xref: /openbmc/linux/kernel/printk/printk.c (revision 12eb4683)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #include "console_cmdline.h"
55 #include "braille.h"
56 
57 /* printk's without a loglevel use this.. */
58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL
59 
60 /* We show everything that is MORE important than this.. */
61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */
62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */
63 
64 int console_printk[4] = {
65 	DEFAULT_CONSOLE_LOGLEVEL,	/* console_loglevel */
66 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
67 	MINIMUM_CONSOLE_LOGLEVEL,	/* minimum_console_loglevel */
68 	DEFAULT_CONSOLE_LOGLEVEL,	/* default_console_loglevel */
69 };
70 
71 /*
72  * Low level drivers may need that to know if they can schedule in
73  * their unblank() callback or not. So let's export it.
74  */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77 
78 /*
79  * console_sem protects the console_drivers list, and also
80  * provides serialisation for access to the entire console
81  * driver system.
82  */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86 
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 	.name = "console_lock"
90 };
91 #endif
92 
93 /*
94  * This is used for debugging the mess that is the VT code by
95  * keeping track if we have the console semaphore held. It's
96  * definitely not the perfect debug tool (we don't know if _WE_
97  * hold it are racing, but it helps tracking those weird code
98  * path in the console code where we end up in places I want
99  * locked without the console sempahore held
100  */
101 static int console_locked, console_suspended;
102 
103 /*
104  * If exclusive_console is non-NULL then only this console is to be printed to.
105  */
106 static struct console *exclusive_console;
107 
108 /*
109  *	Array of consoles built from command line options (console=)
110  */
111 
112 #define MAX_CMDLINECONSOLES 8
113 
114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
115 
116 static int selected_console = -1;
117 static int preferred_console = -1;
118 int console_set_on_cmdline;
119 EXPORT_SYMBOL(console_set_on_cmdline);
120 
121 /* Flag: console code may call schedule() */
122 static int console_may_schedule;
123 
124 /*
125  * The printk log buffer consists of a chain of concatenated variable
126  * length records. Every record starts with a record header, containing
127  * the overall length of the record.
128  *
129  * The heads to the first and last entry in the buffer, as well as the
130  * sequence numbers of these both entries are maintained when messages
131  * are stored..
132  *
133  * If the heads indicate available messages, the length in the header
134  * tells the start next message. A length == 0 for the next message
135  * indicates a wrap-around to the beginning of the buffer.
136  *
137  * Every record carries the monotonic timestamp in microseconds, as well as
138  * the standard userspace syslog level and syslog facility. The usual
139  * kernel messages use LOG_KERN; userspace-injected messages always carry
140  * a matching syslog facility, by default LOG_USER. The origin of every
141  * message can be reliably determined that way.
142  *
143  * The human readable log message directly follows the message header. The
144  * length of the message text is stored in the header, the stored message
145  * is not terminated.
146  *
147  * Optionally, a message can carry a dictionary of properties (key/value pairs),
148  * to provide userspace with a machine-readable message context.
149  *
150  * Examples for well-defined, commonly used property names are:
151  *   DEVICE=b12:8               device identifier
152  *                                b12:8         block dev_t
153  *                                c127:3        char dev_t
154  *                                n8            netdev ifindex
155  *                                +sound:card0  subsystem:devname
156  *   SUBSYSTEM=pci              driver-core subsystem name
157  *
158  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
159  * follows directly after a '=' character. Every property is terminated by
160  * a '\0' character. The last property is not terminated.
161  *
162  * Example of a message structure:
163  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
164  *   0008  34 00                        record is 52 bytes long
165  *   000a        0b 00                  text is 11 bytes long
166  *   000c              1f 00            dictionary is 23 bytes long
167  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
168  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
169  *         69 6e 65                     "ine"
170  *   001b           44 45 56 49 43      "DEVIC"
171  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
172  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
173  *         67                           "g"
174  *   0032     00 00 00                  padding to next message header
175  *
176  * The 'struct printk_log' buffer header must never be directly exported to
177  * userspace, it is a kernel-private implementation detail that might
178  * need to be changed in the future, when the requirements change.
179  *
180  * /dev/kmsg exports the structured data in the following line format:
181  *   "level,sequnum,timestamp;<message text>\n"
182  *
183  * The optional key/value pairs are attached as continuation lines starting
184  * with a space character and terminated by a newline. All possible
185  * non-prinatable characters are escaped in the "\xff" notation.
186  *
187  * Users of the export format should ignore possible additional values
188  * separated by ',', and find the message after the ';' character.
189  */
190 
191 enum log_flags {
192 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
193 	LOG_NEWLINE	= 2,	/* text ended with a newline */
194 	LOG_PREFIX	= 4,	/* text started with a prefix */
195 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
196 };
197 
198 struct printk_log {
199 	u64 ts_nsec;		/* timestamp in nanoseconds */
200 	u16 len;		/* length of entire record */
201 	u16 text_len;		/* length of text buffer */
202 	u16 dict_len;		/* length of dictionary buffer */
203 	u8 facility;		/* syslog facility */
204 	u8 flags:5;		/* internal record flags */
205 	u8 level:3;		/* syslog level */
206 };
207 
208 /*
209  * The logbuf_lock protects kmsg buffer, indices, counters. It is also
210  * used in interesting ways to provide interlocking in console_unlock();
211  */
212 static DEFINE_RAW_SPINLOCK(logbuf_lock);
213 
214 #ifdef CONFIG_PRINTK
215 DECLARE_WAIT_QUEUE_HEAD(log_wait);
216 /* the next printk record to read by syslog(READ) or /proc/kmsg */
217 static u64 syslog_seq;
218 static u32 syslog_idx;
219 static enum log_flags syslog_prev;
220 static size_t syslog_partial;
221 
222 /* index and sequence number of the first record stored in the buffer */
223 static u64 log_first_seq;
224 static u32 log_first_idx;
225 
226 /* index and sequence number of the next record to store in the buffer */
227 static u64 log_next_seq;
228 static u32 log_next_idx;
229 
230 /* the next printk record to write to the console */
231 static u64 console_seq;
232 static u32 console_idx;
233 static enum log_flags console_prev;
234 
235 /* the next printk record to read after the last 'clear' command */
236 static u64 clear_seq;
237 static u32 clear_idx;
238 
239 #define PREFIX_MAX		32
240 #define LOG_LINE_MAX		1024 - PREFIX_MAX
241 
242 /* record buffer */
243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
244 #define LOG_ALIGN 4
245 #else
246 #define LOG_ALIGN __alignof__(struct printk_log)
247 #endif
248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
250 static char *log_buf = __log_buf;
251 static u32 log_buf_len = __LOG_BUF_LEN;
252 
253 /* cpu currently holding logbuf_lock */
254 static volatile unsigned int logbuf_cpu = UINT_MAX;
255 
256 /* human readable text of the record */
257 static char *log_text(const struct printk_log *msg)
258 {
259 	return (char *)msg + sizeof(struct printk_log);
260 }
261 
262 /* optional key/value pair dictionary attached to the record */
263 static char *log_dict(const struct printk_log *msg)
264 {
265 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
266 }
267 
268 /* get record by index; idx must point to valid msg */
269 static struct printk_log *log_from_idx(u32 idx)
270 {
271 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
272 
273 	/*
274 	 * A length == 0 record is the end of buffer marker. Wrap around and
275 	 * read the message at the start of the buffer.
276 	 */
277 	if (!msg->len)
278 		return (struct printk_log *)log_buf;
279 	return msg;
280 }
281 
282 /* get next record; idx must point to valid msg */
283 static u32 log_next(u32 idx)
284 {
285 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
286 
287 	/* length == 0 indicates the end of the buffer; wrap */
288 	/*
289 	 * A length == 0 record is the end of buffer marker. Wrap around and
290 	 * read the message at the start of the buffer as *this* one, and
291 	 * return the one after that.
292 	 */
293 	if (!msg->len) {
294 		msg = (struct printk_log *)log_buf;
295 		return msg->len;
296 	}
297 	return idx + msg->len;
298 }
299 
300 /* insert record into the buffer, discard old ones, update heads */
301 static void log_store(int facility, int level,
302 		      enum log_flags flags, u64 ts_nsec,
303 		      const char *dict, u16 dict_len,
304 		      const char *text, u16 text_len)
305 {
306 	struct printk_log *msg;
307 	u32 size, pad_len;
308 
309 	/* number of '\0' padding bytes to next message */
310 	size = sizeof(struct printk_log) + text_len + dict_len;
311 	pad_len = (-size) & (LOG_ALIGN - 1);
312 	size += pad_len;
313 
314 	while (log_first_seq < log_next_seq) {
315 		u32 free;
316 
317 		if (log_next_idx > log_first_idx)
318 			free = max(log_buf_len - log_next_idx, log_first_idx);
319 		else
320 			free = log_first_idx - log_next_idx;
321 
322 		if (free > size + sizeof(struct printk_log))
323 			break;
324 
325 		/* drop old messages until we have enough contiuous space */
326 		log_first_idx = log_next(log_first_idx);
327 		log_first_seq++;
328 	}
329 
330 	if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) {
331 		/*
332 		 * This message + an additional empty header does not fit
333 		 * at the end of the buffer. Add an empty header with len == 0
334 		 * to signify a wrap around.
335 		 */
336 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
337 		log_next_idx = 0;
338 	}
339 
340 	/* fill message */
341 	msg = (struct printk_log *)(log_buf + log_next_idx);
342 	memcpy(log_text(msg), text, text_len);
343 	msg->text_len = text_len;
344 	memcpy(log_dict(msg), dict, dict_len);
345 	msg->dict_len = dict_len;
346 	msg->facility = facility;
347 	msg->level = level & 7;
348 	msg->flags = flags & 0x1f;
349 	if (ts_nsec > 0)
350 		msg->ts_nsec = ts_nsec;
351 	else
352 		msg->ts_nsec = local_clock();
353 	memset(log_dict(msg) + dict_len, 0, pad_len);
354 	msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len;
355 
356 	/* insert message */
357 	log_next_idx += msg->len;
358 	log_next_seq++;
359 }
360 
361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
362 int dmesg_restrict = 1;
363 #else
364 int dmesg_restrict;
365 #endif
366 
367 static int syslog_action_restricted(int type)
368 {
369 	if (dmesg_restrict)
370 		return 1;
371 	/*
372 	 * Unless restricted, we allow "read all" and "get buffer size"
373 	 * for everybody.
374 	 */
375 	return type != SYSLOG_ACTION_READ_ALL &&
376 	       type != SYSLOG_ACTION_SIZE_BUFFER;
377 }
378 
379 static int check_syslog_permissions(int type, bool from_file)
380 {
381 	/*
382 	 * If this is from /proc/kmsg and we've already opened it, then we've
383 	 * already done the capabilities checks at open time.
384 	 */
385 	if (from_file && type != SYSLOG_ACTION_OPEN)
386 		return 0;
387 
388 	if (syslog_action_restricted(type)) {
389 		if (capable(CAP_SYSLOG))
390 			return 0;
391 		/*
392 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
393 		 * a warning.
394 		 */
395 		if (capable(CAP_SYS_ADMIN)) {
396 			pr_warn_once("%s (%d): Attempt to access syslog with "
397 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
398 				     "(deprecated).\n",
399 				 current->comm, task_pid_nr(current));
400 			return 0;
401 		}
402 		return -EPERM;
403 	}
404 	return security_syslog(type);
405 }
406 
407 
408 /* /dev/kmsg - userspace message inject/listen interface */
409 struct devkmsg_user {
410 	u64 seq;
411 	u32 idx;
412 	enum log_flags prev;
413 	struct mutex lock;
414 	char buf[8192];
415 };
416 
417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
418 			      unsigned long count, loff_t pos)
419 {
420 	char *buf, *line;
421 	int i;
422 	int level = default_message_loglevel;
423 	int facility = 1;	/* LOG_USER */
424 	size_t len = iov_length(iv, count);
425 	ssize_t ret = len;
426 
427 	if (len > LOG_LINE_MAX)
428 		return -EINVAL;
429 	buf = kmalloc(len+1, GFP_KERNEL);
430 	if (buf == NULL)
431 		return -ENOMEM;
432 
433 	line = buf;
434 	for (i = 0; i < count; i++) {
435 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
436 			ret = -EFAULT;
437 			goto out;
438 		}
439 		line += iv[i].iov_len;
440 	}
441 
442 	/*
443 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
444 	 * the decimal value represents 32bit, the lower 3 bit are the log
445 	 * level, the rest are the log facility.
446 	 *
447 	 * If no prefix or no userspace facility is specified, we
448 	 * enforce LOG_USER, to be able to reliably distinguish
449 	 * kernel-generated messages from userspace-injected ones.
450 	 */
451 	line = buf;
452 	if (line[0] == '<') {
453 		char *endp = NULL;
454 
455 		i = simple_strtoul(line+1, &endp, 10);
456 		if (endp && endp[0] == '>') {
457 			level = i & 7;
458 			if (i >> 3)
459 				facility = i >> 3;
460 			endp++;
461 			len -= endp - line;
462 			line = endp;
463 		}
464 	}
465 	line[len] = '\0';
466 
467 	printk_emit(facility, level, NULL, 0, "%s", line);
468 out:
469 	kfree(buf);
470 	return ret;
471 }
472 
473 static ssize_t devkmsg_read(struct file *file, char __user *buf,
474 			    size_t count, loff_t *ppos)
475 {
476 	struct devkmsg_user *user = file->private_data;
477 	struct printk_log *msg;
478 	u64 ts_usec;
479 	size_t i;
480 	char cont = '-';
481 	size_t len;
482 	ssize_t ret;
483 
484 	if (!user)
485 		return -EBADF;
486 
487 	ret = mutex_lock_interruptible(&user->lock);
488 	if (ret)
489 		return ret;
490 	raw_spin_lock_irq(&logbuf_lock);
491 	while (user->seq == log_next_seq) {
492 		if (file->f_flags & O_NONBLOCK) {
493 			ret = -EAGAIN;
494 			raw_spin_unlock_irq(&logbuf_lock);
495 			goto out;
496 		}
497 
498 		raw_spin_unlock_irq(&logbuf_lock);
499 		ret = wait_event_interruptible(log_wait,
500 					       user->seq != log_next_seq);
501 		if (ret)
502 			goto out;
503 		raw_spin_lock_irq(&logbuf_lock);
504 	}
505 
506 	if (user->seq < log_first_seq) {
507 		/* our last seen message is gone, return error and reset */
508 		user->idx = log_first_idx;
509 		user->seq = log_first_seq;
510 		ret = -EPIPE;
511 		raw_spin_unlock_irq(&logbuf_lock);
512 		goto out;
513 	}
514 
515 	msg = log_from_idx(user->idx);
516 	ts_usec = msg->ts_nsec;
517 	do_div(ts_usec, 1000);
518 
519 	/*
520 	 * If we couldn't merge continuation line fragments during the print,
521 	 * export the stored flags to allow an optional external merge of the
522 	 * records. Merging the records isn't always neccessarily correct, like
523 	 * when we hit a race during printing. In most cases though, it produces
524 	 * better readable output. 'c' in the record flags mark the first
525 	 * fragment of a line, '+' the following.
526 	 */
527 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
528 		cont = 'c';
529 	else if ((msg->flags & LOG_CONT) ||
530 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
531 		cont = '+';
532 
533 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
534 		      (msg->facility << 3) | msg->level,
535 		      user->seq, ts_usec, cont);
536 	user->prev = msg->flags;
537 
538 	/* escape non-printable characters */
539 	for (i = 0; i < msg->text_len; i++) {
540 		unsigned char c = log_text(msg)[i];
541 
542 		if (c < ' ' || c >= 127 || c == '\\')
543 			len += sprintf(user->buf + len, "\\x%02x", c);
544 		else
545 			user->buf[len++] = c;
546 	}
547 	user->buf[len++] = '\n';
548 
549 	if (msg->dict_len) {
550 		bool line = true;
551 
552 		for (i = 0; i < msg->dict_len; i++) {
553 			unsigned char c = log_dict(msg)[i];
554 
555 			if (line) {
556 				user->buf[len++] = ' ';
557 				line = false;
558 			}
559 
560 			if (c == '\0') {
561 				user->buf[len++] = '\n';
562 				line = true;
563 				continue;
564 			}
565 
566 			if (c < ' ' || c >= 127 || c == '\\') {
567 				len += sprintf(user->buf + len, "\\x%02x", c);
568 				continue;
569 			}
570 
571 			user->buf[len++] = c;
572 		}
573 		user->buf[len++] = '\n';
574 	}
575 
576 	user->idx = log_next(user->idx);
577 	user->seq++;
578 	raw_spin_unlock_irq(&logbuf_lock);
579 
580 	if (len > count) {
581 		ret = -EINVAL;
582 		goto out;
583 	}
584 
585 	if (copy_to_user(buf, user->buf, len)) {
586 		ret = -EFAULT;
587 		goto out;
588 	}
589 	ret = len;
590 out:
591 	mutex_unlock(&user->lock);
592 	return ret;
593 }
594 
595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
596 {
597 	struct devkmsg_user *user = file->private_data;
598 	loff_t ret = 0;
599 
600 	if (!user)
601 		return -EBADF;
602 	if (offset)
603 		return -ESPIPE;
604 
605 	raw_spin_lock_irq(&logbuf_lock);
606 	switch (whence) {
607 	case SEEK_SET:
608 		/* the first record */
609 		user->idx = log_first_idx;
610 		user->seq = log_first_seq;
611 		break;
612 	case SEEK_DATA:
613 		/*
614 		 * The first record after the last SYSLOG_ACTION_CLEAR,
615 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
616 		 * changes no global state, and does not clear anything.
617 		 */
618 		user->idx = clear_idx;
619 		user->seq = clear_seq;
620 		break;
621 	case SEEK_END:
622 		/* after the last record */
623 		user->idx = log_next_idx;
624 		user->seq = log_next_seq;
625 		break;
626 	default:
627 		ret = -EINVAL;
628 	}
629 	raw_spin_unlock_irq(&logbuf_lock);
630 	return ret;
631 }
632 
633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
634 {
635 	struct devkmsg_user *user = file->private_data;
636 	int ret = 0;
637 
638 	if (!user)
639 		return POLLERR|POLLNVAL;
640 
641 	poll_wait(file, &log_wait, wait);
642 
643 	raw_spin_lock_irq(&logbuf_lock);
644 	if (user->seq < log_next_seq) {
645 		/* return error when data has vanished underneath us */
646 		if (user->seq < log_first_seq)
647 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
648 		else
649 			ret = POLLIN|POLLRDNORM;
650 	}
651 	raw_spin_unlock_irq(&logbuf_lock);
652 
653 	return ret;
654 }
655 
656 static int devkmsg_open(struct inode *inode, struct file *file)
657 {
658 	struct devkmsg_user *user;
659 	int err;
660 
661 	/* write-only does not need any file context */
662 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
663 		return 0;
664 
665 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
666 				       SYSLOG_FROM_READER);
667 	if (err)
668 		return err;
669 
670 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
671 	if (!user)
672 		return -ENOMEM;
673 
674 	mutex_init(&user->lock);
675 
676 	raw_spin_lock_irq(&logbuf_lock);
677 	user->idx = log_first_idx;
678 	user->seq = log_first_seq;
679 	raw_spin_unlock_irq(&logbuf_lock);
680 
681 	file->private_data = user;
682 	return 0;
683 }
684 
685 static int devkmsg_release(struct inode *inode, struct file *file)
686 {
687 	struct devkmsg_user *user = file->private_data;
688 
689 	if (!user)
690 		return 0;
691 
692 	mutex_destroy(&user->lock);
693 	kfree(user);
694 	return 0;
695 }
696 
697 const struct file_operations kmsg_fops = {
698 	.open = devkmsg_open,
699 	.read = devkmsg_read,
700 	.aio_write = devkmsg_writev,
701 	.llseek = devkmsg_llseek,
702 	.poll = devkmsg_poll,
703 	.release = devkmsg_release,
704 };
705 
706 #ifdef CONFIG_KEXEC
707 /*
708  * This appends the listed symbols to /proc/vmcore
709  *
710  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
711  * obtain access to symbols that are otherwise very difficult to locate.  These
712  * symbols are specifically used so that utilities can access and extract the
713  * dmesg log from a vmcore file after a crash.
714  */
715 void log_buf_kexec_setup(void)
716 {
717 	VMCOREINFO_SYMBOL(log_buf);
718 	VMCOREINFO_SYMBOL(log_buf_len);
719 	VMCOREINFO_SYMBOL(log_first_idx);
720 	VMCOREINFO_SYMBOL(log_next_idx);
721 	/*
722 	 * Export struct printk_log size and field offsets. User space tools can
723 	 * parse it and detect any changes to structure down the line.
724 	 */
725 	VMCOREINFO_STRUCT_SIZE(printk_log);
726 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
727 	VMCOREINFO_OFFSET(printk_log, len);
728 	VMCOREINFO_OFFSET(printk_log, text_len);
729 	VMCOREINFO_OFFSET(printk_log, dict_len);
730 }
731 #endif
732 
733 /* requested log_buf_len from kernel cmdline */
734 static unsigned long __initdata new_log_buf_len;
735 
736 /* save requested log_buf_len since it's too early to process it */
737 static int __init log_buf_len_setup(char *str)
738 {
739 	unsigned size = memparse(str, &str);
740 
741 	if (size)
742 		size = roundup_pow_of_two(size);
743 	if (size > log_buf_len)
744 		new_log_buf_len = size;
745 
746 	return 0;
747 }
748 early_param("log_buf_len", log_buf_len_setup);
749 
750 void __init setup_log_buf(int early)
751 {
752 	unsigned long flags;
753 	char *new_log_buf;
754 	int free;
755 
756 	if (!new_log_buf_len)
757 		return;
758 
759 	if (early) {
760 		unsigned long mem;
761 
762 		mem = memblock_alloc(new_log_buf_len, PAGE_SIZE);
763 		if (!mem)
764 			return;
765 		new_log_buf = __va(mem);
766 	} else {
767 		new_log_buf = alloc_bootmem_nopanic(new_log_buf_len);
768 	}
769 
770 	if (unlikely(!new_log_buf)) {
771 		pr_err("log_buf_len: %ld bytes not available\n",
772 			new_log_buf_len);
773 		return;
774 	}
775 
776 	raw_spin_lock_irqsave(&logbuf_lock, flags);
777 	log_buf_len = new_log_buf_len;
778 	log_buf = new_log_buf;
779 	new_log_buf_len = 0;
780 	free = __LOG_BUF_LEN - log_next_idx;
781 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
782 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
783 
784 	pr_info("log_buf_len: %d\n", log_buf_len);
785 	pr_info("early log buf free: %d(%d%%)\n",
786 		free, (free * 100) / __LOG_BUF_LEN);
787 }
788 
789 static bool __read_mostly ignore_loglevel;
790 
791 static int __init ignore_loglevel_setup(char *str)
792 {
793 	ignore_loglevel = 1;
794 	pr_info("debug: ignoring loglevel setting.\n");
795 
796 	return 0;
797 }
798 
799 early_param("ignore_loglevel", ignore_loglevel_setup);
800 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
801 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
802 	"print all kernel messages to the console.");
803 
804 #ifdef CONFIG_BOOT_PRINTK_DELAY
805 
806 static int boot_delay; /* msecs delay after each printk during bootup */
807 static unsigned long long loops_per_msec;	/* based on boot_delay */
808 
809 static int __init boot_delay_setup(char *str)
810 {
811 	unsigned long lpj;
812 
813 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
814 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
815 
816 	get_option(&str, &boot_delay);
817 	if (boot_delay > 10 * 1000)
818 		boot_delay = 0;
819 
820 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
821 		"HZ: %d, loops_per_msec: %llu\n",
822 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
823 	return 0;
824 }
825 early_param("boot_delay", boot_delay_setup);
826 
827 static void boot_delay_msec(int level)
828 {
829 	unsigned long long k;
830 	unsigned long timeout;
831 
832 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
833 		|| (level >= console_loglevel && !ignore_loglevel)) {
834 		return;
835 	}
836 
837 	k = (unsigned long long)loops_per_msec * boot_delay;
838 
839 	timeout = jiffies + msecs_to_jiffies(boot_delay);
840 	while (k) {
841 		k--;
842 		cpu_relax();
843 		/*
844 		 * use (volatile) jiffies to prevent
845 		 * compiler reduction; loop termination via jiffies
846 		 * is secondary and may or may not happen.
847 		 */
848 		if (time_after(jiffies, timeout))
849 			break;
850 		touch_nmi_watchdog();
851 	}
852 }
853 #else
854 static inline void boot_delay_msec(int level)
855 {
856 }
857 #endif
858 
859 #if defined(CONFIG_PRINTK_TIME)
860 static bool printk_time = 1;
861 #else
862 static bool printk_time;
863 #endif
864 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
865 
866 static size_t print_time(u64 ts, char *buf)
867 {
868 	unsigned long rem_nsec;
869 
870 	if (!printk_time)
871 		return 0;
872 
873 	rem_nsec = do_div(ts, 1000000000);
874 
875 	if (!buf)
876 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
877 
878 	return sprintf(buf, "[%5lu.%06lu] ",
879 		       (unsigned long)ts, rem_nsec / 1000);
880 }
881 
882 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
883 {
884 	size_t len = 0;
885 	unsigned int prefix = (msg->facility << 3) | msg->level;
886 
887 	if (syslog) {
888 		if (buf) {
889 			len += sprintf(buf, "<%u>", prefix);
890 		} else {
891 			len += 3;
892 			if (prefix > 999)
893 				len += 3;
894 			else if (prefix > 99)
895 				len += 2;
896 			else if (prefix > 9)
897 				len++;
898 		}
899 	}
900 
901 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
902 	return len;
903 }
904 
905 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
906 			     bool syslog, char *buf, size_t size)
907 {
908 	const char *text = log_text(msg);
909 	size_t text_size = msg->text_len;
910 	bool prefix = true;
911 	bool newline = true;
912 	size_t len = 0;
913 
914 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
915 		prefix = false;
916 
917 	if (msg->flags & LOG_CONT) {
918 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
919 			prefix = false;
920 
921 		if (!(msg->flags & LOG_NEWLINE))
922 			newline = false;
923 	}
924 
925 	do {
926 		const char *next = memchr(text, '\n', text_size);
927 		size_t text_len;
928 
929 		if (next) {
930 			text_len = next - text;
931 			next++;
932 			text_size -= next - text;
933 		} else {
934 			text_len = text_size;
935 		}
936 
937 		if (buf) {
938 			if (print_prefix(msg, syslog, NULL) +
939 			    text_len + 1 >= size - len)
940 				break;
941 
942 			if (prefix)
943 				len += print_prefix(msg, syslog, buf + len);
944 			memcpy(buf + len, text, text_len);
945 			len += text_len;
946 			if (next || newline)
947 				buf[len++] = '\n';
948 		} else {
949 			/* SYSLOG_ACTION_* buffer size only calculation */
950 			if (prefix)
951 				len += print_prefix(msg, syslog, NULL);
952 			len += text_len;
953 			if (next || newline)
954 				len++;
955 		}
956 
957 		prefix = true;
958 		text = next;
959 	} while (text);
960 
961 	return len;
962 }
963 
964 static int syslog_print(char __user *buf, int size)
965 {
966 	char *text;
967 	struct printk_log *msg;
968 	int len = 0;
969 
970 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
971 	if (!text)
972 		return -ENOMEM;
973 
974 	while (size > 0) {
975 		size_t n;
976 		size_t skip;
977 
978 		raw_spin_lock_irq(&logbuf_lock);
979 		if (syslog_seq < log_first_seq) {
980 			/* messages are gone, move to first one */
981 			syslog_seq = log_first_seq;
982 			syslog_idx = log_first_idx;
983 			syslog_prev = 0;
984 			syslog_partial = 0;
985 		}
986 		if (syslog_seq == log_next_seq) {
987 			raw_spin_unlock_irq(&logbuf_lock);
988 			break;
989 		}
990 
991 		skip = syslog_partial;
992 		msg = log_from_idx(syslog_idx);
993 		n = msg_print_text(msg, syslog_prev, true, text,
994 				   LOG_LINE_MAX + PREFIX_MAX);
995 		if (n - syslog_partial <= size) {
996 			/* message fits into buffer, move forward */
997 			syslog_idx = log_next(syslog_idx);
998 			syslog_seq++;
999 			syslog_prev = msg->flags;
1000 			n -= syslog_partial;
1001 			syslog_partial = 0;
1002 		} else if (!len){
1003 			/* partial read(), remember position */
1004 			n = size;
1005 			syslog_partial += n;
1006 		} else
1007 			n = 0;
1008 		raw_spin_unlock_irq(&logbuf_lock);
1009 
1010 		if (!n)
1011 			break;
1012 
1013 		if (copy_to_user(buf, text + skip, n)) {
1014 			if (!len)
1015 				len = -EFAULT;
1016 			break;
1017 		}
1018 
1019 		len += n;
1020 		size -= n;
1021 		buf += n;
1022 	}
1023 
1024 	kfree(text);
1025 	return len;
1026 }
1027 
1028 static int syslog_print_all(char __user *buf, int size, bool clear)
1029 {
1030 	char *text;
1031 	int len = 0;
1032 
1033 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1034 	if (!text)
1035 		return -ENOMEM;
1036 
1037 	raw_spin_lock_irq(&logbuf_lock);
1038 	if (buf) {
1039 		u64 next_seq;
1040 		u64 seq;
1041 		u32 idx;
1042 		enum log_flags prev;
1043 
1044 		if (clear_seq < log_first_seq) {
1045 			/* messages are gone, move to first available one */
1046 			clear_seq = log_first_seq;
1047 			clear_idx = log_first_idx;
1048 		}
1049 
1050 		/*
1051 		 * Find first record that fits, including all following records,
1052 		 * into the user-provided buffer for this dump.
1053 		 */
1054 		seq = clear_seq;
1055 		idx = clear_idx;
1056 		prev = 0;
1057 		while (seq < log_next_seq) {
1058 			struct printk_log *msg = log_from_idx(idx);
1059 
1060 			len += msg_print_text(msg, prev, true, NULL, 0);
1061 			prev = msg->flags;
1062 			idx = log_next(idx);
1063 			seq++;
1064 		}
1065 
1066 		/* move first record forward until length fits into the buffer */
1067 		seq = clear_seq;
1068 		idx = clear_idx;
1069 		prev = 0;
1070 		while (len > size && seq < log_next_seq) {
1071 			struct printk_log *msg = log_from_idx(idx);
1072 
1073 			len -= msg_print_text(msg, prev, true, NULL, 0);
1074 			prev = msg->flags;
1075 			idx = log_next(idx);
1076 			seq++;
1077 		}
1078 
1079 		/* last message fitting into this dump */
1080 		next_seq = log_next_seq;
1081 
1082 		len = 0;
1083 		prev = 0;
1084 		while (len >= 0 && seq < next_seq) {
1085 			struct printk_log *msg = log_from_idx(idx);
1086 			int textlen;
1087 
1088 			textlen = msg_print_text(msg, prev, true, text,
1089 						 LOG_LINE_MAX + PREFIX_MAX);
1090 			if (textlen < 0) {
1091 				len = textlen;
1092 				break;
1093 			}
1094 			idx = log_next(idx);
1095 			seq++;
1096 			prev = msg->flags;
1097 
1098 			raw_spin_unlock_irq(&logbuf_lock);
1099 			if (copy_to_user(buf + len, text, textlen))
1100 				len = -EFAULT;
1101 			else
1102 				len += textlen;
1103 			raw_spin_lock_irq(&logbuf_lock);
1104 
1105 			if (seq < log_first_seq) {
1106 				/* messages are gone, move to next one */
1107 				seq = log_first_seq;
1108 				idx = log_first_idx;
1109 				prev = 0;
1110 			}
1111 		}
1112 	}
1113 
1114 	if (clear) {
1115 		clear_seq = log_next_seq;
1116 		clear_idx = log_next_idx;
1117 	}
1118 	raw_spin_unlock_irq(&logbuf_lock);
1119 
1120 	kfree(text);
1121 	return len;
1122 }
1123 
1124 int do_syslog(int type, char __user *buf, int len, bool from_file)
1125 {
1126 	bool clear = false;
1127 	static int saved_console_loglevel = -1;
1128 	int error;
1129 
1130 	error = check_syslog_permissions(type, from_file);
1131 	if (error)
1132 		goto out;
1133 
1134 	error = security_syslog(type);
1135 	if (error)
1136 		return error;
1137 
1138 	switch (type) {
1139 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1140 		break;
1141 	case SYSLOG_ACTION_OPEN:	/* Open log */
1142 		break;
1143 	case SYSLOG_ACTION_READ:	/* Read from log */
1144 		error = -EINVAL;
1145 		if (!buf || len < 0)
1146 			goto out;
1147 		error = 0;
1148 		if (!len)
1149 			goto out;
1150 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1151 			error = -EFAULT;
1152 			goto out;
1153 		}
1154 		error = wait_event_interruptible(log_wait,
1155 						 syslog_seq != log_next_seq);
1156 		if (error)
1157 			goto out;
1158 		error = syslog_print(buf, len);
1159 		break;
1160 	/* Read/clear last kernel messages */
1161 	case SYSLOG_ACTION_READ_CLEAR:
1162 		clear = true;
1163 		/* FALL THRU */
1164 	/* Read last kernel messages */
1165 	case SYSLOG_ACTION_READ_ALL:
1166 		error = -EINVAL;
1167 		if (!buf || len < 0)
1168 			goto out;
1169 		error = 0;
1170 		if (!len)
1171 			goto out;
1172 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1173 			error = -EFAULT;
1174 			goto out;
1175 		}
1176 		error = syslog_print_all(buf, len, clear);
1177 		break;
1178 	/* Clear ring buffer */
1179 	case SYSLOG_ACTION_CLEAR:
1180 		syslog_print_all(NULL, 0, true);
1181 		break;
1182 	/* Disable logging to console */
1183 	case SYSLOG_ACTION_CONSOLE_OFF:
1184 		if (saved_console_loglevel == -1)
1185 			saved_console_loglevel = console_loglevel;
1186 		console_loglevel = minimum_console_loglevel;
1187 		break;
1188 	/* Enable logging to console */
1189 	case SYSLOG_ACTION_CONSOLE_ON:
1190 		if (saved_console_loglevel != -1) {
1191 			console_loglevel = saved_console_loglevel;
1192 			saved_console_loglevel = -1;
1193 		}
1194 		break;
1195 	/* Set level of messages printed to console */
1196 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1197 		error = -EINVAL;
1198 		if (len < 1 || len > 8)
1199 			goto out;
1200 		if (len < minimum_console_loglevel)
1201 			len = minimum_console_loglevel;
1202 		console_loglevel = len;
1203 		/* Implicitly re-enable logging to console */
1204 		saved_console_loglevel = -1;
1205 		error = 0;
1206 		break;
1207 	/* Number of chars in the log buffer */
1208 	case SYSLOG_ACTION_SIZE_UNREAD:
1209 		raw_spin_lock_irq(&logbuf_lock);
1210 		if (syslog_seq < log_first_seq) {
1211 			/* messages are gone, move to first one */
1212 			syslog_seq = log_first_seq;
1213 			syslog_idx = log_first_idx;
1214 			syslog_prev = 0;
1215 			syslog_partial = 0;
1216 		}
1217 		if (from_file) {
1218 			/*
1219 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1220 			 * for pending data, not the size; return the count of
1221 			 * records, not the length.
1222 			 */
1223 			error = log_next_idx - syslog_idx;
1224 		} else {
1225 			u64 seq = syslog_seq;
1226 			u32 idx = syslog_idx;
1227 			enum log_flags prev = syslog_prev;
1228 
1229 			error = 0;
1230 			while (seq < log_next_seq) {
1231 				struct printk_log *msg = log_from_idx(idx);
1232 
1233 				error += msg_print_text(msg, prev, true, NULL, 0);
1234 				idx = log_next(idx);
1235 				seq++;
1236 				prev = msg->flags;
1237 			}
1238 			error -= syslog_partial;
1239 		}
1240 		raw_spin_unlock_irq(&logbuf_lock);
1241 		break;
1242 	/* Size of the log buffer */
1243 	case SYSLOG_ACTION_SIZE_BUFFER:
1244 		error = log_buf_len;
1245 		break;
1246 	default:
1247 		error = -EINVAL;
1248 		break;
1249 	}
1250 out:
1251 	return error;
1252 }
1253 
1254 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1255 {
1256 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1257 }
1258 
1259 /*
1260  * Call the console drivers, asking them to write out
1261  * log_buf[start] to log_buf[end - 1].
1262  * The console_lock must be held.
1263  */
1264 static void call_console_drivers(int level, const char *text, size_t len)
1265 {
1266 	struct console *con;
1267 
1268 	trace_console(text, len);
1269 
1270 	if (level >= console_loglevel && !ignore_loglevel)
1271 		return;
1272 	if (!console_drivers)
1273 		return;
1274 
1275 	for_each_console(con) {
1276 		if (exclusive_console && con != exclusive_console)
1277 			continue;
1278 		if (!(con->flags & CON_ENABLED))
1279 			continue;
1280 		if (!con->write)
1281 			continue;
1282 		if (!cpu_online(smp_processor_id()) &&
1283 		    !(con->flags & CON_ANYTIME))
1284 			continue;
1285 		con->write(con, text, len);
1286 	}
1287 }
1288 
1289 /*
1290  * Zap console related locks when oopsing. Only zap at most once
1291  * every 10 seconds, to leave time for slow consoles to print a
1292  * full oops.
1293  */
1294 static void zap_locks(void)
1295 {
1296 	static unsigned long oops_timestamp;
1297 
1298 	if (time_after_eq(jiffies, oops_timestamp) &&
1299 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1300 		return;
1301 
1302 	oops_timestamp = jiffies;
1303 
1304 	debug_locks_off();
1305 	/* If a crash is occurring, make sure we can't deadlock */
1306 	raw_spin_lock_init(&logbuf_lock);
1307 	/* And make sure that we print immediately */
1308 	sema_init(&console_sem, 1);
1309 }
1310 
1311 /* Check if we have any console registered that can be called early in boot. */
1312 static int have_callable_console(void)
1313 {
1314 	struct console *con;
1315 
1316 	for_each_console(con)
1317 		if (con->flags & CON_ANYTIME)
1318 			return 1;
1319 
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Can we actually use the console at this time on this cpu?
1325  *
1326  * Console drivers may assume that per-cpu resources have
1327  * been allocated. So unless they're explicitly marked as
1328  * being able to cope (CON_ANYTIME) don't call them until
1329  * this CPU is officially up.
1330  */
1331 static inline int can_use_console(unsigned int cpu)
1332 {
1333 	return cpu_online(cpu) || have_callable_console();
1334 }
1335 
1336 /*
1337  * Try to get console ownership to actually show the kernel
1338  * messages from a 'printk'. Return true (and with the
1339  * console_lock held, and 'console_locked' set) if it
1340  * is successful, false otherwise.
1341  *
1342  * This gets called with the 'logbuf_lock' spinlock held and
1343  * interrupts disabled. It should return with 'lockbuf_lock'
1344  * released but interrupts still disabled.
1345  */
1346 static int console_trylock_for_printk(unsigned int cpu)
1347 	__releases(&logbuf_lock)
1348 {
1349 	int retval = 0, wake = 0;
1350 
1351 	if (console_trylock()) {
1352 		retval = 1;
1353 
1354 		/*
1355 		 * If we can't use the console, we need to release
1356 		 * the console semaphore by hand to avoid flushing
1357 		 * the buffer. We need to hold the console semaphore
1358 		 * in order to do this test safely.
1359 		 */
1360 		if (!can_use_console(cpu)) {
1361 			console_locked = 0;
1362 			wake = 1;
1363 			retval = 0;
1364 		}
1365 	}
1366 	logbuf_cpu = UINT_MAX;
1367 	raw_spin_unlock(&logbuf_lock);
1368 	if (wake)
1369 		up(&console_sem);
1370 	return retval;
1371 }
1372 
1373 int printk_delay_msec __read_mostly;
1374 
1375 static inline void printk_delay(void)
1376 {
1377 	if (unlikely(printk_delay_msec)) {
1378 		int m = printk_delay_msec;
1379 
1380 		while (m--) {
1381 			mdelay(1);
1382 			touch_nmi_watchdog();
1383 		}
1384 	}
1385 }
1386 
1387 /*
1388  * Continuation lines are buffered, and not committed to the record buffer
1389  * until the line is complete, or a race forces it. The line fragments
1390  * though, are printed immediately to the consoles to ensure everything has
1391  * reached the console in case of a kernel crash.
1392  */
1393 static struct cont {
1394 	char buf[LOG_LINE_MAX];
1395 	size_t len;			/* length == 0 means unused buffer */
1396 	size_t cons;			/* bytes written to console */
1397 	struct task_struct *owner;	/* task of first print*/
1398 	u64 ts_nsec;			/* time of first print */
1399 	u8 level;			/* log level of first message */
1400 	u8 facility;			/* log level of first message */
1401 	enum log_flags flags;		/* prefix, newline flags */
1402 	bool flushed:1;			/* buffer sealed and committed */
1403 } cont;
1404 
1405 static void cont_flush(enum log_flags flags)
1406 {
1407 	if (cont.flushed)
1408 		return;
1409 	if (cont.len == 0)
1410 		return;
1411 
1412 	if (cont.cons) {
1413 		/*
1414 		 * If a fragment of this line was directly flushed to the
1415 		 * console; wait for the console to pick up the rest of the
1416 		 * line. LOG_NOCONS suppresses a duplicated output.
1417 		 */
1418 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1419 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1420 		cont.flags = flags;
1421 		cont.flushed = true;
1422 	} else {
1423 		/*
1424 		 * If no fragment of this line ever reached the console,
1425 		 * just submit it to the store and free the buffer.
1426 		 */
1427 		log_store(cont.facility, cont.level, flags, 0,
1428 			  NULL, 0, cont.buf, cont.len);
1429 		cont.len = 0;
1430 	}
1431 }
1432 
1433 static bool cont_add(int facility, int level, const char *text, size_t len)
1434 {
1435 	if (cont.len && cont.flushed)
1436 		return false;
1437 
1438 	if (cont.len + len > sizeof(cont.buf)) {
1439 		/* the line gets too long, split it up in separate records */
1440 		cont_flush(LOG_CONT);
1441 		return false;
1442 	}
1443 
1444 	if (!cont.len) {
1445 		cont.facility = facility;
1446 		cont.level = level;
1447 		cont.owner = current;
1448 		cont.ts_nsec = local_clock();
1449 		cont.flags = 0;
1450 		cont.cons = 0;
1451 		cont.flushed = false;
1452 	}
1453 
1454 	memcpy(cont.buf + cont.len, text, len);
1455 	cont.len += len;
1456 
1457 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1458 		cont_flush(LOG_CONT);
1459 
1460 	return true;
1461 }
1462 
1463 static size_t cont_print_text(char *text, size_t size)
1464 {
1465 	size_t textlen = 0;
1466 	size_t len;
1467 
1468 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1469 		textlen += print_time(cont.ts_nsec, text);
1470 		size -= textlen;
1471 	}
1472 
1473 	len = cont.len - cont.cons;
1474 	if (len > 0) {
1475 		if (len+1 > size)
1476 			len = size-1;
1477 		memcpy(text + textlen, cont.buf + cont.cons, len);
1478 		textlen += len;
1479 		cont.cons = cont.len;
1480 	}
1481 
1482 	if (cont.flushed) {
1483 		if (cont.flags & LOG_NEWLINE)
1484 			text[textlen++] = '\n';
1485 		/* got everything, release buffer */
1486 		cont.len = 0;
1487 	}
1488 	return textlen;
1489 }
1490 
1491 asmlinkage int vprintk_emit(int facility, int level,
1492 			    const char *dict, size_t dictlen,
1493 			    const char *fmt, va_list args)
1494 {
1495 	static int recursion_bug;
1496 	static char textbuf[LOG_LINE_MAX];
1497 	char *text = textbuf;
1498 	size_t text_len;
1499 	enum log_flags lflags = 0;
1500 	unsigned long flags;
1501 	int this_cpu;
1502 	int printed_len = 0;
1503 
1504 	boot_delay_msec(level);
1505 	printk_delay();
1506 
1507 	/* This stops the holder of console_sem just where we want him */
1508 	local_irq_save(flags);
1509 	this_cpu = smp_processor_id();
1510 
1511 	/*
1512 	 * Ouch, printk recursed into itself!
1513 	 */
1514 	if (unlikely(logbuf_cpu == this_cpu)) {
1515 		/*
1516 		 * If a crash is occurring during printk() on this CPU,
1517 		 * then try to get the crash message out but make sure
1518 		 * we can't deadlock. Otherwise just return to avoid the
1519 		 * recursion and return - but flag the recursion so that
1520 		 * it can be printed at the next appropriate moment:
1521 		 */
1522 		if (!oops_in_progress && !lockdep_recursing(current)) {
1523 			recursion_bug = 1;
1524 			goto out_restore_irqs;
1525 		}
1526 		zap_locks();
1527 	}
1528 
1529 	lockdep_off();
1530 	raw_spin_lock(&logbuf_lock);
1531 	logbuf_cpu = this_cpu;
1532 
1533 	if (recursion_bug) {
1534 		static const char recursion_msg[] =
1535 			"BUG: recent printk recursion!";
1536 
1537 		recursion_bug = 0;
1538 		printed_len += strlen(recursion_msg);
1539 		/* emit KERN_CRIT message */
1540 		log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1541 			  NULL, 0, recursion_msg, printed_len);
1542 	}
1543 
1544 	/*
1545 	 * The printf needs to come first; we need the syslog
1546 	 * prefix which might be passed-in as a parameter.
1547 	 */
1548 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1549 
1550 	/* mark and strip a trailing newline */
1551 	if (text_len && text[text_len-1] == '\n') {
1552 		text_len--;
1553 		lflags |= LOG_NEWLINE;
1554 	}
1555 
1556 	/* strip kernel syslog prefix and extract log level or control flags */
1557 	if (facility == 0) {
1558 		int kern_level = printk_get_level(text);
1559 
1560 		if (kern_level) {
1561 			const char *end_of_header = printk_skip_level(text);
1562 			switch (kern_level) {
1563 			case '0' ... '7':
1564 				if (level == -1)
1565 					level = kern_level - '0';
1566 			case 'd':	/* KERN_DEFAULT */
1567 				lflags |= LOG_PREFIX;
1568 			case 'c':	/* KERN_CONT */
1569 				break;
1570 			}
1571 			text_len -= end_of_header - text;
1572 			text = (char *)end_of_header;
1573 		}
1574 	}
1575 
1576 	if (level == -1)
1577 		level = default_message_loglevel;
1578 
1579 	if (dict)
1580 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1581 
1582 	if (!(lflags & LOG_NEWLINE)) {
1583 		/*
1584 		 * Flush the conflicting buffer. An earlier newline was missing,
1585 		 * or another task also prints continuation lines.
1586 		 */
1587 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1588 			cont_flush(LOG_NEWLINE);
1589 
1590 		/* buffer line if possible, otherwise store it right away */
1591 		if (!cont_add(facility, level, text, text_len))
1592 			log_store(facility, level, lflags | LOG_CONT, 0,
1593 				  dict, dictlen, text, text_len);
1594 	} else {
1595 		bool stored = false;
1596 
1597 		/*
1598 		 * If an earlier newline was missing and it was the same task,
1599 		 * either merge it with the current buffer and flush, or if
1600 		 * there was a race with interrupts (prefix == true) then just
1601 		 * flush it out and store this line separately.
1602 		 */
1603 		if (cont.len && cont.owner == current) {
1604 			if (!(lflags & LOG_PREFIX))
1605 				stored = cont_add(facility, level, text, text_len);
1606 			cont_flush(LOG_NEWLINE);
1607 		}
1608 
1609 		if (!stored)
1610 			log_store(facility, level, lflags, 0,
1611 				  dict, dictlen, text, text_len);
1612 	}
1613 	printed_len += text_len;
1614 
1615 	/*
1616 	 * Try to acquire and then immediately release the console semaphore.
1617 	 * The release will print out buffers and wake up /dev/kmsg and syslog()
1618 	 * users.
1619 	 *
1620 	 * The console_trylock_for_printk() function will release 'logbuf_lock'
1621 	 * regardless of whether it actually gets the console semaphore or not.
1622 	 */
1623 	if (console_trylock_for_printk(this_cpu))
1624 		console_unlock();
1625 
1626 	lockdep_on();
1627 out_restore_irqs:
1628 	local_irq_restore(flags);
1629 
1630 	return printed_len;
1631 }
1632 EXPORT_SYMBOL(vprintk_emit);
1633 
1634 asmlinkage int vprintk(const char *fmt, va_list args)
1635 {
1636 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1637 }
1638 EXPORT_SYMBOL(vprintk);
1639 
1640 asmlinkage int printk_emit(int facility, int level,
1641 			   const char *dict, size_t dictlen,
1642 			   const char *fmt, ...)
1643 {
1644 	va_list args;
1645 	int r;
1646 
1647 	va_start(args, fmt);
1648 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1649 	va_end(args);
1650 
1651 	return r;
1652 }
1653 EXPORT_SYMBOL(printk_emit);
1654 
1655 /**
1656  * printk - print a kernel message
1657  * @fmt: format string
1658  *
1659  * This is printk(). It can be called from any context. We want it to work.
1660  *
1661  * We try to grab the console_lock. If we succeed, it's easy - we log the
1662  * output and call the console drivers.  If we fail to get the semaphore, we
1663  * place the output into the log buffer and return. The current holder of
1664  * the console_sem will notice the new output in console_unlock(); and will
1665  * send it to the consoles before releasing the lock.
1666  *
1667  * One effect of this deferred printing is that code which calls printk() and
1668  * then changes console_loglevel may break. This is because console_loglevel
1669  * is inspected when the actual printing occurs.
1670  *
1671  * See also:
1672  * printf(3)
1673  *
1674  * See the vsnprintf() documentation for format string extensions over C99.
1675  */
1676 asmlinkage int printk(const char *fmt, ...)
1677 {
1678 	va_list args;
1679 	int r;
1680 
1681 #ifdef CONFIG_KGDB_KDB
1682 	if (unlikely(kdb_trap_printk)) {
1683 		va_start(args, fmt);
1684 		r = vkdb_printf(fmt, args);
1685 		va_end(args);
1686 		return r;
1687 	}
1688 #endif
1689 	va_start(args, fmt);
1690 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1691 	va_end(args);
1692 
1693 	return r;
1694 }
1695 EXPORT_SYMBOL(printk);
1696 
1697 #else /* CONFIG_PRINTK */
1698 
1699 #define LOG_LINE_MAX		0
1700 #define PREFIX_MAX		0
1701 #define LOG_LINE_MAX 0
1702 static u64 syslog_seq;
1703 static u32 syslog_idx;
1704 static u64 console_seq;
1705 static u32 console_idx;
1706 static enum log_flags syslog_prev;
1707 static u64 log_first_seq;
1708 static u32 log_first_idx;
1709 static u64 log_next_seq;
1710 static enum log_flags console_prev;
1711 static struct cont {
1712 	size_t len;
1713 	size_t cons;
1714 	u8 level;
1715 	bool flushed:1;
1716 } cont;
1717 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1718 static u32 log_next(u32 idx) { return 0; }
1719 static void call_console_drivers(int level, const char *text, size_t len) {}
1720 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1721 			     bool syslog, char *buf, size_t size) { return 0; }
1722 static size_t cont_print_text(char *text, size_t size) { return 0; }
1723 
1724 #endif /* CONFIG_PRINTK */
1725 
1726 #ifdef CONFIG_EARLY_PRINTK
1727 struct console *early_console;
1728 
1729 void early_vprintk(const char *fmt, va_list ap)
1730 {
1731 	if (early_console) {
1732 		char buf[512];
1733 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1734 
1735 		early_console->write(early_console, buf, n);
1736 	}
1737 }
1738 
1739 asmlinkage void early_printk(const char *fmt, ...)
1740 {
1741 	va_list ap;
1742 
1743 	va_start(ap, fmt);
1744 	early_vprintk(fmt, ap);
1745 	va_end(ap);
1746 }
1747 #endif
1748 
1749 static int __add_preferred_console(char *name, int idx, char *options,
1750 				   char *brl_options)
1751 {
1752 	struct console_cmdline *c;
1753 	int i;
1754 
1755 	/*
1756 	 *	See if this tty is not yet registered, and
1757 	 *	if we have a slot free.
1758 	 */
1759 	for (i = 0, c = console_cmdline;
1760 	     i < MAX_CMDLINECONSOLES && c->name[0];
1761 	     i++, c++) {
1762 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1763 			if (!brl_options)
1764 				selected_console = i;
1765 			return 0;
1766 		}
1767 	}
1768 	if (i == MAX_CMDLINECONSOLES)
1769 		return -E2BIG;
1770 	if (!brl_options)
1771 		selected_console = i;
1772 	strlcpy(c->name, name, sizeof(c->name));
1773 	c->options = options;
1774 	braille_set_options(c, brl_options);
1775 
1776 	c->index = idx;
1777 	return 0;
1778 }
1779 /*
1780  * Set up a list of consoles.  Called from init/main.c
1781  */
1782 static int __init console_setup(char *str)
1783 {
1784 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1785 	char *s, *options, *brl_options = NULL;
1786 	int idx;
1787 
1788 	if (_braille_console_setup(&str, &brl_options))
1789 		return 1;
1790 
1791 	/*
1792 	 * Decode str into name, index, options.
1793 	 */
1794 	if (str[0] >= '0' && str[0] <= '9') {
1795 		strcpy(buf, "ttyS");
1796 		strncpy(buf + 4, str, sizeof(buf) - 5);
1797 	} else {
1798 		strncpy(buf, str, sizeof(buf) - 1);
1799 	}
1800 	buf[sizeof(buf) - 1] = 0;
1801 	if ((options = strchr(str, ',')) != NULL)
1802 		*(options++) = 0;
1803 #ifdef __sparc__
1804 	if (!strcmp(str, "ttya"))
1805 		strcpy(buf, "ttyS0");
1806 	if (!strcmp(str, "ttyb"))
1807 		strcpy(buf, "ttyS1");
1808 #endif
1809 	for (s = buf; *s; s++)
1810 		if ((*s >= '0' && *s <= '9') || *s == ',')
1811 			break;
1812 	idx = simple_strtoul(s, NULL, 10);
1813 	*s = 0;
1814 
1815 	__add_preferred_console(buf, idx, options, brl_options);
1816 	console_set_on_cmdline = 1;
1817 	return 1;
1818 }
1819 __setup("console=", console_setup);
1820 
1821 /**
1822  * add_preferred_console - add a device to the list of preferred consoles.
1823  * @name: device name
1824  * @idx: device index
1825  * @options: options for this console
1826  *
1827  * The last preferred console added will be used for kernel messages
1828  * and stdin/out/err for init.  Normally this is used by console_setup
1829  * above to handle user-supplied console arguments; however it can also
1830  * be used by arch-specific code either to override the user or more
1831  * commonly to provide a default console (ie from PROM variables) when
1832  * the user has not supplied one.
1833  */
1834 int add_preferred_console(char *name, int idx, char *options)
1835 {
1836 	return __add_preferred_console(name, idx, options, NULL);
1837 }
1838 
1839 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1840 {
1841 	struct console_cmdline *c;
1842 	int i;
1843 
1844 	for (i = 0, c = console_cmdline;
1845 	     i < MAX_CMDLINECONSOLES && c->name[0];
1846 	     i++, c++)
1847 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1848 			strlcpy(c->name, name_new, sizeof(c->name));
1849 			c->name[sizeof(c->name) - 1] = 0;
1850 			c->options = options;
1851 			c->index = idx_new;
1852 			return i;
1853 		}
1854 	/* not found */
1855 	return -1;
1856 }
1857 
1858 bool console_suspend_enabled = 1;
1859 EXPORT_SYMBOL(console_suspend_enabled);
1860 
1861 static int __init console_suspend_disable(char *str)
1862 {
1863 	console_suspend_enabled = 0;
1864 	return 1;
1865 }
1866 __setup("no_console_suspend", console_suspend_disable);
1867 module_param_named(console_suspend, console_suspend_enabled,
1868 		bool, S_IRUGO | S_IWUSR);
1869 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1870 	" and hibernate operations");
1871 
1872 /**
1873  * suspend_console - suspend the console subsystem
1874  *
1875  * This disables printk() while we go into suspend states
1876  */
1877 void suspend_console(void)
1878 {
1879 	if (!console_suspend_enabled)
1880 		return;
1881 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1882 	console_lock();
1883 	console_suspended = 1;
1884 	up(&console_sem);
1885 }
1886 
1887 void resume_console(void)
1888 {
1889 	if (!console_suspend_enabled)
1890 		return;
1891 	down(&console_sem);
1892 	console_suspended = 0;
1893 	console_unlock();
1894 }
1895 
1896 /**
1897  * console_cpu_notify - print deferred console messages after CPU hotplug
1898  * @self: notifier struct
1899  * @action: CPU hotplug event
1900  * @hcpu: unused
1901  *
1902  * If printk() is called from a CPU that is not online yet, the messages
1903  * will be spooled but will not show up on the console.  This function is
1904  * called when a new CPU comes online (or fails to come up), and ensures
1905  * that any such output gets printed.
1906  */
1907 static int console_cpu_notify(struct notifier_block *self,
1908 	unsigned long action, void *hcpu)
1909 {
1910 	switch (action) {
1911 	case CPU_ONLINE:
1912 	case CPU_DEAD:
1913 	case CPU_DOWN_FAILED:
1914 	case CPU_UP_CANCELED:
1915 		console_lock();
1916 		console_unlock();
1917 	}
1918 	return NOTIFY_OK;
1919 }
1920 
1921 /**
1922  * console_lock - lock the console system for exclusive use.
1923  *
1924  * Acquires a lock which guarantees that the caller has
1925  * exclusive access to the console system and the console_drivers list.
1926  *
1927  * Can sleep, returns nothing.
1928  */
1929 void console_lock(void)
1930 {
1931 	might_sleep();
1932 
1933 	down(&console_sem);
1934 	if (console_suspended)
1935 		return;
1936 	console_locked = 1;
1937 	console_may_schedule = 1;
1938 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);
1939 }
1940 EXPORT_SYMBOL(console_lock);
1941 
1942 /**
1943  * console_trylock - try to lock the console system for exclusive use.
1944  *
1945  * Tried to acquire a lock which guarantees that the caller has
1946  * exclusive access to the console system and the console_drivers list.
1947  *
1948  * returns 1 on success, and 0 on failure to acquire the lock.
1949  */
1950 int console_trylock(void)
1951 {
1952 	if (down_trylock(&console_sem))
1953 		return 0;
1954 	if (console_suspended) {
1955 		up(&console_sem);
1956 		return 0;
1957 	}
1958 	console_locked = 1;
1959 	console_may_schedule = 0;
1960 	mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_);
1961 	return 1;
1962 }
1963 EXPORT_SYMBOL(console_trylock);
1964 
1965 int is_console_locked(void)
1966 {
1967 	return console_locked;
1968 }
1969 
1970 static void console_cont_flush(char *text, size_t size)
1971 {
1972 	unsigned long flags;
1973 	size_t len;
1974 
1975 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1976 
1977 	if (!cont.len)
1978 		goto out;
1979 
1980 	/*
1981 	 * We still queue earlier records, likely because the console was
1982 	 * busy. The earlier ones need to be printed before this one, we
1983 	 * did not flush any fragment so far, so just let it queue up.
1984 	 */
1985 	if (console_seq < log_next_seq && !cont.cons)
1986 		goto out;
1987 
1988 	len = cont_print_text(text, size);
1989 	raw_spin_unlock(&logbuf_lock);
1990 	stop_critical_timings();
1991 	call_console_drivers(cont.level, text, len);
1992 	start_critical_timings();
1993 	local_irq_restore(flags);
1994 	return;
1995 out:
1996 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1997 }
1998 
1999 /**
2000  * console_unlock - unlock the console system
2001  *
2002  * Releases the console_lock which the caller holds on the console system
2003  * and the console driver list.
2004  *
2005  * While the console_lock was held, console output may have been buffered
2006  * by printk().  If this is the case, console_unlock(); emits
2007  * the output prior to releasing the lock.
2008  *
2009  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2010  *
2011  * console_unlock(); may be called from any context.
2012  */
2013 void console_unlock(void)
2014 {
2015 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2016 	static u64 seen_seq;
2017 	unsigned long flags;
2018 	bool wake_klogd = false;
2019 	bool retry;
2020 
2021 	if (console_suspended) {
2022 		up(&console_sem);
2023 		return;
2024 	}
2025 
2026 	console_may_schedule = 0;
2027 
2028 	/* flush buffered message fragment immediately to console */
2029 	console_cont_flush(text, sizeof(text));
2030 again:
2031 	for (;;) {
2032 		struct printk_log *msg;
2033 		size_t len;
2034 		int level;
2035 
2036 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2037 		if (seen_seq != log_next_seq) {
2038 			wake_klogd = true;
2039 			seen_seq = log_next_seq;
2040 		}
2041 
2042 		if (console_seq < log_first_seq) {
2043 			/* messages are gone, move to first one */
2044 			console_seq = log_first_seq;
2045 			console_idx = log_first_idx;
2046 			console_prev = 0;
2047 		}
2048 skip:
2049 		if (console_seq == log_next_seq)
2050 			break;
2051 
2052 		msg = log_from_idx(console_idx);
2053 		if (msg->flags & LOG_NOCONS) {
2054 			/*
2055 			 * Skip record we have buffered and already printed
2056 			 * directly to the console when we received it.
2057 			 */
2058 			console_idx = log_next(console_idx);
2059 			console_seq++;
2060 			/*
2061 			 * We will get here again when we register a new
2062 			 * CON_PRINTBUFFER console. Clear the flag so we
2063 			 * will properly dump everything later.
2064 			 */
2065 			msg->flags &= ~LOG_NOCONS;
2066 			console_prev = msg->flags;
2067 			goto skip;
2068 		}
2069 
2070 		level = msg->level;
2071 		len = msg_print_text(msg, console_prev, false,
2072 				     text, sizeof(text));
2073 		console_idx = log_next(console_idx);
2074 		console_seq++;
2075 		console_prev = msg->flags;
2076 		raw_spin_unlock(&logbuf_lock);
2077 
2078 		stop_critical_timings();	/* don't trace print latency */
2079 		call_console_drivers(level, text, len);
2080 		start_critical_timings();
2081 		local_irq_restore(flags);
2082 	}
2083 	console_locked = 0;
2084 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);
2085 
2086 	/* Release the exclusive_console once it is used */
2087 	if (unlikely(exclusive_console))
2088 		exclusive_console = NULL;
2089 
2090 	raw_spin_unlock(&logbuf_lock);
2091 
2092 	up(&console_sem);
2093 
2094 	/*
2095 	 * Someone could have filled up the buffer again, so re-check if there's
2096 	 * something to flush. In case we cannot trylock the console_sem again,
2097 	 * there's a new owner and the console_unlock() from them will do the
2098 	 * flush, no worries.
2099 	 */
2100 	raw_spin_lock(&logbuf_lock);
2101 	retry = console_seq != log_next_seq;
2102 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2103 
2104 	if (retry && console_trylock())
2105 		goto again;
2106 
2107 	if (wake_klogd)
2108 		wake_up_klogd();
2109 }
2110 EXPORT_SYMBOL(console_unlock);
2111 
2112 /**
2113  * console_conditional_schedule - yield the CPU if required
2114  *
2115  * If the console code is currently allowed to sleep, and
2116  * if this CPU should yield the CPU to another task, do
2117  * so here.
2118  *
2119  * Must be called within console_lock();.
2120  */
2121 void __sched console_conditional_schedule(void)
2122 {
2123 	if (console_may_schedule)
2124 		cond_resched();
2125 }
2126 EXPORT_SYMBOL(console_conditional_schedule);
2127 
2128 void console_unblank(void)
2129 {
2130 	struct console *c;
2131 
2132 	/*
2133 	 * console_unblank can no longer be called in interrupt context unless
2134 	 * oops_in_progress is set to 1..
2135 	 */
2136 	if (oops_in_progress) {
2137 		if (down_trylock(&console_sem) != 0)
2138 			return;
2139 	} else
2140 		console_lock();
2141 
2142 	console_locked = 1;
2143 	console_may_schedule = 0;
2144 	for_each_console(c)
2145 		if ((c->flags & CON_ENABLED) && c->unblank)
2146 			c->unblank();
2147 	console_unlock();
2148 }
2149 
2150 /*
2151  * Return the console tty driver structure and its associated index
2152  */
2153 struct tty_driver *console_device(int *index)
2154 {
2155 	struct console *c;
2156 	struct tty_driver *driver = NULL;
2157 
2158 	console_lock();
2159 	for_each_console(c) {
2160 		if (!c->device)
2161 			continue;
2162 		driver = c->device(c, index);
2163 		if (driver)
2164 			break;
2165 	}
2166 	console_unlock();
2167 	return driver;
2168 }
2169 
2170 /*
2171  * Prevent further output on the passed console device so that (for example)
2172  * serial drivers can disable console output before suspending a port, and can
2173  * re-enable output afterwards.
2174  */
2175 void console_stop(struct console *console)
2176 {
2177 	console_lock();
2178 	console->flags &= ~CON_ENABLED;
2179 	console_unlock();
2180 }
2181 EXPORT_SYMBOL(console_stop);
2182 
2183 void console_start(struct console *console)
2184 {
2185 	console_lock();
2186 	console->flags |= CON_ENABLED;
2187 	console_unlock();
2188 }
2189 EXPORT_SYMBOL(console_start);
2190 
2191 static int __read_mostly keep_bootcon;
2192 
2193 static int __init keep_bootcon_setup(char *str)
2194 {
2195 	keep_bootcon = 1;
2196 	pr_info("debug: skip boot console de-registration.\n");
2197 
2198 	return 0;
2199 }
2200 
2201 early_param("keep_bootcon", keep_bootcon_setup);
2202 
2203 /*
2204  * The console driver calls this routine during kernel initialization
2205  * to register the console printing procedure with printk() and to
2206  * print any messages that were printed by the kernel before the
2207  * console driver was initialized.
2208  *
2209  * This can happen pretty early during the boot process (because of
2210  * early_printk) - sometimes before setup_arch() completes - be careful
2211  * of what kernel features are used - they may not be initialised yet.
2212  *
2213  * There are two types of consoles - bootconsoles (early_printk) and
2214  * "real" consoles (everything which is not a bootconsole) which are
2215  * handled differently.
2216  *  - Any number of bootconsoles can be registered at any time.
2217  *  - As soon as a "real" console is registered, all bootconsoles
2218  *    will be unregistered automatically.
2219  *  - Once a "real" console is registered, any attempt to register a
2220  *    bootconsoles will be rejected
2221  */
2222 void register_console(struct console *newcon)
2223 {
2224 	int i;
2225 	unsigned long flags;
2226 	struct console *bcon = NULL;
2227 	struct console_cmdline *c;
2228 
2229 	if (console_drivers)
2230 		for_each_console(bcon)
2231 			if (WARN(bcon == newcon,
2232 					"console '%s%d' already registered\n",
2233 					bcon->name, bcon->index))
2234 				return;
2235 
2236 	/*
2237 	 * before we register a new CON_BOOT console, make sure we don't
2238 	 * already have a valid console
2239 	 */
2240 	if (console_drivers && newcon->flags & CON_BOOT) {
2241 		/* find the last or real console */
2242 		for_each_console(bcon) {
2243 			if (!(bcon->flags & CON_BOOT)) {
2244 				pr_info("Too late to register bootconsole %s%d\n",
2245 					newcon->name, newcon->index);
2246 				return;
2247 			}
2248 		}
2249 	}
2250 
2251 	if (console_drivers && console_drivers->flags & CON_BOOT)
2252 		bcon = console_drivers;
2253 
2254 	if (preferred_console < 0 || bcon || !console_drivers)
2255 		preferred_console = selected_console;
2256 
2257 	if (newcon->early_setup)
2258 		newcon->early_setup();
2259 
2260 	/*
2261 	 *	See if we want to use this console driver. If we
2262 	 *	didn't select a console we take the first one
2263 	 *	that registers here.
2264 	 */
2265 	if (preferred_console < 0) {
2266 		if (newcon->index < 0)
2267 			newcon->index = 0;
2268 		if (newcon->setup == NULL ||
2269 		    newcon->setup(newcon, NULL) == 0) {
2270 			newcon->flags |= CON_ENABLED;
2271 			if (newcon->device) {
2272 				newcon->flags |= CON_CONSDEV;
2273 				preferred_console = 0;
2274 			}
2275 		}
2276 	}
2277 
2278 	/*
2279 	 *	See if this console matches one we selected on
2280 	 *	the command line.
2281 	 */
2282 	for (i = 0, c = console_cmdline;
2283 	     i < MAX_CMDLINECONSOLES && c->name[0];
2284 	     i++, c++) {
2285 		if (strcmp(c->name, newcon->name) != 0)
2286 			continue;
2287 		if (newcon->index >= 0 &&
2288 		    newcon->index != c->index)
2289 			continue;
2290 		if (newcon->index < 0)
2291 			newcon->index = c->index;
2292 
2293 		if (_braille_register_console(newcon, c))
2294 			return;
2295 
2296 		if (newcon->setup &&
2297 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2298 			break;
2299 		newcon->flags |= CON_ENABLED;
2300 		newcon->index = c->index;
2301 		if (i == selected_console) {
2302 			newcon->flags |= CON_CONSDEV;
2303 			preferred_console = selected_console;
2304 		}
2305 		break;
2306 	}
2307 
2308 	if (!(newcon->flags & CON_ENABLED))
2309 		return;
2310 
2311 	/*
2312 	 * If we have a bootconsole, and are switching to a real console,
2313 	 * don't print everything out again, since when the boot console, and
2314 	 * the real console are the same physical device, it's annoying to
2315 	 * see the beginning boot messages twice
2316 	 */
2317 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2318 		newcon->flags &= ~CON_PRINTBUFFER;
2319 
2320 	/*
2321 	 *	Put this console in the list - keep the
2322 	 *	preferred driver at the head of the list.
2323 	 */
2324 	console_lock();
2325 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2326 		newcon->next = console_drivers;
2327 		console_drivers = newcon;
2328 		if (newcon->next)
2329 			newcon->next->flags &= ~CON_CONSDEV;
2330 	} else {
2331 		newcon->next = console_drivers->next;
2332 		console_drivers->next = newcon;
2333 	}
2334 	if (newcon->flags & CON_PRINTBUFFER) {
2335 		/*
2336 		 * console_unlock(); will print out the buffered messages
2337 		 * for us.
2338 		 */
2339 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2340 		console_seq = syslog_seq;
2341 		console_idx = syslog_idx;
2342 		console_prev = syslog_prev;
2343 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2344 		/*
2345 		 * We're about to replay the log buffer.  Only do this to the
2346 		 * just-registered console to avoid excessive message spam to
2347 		 * the already-registered consoles.
2348 		 */
2349 		exclusive_console = newcon;
2350 	}
2351 	console_unlock();
2352 	console_sysfs_notify();
2353 
2354 	/*
2355 	 * By unregistering the bootconsoles after we enable the real console
2356 	 * we get the "console xxx enabled" message on all the consoles -
2357 	 * boot consoles, real consoles, etc - this is to ensure that end
2358 	 * users know there might be something in the kernel's log buffer that
2359 	 * went to the bootconsole (that they do not see on the real console)
2360 	 */
2361 	pr_info("%sconsole [%s%d] enabled\n",
2362 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2363 		newcon->name, newcon->index);
2364 	if (bcon &&
2365 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2366 	    !keep_bootcon) {
2367 		/* We need to iterate through all boot consoles, to make
2368 		 * sure we print everything out, before we unregister them.
2369 		 */
2370 		for_each_console(bcon)
2371 			if (bcon->flags & CON_BOOT)
2372 				unregister_console(bcon);
2373 	}
2374 }
2375 EXPORT_SYMBOL(register_console);
2376 
2377 int unregister_console(struct console *console)
2378 {
2379         struct console *a, *b;
2380 	int res;
2381 
2382 	pr_info("%sconsole [%s%d] disabled\n",
2383 		(console->flags & CON_BOOT) ? "boot" : "" ,
2384 		console->name, console->index);
2385 
2386 	res = _braille_unregister_console(console);
2387 	if (res)
2388 		return res;
2389 
2390 	res = 1;
2391 	console_lock();
2392 	if (console_drivers == console) {
2393 		console_drivers=console->next;
2394 		res = 0;
2395 	} else if (console_drivers) {
2396 		for (a=console_drivers->next, b=console_drivers ;
2397 		     a; b=a, a=b->next) {
2398 			if (a == console) {
2399 				b->next = a->next;
2400 				res = 0;
2401 				break;
2402 			}
2403 		}
2404 	}
2405 
2406 	/*
2407 	 * If this isn't the last console and it has CON_CONSDEV set, we
2408 	 * need to set it on the next preferred console.
2409 	 */
2410 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2411 		console_drivers->flags |= CON_CONSDEV;
2412 
2413 	console_unlock();
2414 	console_sysfs_notify();
2415 	return res;
2416 }
2417 EXPORT_SYMBOL(unregister_console);
2418 
2419 static int __init printk_late_init(void)
2420 {
2421 	struct console *con;
2422 
2423 	for_each_console(con) {
2424 		if (!keep_bootcon && con->flags & CON_BOOT) {
2425 			unregister_console(con);
2426 		}
2427 	}
2428 	hotcpu_notifier(console_cpu_notify, 0);
2429 	return 0;
2430 }
2431 late_initcall(printk_late_init);
2432 
2433 #if defined CONFIG_PRINTK
2434 /*
2435  * Delayed printk version, for scheduler-internal messages:
2436  */
2437 #define PRINTK_BUF_SIZE		512
2438 
2439 #define PRINTK_PENDING_WAKEUP	0x01
2440 #define PRINTK_PENDING_SCHED	0x02
2441 
2442 static DEFINE_PER_CPU(int, printk_pending);
2443 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf);
2444 
2445 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2446 {
2447 	int pending = __this_cpu_xchg(printk_pending, 0);
2448 
2449 	if (pending & PRINTK_PENDING_SCHED) {
2450 		char *buf = __get_cpu_var(printk_sched_buf);
2451 		pr_warn("[sched_delayed] %s", buf);
2452 	}
2453 
2454 	if (pending & PRINTK_PENDING_WAKEUP)
2455 		wake_up_interruptible(&log_wait);
2456 }
2457 
2458 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2459 	.func = wake_up_klogd_work_func,
2460 	.flags = IRQ_WORK_LAZY,
2461 };
2462 
2463 void wake_up_klogd(void)
2464 {
2465 	preempt_disable();
2466 	if (waitqueue_active(&log_wait)) {
2467 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2468 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2469 	}
2470 	preempt_enable();
2471 }
2472 
2473 int printk_sched(const char *fmt, ...)
2474 {
2475 	unsigned long flags;
2476 	va_list args;
2477 	char *buf;
2478 	int r;
2479 
2480 	local_irq_save(flags);
2481 	buf = __get_cpu_var(printk_sched_buf);
2482 
2483 	va_start(args, fmt);
2484 	r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args);
2485 	va_end(args);
2486 
2487 	__this_cpu_or(printk_pending, PRINTK_PENDING_SCHED);
2488 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2489 	local_irq_restore(flags);
2490 
2491 	return r;
2492 }
2493 
2494 /*
2495  * printk rate limiting, lifted from the networking subsystem.
2496  *
2497  * This enforces a rate limit: not more than 10 kernel messages
2498  * every 5s to make a denial-of-service attack impossible.
2499  */
2500 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2501 
2502 int __printk_ratelimit(const char *func)
2503 {
2504 	return ___ratelimit(&printk_ratelimit_state, func);
2505 }
2506 EXPORT_SYMBOL(__printk_ratelimit);
2507 
2508 /**
2509  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2510  * @caller_jiffies: pointer to caller's state
2511  * @interval_msecs: minimum interval between prints
2512  *
2513  * printk_timed_ratelimit() returns true if more than @interval_msecs
2514  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2515  * returned true.
2516  */
2517 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2518 			unsigned int interval_msecs)
2519 {
2520 	if (*caller_jiffies == 0
2521 			|| !time_in_range(jiffies, *caller_jiffies,
2522 					*caller_jiffies
2523 					+ msecs_to_jiffies(interval_msecs))) {
2524 		*caller_jiffies = jiffies;
2525 		return true;
2526 	}
2527 	return false;
2528 }
2529 EXPORT_SYMBOL(printk_timed_ratelimit);
2530 
2531 static DEFINE_SPINLOCK(dump_list_lock);
2532 static LIST_HEAD(dump_list);
2533 
2534 /**
2535  * kmsg_dump_register - register a kernel log dumper.
2536  * @dumper: pointer to the kmsg_dumper structure
2537  *
2538  * Adds a kernel log dumper to the system. The dump callback in the
2539  * structure will be called when the kernel oopses or panics and must be
2540  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2541  */
2542 int kmsg_dump_register(struct kmsg_dumper *dumper)
2543 {
2544 	unsigned long flags;
2545 	int err = -EBUSY;
2546 
2547 	/* The dump callback needs to be set */
2548 	if (!dumper->dump)
2549 		return -EINVAL;
2550 
2551 	spin_lock_irqsave(&dump_list_lock, flags);
2552 	/* Don't allow registering multiple times */
2553 	if (!dumper->registered) {
2554 		dumper->registered = 1;
2555 		list_add_tail_rcu(&dumper->list, &dump_list);
2556 		err = 0;
2557 	}
2558 	spin_unlock_irqrestore(&dump_list_lock, flags);
2559 
2560 	return err;
2561 }
2562 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2563 
2564 /**
2565  * kmsg_dump_unregister - unregister a kmsg dumper.
2566  * @dumper: pointer to the kmsg_dumper structure
2567  *
2568  * Removes a dump device from the system. Returns zero on success and
2569  * %-EINVAL otherwise.
2570  */
2571 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2572 {
2573 	unsigned long flags;
2574 	int err = -EINVAL;
2575 
2576 	spin_lock_irqsave(&dump_list_lock, flags);
2577 	if (dumper->registered) {
2578 		dumper->registered = 0;
2579 		list_del_rcu(&dumper->list);
2580 		err = 0;
2581 	}
2582 	spin_unlock_irqrestore(&dump_list_lock, flags);
2583 	synchronize_rcu();
2584 
2585 	return err;
2586 }
2587 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2588 
2589 static bool always_kmsg_dump;
2590 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2591 
2592 /**
2593  * kmsg_dump - dump kernel log to kernel message dumpers.
2594  * @reason: the reason (oops, panic etc) for dumping
2595  *
2596  * Call each of the registered dumper's dump() callback, which can
2597  * retrieve the kmsg records with kmsg_dump_get_line() or
2598  * kmsg_dump_get_buffer().
2599  */
2600 void kmsg_dump(enum kmsg_dump_reason reason)
2601 {
2602 	struct kmsg_dumper *dumper;
2603 	unsigned long flags;
2604 
2605 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2606 		return;
2607 
2608 	rcu_read_lock();
2609 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2610 		if (dumper->max_reason && reason > dumper->max_reason)
2611 			continue;
2612 
2613 		/* initialize iterator with data about the stored records */
2614 		dumper->active = true;
2615 
2616 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2617 		dumper->cur_seq = clear_seq;
2618 		dumper->cur_idx = clear_idx;
2619 		dumper->next_seq = log_next_seq;
2620 		dumper->next_idx = log_next_idx;
2621 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2622 
2623 		/* invoke dumper which will iterate over records */
2624 		dumper->dump(dumper, reason);
2625 
2626 		/* reset iterator */
2627 		dumper->active = false;
2628 	}
2629 	rcu_read_unlock();
2630 }
2631 
2632 /**
2633  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2634  * @dumper: registered kmsg dumper
2635  * @syslog: include the "<4>" prefixes
2636  * @line: buffer to copy the line to
2637  * @size: maximum size of the buffer
2638  * @len: length of line placed into buffer
2639  *
2640  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2641  * record, and copy one record into the provided buffer.
2642  *
2643  * Consecutive calls will return the next available record moving
2644  * towards the end of the buffer with the youngest messages.
2645  *
2646  * A return value of FALSE indicates that there are no more records to
2647  * read.
2648  *
2649  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2650  */
2651 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2652 			       char *line, size_t size, size_t *len)
2653 {
2654 	struct printk_log *msg;
2655 	size_t l = 0;
2656 	bool ret = false;
2657 
2658 	if (!dumper->active)
2659 		goto out;
2660 
2661 	if (dumper->cur_seq < log_first_seq) {
2662 		/* messages are gone, move to first available one */
2663 		dumper->cur_seq = log_first_seq;
2664 		dumper->cur_idx = log_first_idx;
2665 	}
2666 
2667 	/* last entry */
2668 	if (dumper->cur_seq >= log_next_seq)
2669 		goto out;
2670 
2671 	msg = log_from_idx(dumper->cur_idx);
2672 	l = msg_print_text(msg, 0, syslog, line, size);
2673 
2674 	dumper->cur_idx = log_next(dumper->cur_idx);
2675 	dumper->cur_seq++;
2676 	ret = true;
2677 out:
2678 	if (len)
2679 		*len = l;
2680 	return ret;
2681 }
2682 
2683 /**
2684  * kmsg_dump_get_line - retrieve one kmsg log line
2685  * @dumper: registered kmsg dumper
2686  * @syslog: include the "<4>" prefixes
2687  * @line: buffer to copy the line to
2688  * @size: maximum size of the buffer
2689  * @len: length of line placed into buffer
2690  *
2691  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2692  * record, and copy one record into the provided buffer.
2693  *
2694  * Consecutive calls will return the next available record moving
2695  * towards the end of the buffer with the youngest messages.
2696  *
2697  * A return value of FALSE indicates that there are no more records to
2698  * read.
2699  */
2700 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2701 			char *line, size_t size, size_t *len)
2702 {
2703 	unsigned long flags;
2704 	bool ret;
2705 
2706 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2707 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2708 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2709 
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2713 
2714 /**
2715  * kmsg_dump_get_buffer - copy kmsg log lines
2716  * @dumper: registered kmsg dumper
2717  * @syslog: include the "<4>" prefixes
2718  * @buf: buffer to copy the line to
2719  * @size: maximum size of the buffer
2720  * @len: length of line placed into buffer
2721  *
2722  * Start at the end of the kmsg buffer and fill the provided buffer
2723  * with as many of the the *youngest* kmsg records that fit into it.
2724  * If the buffer is large enough, all available kmsg records will be
2725  * copied with a single call.
2726  *
2727  * Consecutive calls will fill the buffer with the next block of
2728  * available older records, not including the earlier retrieved ones.
2729  *
2730  * A return value of FALSE indicates that there are no more records to
2731  * read.
2732  */
2733 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2734 			  char *buf, size_t size, size_t *len)
2735 {
2736 	unsigned long flags;
2737 	u64 seq;
2738 	u32 idx;
2739 	u64 next_seq;
2740 	u32 next_idx;
2741 	enum log_flags prev;
2742 	size_t l = 0;
2743 	bool ret = false;
2744 
2745 	if (!dumper->active)
2746 		goto out;
2747 
2748 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2749 	if (dumper->cur_seq < log_first_seq) {
2750 		/* messages are gone, move to first available one */
2751 		dumper->cur_seq = log_first_seq;
2752 		dumper->cur_idx = log_first_idx;
2753 	}
2754 
2755 	/* last entry */
2756 	if (dumper->cur_seq >= dumper->next_seq) {
2757 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2758 		goto out;
2759 	}
2760 
2761 	/* calculate length of entire buffer */
2762 	seq = dumper->cur_seq;
2763 	idx = dumper->cur_idx;
2764 	prev = 0;
2765 	while (seq < dumper->next_seq) {
2766 		struct printk_log *msg = log_from_idx(idx);
2767 
2768 		l += msg_print_text(msg, prev, true, NULL, 0);
2769 		idx = log_next(idx);
2770 		seq++;
2771 		prev = msg->flags;
2772 	}
2773 
2774 	/* move first record forward until length fits into the buffer */
2775 	seq = dumper->cur_seq;
2776 	idx = dumper->cur_idx;
2777 	prev = 0;
2778 	while (l > size && seq < dumper->next_seq) {
2779 		struct printk_log *msg = log_from_idx(idx);
2780 
2781 		l -= msg_print_text(msg, prev, true, NULL, 0);
2782 		idx = log_next(idx);
2783 		seq++;
2784 		prev = msg->flags;
2785 	}
2786 
2787 	/* last message in next interation */
2788 	next_seq = seq;
2789 	next_idx = idx;
2790 
2791 	l = 0;
2792 	prev = 0;
2793 	while (seq < dumper->next_seq) {
2794 		struct printk_log *msg = log_from_idx(idx);
2795 
2796 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2797 		idx = log_next(idx);
2798 		seq++;
2799 		prev = msg->flags;
2800 	}
2801 
2802 	dumper->next_seq = next_seq;
2803 	dumper->next_idx = next_idx;
2804 	ret = true;
2805 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2806 out:
2807 	if (len)
2808 		*len = l;
2809 	return ret;
2810 }
2811 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2812 
2813 /**
2814  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2815  * @dumper: registered kmsg dumper
2816  *
2817  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2818  * kmsg_dump_get_buffer() can be called again and used multiple
2819  * times within the same dumper.dump() callback.
2820  *
2821  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2822  */
2823 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2824 {
2825 	dumper->cur_seq = clear_seq;
2826 	dumper->cur_idx = clear_idx;
2827 	dumper->next_seq = log_next_seq;
2828 	dumper->next_idx = log_next_idx;
2829 }
2830 
2831 /**
2832  * kmsg_dump_rewind - reset the interator
2833  * @dumper: registered kmsg dumper
2834  *
2835  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2836  * kmsg_dump_get_buffer() can be called again and used multiple
2837  * times within the same dumper.dump() callback.
2838  */
2839 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2840 {
2841 	unsigned long flags;
2842 
2843 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2844 	kmsg_dump_rewind_nolock(dumper);
2845 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2846 }
2847 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2848 
2849 static char dump_stack_arch_desc_str[128];
2850 
2851 /**
2852  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2853  * @fmt: printf-style format string
2854  * @...: arguments for the format string
2855  *
2856  * The configured string will be printed right after utsname during task
2857  * dumps.  Usually used to add arch-specific system identifiers.  If an
2858  * arch wants to make use of such an ID string, it should initialize this
2859  * as soon as possible during boot.
2860  */
2861 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2862 {
2863 	va_list args;
2864 
2865 	va_start(args, fmt);
2866 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2867 		  fmt, args);
2868 	va_end(args);
2869 }
2870 
2871 /**
2872  * dump_stack_print_info - print generic debug info for dump_stack()
2873  * @log_lvl: log level
2874  *
2875  * Arch-specific dump_stack() implementations can use this function to
2876  * print out the same debug information as the generic dump_stack().
2877  */
2878 void dump_stack_print_info(const char *log_lvl)
2879 {
2880 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2881 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2882 	       print_tainted(), init_utsname()->release,
2883 	       (int)strcspn(init_utsname()->version, " "),
2884 	       init_utsname()->version);
2885 
2886 	if (dump_stack_arch_desc_str[0] != '\0')
2887 		printk("%sHardware name: %s\n",
2888 		       log_lvl, dump_stack_arch_desc_str);
2889 
2890 	print_worker_info(log_lvl, current);
2891 }
2892 
2893 /**
2894  * show_regs_print_info - print generic debug info for show_regs()
2895  * @log_lvl: log level
2896  *
2897  * show_regs() implementations can use this function to print out generic
2898  * debug information.
2899  */
2900 void show_regs_print_info(const char *log_lvl)
2901 {
2902 	dump_stack_print_info(log_lvl);
2903 
2904 	printk("%stask: %p ti: %p task.ti: %p\n",
2905 	       log_lvl, current, current_thread_info(),
2906 	       task_thread_info(current));
2907 }
2908 
2909 #endif
2910