1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/kexec.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/notifier.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/utsname.h> 47 #include <linux/ctype.h> 48 #include <linux/uio.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* 66 * Low level drivers may need that to know if they can schedule in 67 * their unblank() callback or not. So let's export it. 68 */ 69 int oops_in_progress; 70 EXPORT_SYMBOL(oops_in_progress); 71 72 /* 73 * console_sem protects the console_drivers list, and also 74 * provides serialisation for access to the entire console 75 * driver system. 76 */ 77 static DEFINE_SEMAPHORE(console_sem); 78 struct console *console_drivers; 79 EXPORT_SYMBOL_GPL(console_drivers); 80 81 #ifdef CONFIG_LOCKDEP 82 static struct lockdep_map console_lock_dep_map = { 83 .name = "console_lock" 84 }; 85 #endif 86 87 /* 88 * Number of registered extended console drivers. 89 * 90 * If extended consoles are present, in-kernel cont reassembly is disabled 91 * and each fragment is stored as a separate log entry with proper 92 * continuation flag so that every emitted message has full metadata. This 93 * doesn't change the result for regular consoles or /proc/kmsg. For 94 * /dev/kmsg, as long as the reader concatenates messages according to 95 * consecutive continuation flags, the end result should be the same too. 96 */ 97 static int nr_ext_console_drivers; 98 99 /* 100 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 101 * macros instead of functions so that _RET_IP_ contains useful information. 102 */ 103 #define down_console_sem() do { \ 104 down(&console_sem);\ 105 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 106 } while (0) 107 108 static int __down_trylock_console_sem(unsigned long ip) 109 { 110 if (down_trylock(&console_sem)) 111 return 1; 112 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 113 return 0; 114 } 115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 116 117 #define up_console_sem() do { \ 118 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 119 up(&console_sem);\ 120 } while (0) 121 122 /* 123 * This is used for debugging the mess that is the VT code by 124 * keeping track if we have the console semaphore held. It's 125 * definitely not the perfect debug tool (we don't know if _WE_ 126 * hold it and are racing, but it helps tracking those weird code 127 * paths in the console code where we end up in places I want 128 * locked without the console sempahore held). 129 */ 130 static int console_locked, console_suspended; 131 132 /* 133 * If exclusive_console is non-NULL then only this console is to be printed to. 134 */ 135 static struct console *exclusive_console; 136 137 /* 138 * Array of consoles built from command line options (console=) 139 */ 140 141 #define MAX_CMDLINECONSOLES 8 142 143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 144 145 static int selected_console = -1; 146 static int preferred_console = -1; 147 int console_set_on_cmdline; 148 EXPORT_SYMBOL(console_set_on_cmdline); 149 150 /* Flag: console code may call schedule() */ 151 static int console_may_schedule; 152 153 /* 154 * The printk log buffer consists of a chain of concatenated variable 155 * length records. Every record starts with a record header, containing 156 * the overall length of the record. 157 * 158 * The heads to the first and last entry in the buffer, as well as the 159 * sequence numbers of these entries are maintained when messages are 160 * stored. 161 * 162 * If the heads indicate available messages, the length in the header 163 * tells the start next message. A length == 0 for the next message 164 * indicates a wrap-around to the beginning of the buffer. 165 * 166 * Every record carries the monotonic timestamp in microseconds, as well as 167 * the standard userspace syslog level and syslog facility. The usual 168 * kernel messages use LOG_KERN; userspace-injected messages always carry 169 * a matching syslog facility, by default LOG_USER. The origin of every 170 * message can be reliably determined that way. 171 * 172 * The human readable log message directly follows the message header. The 173 * length of the message text is stored in the header, the stored message 174 * is not terminated. 175 * 176 * Optionally, a message can carry a dictionary of properties (key/value pairs), 177 * to provide userspace with a machine-readable message context. 178 * 179 * Examples for well-defined, commonly used property names are: 180 * DEVICE=b12:8 device identifier 181 * b12:8 block dev_t 182 * c127:3 char dev_t 183 * n8 netdev ifindex 184 * +sound:card0 subsystem:devname 185 * SUBSYSTEM=pci driver-core subsystem name 186 * 187 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 188 * follows directly after a '=' character. Every property is terminated by 189 * a '\0' character. The last property is not terminated. 190 * 191 * Example of a message structure: 192 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 193 * 0008 34 00 record is 52 bytes long 194 * 000a 0b 00 text is 11 bytes long 195 * 000c 1f 00 dictionary is 23 bytes long 196 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 197 * 0010 69 74 27 73 20 61 20 6c "it's a l" 198 * 69 6e 65 "ine" 199 * 001b 44 45 56 49 43 "DEVIC" 200 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 201 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 202 * 67 "g" 203 * 0032 00 00 00 padding to next message header 204 * 205 * The 'struct printk_log' buffer header must never be directly exported to 206 * userspace, it is a kernel-private implementation detail that might 207 * need to be changed in the future, when the requirements change. 208 * 209 * /dev/kmsg exports the structured data in the following line format: 210 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 211 * 212 * Users of the export format should ignore possible additional values 213 * separated by ',', and find the message after the ';' character. 214 * 215 * The optional key/value pairs are attached as continuation lines starting 216 * with a space character and terminated by a newline. All possible 217 * non-prinatable characters are escaped in the "\xff" notation. 218 */ 219 220 enum log_flags { 221 LOG_NOCONS = 1, /* already flushed, do not print to console */ 222 LOG_NEWLINE = 2, /* text ended with a newline */ 223 LOG_PREFIX = 4, /* text started with a prefix */ 224 LOG_CONT = 8, /* text is a fragment of a continuation line */ 225 }; 226 227 struct printk_log { 228 u64 ts_nsec; /* timestamp in nanoseconds */ 229 u16 len; /* length of entire record */ 230 u16 text_len; /* length of text buffer */ 231 u16 dict_len; /* length of dictionary buffer */ 232 u8 facility; /* syslog facility */ 233 u8 flags:5; /* internal record flags */ 234 u8 level:3; /* syslog level */ 235 }; 236 237 /* 238 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 239 * within the scheduler's rq lock. It must be released before calling 240 * console_unlock() or anything else that might wake up a process. 241 */ 242 static DEFINE_RAW_SPINLOCK(logbuf_lock); 243 244 #ifdef CONFIG_PRINTK 245 DECLARE_WAIT_QUEUE_HEAD(log_wait); 246 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 247 static u64 syslog_seq; 248 static u32 syslog_idx; 249 static enum log_flags syslog_prev; 250 static size_t syslog_partial; 251 252 /* index and sequence number of the first record stored in the buffer */ 253 static u64 log_first_seq; 254 static u32 log_first_idx; 255 256 /* index and sequence number of the next record to store in the buffer */ 257 static u64 log_next_seq; 258 static u32 log_next_idx; 259 260 /* the next printk record to write to the console */ 261 static u64 console_seq; 262 static u32 console_idx; 263 static enum log_flags console_prev; 264 265 /* the next printk record to read after the last 'clear' command */ 266 static u64 clear_seq; 267 static u32 clear_idx; 268 269 #define PREFIX_MAX 32 270 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 271 272 /* record buffer */ 273 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 274 #define LOG_ALIGN 4 275 #else 276 #define LOG_ALIGN __alignof__(struct printk_log) 277 #endif 278 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 279 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 280 static char *log_buf = __log_buf; 281 static u32 log_buf_len = __LOG_BUF_LEN; 282 283 /* Return log buffer address */ 284 char *log_buf_addr_get(void) 285 { 286 return log_buf; 287 } 288 289 /* Return log buffer size */ 290 u32 log_buf_len_get(void) 291 { 292 return log_buf_len; 293 } 294 295 /* human readable text of the record */ 296 static char *log_text(const struct printk_log *msg) 297 { 298 return (char *)msg + sizeof(struct printk_log); 299 } 300 301 /* optional key/value pair dictionary attached to the record */ 302 static char *log_dict(const struct printk_log *msg) 303 { 304 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 305 } 306 307 /* get record by index; idx must point to valid msg */ 308 static struct printk_log *log_from_idx(u32 idx) 309 { 310 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 311 312 /* 313 * A length == 0 record is the end of buffer marker. Wrap around and 314 * read the message at the start of the buffer. 315 */ 316 if (!msg->len) 317 return (struct printk_log *)log_buf; 318 return msg; 319 } 320 321 /* get next record; idx must point to valid msg */ 322 static u32 log_next(u32 idx) 323 { 324 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 325 326 /* length == 0 indicates the end of the buffer; wrap */ 327 /* 328 * A length == 0 record is the end of buffer marker. Wrap around and 329 * read the message at the start of the buffer as *this* one, and 330 * return the one after that. 331 */ 332 if (!msg->len) { 333 msg = (struct printk_log *)log_buf; 334 return msg->len; 335 } 336 return idx + msg->len; 337 } 338 339 /* 340 * Check whether there is enough free space for the given message. 341 * 342 * The same values of first_idx and next_idx mean that the buffer 343 * is either empty or full. 344 * 345 * If the buffer is empty, we must respect the position of the indexes. 346 * They cannot be reset to the beginning of the buffer. 347 */ 348 static int logbuf_has_space(u32 msg_size, bool empty) 349 { 350 u32 free; 351 352 if (log_next_idx > log_first_idx || empty) 353 free = max(log_buf_len - log_next_idx, log_first_idx); 354 else 355 free = log_first_idx - log_next_idx; 356 357 /* 358 * We need space also for an empty header that signalizes wrapping 359 * of the buffer. 360 */ 361 return free >= msg_size + sizeof(struct printk_log); 362 } 363 364 static int log_make_free_space(u32 msg_size) 365 { 366 while (log_first_seq < log_next_seq) { 367 if (logbuf_has_space(msg_size, false)) 368 return 0; 369 /* drop old messages until we have enough contiguous space */ 370 log_first_idx = log_next(log_first_idx); 371 log_first_seq++; 372 } 373 374 /* sequence numbers are equal, so the log buffer is empty */ 375 if (logbuf_has_space(msg_size, true)) 376 return 0; 377 378 return -ENOMEM; 379 } 380 381 /* compute the message size including the padding bytes */ 382 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 383 { 384 u32 size; 385 386 size = sizeof(struct printk_log) + text_len + dict_len; 387 *pad_len = (-size) & (LOG_ALIGN - 1); 388 size += *pad_len; 389 390 return size; 391 } 392 393 /* 394 * Define how much of the log buffer we could take at maximum. The value 395 * must be greater than two. Note that only half of the buffer is available 396 * when the index points to the middle. 397 */ 398 #define MAX_LOG_TAKE_PART 4 399 static const char trunc_msg[] = "<truncated>"; 400 401 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 402 u16 *dict_len, u32 *pad_len) 403 { 404 /* 405 * The message should not take the whole buffer. Otherwise, it might 406 * get removed too soon. 407 */ 408 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 409 if (*text_len > max_text_len) 410 *text_len = max_text_len; 411 /* enable the warning message */ 412 *trunc_msg_len = strlen(trunc_msg); 413 /* disable the "dict" completely */ 414 *dict_len = 0; 415 /* compute the size again, count also the warning message */ 416 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 417 } 418 419 /* insert record into the buffer, discard old ones, update heads */ 420 static int log_store(int facility, int level, 421 enum log_flags flags, u64 ts_nsec, 422 const char *dict, u16 dict_len, 423 const char *text, u16 text_len) 424 { 425 struct printk_log *msg; 426 u32 size, pad_len; 427 u16 trunc_msg_len = 0; 428 429 /* number of '\0' padding bytes to next message */ 430 size = msg_used_size(text_len, dict_len, &pad_len); 431 432 if (log_make_free_space(size)) { 433 /* truncate the message if it is too long for empty buffer */ 434 size = truncate_msg(&text_len, &trunc_msg_len, 435 &dict_len, &pad_len); 436 /* survive when the log buffer is too small for trunc_msg */ 437 if (log_make_free_space(size)) 438 return 0; 439 } 440 441 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 442 /* 443 * This message + an additional empty header does not fit 444 * at the end of the buffer. Add an empty header with len == 0 445 * to signify a wrap around. 446 */ 447 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 448 log_next_idx = 0; 449 } 450 451 /* fill message */ 452 msg = (struct printk_log *)(log_buf + log_next_idx); 453 memcpy(log_text(msg), text, text_len); 454 msg->text_len = text_len; 455 if (trunc_msg_len) { 456 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 457 msg->text_len += trunc_msg_len; 458 } 459 memcpy(log_dict(msg), dict, dict_len); 460 msg->dict_len = dict_len; 461 msg->facility = facility; 462 msg->level = level & 7; 463 msg->flags = flags & 0x1f; 464 if (ts_nsec > 0) 465 msg->ts_nsec = ts_nsec; 466 else 467 msg->ts_nsec = local_clock(); 468 memset(log_dict(msg) + dict_len, 0, pad_len); 469 msg->len = size; 470 471 /* insert message */ 472 log_next_idx += msg->len; 473 log_next_seq++; 474 475 return msg->text_len; 476 } 477 478 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 479 480 static int syslog_action_restricted(int type) 481 { 482 if (dmesg_restrict) 483 return 1; 484 /* 485 * Unless restricted, we allow "read all" and "get buffer size" 486 * for everybody. 487 */ 488 return type != SYSLOG_ACTION_READ_ALL && 489 type != SYSLOG_ACTION_SIZE_BUFFER; 490 } 491 492 int check_syslog_permissions(int type, int source) 493 { 494 /* 495 * If this is from /proc/kmsg and we've already opened it, then we've 496 * already done the capabilities checks at open time. 497 */ 498 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 499 goto ok; 500 501 if (syslog_action_restricted(type)) { 502 if (capable(CAP_SYSLOG)) 503 goto ok; 504 /* 505 * For historical reasons, accept CAP_SYS_ADMIN too, with 506 * a warning. 507 */ 508 if (capable(CAP_SYS_ADMIN)) { 509 pr_warn_once("%s (%d): Attempt to access syslog with " 510 "CAP_SYS_ADMIN but no CAP_SYSLOG " 511 "(deprecated).\n", 512 current->comm, task_pid_nr(current)); 513 goto ok; 514 } 515 return -EPERM; 516 } 517 ok: 518 return security_syslog(type); 519 } 520 521 static void append_char(char **pp, char *e, char c) 522 { 523 if (*pp < e) 524 *(*pp)++ = c; 525 } 526 527 static ssize_t msg_print_ext_header(char *buf, size_t size, 528 struct printk_log *msg, u64 seq, 529 enum log_flags prev_flags) 530 { 531 u64 ts_usec = msg->ts_nsec; 532 char cont = '-'; 533 534 do_div(ts_usec, 1000); 535 536 /* 537 * If we couldn't merge continuation line fragments during the print, 538 * export the stored flags to allow an optional external merge of the 539 * records. Merging the records isn't always neccessarily correct, like 540 * when we hit a race during printing. In most cases though, it produces 541 * better readable output. 'c' in the record flags mark the first 542 * fragment of a line, '+' the following. 543 */ 544 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT)) 545 cont = 'c'; 546 else if ((msg->flags & LOG_CONT) || 547 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 548 cont = '+'; 549 550 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 551 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 552 } 553 554 static ssize_t msg_print_ext_body(char *buf, size_t size, 555 char *dict, size_t dict_len, 556 char *text, size_t text_len) 557 { 558 char *p = buf, *e = buf + size; 559 size_t i; 560 561 /* escape non-printable characters */ 562 for (i = 0; i < text_len; i++) { 563 unsigned char c = text[i]; 564 565 if (c < ' ' || c >= 127 || c == '\\') 566 p += scnprintf(p, e - p, "\\x%02x", c); 567 else 568 append_char(&p, e, c); 569 } 570 append_char(&p, e, '\n'); 571 572 if (dict_len) { 573 bool line = true; 574 575 for (i = 0; i < dict_len; i++) { 576 unsigned char c = dict[i]; 577 578 if (line) { 579 append_char(&p, e, ' '); 580 line = false; 581 } 582 583 if (c == '\0') { 584 append_char(&p, e, '\n'); 585 line = true; 586 continue; 587 } 588 589 if (c < ' ' || c >= 127 || c == '\\') { 590 p += scnprintf(p, e - p, "\\x%02x", c); 591 continue; 592 } 593 594 append_char(&p, e, c); 595 } 596 append_char(&p, e, '\n'); 597 } 598 599 return p - buf; 600 } 601 602 /* /dev/kmsg - userspace message inject/listen interface */ 603 struct devkmsg_user { 604 u64 seq; 605 u32 idx; 606 enum log_flags prev; 607 struct mutex lock; 608 char buf[CONSOLE_EXT_LOG_MAX]; 609 }; 610 611 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 612 { 613 char *buf, *line; 614 int i; 615 int level = default_message_loglevel; 616 int facility = 1; /* LOG_USER */ 617 size_t len = iov_iter_count(from); 618 ssize_t ret = len; 619 620 if (len > LOG_LINE_MAX) 621 return -EINVAL; 622 buf = kmalloc(len+1, GFP_KERNEL); 623 if (buf == NULL) 624 return -ENOMEM; 625 626 buf[len] = '\0'; 627 if (copy_from_iter(buf, len, from) != len) { 628 kfree(buf); 629 return -EFAULT; 630 } 631 632 /* 633 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 634 * the decimal value represents 32bit, the lower 3 bit are the log 635 * level, the rest are the log facility. 636 * 637 * If no prefix or no userspace facility is specified, we 638 * enforce LOG_USER, to be able to reliably distinguish 639 * kernel-generated messages from userspace-injected ones. 640 */ 641 line = buf; 642 if (line[0] == '<') { 643 char *endp = NULL; 644 645 i = simple_strtoul(line+1, &endp, 10); 646 if (endp && endp[0] == '>') { 647 level = i & 7; 648 if (i >> 3) 649 facility = i >> 3; 650 endp++; 651 len -= endp - line; 652 line = endp; 653 } 654 } 655 656 printk_emit(facility, level, NULL, 0, "%s", line); 657 kfree(buf); 658 return ret; 659 } 660 661 static ssize_t devkmsg_read(struct file *file, char __user *buf, 662 size_t count, loff_t *ppos) 663 { 664 struct devkmsg_user *user = file->private_data; 665 struct printk_log *msg; 666 size_t len; 667 ssize_t ret; 668 669 if (!user) 670 return -EBADF; 671 672 ret = mutex_lock_interruptible(&user->lock); 673 if (ret) 674 return ret; 675 raw_spin_lock_irq(&logbuf_lock); 676 while (user->seq == log_next_seq) { 677 if (file->f_flags & O_NONBLOCK) { 678 ret = -EAGAIN; 679 raw_spin_unlock_irq(&logbuf_lock); 680 goto out; 681 } 682 683 raw_spin_unlock_irq(&logbuf_lock); 684 ret = wait_event_interruptible(log_wait, 685 user->seq != log_next_seq); 686 if (ret) 687 goto out; 688 raw_spin_lock_irq(&logbuf_lock); 689 } 690 691 if (user->seq < log_first_seq) { 692 /* our last seen message is gone, return error and reset */ 693 user->idx = log_first_idx; 694 user->seq = log_first_seq; 695 ret = -EPIPE; 696 raw_spin_unlock_irq(&logbuf_lock); 697 goto out; 698 } 699 700 msg = log_from_idx(user->idx); 701 len = msg_print_ext_header(user->buf, sizeof(user->buf), 702 msg, user->seq, user->prev); 703 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 704 log_dict(msg), msg->dict_len, 705 log_text(msg), msg->text_len); 706 707 user->prev = msg->flags; 708 user->idx = log_next(user->idx); 709 user->seq++; 710 raw_spin_unlock_irq(&logbuf_lock); 711 712 if (len > count) { 713 ret = -EINVAL; 714 goto out; 715 } 716 717 if (copy_to_user(buf, user->buf, len)) { 718 ret = -EFAULT; 719 goto out; 720 } 721 ret = len; 722 out: 723 mutex_unlock(&user->lock); 724 return ret; 725 } 726 727 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 728 { 729 struct devkmsg_user *user = file->private_data; 730 loff_t ret = 0; 731 732 if (!user) 733 return -EBADF; 734 if (offset) 735 return -ESPIPE; 736 737 raw_spin_lock_irq(&logbuf_lock); 738 switch (whence) { 739 case SEEK_SET: 740 /* the first record */ 741 user->idx = log_first_idx; 742 user->seq = log_first_seq; 743 break; 744 case SEEK_DATA: 745 /* 746 * The first record after the last SYSLOG_ACTION_CLEAR, 747 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 748 * changes no global state, and does not clear anything. 749 */ 750 user->idx = clear_idx; 751 user->seq = clear_seq; 752 break; 753 case SEEK_END: 754 /* after the last record */ 755 user->idx = log_next_idx; 756 user->seq = log_next_seq; 757 break; 758 default: 759 ret = -EINVAL; 760 } 761 raw_spin_unlock_irq(&logbuf_lock); 762 return ret; 763 } 764 765 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 766 { 767 struct devkmsg_user *user = file->private_data; 768 int ret = 0; 769 770 if (!user) 771 return POLLERR|POLLNVAL; 772 773 poll_wait(file, &log_wait, wait); 774 775 raw_spin_lock_irq(&logbuf_lock); 776 if (user->seq < log_next_seq) { 777 /* return error when data has vanished underneath us */ 778 if (user->seq < log_first_seq) 779 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 780 else 781 ret = POLLIN|POLLRDNORM; 782 } 783 raw_spin_unlock_irq(&logbuf_lock); 784 785 return ret; 786 } 787 788 static int devkmsg_open(struct inode *inode, struct file *file) 789 { 790 struct devkmsg_user *user; 791 int err; 792 793 /* write-only does not need any file context */ 794 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 795 return 0; 796 797 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 798 SYSLOG_FROM_READER); 799 if (err) 800 return err; 801 802 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 803 if (!user) 804 return -ENOMEM; 805 806 mutex_init(&user->lock); 807 808 raw_spin_lock_irq(&logbuf_lock); 809 user->idx = log_first_idx; 810 user->seq = log_first_seq; 811 raw_spin_unlock_irq(&logbuf_lock); 812 813 file->private_data = user; 814 return 0; 815 } 816 817 static int devkmsg_release(struct inode *inode, struct file *file) 818 { 819 struct devkmsg_user *user = file->private_data; 820 821 if (!user) 822 return 0; 823 824 mutex_destroy(&user->lock); 825 kfree(user); 826 return 0; 827 } 828 829 const struct file_operations kmsg_fops = { 830 .open = devkmsg_open, 831 .read = devkmsg_read, 832 .write_iter = devkmsg_write, 833 .llseek = devkmsg_llseek, 834 .poll = devkmsg_poll, 835 .release = devkmsg_release, 836 }; 837 838 #ifdef CONFIG_KEXEC 839 /* 840 * This appends the listed symbols to /proc/vmcore 841 * 842 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 843 * obtain access to symbols that are otherwise very difficult to locate. These 844 * symbols are specifically used so that utilities can access and extract the 845 * dmesg log from a vmcore file after a crash. 846 */ 847 void log_buf_kexec_setup(void) 848 { 849 VMCOREINFO_SYMBOL(log_buf); 850 VMCOREINFO_SYMBOL(log_buf_len); 851 VMCOREINFO_SYMBOL(log_first_idx); 852 VMCOREINFO_SYMBOL(log_next_idx); 853 /* 854 * Export struct printk_log size and field offsets. User space tools can 855 * parse it and detect any changes to structure down the line. 856 */ 857 VMCOREINFO_STRUCT_SIZE(printk_log); 858 VMCOREINFO_OFFSET(printk_log, ts_nsec); 859 VMCOREINFO_OFFSET(printk_log, len); 860 VMCOREINFO_OFFSET(printk_log, text_len); 861 VMCOREINFO_OFFSET(printk_log, dict_len); 862 } 863 #endif 864 865 /* requested log_buf_len from kernel cmdline */ 866 static unsigned long __initdata new_log_buf_len; 867 868 /* we practice scaling the ring buffer by powers of 2 */ 869 static void __init log_buf_len_update(unsigned size) 870 { 871 if (size) 872 size = roundup_pow_of_two(size); 873 if (size > log_buf_len) 874 new_log_buf_len = size; 875 } 876 877 /* save requested log_buf_len since it's too early to process it */ 878 static int __init log_buf_len_setup(char *str) 879 { 880 unsigned size = memparse(str, &str); 881 882 log_buf_len_update(size); 883 884 return 0; 885 } 886 early_param("log_buf_len", log_buf_len_setup); 887 888 #ifdef CONFIG_SMP 889 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 890 891 static void __init log_buf_add_cpu(void) 892 { 893 unsigned int cpu_extra; 894 895 /* 896 * archs should set up cpu_possible_bits properly with 897 * set_cpu_possible() after setup_arch() but just in 898 * case lets ensure this is valid. 899 */ 900 if (num_possible_cpus() == 1) 901 return; 902 903 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 904 905 /* by default this will only continue through for large > 64 CPUs */ 906 if (cpu_extra <= __LOG_BUF_LEN / 2) 907 return; 908 909 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 910 __LOG_CPU_MAX_BUF_LEN); 911 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 912 cpu_extra); 913 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 914 915 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 916 } 917 #else /* !CONFIG_SMP */ 918 static inline void log_buf_add_cpu(void) {} 919 #endif /* CONFIG_SMP */ 920 921 void __init setup_log_buf(int early) 922 { 923 unsigned long flags; 924 char *new_log_buf; 925 int free; 926 927 if (log_buf != __log_buf) 928 return; 929 930 if (!early && !new_log_buf_len) 931 log_buf_add_cpu(); 932 933 if (!new_log_buf_len) 934 return; 935 936 if (early) { 937 new_log_buf = 938 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 939 } else { 940 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 941 LOG_ALIGN); 942 } 943 944 if (unlikely(!new_log_buf)) { 945 pr_err("log_buf_len: %ld bytes not available\n", 946 new_log_buf_len); 947 return; 948 } 949 950 raw_spin_lock_irqsave(&logbuf_lock, flags); 951 log_buf_len = new_log_buf_len; 952 log_buf = new_log_buf; 953 new_log_buf_len = 0; 954 free = __LOG_BUF_LEN - log_next_idx; 955 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 956 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 957 958 pr_info("log_buf_len: %d bytes\n", log_buf_len); 959 pr_info("early log buf free: %d(%d%%)\n", 960 free, (free * 100) / __LOG_BUF_LEN); 961 } 962 963 static bool __read_mostly ignore_loglevel; 964 965 static int __init ignore_loglevel_setup(char *str) 966 { 967 ignore_loglevel = true; 968 pr_info("debug: ignoring loglevel setting.\n"); 969 970 return 0; 971 } 972 973 early_param("ignore_loglevel", ignore_loglevel_setup); 974 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 975 MODULE_PARM_DESC(ignore_loglevel, 976 "ignore loglevel setting (prints all kernel messages to the console)"); 977 978 #ifdef CONFIG_BOOT_PRINTK_DELAY 979 980 static int boot_delay; /* msecs delay after each printk during bootup */ 981 static unsigned long long loops_per_msec; /* based on boot_delay */ 982 983 static int __init boot_delay_setup(char *str) 984 { 985 unsigned long lpj; 986 987 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 988 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 989 990 get_option(&str, &boot_delay); 991 if (boot_delay > 10 * 1000) 992 boot_delay = 0; 993 994 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 995 "HZ: %d, loops_per_msec: %llu\n", 996 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 997 return 0; 998 } 999 early_param("boot_delay", boot_delay_setup); 1000 1001 static void boot_delay_msec(int level) 1002 { 1003 unsigned long long k; 1004 unsigned long timeout; 1005 1006 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1007 || (level >= console_loglevel && !ignore_loglevel)) { 1008 return; 1009 } 1010 1011 k = (unsigned long long)loops_per_msec * boot_delay; 1012 1013 timeout = jiffies + msecs_to_jiffies(boot_delay); 1014 while (k) { 1015 k--; 1016 cpu_relax(); 1017 /* 1018 * use (volatile) jiffies to prevent 1019 * compiler reduction; loop termination via jiffies 1020 * is secondary and may or may not happen. 1021 */ 1022 if (time_after(jiffies, timeout)) 1023 break; 1024 touch_nmi_watchdog(); 1025 } 1026 } 1027 #else 1028 static inline void boot_delay_msec(int level) 1029 { 1030 } 1031 #endif 1032 1033 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1034 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1035 1036 static size_t print_time(u64 ts, char *buf) 1037 { 1038 unsigned long rem_nsec; 1039 1040 if (!printk_time) 1041 return 0; 1042 1043 rem_nsec = do_div(ts, 1000000000); 1044 1045 if (!buf) 1046 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1047 1048 return sprintf(buf, "[%5lu.%06lu] ", 1049 (unsigned long)ts, rem_nsec / 1000); 1050 } 1051 1052 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1053 { 1054 size_t len = 0; 1055 unsigned int prefix = (msg->facility << 3) | msg->level; 1056 1057 if (syslog) { 1058 if (buf) { 1059 len += sprintf(buf, "<%u>", prefix); 1060 } else { 1061 len += 3; 1062 if (prefix > 999) 1063 len += 3; 1064 else if (prefix > 99) 1065 len += 2; 1066 else if (prefix > 9) 1067 len++; 1068 } 1069 } 1070 1071 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1072 return len; 1073 } 1074 1075 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1076 bool syslog, char *buf, size_t size) 1077 { 1078 const char *text = log_text(msg); 1079 size_t text_size = msg->text_len; 1080 bool prefix = true; 1081 bool newline = true; 1082 size_t len = 0; 1083 1084 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1085 prefix = false; 1086 1087 if (msg->flags & LOG_CONT) { 1088 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1089 prefix = false; 1090 1091 if (!(msg->flags & LOG_NEWLINE)) 1092 newline = false; 1093 } 1094 1095 do { 1096 const char *next = memchr(text, '\n', text_size); 1097 size_t text_len; 1098 1099 if (next) { 1100 text_len = next - text; 1101 next++; 1102 text_size -= next - text; 1103 } else { 1104 text_len = text_size; 1105 } 1106 1107 if (buf) { 1108 if (print_prefix(msg, syslog, NULL) + 1109 text_len + 1 >= size - len) 1110 break; 1111 1112 if (prefix) 1113 len += print_prefix(msg, syslog, buf + len); 1114 memcpy(buf + len, text, text_len); 1115 len += text_len; 1116 if (next || newline) 1117 buf[len++] = '\n'; 1118 } else { 1119 /* SYSLOG_ACTION_* buffer size only calculation */ 1120 if (prefix) 1121 len += print_prefix(msg, syslog, NULL); 1122 len += text_len; 1123 if (next || newline) 1124 len++; 1125 } 1126 1127 prefix = true; 1128 text = next; 1129 } while (text); 1130 1131 return len; 1132 } 1133 1134 static int syslog_print(char __user *buf, int size) 1135 { 1136 char *text; 1137 struct printk_log *msg; 1138 int len = 0; 1139 1140 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1141 if (!text) 1142 return -ENOMEM; 1143 1144 while (size > 0) { 1145 size_t n; 1146 size_t skip; 1147 1148 raw_spin_lock_irq(&logbuf_lock); 1149 if (syslog_seq < log_first_seq) { 1150 /* messages are gone, move to first one */ 1151 syslog_seq = log_first_seq; 1152 syslog_idx = log_first_idx; 1153 syslog_prev = 0; 1154 syslog_partial = 0; 1155 } 1156 if (syslog_seq == log_next_seq) { 1157 raw_spin_unlock_irq(&logbuf_lock); 1158 break; 1159 } 1160 1161 skip = syslog_partial; 1162 msg = log_from_idx(syslog_idx); 1163 n = msg_print_text(msg, syslog_prev, true, text, 1164 LOG_LINE_MAX + PREFIX_MAX); 1165 if (n - syslog_partial <= size) { 1166 /* message fits into buffer, move forward */ 1167 syslog_idx = log_next(syslog_idx); 1168 syslog_seq++; 1169 syslog_prev = msg->flags; 1170 n -= syslog_partial; 1171 syslog_partial = 0; 1172 } else if (!len){ 1173 /* partial read(), remember position */ 1174 n = size; 1175 syslog_partial += n; 1176 } else 1177 n = 0; 1178 raw_spin_unlock_irq(&logbuf_lock); 1179 1180 if (!n) 1181 break; 1182 1183 if (copy_to_user(buf, text + skip, n)) { 1184 if (!len) 1185 len = -EFAULT; 1186 break; 1187 } 1188 1189 len += n; 1190 size -= n; 1191 buf += n; 1192 } 1193 1194 kfree(text); 1195 return len; 1196 } 1197 1198 static int syslog_print_all(char __user *buf, int size, bool clear) 1199 { 1200 char *text; 1201 int len = 0; 1202 1203 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1204 if (!text) 1205 return -ENOMEM; 1206 1207 raw_spin_lock_irq(&logbuf_lock); 1208 if (buf) { 1209 u64 next_seq; 1210 u64 seq; 1211 u32 idx; 1212 enum log_flags prev; 1213 1214 if (clear_seq < log_first_seq) { 1215 /* messages are gone, move to first available one */ 1216 clear_seq = log_first_seq; 1217 clear_idx = log_first_idx; 1218 } 1219 1220 /* 1221 * Find first record that fits, including all following records, 1222 * into the user-provided buffer for this dump. 1223 */ 1224 seq = clear_seq; 1225 idx = clear_idx; 1226 prev = 0; 1227 while (seq < log_next_seq) { 1228 struct printk_log *msg = log_from_idx(idx); 1229 1230 len += msg_print_text(msg, prev, true, NULL, 0); 1231 prev = msg->flags; 1232 idx = log_next(idx); 1233 seq++; 1234 } 1235 1236 /* move first record forward until length fits into the buffer */ 1237 seq = clear_seq; 1238 idx = clear_idx; 1239 prev = 0; 1240 while (len > size && seq < log_next_seq) { 1241 struct printk_log *msg = log_from_idx(idx); 1242 1243 len -= msg_print_text(msg, prev, true, NULL, 0); 1244 prev = msg->flags; 1245 idx = log_next(idx); 1246 seq++; 1247 } 1248 1249 /* last message fitting into this dump */ 1250 next_seq = log_next_seq; 1251 1252 len = 0; 1253 while (len >= 0 && seq < next_seq) { 1254 struct printk_log *msg = log_from_idx(idx); 1255 int textlen; 1256 1257 textlen = msg_print_text(msg, prev, true, text, 1258 LOG_LINE_MAX + PREFIX_MAX); 1259 if (textlen < 0) { 1260 len = textlen; 1261 break; 1262 } 1263 idx = log_next(idx); 1264 seq++; 1265 prev = msg->flags; 1266 1267 raw_spin_unlock_irq(&logbuf_lock); 1268 if (copy_to_user(buf + len, text, textlen)) 1269 len = -EFAULT; 1270 else 1271 len += textlen; 1272 raw_spin_lock_irq(&logbuf_lock); 1273 1274 if (seq < log_first_seq) { 1275 /* messages are gone, move to next one */ 1276 seq = log_first_seq; 1277 idx = log_first_idx; 1278 prev = 0; 1279 } 1280 } 1281 } 1282 1283 if (clear) { 1284 clear_seq = log_next_seq; 1285 clear_idx = log_next_idx; 1286 } 1287 raw_spin_unlock_irq(&logbuf_lock); 1288 1289 kfree(text); 1290 return len; 1291 } 1292 1293 int do_syslog(int type, char __user *buf, int len, int source) 1294 { 1295 bool clear = false; 1296 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1297 int error; 1298 1299 error = check_syslog_permissions(type, source); 1300 if (error) 1301 goto out; 1302 1303 switch (type) { 1304 case SYSLOG_ACTION_CLOSE: /* Close log */ 1305 break; 1306 case SYSLOG_ACTION_OPEN: /* Open log */ 1307 break; 1308 case SYSLOG_ACTION_READ: /* Read from log */ 1309 error = -EINVAL; 1310 if (!buf || len < 0) 1311 goto out; 1312 error = 0; 1313 if (!len) 1314 goto out; 1315 if (!access_ok(VERIFY_WRITE, buf, len)) { 1316 error = -EFAULT; 1317 goto out; 1318 } 1319 error = wait_event_interruptible(log_wait, 1320 syslog_seq != log_next_seq); 1321 if (error) 1322 goto out; 1323 error = syslog_print(buf, len); 1324 break; 1325 /* Read/clear last kernel messages */ 1326 case SYSLOG_ACTION_READ_CLEAR: 1327 clear = true; 1328 /* FALL THRU */ 1329 /* Read last kernel messages */ 1330 case SYSLOG_ACTION_READ_ALL: 1331 error = -EINVAL; 1332 if (!buf || len < 0) 1333 goto out; 1334 error = 0; 1335 if (!len) 1336 goto out; 1337 if (!access_ok(VERIFY_WRITE, buf, len)) { 1338 error = -EFAULT; 1339 goto out; 1340 } 1341 error = syslog_print_all(buf, len, clear); 1342 break; 1343 /* Clear ring buffer */ 1344 case SYSLOG_ACTION_CLEAR: 1345 syslog_print_all(NULL, 0, true); 1346 break; 1347 /* Disable logging to console */ 1348 case SYSLOG_ACTION_CONSOLE_OFF: 1349 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1350 saved_console_loglevel = console_loglevel; 1351 console_loglevel = minimum_console_loglevel; 1352 break; 1353 /* Enable logging to console */ 1354 case SYSLOG_ACTION_CONSOLE_ON: 1355 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1356 console_loglevel = saved_console_loglevel; 1357 saved_console_loglevel = LOGLEVEL_DEFAULT; 1358 } 1359 break; 1360 /* Set level of messages printed to console */ 1361 case SYSLOG_ACTION_CONSOLE_LEVEL: 1362 error = -EINVAL; 1363 if (len < 1 || len > 8) 1364 goto out; 1365 if (len < minimum_console_loglevel) 1366 len = minimum_console_loglevel; 1367 console_loglevel = len; 1368 /* Implicitly re-enable logging to console */ 1369 saved_console_loglevel = LOGLEVEL_DEFAULT; 1370 error = 0; 1371 break; 1372 /* Number of chars in the log buffer */ 1373 case SYSLOG_ACTION_SIZE_UNREAD: 1374 raw_spin_lock_irq(&logbuf_lock); 1375 if (syslog_seq < log_first_seq) { 1376 /* messages are gone, move to first one */ 1377 syslog_seq = log_first_seq; 1378 syslog_idx = log_first_idx; 1379 syslog_prev = 0; 1380 syslog_partial = 0; 1381 } 1382 if (source == SYSLOG_FROM_PROC) { 1383 /* 1384 * Short-cut for poll(/"proc/kmsg") which simply checks 1385 * for pending data, not the size; return the count of 1386 * records, not the length. 1387 */ 1388 error = log_next_seq - syslog_seq; 1389 } else { 1390 u64 seq = syslog_seq; 1391 u32 idx = syslog_idx; 1392 enum log_flags prev = syslog_prev; 1393 1394 error = 0; 1395 while (seq < log_next_seq) { 1396 struct printk_log *msg = log_from_idx(idx); 1397 1398 error += msg_print_text(msg, prev, true, NULL, 0); 1399 idx = log_next(idx); 1400 seq++; 1401 prev = msg->flags; 1402 } 1403 error -= syslog_partial; 1404 } 1405 raw_spin_unlock_irq(&logbuf_lock); 1406 break; 1407 /* Size of the log buffer */ 1408 case SYSLOG_ACTION_SIZE_BUFFER: 1409 error = log_buf_len; 1410 break; 1411 default: 1412 error = -EINVAL; 1413 break; 1414 } 1415 out: 1416 return error; 1417 } 1418 1419 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1420 { 1421 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1422 } 1423 1424 /* 1425 * Call the console drivers, asking them to write out 1426 * log_buf[start] to log_buf[end - 1]. 1427 * The console_lock must be held. 1428 */ 1429 static void call_console_drivers(int level, 1430 const char *ext_text, size_t ext_len, 1431 const char *text, size_t len) 1432 { 1433 struct console *con; 1434 1435 trace_console(text, len); 1436 1437 if (level >= console_loglevel && !ignore_loglevel) 1438 return; 1439 if (!console_drivers) 1440 return; 1441 1442 for_each_console(con) { 1443 if (exclusive_console && con != exclusive_console) 1444 continue; 1445 if (!(con->flags & CON_ENABLED)) 1446 continue; 1447 if (!con->write) 1448 continue; 1449 if (!cpu_online(smp_processor_id()) && 1450 !(con->flags & CON_ANYTIME)) 1451 continue; 1452 if (con->flags & CON_EXTENDED) 1453 con->write(con, ext_text, ext_len); 1454 else 1455 con->write(con, text, len); 1456 } 1457 } 1458 1459 /* 1460 * Zap console related locks when oopsing. 1461 * To leave time for slow consoles to print a full oops, 1462 * only zap at most once every 30 seconds. 1463 */ 1464 static void zap_locks(void) 1465 { 1466 static unsigned long oops_timestamp; 1467 1468 if (time_after_eq(jiffies, oops_timestamp) && 1469 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1470 return; 1471 1472 oops_timestamp = jiffies; 1473 1474 debug_locks_off(); 1475 /* If a crash is occurring, make sure we can't deadlock */ 1476 raw_spin_lock_init(&logbuf_lock); 1477 /* And make sure that we print immediately */ 1478 sema_init(&console_sem, 1); 1479 } 1480 1481 /* 1482 * Check if we have any console that is capable of printing while cpu is 1483 * booting or shutting down. Requires console_sem. 1484 */ 1485 static int have_callable_console(void) 1486 { 1487 struct console *con; 1488 1489 for_each_console(con) 1490 if (con->flags & CON_ANYTIME) 1491 return 1; 1492 1493 return 0; 1494 } 1495 1496 /* 1497 * Can we actually use the console at this time on this cpu? 1498 * 1499 * Console drivers may assume that per-cpu resources have been allocated. So 1500 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1501 * call them until this CPU is officially up. 1502 */ 1503 static inline int can_use_console(unsigned int cpu) 1504 { 1505 return cpu_online(cpu) || have_callable_console(); 1506 } 1507 1508 /* 1509 * Try to get console ownership to actually show the kernel 1510 * messages from a 'printk'. Return true (and with the 1511 * console_lock held, and 'console_locked' set) if it 1512 * is successful, false otherwise. 1513 */ 1514 static int console_trylock_for_printk(void) 1515 { 1516 unsigned int cpu = smp_processor_id(); 1517 1518 if (!console_trylock()) 1519 return 0; 1520 /* 1521 * If we can't use the console, we need to release the console 1522 * semaphore by hand to avoid flushing the buffer. We need to hold the 1523 * console semaphore in order to do this test safely. 1524 */ 1525 if (!can_use_console(cpu)) { 1526 console_locked = 0; 1527 up_console_sem(); 1528 return 0; 1529 } 1530 return 1; 1531 } 1532 1533 int printk_delay_msec __read_mostly; 1534 1535 static inline void printk_delay(void) 1536 { 1537 if (unlikely(printk_delay_msec)) { 1538 int m = printk_delay_msec; 1539 1540 while (m--) { 1541 mdelay(1); 1542 touch_nmi_watchdog(); 1543 } 1544 } 1545 } 1546 1547 /* 1548 * Continuation lines are buffered, and not committed to the record buffer 1549 * until the line is complete, or a race forces it. The line fragments 1550 * though, are printed immediately to the consoles to ensure everything has 1551 * reached the console in case of a kernel crash. 1552 */ 1553 static struct cont { 1554 char buf[LOG_LINE_MAX]; 1555 size_t len; /* length == 0 means unused buffer */ 1556 size_t cons; /* bytes written to console */ 1557 struct task_struct *owner; /* task of first print*/ 1558 u64 ts_nsec; /* time of first print */ 1559 u8 level; /* log level of first message */ 1560 u8 facility; /* log facility of first message */ 1561 enum log_flags flags; /* prefix, newline flags */ 1562 bool flushed:1; /* buffer sealed and committed */ 1563 } cont; 1564 1565 static void cont_flush(enum log_flags flags) 1566 { 1567 if (cont.flushed) 1568 return; 1569 if (cont.len == 0) 1570 return; 1571 1572 if (cont.cons) { 1573 /* 1574 * If a fragment of this line was directly flushed to the 1575 * console; wait for the console to pick up the rest of the 1576 * line. LOG_NOCONS suppresses a duplicated output. 1577 */ 1578 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1579 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1580 cont.flags = flags; 1581 cont.flushed = true; 1582 } else { 1583 /* 1584 * If no fragment of this line ever reached the console, 1585 * just submit it to the store and free the buffer. 1586 */ 1587 log_store(cont.facility, cont.level, flags, 0, 1588 NULL, 0, cont.buf, cont.len); 1589 cont.len = 0; 1590 } 1591 } 1592 1593 static bool cont_add(int facility, int level, const char *text, size_t len) 1594 { 1595 if (cont.len && cont.flushed) 1596 return false; 1597 1598 /* 1599 * If ext consoles are present, flush and skip in-kernel 1600 * continuation. See nr_ext_console_drivers definition. Also, if 1601 * the line gets too long, split it up in separate records. 1602 */ 1603 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1604 cont_flush(LOG_CONT); 1605 return false; 1606 } 1607 1608 if (!cont.len) { 1609 cont.facility = facility; 1610 cont.level = level; 1611 cont.owner = current; 1612 cont.ts_nsec = local_clock(); 1613 cont.flags = 0; 1614 cont.cons = 0; 1615 cont.flushed = false; 1616 } 1617 1618 memcpy(cont.buf + cont.len, text, len); 1619 cont.len += len; 1620 1621 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1622 cont_flush(LOG_CONT); 1623 1624 return true; 1625 } 1626 1627 static size_t cont_print_text(char *text, size_t size) 1628 { 1629 size_t textlen = 0; 1630 size_t len; 1631 1632 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1633 textlen += print_time(cont.ts_nsec, text); 1634 size -= textlen; 1635 } 1636 1637 len = cont.len - cont.cons; 1638 if (len > 0) { 1639 if (len+1 > size) 1640 len = size-1; 1641 memcpy(text + textlen, cont.buf + cont.cons, len); 1642 textlen += len; 1643 cont.cons = cont.len; 1644 } 1645 1646 if (cont.flushed) { 1647 if (cont.flags & LOG_NEWLINE) 1648 text[textlen++] = '\n'; 1649 /* got everything, release buffer */ 1650 cont.len = 0; 1651 } 1652 return textlen; 1653 } 1654 1655 asmlinkage int vprintk_emit(int facility, int level, 1656 const char *dict, size_t dictlen, 1657 const char *fmt, va_list args) 1658 { 1659 static int recursion_bug; 1660 static char textbuf[LOG_LINE_MAX]; 1661 char *text = textbuf; 1662 size_t text_len = 0; 1663 enum log_flags lflags = 0; 1664 unsigned long flags; 1665 int this_cpu; 1666 int printed_len = 0; 1667 bool in_sched = false; 1668 /* cpu currently holding logbuf_lock in this function */ 1669 static unsigned int logbuf_cpu = UINT_MAX; 1670 1671 if (level == LOGLEVEL_SCHED) { 1672 level = LOGLEVEL_DEFAULT; 1673 in_sched = true; 1674 } 1675 1676 boot_delay_msec(level); 1677 printk_delay(); 1678 1679 /* This stops the holder of console_sem just where we want him */ 1680 local_irq_save(flags); 1681 this_cpu = smp_processor_id(); 1682 1683 /* 1684 * Ouch, printk recursed into itself! 1685 */ 1686 if (unlikely(logbuf_cpu == this_cpu)) { 1687 /* 1688 * If a crash is occurring during printk() on this CPU, 1689 * then try to get the crash message out but make sure 1690 * we can't deadlock. Otherwise just return to avoid the 1691 * recursion and return - but flag the recursion so that 1692 * it can be printed at the next appropriate moment: 1693 */ 1694 if (!oops_in_progress && !lockdep_recursing(current)) { 1695 recursion_bug = 1; 1696 local_irq_restore(flags); 1697 return 0; 1698 } 1699 zap_locks(); 1700 } 1701 1702 lockdep_off(); 1703 raw_spin_lock(&logbuf_lock); 1704 logbuf_cpu = this_cpu; 1705 1706 if (unlikely(recursion_bug)) { 1707 static const char recursion_msg[] = 1708 "BUG: recent printk recursion!"; 1709 1710 recursion_bug = 0; 1711 /* emit KERN_CRIT message */ 1712 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1713 NULL, 0, recursion_msg, 1714 strlen(recursion_msg)); 1715 } 1716 1717 /* 1718 * The printf needs to come first; we need the syslog 1719 * prefix which might be passed-in as a parameter. 1720 */ 1721 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1722 1723 /* mark and strip a trailing newline */ 1724 if (text_len && text[text_len-1] == '\n') { 1725 text_len--; 1726 lflags |= LOG_NEWLINE; 1727 } 1728 1729 /* strip kernel syslog prefix and extract log level or control flags */ 1730 if (facility == 0) { 1731 int kern_level = printk_get_level(text); 1732 1733 if (kern_level) { 1734 const char *end_of_header = printk_skip_level(text); 1735 switch (kern_level) { 1736 case '0' ... '7': 1737 if (level == LOGLEVEL_DEFAULT) 1738 level = kern_level - '0'; 1739 /* fallthrough */ 1740 case 'd': /* KERN_DEFAULT */ 1741 lflags |= LOG_PREFIX; 1742 } 1743 /* 1744 * No need to check length here because vscnprintf 1745 * put '\0' at the end of the string. Only valid and 1746 * newly printed level is detected. 1747 */ 1748 text_len -= end_of_header - text; 1749 text = (char *)end_of_header; 1750 } 1751 } 1752 1753 if (level == LOGLEVEL_DEFAULT) 1754 level = default_message_loglevel; 1755 1756 if (dict) 1757 lflags |= LOG_PREFIX|LOG_NEWLINE; 1758 1759 if (!(lflags & LOG_NEWLINE)) { 1760 /* 1761 * Flush the conflicting buffer. An earlier newline was missing, 1762 * or another task also prints continuation lines. 1763 */ 1764 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1765 cont_flush(LOG_NEWLINE); 1766 1767 /* buffer line if possible, otherwise store it right away */ 1768 if (cont_add(facility, level, text, text_len)) 1769 printed_len += text_len; 1770 else 1771 printed_len += log_store(facility, level, 1772 lflags | LOG_CONT, 0, 1773 dict, dictlen, text, text_len); 1774 } else { 1775 bool stored = false; 1776 1777 /* 1778 * If an earlier newline was missing and it was the same task, 1779 * either merge it with the current buffer and flush, or if 1780 * there was a race with interrupts (prefix == true) then just 1781 * flush it out and store this line separately. 1782 * If the preceding printk was from a different task and missed 1783 * a newline, flush and append the newline. 1784 */ 1785 if (cont.len) { 1786 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1787 stored = cont_add(facility, level, text, 1788 text_len); 1789 cont_flush(LOG_NEWLINE); 1790 } 1791 1792 if (stored) 1793 printed_len += text_len; 1794 else 1795 printed_len += log_store(facility, level, lflags, 0, 1796 dict, dictlen, text, text_len); 1797 } 1798 1799 logbuf_cpu = UINT_MAX; 1800 raw_spin_unlock(&logbuf_lock); 1801 lockdep_on(); 1802 local_irq_restore(flags); 1803 1804 /* If called from the scheduler, we can not call up(). */ 1805 if (!in_sched) { 1806 lockdep_off(); 1807 /* 1808 * Disable preemption to avoid being preempted while holding 1809 * console_sem which would prevent anyone from printing to 1810 * console 1811 */ 1812 preempt_disable(); 1813 1814 /* 1815 * Try to acquire and then immediately release the console 1816 * semaphore. The release will print out buffers and wake up 1817 * /dev/kmsg and syslog() users. 1818 */ 1819 if (console_trylock_for_printk()) 1820 console_unlock(); 1821 preempt_enable(); 1822 lockdep_on(); 1823 } 1824 1825 return printed_len; 1826 } 1827 EXPORT_SYMBOL(vprintk_emit); 1828 1829 asmlinkage int vprintk(const char *fmt, va_list args) 1830 { 1831 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1832 } 1833 EXPORT_SYMBOL(vprintk); 1834 1835 asmlinkage int printk_emit(int facility, int level, 1836 const char *dict, size_t dictlen, 1837 const char *fmt, ...) 1838 { 1839 va_list args; 1840 int r; 1841 1842 va_start(args, fmt); 1843 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1844 va_end(args); 1845 1846 return r; 1847 } 1848 EXPORT_SYMBOL(printk_emit); 1849 1850 int vprintk_default(const char *fmt, va_list args) 1851 { 1852 int r; 1853 1854 #ifdef CONFIG_KGDB_KDB 1855 if (unlikely(kdb_trap_printk)) { 1856 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1857 return r; 1858 } 1859 #endif 1860 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1861 1862 return r; 1863 } 1864 EXPORT_SYMBOL_GPL(vprintk_default); 1865 1866 /* 1867 * This allows printk to be diverted to another function per cpu. 1868 * This is useful for calling printk functions from within NMI 1869 * without worrying about race conditions that can lock up the 1870 * box. 1871 */ 1872 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1873 1874 /** 1875 * printk - print a kernel message 1876 * @fmt: format string 1877 * 1878 * This is printk(). It can be called from any context. We want it to work. 1879 * 1880 * We try to grab the console_lock. If we succeed, it's easy - we log the 1881 * output and call the console drivers. If we fail to get the semaphore, we 1882 * place the output into the log buffer and return. The current holder of 1883 * the console_sem will notice the new output in console_unlock(); and will 1884 * send it to the consoles before releasing the lock. 1885 * 1886 * One effect of this deferred printing is that code which calls printk() and 1887 * then changes console_loglevel may break. This is because console_loglevel 1888 * is inspected when the actual printing occurs. 1889 * 1890 * See also: 1891 * printf(3) 1892 * 1893 * See the vsnprintf() documentation for format string extensions over C99. 1894 */ 1895 asmlinkage __visible int printk(const char *fmt, ...) 1896 { 1897 printk_func_t vprintk_func; 1898 va_list args; 1899 int r; 1900 1901 va_start(args, fmt); 1902 1903 /* 1904 * If a caller overrides the per_cpu printk_func, then it needs 1905 * to disable preemption when calling printk(). Otherwise 1906 * the printk_func should be set to the default. No need to 1907 * disable preemption here. 1908 */ 1909 vprintk_func = this_cpu_read(printk_func); 1910 r = vprintk_func(fmt, args); 1911 1912 va_end(args); 1913 1914 return r; 1915 } 1916 EXPORT_SYMBOL(printk); 1917 1918 #else /* CONFIG_PRINTK */ 1919 1920 #define LOG_LINE_MAX 0 1921 #define PREFIX_MAX 0 1922 1923 static u64 syslog_seq; 1924 static u32 syslog_idx; 1925 static u64 console_seq; 1926 static u32 console_idx; 1927 static enum log_flags syslog_prev; 1928 static u64 log_first_seq; 1929 static u32 log_first_idx; 1930 static u64 log_next_seq; 1931 static enum log_flags console_prev; 1932 static struct cont { 1933 size_t len; 1934 size_t cons; 1935 u8 level; 1936 bool flushed:1; 1937 } cont; 1938 static char *log_text(const struct printk_log *msg) { return NULL; } 1939 static char *log_dict(const struct printk_log *msg) { return NULL; } 1940 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1941 static u32 log_next(u32 idx) { return 0; } 1942 static ssize_t msg_print_ext_header(char *buf, size_t size, 1943 struct printk_log *msg, u64 seq, 1944 enum log_flags prev_flags) { return 0; } 1945 static ssize_t msg_print_ext_body(char *buf, size_t size, 1946 char *dict, size_t dict_len, 1947 char *text, size_t text_len) { return 0; } 1948 static void call_console_drivers(int level, 1949 const char *ext_text, size_t ext_len, 1950 const char *text, size_t len) {} 1951 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1952 bool syslog, char *buf, size_t size) { return 0; } 1953 static size_t cont_print_text(char *text, size_t size) { return 0; } 1954 1955 /* Still needs to be defined for users */ 1956 DEFINE_PER_CPU(printk_func_t, printk_func); 1957 1958 #endif /* CONFIG_PRINTK */ 1959 1960 #ifdef CONFIG_EARLY_PRINTK 1961 struct console *early_console; 1962 1963 asmlinkage __visible void early_printk(const char *fmt, ...) 1964 { 1965 va_list ap; 1966 char buf[512]; 1967 int n; 1968 1969 if (!early_console) 1970 return; 1971 1972 va_start(ap, fmt); 1973 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1974 va_end(ap); 1975 1976 early_console->write(early_console, buf, n); 1977 } 1978 #endif 1979 1980 static int __add_preferred_console(char *name, int idx, char *options, 1981 char *brl_options) 1982 { 1983 struct console_cmdline *c; 1984 int i; 1985 1986 /* 1987 * See if this tty is not yet registered, and 1988 * if we have a slot free. 1989 */ 1990 for (i = 0, c = console_cmdline; 1991 i < MAX_CMDLINECONSOLES && c->name[0]; 1992 i++, c++) { 1993 if (strcmp(c->name, name) == 0 && c->index == idx) { 1994 if (!brl_options) 1995 selected_console = i; 1996 return 0; 1997 } 1998 } 1999 if (i == MAX_CMDLINECONSOLES) 2000 return -E2BIG; 2001 if (!brl_options) 2002 selected_console = i; 2003 strlcpy(c->name, name, sizeof(c->name)); 2004 c->options = options; 2005 braille_set_options(c, brl_options); 2006 2007 c->index = idx; 2008 return 0; 2009 } 2010 /* 2011 * Set up a console. Called via do_early_param() in init/main.c 2012 * for each "console=" parameter in the boot command line. 2013 */ 2014 static int __init console_setup(char *str) 2015 { 2016 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2017 char *s, *options, *brl_options = NULL; 2018 int idx; 2019 2020 if (_braille_console_setup(&str, &brl_options)) 2021 return 1; 2022 2023 /* 2024 * Decode str into name, index, options. 2025 */ 2026 if (str[0] >= '0' && str[0] <= '9') { 2027 strcpy(buf, "ttyS"); 2028 strncpy(buf + 4, str, sizeof(buf) - 5); 2029 } else { 2030 strncpy(buf, str, sizeof(buf) - 1); 2031 } 2032 buf[sizeof(buf) - 1] = 0; 2033 options = strchr(str, ','); 2034 if (options) 2035 *(options++) = 0; 2036 #ifdef __sparc__ 2037 if (!strcmp(str, "ttya")) 2038 strcpy(buf, "ttyS0"); 2039 if (!strcmp(str, "ttyb")) 2040 strcpy(buf, "ttyS1"); 2041 #endif 2042 for (s = buf; *s; s++) 2043 if (isdigit(*s) || *s == ',') 2044 break; 2045 idx = simple_strtoul(s, NULL, 10); 2046 *s = 0; 2047 2048 __add_preferred_console(buf, idx, options, brl_options); 2049 console_set_on_cmdline = 1; 2050 return 1; 2051 } 2052 __setup("console=", console_setup); 2053 2054 /** 2055 * add_preferred_console - add a device to the list of preferred consoles. 2056 * @name: device name 2057 * @idx: device index 2058 * @options: options for this console 2059 * 2060 * The last preferred console added will be used for kernel messages 2061 * and stdin/out/err for init. Normally this is used by console_setup 2062 * above to handle user-supplied console arguments; however it can also 2063 * be used by arch-specific code either to override the user or more 2064 * commonly to provide a default console (ie from PROM variables) when 2065 * the user has not supplied one. 2066 */ 2067 int add_preferred_console(char *name, int idx, char *options) 2068 { 2069 return __add_preferred_console(name, idx, options, NULL); 2070 } 2071 2072 bool console_suspend_enabled = true; 2073 EXPORT_SYMBOL(console_suspend_enabled); 2074 2075 static int __init console_suspend_disable(char *str) 2076 { 2077 console_suspend_enabled = false; 2078 return 1; 2079 } 2080 __setup("no_console_suspend", console_suspend_disable); 2081 module_param_named(console_suspend, console_suspend_enabled, 2082 bool, S_IRUGO | S_IWUSR); 2083 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2084 " and hibernate operations"); 2085 2086 /** 2087 * suspend_console - suspend the console subsystem 2088 * 2089 * This disables printk() while we go into suspend states 2090 */ 2091 void suspend_console(void) 2092 { 2093 if (!console_suspend_enabled) 2094 return; 2095 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2096 console_lock(); 2097 console_suspended = 1; 2098 up_console_sem(); 2099 } 2100 2101 void resume_console(void) 2102 { 2103 if (!console_suspend_enabled) 2104 return; 2105 down_console_sem(); 2106 console_suspended = 0; 2107 console_unlock(); 2108 } 2109 2110 /** 2111 * console_cpu_notify - print deferred console messages after CPU hotplug 2112 * @self: notifier struct 2113 * @action: CPU hotplug event 2114 * @hcpu: unused 2115 * 2116 * If printk() is called from a CPU that is not online yet, the messages 2117 * will be spooled but will not show up on the console. This function is 2118 * called when a new CPU comes online (or fails to come up), and ensures 2119 * that any such output gets printed. 2120 */ 2121 static int console_cpu_notify(struct notifier_block *self, 2122 unsigned long action, void *hcpu) 2123 { 2124 switch (action) { 2125 case CPU_ONLINE: 2126 case CPU_DEAD: 2127 case CPU_DOWN_FAILED: 2128 case CPU_UP_CANCELED: 2129 console_lock(); 2130 console_unlock(); 2131 } 2132 return NOTIFY_OK; 2133 } 2134 2135 /** 2136 * console_lock - lock the console system for exclusive use. 2137 * 2138 * Acquires a lock which guarantees that the caller has 2139 * exclusive access to the console system and the console_drivers list. 2140 * 2141 * Can sleep, returns nothing. 2142 */ 2143 void console_lock(void) 2144 { 2145 might_sleep(); 2146 2147 down_console_sem(); 2148 if (console_suspended) 2149 return; 2150 console_locked = 1; 2151 console_may_schedule = 1; 2152 } 2153 EXPORT_SYMBOL(console_lock); 2154 2155 /** 2156 * console_trylock - try to lock the console system for exclusive use. 2157 * 2158 * Try to acquire a lock which guarantees that the caller has exclusive 2159 * access to the console system and the console_drivers list. 2160 * 2161 * returns 1 on success, and 0 on failure to acquire the lock. 2162 */ 2163 int console_trylock(void) 2164 { 2165 if (down_trylock_console_sem()) 2166 return 0; 2167 if (console_suspended) { 2168 up_console_sem(); 2169 return 0; 2170 } 2171 console_locked = 1; 2172 console_may_schedule = 0; 2173 return 1; 2174 } 2175 EXPORT_SYMBOL(console_trylock); 2176 2177 int is_console_locked(void) 2178 { 2179 return console_locked; 2180 } 2181 2182 static void console_cont_flush(char *text, size_t size) 2183 { 2184 unsigned long flags; 2185 size_t len; 2186 2187 raw_spin_lock_irqsave(&logbuf_lock, flags); 2188 2189 if (!cont.len) 2190 goto out; 2191 2192 /* 2193 * We still queue earlier records, likely because the console was 2194 * busy. The earlier ones need to be printed before this one, we 2195 * did not flush any fragment so far, so just let it queue up. 2196 */ 2197 if (console_seq < log_next_seq && !cont.cons) 2198 goto out; 2199 2200 len = cont_print_text(text, size); 2201 raw_spin_unlock(&logbuf_lock); 2202 stop_critical_timings(); 2203 call_console_drivers(cont.level, NULL, 0, text, len); 2204 start_critical_timings(); 2205 local_irq_restore(flags); 2206 return; 2207 out: 2208 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2209 } 2210 2211 /** 2212 * console_unlock - unlock the console system 2213 * 2214 * Releases the console_lock which the caller holds on the console system 2215 * and the console driver list. 2216 * 2217 * While the console_lock was held, console output may have been buffered 2218 * by printk(). If this is the case, console_unlock(); emits 2219 * the output prior to releasing the lock. 2220 * 2221 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2222 * 2223 * console_unlock(); may be called from any context. 2224 */ 2225 void console_unlock(void) 2226 { 2227 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2228 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2229 static u64 seen_seq; 2230 unsigned long flags; 2231 bool wake_klogd = false; 2232 bool retry; 2233 2234 if (console_suspended) { 2235 up_console_sem(); 2236 return; 2237 } 2238 2239 console_may_schedule = 0; 2240 2241 /* flush buffered message fragment immediately to console */ 2242 console_cont_flush(text, sizeof(text)); 2243 again: 2244 for (;;) { 2245 struct printk_log *msg; 2246 size_t ext_len = 0; 2247 size_t len; 2248 int level; 2249 2250 raw_spin_lock_irqsave(&logbuf_lock, flags); 2251 if (seen_seq != log_next_seq) { 2252 wake_klogd = true; 2253 seen_seq = log_next_seq; 2254 } 2255 2256 if (console_seq < log_first_seq) { 2257 len = sprintf(text, "** %u printk messages dropped ** ", 2258 (unsigned)(log_first_seq - console_seq)); 2259 2260 /* messages are gone, move to first one */ 2261 console_seq = log_first_seq; 2262 console_idx = log_first_idx; 2263 console_prev = 0; 2264 } else { 2265 len = 0; 2266 } 2267 skip: 2268 if (console_seq == log_next_seq) 2269 break; 2270 2271 msg = log_from_idx(console_idx); 2272 if (msg->flags & LOG_NOCONS) { 2273 /* 2274 * Skip record we have buffered and already printed 2275 * directly to the console when we received it. 2276 */ 2277 console_idx = log_next(console_idx); 2278 console_seq++; 2279 /* 2280 * We will get here again when we register a new 2281 * CON_PRINTBUFFER console. Clear the flag so we 2282 * will properly dump everything later. 2283 */ 2284 msg->flags &= ~LOG_NOCONS; 2285 console_prev = msg->flags; 2286 goto skip; 2287 } 2288 2289 level = msg->level; 2290 len += msg_print_text(msg, console_prev, false, 2291 text + len, sizeof(text) - len); 2292 if (nr_ext_console_drivers) { 2293 ext_len = msg_print_ext_header(ext_text, 2294 sizeof(ext_text), 2295 msg, console_seq, console_prev); 2296 ext_len += msg_print_ext_body(ext_text + ext_len, 2297 sizeof(ext_text) - ext_len, 2298 log_dict(msg), msg->dict_len, 2299 log_text(msg), msg->text_len); 2300 } 2301 console_idx = log_next(console_idx); 2302 console_seq++; 2303 console_prev = msg->flags; 2304 raw_spin_unlock(&logbuf_lock); 2305 2306 stop_critical_timings(); /* don't trace print latency */ 2307 call_console_drivers(level, ext_text, ext_len, text, len); 2308 start_critical_timings(); 2309 local_irq_restore(flags); 2310 } 2311 console_locked = 0; 2312 2313 /* Release the exclusive_console once it is used */ 2314 if (unlikely(exclusive_console)) 2315 exclusive_console = NULL; 2316 2317 raw_spin_unlock(&logbuf_lock); 2318 2319 up_console_sem(); 2320 2321 /* 2322 * Someone could have filled up the buffer again, so re-check if there's 2323 * something to flush. In case we cannot trylock the console_sem again, 2324 * there's a new owner and the console_unlock() from them will do the 2325 * flush, no worries. 2326 */ 2327 raw_spin_lock(&logbuf_lock); 2328 retry = console_seq != log_next_seq; 2329 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2330 2331 if (retry && console_trylock()) 2332 goto again; 2333 2334 if (wake_klogd) 2335 wake_up_klogd(); 2336 } 2337 EXPORT_SYMBOL(console_unlock); 2338 2339 /** 2340 * console_conditional_schedule - yield the CPU if required 2341 * 2342 * If the console code is currently allowed to sleep, and 2343 * if this CPU should yield the CPU to another task, do 2344 * so here. 2345 * 2346 * Must be called within console_lock();. 2347 */ 2348 void __sched console_conditional_schedule(void) 2349 { 2350 if (console_may_schedule) 2351 cond_resched(); 2352 } 2353 EXPORT_SYMBOL(console_conditional_schedule); 2354 2355 void console_unblank(void) 2356 { 2357 struct console *c; 2358 2359 /* 2360 * console_unblank can no longer be called in interrupt context unless 2361 * oops_in_progress is set to 1.. 2362 */ 2363 if (oops_in_progress) { 2364 if (down_trylock_console_sem() != 0) 2365 return; 2366 } else 2367 console_lock(); 2368 2369 console_locked = 1; 2370 console_may_schedule = 0; 2371 for_each_console(c) 2372 if ((c->flags & CON_ENABLED) && c->unblank) 2373 c->unblank(); 2374 console_unlock(); 2375 } 2376 2377 /* 2378 * Return the console tty driver structure and its associated index 2379 */ 2380 struct tty_driver *console_device(int *index) 2381 { 2382 struct console *c; 2383 struct tty_driver *driver = NULL; 2384 2385 console_lock(); 2386 for_each_console(c) { 2387 if (!c->device) 2388 continue; 2389 driver = c->device(c, index); 2390 if (driver) 2391 break; 2392 } 2393 console_unlock(); 2394 return driver; 2395 } 2396 2397 /* 2398 * Prevent further output on the passed console device so that (for example) 2399 * serial drivers can disable console output before suspending a port, and can 2400 * re-enable output afterwards. 2401 */ 2402 void console_stop(struct console *console) 2403 { 2404 console_lock(); 2405 console->flags &= ~CON_ENABLED; 2406 console_unlock(); 2407 } 2408 EXPORT_SYMBOL(console_stop); 2409 2410 void console_start(struct console *console) 2411 { 2412 console_lock(); 2413 console->flags |= CON_ENABLED; 2414 console_unlock(); 2415 } 2416 EXPORT_SYMBOL(console_start); 2417 2418 static int __read_mostly keep_bootcon; 2419 2420 static int __init keep_bootcon_setup(char *str) 2421 { 2422 keep_bootcon = 1; 2423 pr_info("debug: skip boot console de-registration.\n"); 2424 2425 return 0; 2426 } 2427 2428 early_param("keep_bootcon", keep_bootcon_setup); 2429 2430 /* 2431 * The console driver calls this routine during kernel initialization 2432 * to register the console printing procedure with printk() and to 2433 * print any messages that were printed by the kernel before the 2434 * console driver was initialized. 2435 * 2436 * This can happen pretty early during the boot process (because of 2437 * early_printk) - sometimes before setup_arch() completes - be careful 2438 * of what kernel features are used - they may not be initialised yet. 2439 * 2440 * There are two types of consoles - bootconsoles (early_printk) and 2441 * "real" consoles (everything which is not a bootconsole) which are 2442 * handled differently. 2443 * - Any number of bootconsoles can be registered at any time. 2444 * - As soon as a "real" console is registered, all bootconsoles 2445 * will be unregistered automatically. 2446 * - Once a "real" console is registered, any attempt to register a 2447 * bootconsoles will be rejected 2448 */ 2449 void register_console(struct console *newcon) 2450 { 2451 int i; 2452 unsigned long flags; 2453 struct console *bcon = NULL; 2454 struct console_cmdline *c; 2455 2456 if (console_drivers) 2457 for_each_console(bcon) 2458 if (WARN(bcon == newcon, 2459 "console '%s%d' already registered\n", 2460 bcon->name, bcon->index)) 2461 return; 2462 2463 /* 2464 * before we register a new CON_BOOT console, make sure we don't 2465 * already have a valid console 2466 */ 2467 if (console_drivers && newcon->flags & CON_BOOT) { 2468 /* find the last or real console */ 2469 for_each_console(bcon) { 2470 if (!(bcon->flags & CON_BOOT)) { 2471 pr_info("Too late to register bootconsole %s%d\n", 2472 newcon->name, newcon->index); 2473 return; 2474 } 2475 } 2476 } 2477 2478 if (console_drivers && console_drivers->flags & CON_BOOT) 2479 bcon = console_drivers; 2480 2481 if (preferred_console < 0 || bcon || !console_drivers) 2482 preferred_console = selected_console; 2483 2484 /* 2485 * See if we want to use this console driver. If we 2486 * didn't select a console we take the first one 2487 * that registers here. 2488 */ 2489 if (preferred_console < 0) { 2490 if (newcon->index < 0) 2491 newcon->index = 0; 2492 if (newcon->setup == NULL || 2493 newcon->setup(newcon, NULL) == 0) { 2494 newcon->flags |= CON_ENABLED; 2495 if (newcon->device) { 2496 newcon->flags |= CON_CONSDEV; 2497 preferred_console = 0; 2498 } 2499 } 2500 } 2501 2502 /* 2503 * See if this console matches one we selected on 2504 * the command line. 2505 */ 2506 for (i = 0, c = console_cmdline; 2507 i < MAX_CMDLINECONSOLES && c->name[0]; 2508 i++, c++) { 2509 if (!newcon->match || 2510 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2511 /* default matching */ 2512 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2513 if (strcmp(c->name, newcon->name) != 0) 2514 continue; 2515 if (newcon->index >= 0 && 2516 newcon->index != c->index) 2517 continue; 2518 if (newcon->index < 0) 2519 newcon->index = c->index; 2520 2521 if (_braille_register_console(newcon, c)) 2522 return; 2523 2524 if (newcon->setup && 2525 newcon->setup(newcon, c->options) != 0) 2526 break; 2527 } 2528 2529 newcon->flags |= CON_ENABLED; 2530 if (i == selected_console) { 2531 newcon->flags |= CON_CONSDEV; 2532 preferred_console = selected_console; 2533 } 2534 break; 2535 } 2536 2537 if (!(newcon->flags & CON_ENABLED)) 2538 return; 2539 2540 /* 2541 * If we have a bootconsole, and are switching to a real console, 2542 * don't print everything out again, since when the boot console, and 2543 * the real console are the same physical device, it's annoying to 2544 * see the beginning boot messages twice 2545 */ 2546 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2547 newcon->flags &= ~CON_PRINTBUFFER; 2548 2549 /* 2550 * Put this console in the list - keep the 2551 * preferred driver at the head of the list. 2552 */ 2553 console_lock(); 2554 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2555 newcon->next = console_drivers; 2556 console_drivers = newcon; 2557 if (newcon->next) 2558 newcon->next->flags &= ~CON_CONSDEV; 2559 } else { 2560 newcon->next = console_drivers->next; 2561 console_drivers->next = newcon; 2562 } 2563 2564 if (newcon->flags & CON_EXTENDED) 2565 if (!nr_ext_console_drivers++) 2566 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2567 2568 if (newcon->flags & CON_PRINTBUFFER) { 2569 /* 2570 * console_unlock(); will print out the buffered messages 2571 * for us. 2572 */ 2573 raw_spin_lock_irqsave(&logbuf_lock, flags); 2574 console_seq = syslog_seq; 2575 console_idx = syslog_idx; 2576 console_prev = syslog_prev; 2577 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2578 /* 2579 * We're about to replay the log buffer. Only do this to the 2580 * just-registered console to avoid excessive message spam to 2581 * the already-registered consoles. 2582 */ 2583 exclusive_console = newcon; 2584 } 2585 console_unlock(); 2586 console_sysfs_notify(); 2587 2588 /* 2589 * By unregistering the bootconsoles after we enable the real console 2590 * we get the "console xxx enabled" message on all the consoles - 2591 * boot consoles, real consoles, etc - this is to ensure that end 2592 * users know there might be something in the kernel's log buffer that 2593 * went to the bootconsole (that they do not see on the real console) 2594 */ 2595 pr_info("%sconsole [%s%d] enabled\n", 2596 (newcon->flags & CON_BOOT) ? "boot" : "" , 2597 newcon->name, newcon->index); 2598 if (bcon && 2599 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2600 !keep_bootcon) { 2601 /* We need to iterate through all boot consoles, to make 2602 * sure we print everything out, before we unregister them. 2603 */ 2604 for_each_console(bcon) 2605 if (bcon->flags & CON_BOOT) 2606 unregister_console(bcon); 2607 } 2608 } 2609 EXPORT_SYMBOL(register_console); 2610 2611 int unregister_console(struct console *console) 2612 { 2613 struct console *a, *b; 2614 int res; 2615 2616 pr_info("%sconsole [%s%d] disabled\n", 2617 (console->flags & CON_BOOT) ? "boot" : "" , 2618 console->name, console->index); 2619 2620 res = _braille_unregister_console(console); 2621 if (res) 2622 return res; 2623 2624 res = 1; 2625 console_lock(); 2626 if (console_drivers == console) { 2627 console_drivers=console->next; 2628 res = 0; 2629 } else if (console_drivers) { 2630 for (a=console_drivers->next, b=console_drivers ; 2631 a; b=a, a=b->next) { 2632 if (a == console) { 2633 b->next = a->next; 2634 res = 0; 2635 break; 2636 } 2637 } 2638 } 2639 2640 if (!res && (console->flags & CON_EXTENDED)) 2641 nr_ext_console_drivers--; 2642 2643 /* 2644 * If this isn't the last console and it has CON_CONSDEV set, we 2645 * need to set it on the next preferred console. 2646 */ 2647 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2648 console_drivers->flags |= CON_CONSDEV; 2649 2650 console->flags &= ~CON_ENABLED; 2651 console_unlock(); 2652 console_sysfs_notify(); 2653 return res; 2654 } 2655 EXPORT_SYMBOL(unregister_console); 2656 2657 static int __init printk_late_init(void) 2658 { 2659 struct console *con; 2660 2661 for_each_console(con) { 2662 if (!keep_bootcon && con->flags & CON_BOOT) { 2663 unregister_console(con); 2664 } 2665 } 2666 hotcpu_notifier(console_cpu_notify, 0); 2667 return 0; 2668 } 2669 late_initcall(printk_late_init); 2670 2671 #if defined CONFIG_PRINTK 2672 /* 2673 * Delayed printk version, for scheduler-internal messages: 2674 */ 2675 #define PRINTK_PENDING_WAKEUP 0x01 2676 #define PRINTK_PENDING_OUTPUT 0x02 2677 2678 static DEFINE_PER_CPU(int, printk_pending); 2679 2680 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2681 { 2682 int pending = __this_cpu_xchg(printk_pending, 0); 2683 2684 if (pending & PRINTK_PENDING_OUTPUT) { 2685 /* If trylock fails, someone else is doing the printing */ 2686 if (console_trylock()) 2687 console_unlock(); 2688 } 2689 2690 if (pending & PRINTK_PENDING_WAKEUP) 2691 wake_up_interruptible(&log_wait); 2692 } 2693 2694 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2695 .func = wake_up_klogd_work_func, 2696 .flags = IRQ_WORK_LAZY, 2697 }; 2698 2699 void wake_up_klogd(void) 2700 { 2701 preempt_disable(); 2702 if (waitqueue_active(&log_wait)) { 2703 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2704 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2705 } 2706 preempt_enable(); 2707 } 2708 2709 int printk_deferred(const char *fmt, ...) 2710 { 2711 va_list args; 2712 int r; 2713 2714 preempt_disable(); 2715 va_start(args, fmt); 2716 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2717 va_end(args); 2718 2719 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2720 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2721 preempt_enable(); 2722 2723 return r; 2724 } 2725 2726 /* 2727 * printk rate limiting, lifted from the networking subsystem. 2728 * 2729 * This enforces a rate limit: not more than 10 kernel messages 2730 * every 5s to make a denial-of-service attack impossible. 2731 */ 2732 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2733 2734 int __printk_ratelimit(const char *func) 2735 { 2736 return ___ratelimit(&printk_ratelimit_state, func); 2737 } 2738 EXPORT_SYMBOL(__printk_ratelimit); 2739 2740 /** 2741 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2742 * @caller_jiffies: pointer to caller's state 2743 * @interval_msecs: minimum interval between prints 2744 * 2745 * printk_timed_ratelimit() returns true if more than @interval_msecs 2746 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2747 * returned true. 2748 */ 2749 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2750 unsigned int interval_msecs) 2751 { 2752 unsigned long elapsed = jiffies - *caller_jiffies; 2753 2754 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2755 return false; 2756 2757 *caller_jiffies = jiffies; 2758 return true; 2759 } 2760 EXPORT_SYMBOL(printk_timed_ratelimit); 2761 2762 static DEFINE_SPINLOCK(dump_list_lock); 2763 static LIST_HEAD(dump_list); 2764 2765 /** 2766 * kmsg_dump_register - register a kernel log dumper. 2767 * @dumper: pointer to the kmsg_dumper structure 2768 * 2769 * Adds a kernel log dumper to the system. The dump callback in the 2770 * structure will be called when the kernel oopses or panics and must be 2771 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2772 */ 2773 int kmsg_dump_register(struct kmsg_dumper *dumper) 2774 { 2775 unsigned long flags; 2776 int err = -EBUSY; 2777 2778 /* The dump callback needs to be set */ 2779 if (!dumper->dump) 2780 return -EINVAL; 2781 2782 spin_lock_irqsave(&dump_list_lock, flags); 2783 /* Don't allow registering multiple times */ 2784 if (!dumper->registered) { 2785 dumper->registered = 1; 2786 list_add_tail_rcu(&dumper->list, &dump_list); 2787 err = 0; 2788 } 2789 spin_unlock_irqrestore(&dump_list_lock, flags); 2790 2791 return err; 2792 } 2793 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2794 2795 /** 2796 * kmsg_dump_unregister - unregister a kmsg dumper. 2797 * @dumper: pointer to the kmsg_dumper structure 2798 * 2799 * Removes a dump device from the system. Returns zero on success and 2800 * %-EINVAL otherwise. 2801 */ 2802 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2803 { 2804 unsigned long flags; 2805 int err = -EINVAL; 2806 2807 spin_lock_irqsave(&dump_list_lock, flags); 2808 if (dumper->registered) { 2809 dumper->registered = 0; 2810 list_del_rcu(&dumper->list); 2811 err = 0; 2812 } 2813 spin_unlock_irqrestore(&dump_list_lock, flags); 2814 synchronize_rcu(); 2815 2816 return err; 2817 } 2818 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2819 2820 static bool always_kmsg_dump; 2821 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2822 2823 /** 2824 * kmsg_dump - dump kernel log to kernel message dumpers. 2825 * @reason: the reason (oops, panic etc) for dumping 2826 * 2827 * Call each of the registered dumper's dump() callback, which can 2828 * retrieve the kmsg records with kmsg_dump_get_line() or 2829 * kmsg_dump_get_buffer(). 2830 */ 2831 void kmsg_dump(enum kmsg_dump_reason reason) 2832 { 2833 struct kmsg_dumper *dumper; 2834 unsigned long flags; 2835 2836 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2837 return; 2838 2839 rcu_read_lock(); 2840 list_for_each_entry_rcu(dumper, &dump_list, list) { 2841 if (dumper->max_reason && reason > dumper->max_reason) 2842 continue; 2843 2844 /* initialize iterator with data about the stored records */ 2845 dumper->active = true; 2846 2847 raw_spin_lock_irqsave(&logbuf_lock, flags); 2848 dumper->cur_seq = clear_seq; 2849 dumper->cur_idx = clear_idx; 2850 dumper->next_seq = log_next_seq; 2851 dumper->next_idx = log_next_idx; 2852 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2853 2854 /* invoke dumper which will iterate over records */ 2855 dumper->dump(dumper, reason); 2856 2857 /* reset iterator */ 2858 dumper->active = false; 2859 } 2860 rcu_read_unlock(); 2861 } 2862 2863 /** 2864 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2865 * @dumper: registered kmsg dumper 2866 * @syslog: include the "<4>" prefixes 2867 * @line: buffer to copy the line to 2868 * @size: maximum size of the buffer 2869 * @len: length of line placed into buffer 2870 * 2871 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2872 * record, and copy one record into the provided buffer. 2873 * 2874 * Consecutive calls will return the next available record moving 2875 * towards the end of the buffer with the youngest messages. 2876 * 2877 * A return value of FALSE indicates that there are no more records to 2878 * read. 2879 * 2880 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2881 */ 2882 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2883 char *line, size_t size, size_t *len) 2884 { 2885 struct printk_log *msg; 2886 size_t l = 0; 2887 bool ret = false; 2888 2889 if (!dumper->active) 2890 goto out; 2891 2892 if (dumper->cur_seq < log_first_seq) { 2893 /* messages are gone, move to first available one */ 2894 dumper->cur_seq = log_first_seq; 2895 dumper->cur_idx = log_first_idx; 2896 } 2897 2898 /* last entry */ 2899 if (dumper->cur_seq >= log_next_seq) 2900 goto out; 2901 2902 msg = log_from_idx(dumper->cur_idx); 2903 l = msg_print_text(msg, 0, syslog, line, size); 2904 2905 dumper->cur_idx = log_next(dumper->cur_idx); 2906 dumper->cur_seq++; 2907 ret = true; 2908 out: 2909 if (len) 2910 *len = l; 2911 return ret; 2912 } 2913 2914 /** 2915 * kmsg_dump_get_line - retrieve one kmsg log line 2916 * @dumper: registered kmsg dumper 2917 * @syslog: include the "<4>" prefixes 2918 * @line: buffer to copy the line to 2919 * @size: maximum size of the buffer 2920 * @len: length of line placed into buffer 2921 * 2922 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2923 * record, and copy one record into the provided buffer. 2924 * 2925 * Consecutive calls will return the next available record moving 2926 * towards the end of the buffer with the youngest messages. 2927 * 2928 * A return value of FALSE indicates that there are no more records to 2929 * read. 2930 */ 2931 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2932 char *line, size_t size, size_t *len) 2933 { 2934 unsigned long flags; 2935 bool ret; 2936 2937 raw_spin_lock_irqsave(&logbuf_lock, flags); 2938 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2939 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2940 2941 return ret; 2942 } 2943 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2944 2945 /** 2946 * kmsg_dump_get_buffer - copy kmsg log lines 2947 * @dumper: registered kmsg dumper 2948 * @syslog: include the "<4>" prefixes 2949 * @buf: buffer to copy the line to 2950 * @size: maximum size of the buffer 2951 * @len: length of line placed into buffer 2952 * 2953 * Start at the end of the kmsg buffer and fill the provided buffer 2954 * with as many of the the *youngest* kmsg records that fit into it. 2955 * If the buffer is large enough, all available kmsg records will be 2956 * copied with a single call. 2957 * 2958 * Consecutive calls will fill the buffer with the next block of 2959 * available older records, not including the earlier retrieved ones. 2960 * 2961 * A return value of FALSE indicates that there are no more records to 2962 * read. 2963 */ 2964 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2965 char *buf, size_t size, size_t *len) 2966 { 2967 unsigned long flags; 2968 u64 seq; 2969 u32 idx; 2970 u64 next_seq; 2971 u32 next_idx; 2972 enum log_flags prev; 2973 size_t l = 0; 2974 bool ret = false; 2975 2976 if (!dumper->active) 2977 goto out; 2978 2979 raw_spin_lock_irqsave(&logbuf_lock, flags); 2980 if (dumper->cur_seq < log_first_seq) { 2981 /* messages are gone, move to first available one */ 2982 dumper->cur_seq = log_first_seq; 2983 dumper->cur_idx = log_first_idx; 2984 } 2985 2986 /* last entry */ 2987 if (dumper->cur_seq >= dumper->next_seq) { 2988 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2989 goto out; 2990 } 2991 2992 /* calculate length of entire buffer */ 2993 seq = dumper->cur_seq; 2994 idx = dumper->cur_idx; 2995 prev = 0; 2996 while (seq < dumper->next_seq) { 2997 struct printk_log *msg = log_from_idx(idx); 2998 2999 l += msg_print_text(msg, prev, true, NULL, 0); 3000 idx = log_next(idx); 3001 seq++; 3002 prev = msg->flags; 3003 } 3004 3005 /* move first record forward until length fits into the buffer */ 3006 seq = dumper->cur_seq; 3007 idx = dumper->cur_idx; 3008 prev = 0; 3009 while (l > size && seq < dumper->next_seq) { 3010 struct printk_log *msg = log_from_idx(idx); 3011 3012 l -= msg_print_text(msg, prev, true, NULL, 0); 3013 idx = log_next(idx); 3014 seq++; 3015 prev = msg->flags; 3016 } 3017 3018 /* last message in next interation */ 3019 next_seq = seq; 3020 next_idx = idx; 3021 3022 l = 0; 3023 while (seq < dumper->next_seq) { 3024 struct printk_log *msg = log_from_idx(idx); 3025 3026 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3027 idx = log_next(idx); 3028 seq++; 3029 prev = msg->flags; 3030 } 3031 3032 dumper->next_seq = next_seq; 3033 dumper->next_idx = next_idx; 3034 ret = true; 3035 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3036 out: 3037 if (len) 3038 *len = l; 3039 return ret; 3040 } 3041 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3042 3043 /** 3044 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3045 * @dumper: registered kmsg dumper 3046 * 3047 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3048 * kmsg_dump_get_buffer() can be called again and used multiple 3049 * times within the same dumper.dump() callback. 3050 * 3051 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3052 */ 3053 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3054 { 3055 dumper->cur_seq = clear_seq; 3056 dumper->cur_idx = clear_idx; 3057 dumper->next_seq = log_next_seq; 3058 dumper->next_idx = log_next_idx; 3059 } 3060 3061 /** 3062 * kmsg_dump_rewind - reset the interator 3063 * @dumper: registered kmsg dumper 3064 * 3065 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3066 * kmsg_dump_get_buffer() can be called again and used multiple 3067 * times within the same dumper.dump() callback. 3068 */ 3069 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3070 { 3071 unsigned long flags; 3072 3073 raw_spin_lock_irqsave(&logbuf_lock, flags); 3074 kmsg_dump_rewind_nolock(dumper); 3075 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3076 } 3077 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3078 3079 static char dump_stack_arch_desc_str[128]; 3080 3081 /** 3082 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3083 * @fmt: printf-style format string 3084 * @...: arguments for the format string 3085 * 3086 * The configured string will be printed right after utsname during task 3087 * dumps. Usually used to add arch-specific system identifiers. If an 3088 * arch wants to make use of such an ID string, it should initialize this 3089 * as soon as possible during boot. 3090 */ 3091 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3092 { 3093 va_list args; 3094 3095 va_start(args, fmt); 3096 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3097 fmt, args); 3098 va_end(args); 3099 } 3100 3101 /** 3102 * dump_stack_print_info - print generic debug info for dump_stack() 3103 * @log_lvl: log level 3104 * 3105 * Arch-specific dump_stack() implementations can use this function to 3106 * print out the same debug information as the generic dump_stack(). 3107 */ 3108 void dump_stack_print_info(const char *log_lvl) 3109 { 3110 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3111 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3112 print_tainted(), init_utsname()->release, 3113 (int)strcspn(init_utsname()->version, " "), 3114 init_utsname()->version); 3115 3116 if (dump_stack_arch_desc_str[0] != '\0') 3117 printk("%sHardware name: %s\n", 3118 log_lvl, dump_stack_arch_desc_str); 3119 3120 print_worker_info(log_lvl, current); 3121 } 3122 3123 /** 3124 * show_regs_print_info - print generic debug info for show_regs() 3125 * @log_lvl: log level 3126 * 3127 * show_regs() implementations can use this function to print out generic 3128 * debug information. 3129 */ 3130 void show_regs_print_info(const char *log_lvl) 3131 { 3132 dump_stack_print_info(log_lvl); 3133 3134 printk("%stask: %p ti: %p task.ti: %p\n", 3135 log_lvl, current, current_thread_info(), 3136 task_thread_info(current)); 3137 } 3138 3139 #endif 3140