
3063  * @dumper: registered kmsg dumper
3064  *
3065  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3066  * kmsg_dump_get_buffer() can be called again and used multiple
3067  * times within the same dumper.dump() callback.
3068  */
3069 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3070 {
3071 	unsigned long flags;
3072 
3073 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3074 	kmsg_dump_rewind_nolock(dumper);
3075 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3076 }
3077 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3078 
3079 static char dump_stack_arch_desc_str[128];
3080 
3081 /**
3082  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3083  * @fmt: printf-style format string
3084  * @...: arguments for the format string
3085  *
3086  * The configured string will be printed right after utsname during task
3087  * dumps.  Usually used to add arch-specific system identifiers.  If an
3088  * arch wants to make use of such an ID string, it should initialize this
3089  * as soon as possible during boot.
3090  */
3091 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3092 {
3093 	va_list args;
3094 
3095 	va_start(args, fmt);
3096 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3097 		  fmt, args);
3098 	va_end(args);
3099 }
3100 
3101 /**
3102  * dump_stack_print_info - print generic debug info for dump_stack()
3103  * @log_lvl: log level
3104  *
3105  * Arch-specific dump_stack() implementations can use this function to
3106  * print out the same debug information as the generic dump_stack().
3107  */
3108 void dump_stack_print_info(const char *log_lvl)
3109 {
3110 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3111 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3112 	       print_tainted(), init_utsname()->release,
3113 	       (int)strcspn(init_utsname()->version, " "),
3114 	       init_utsname()->version);
3115 
3116 	if (dump_stack_arch_desc_str[0] != '\0')
3117 		printk("%sHardware name: %s\n",
3118 		       log_lvl, dump_stack_arch_desc_str);
3119 
3120 	print_worker_info(log_lvl, current);
3121 }
3122 
3123 /**
3124  * show_regs_print_info - print generic debug info for show_regs()
3125  * @log_lvl: log level
3126  *
3127  * show_regs() implementations can use this function to print out generic
3128  * debug information.
3129  */
3130 void show_regs_print_info(const char *log_lvl)
3131 {
3132 	dump_stack_print_info(log_lvl);
3133 
3134 	printk("%stask: %p ti: %p task.ti: %p\n",
3135 	       log_lvl, current, current_thread_info(),
3136 	       task_thread_info(current));
3137 }
3138 
3139 #endif
3140