1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console sempahore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 static bool has_preferred_console; 284 int console_set_on_cmdline; 285 EXPORT_SYMBOL(console_set_on_cmdline); 286 287 /* Flag: console code may call schedule() */ 288 static int console_may_schedule; 289 290 enum con_msg_format_flags { 291 MSG_FORMAT_DEFAULT = 0, 292 MSG_FORMAT_SYSLOG = (1 << 0), 293 }; 294 295 static int console_msg_format = MSG_FORMAT_DEFAULT; 296 297 /* 298 * The printk log buffer consists of a sequenced collection of records, each 299 * containing variable length message text. Every record also contains its 300 * own meta-data (@info). 301 * 302 * Every record meta-data carries the timestamp in microseconds, as well as 303 * the standard userspace syslog level and syslog facility. The usual kernel 304 * messages use LOG_KERN; userspace-injected messages always carry a matching 305 * syslog facility, by default LOG_USER. The origin of every message can be 306 * reliably determined that way. 307 * 308 * The human readable log message of a record is available in @text, the 309 * length of the message text in @text_len. The stored message is not 310 * terminated. 311 * 312 * Optionally, a record can carry a dictionary of properties (key/value 313 * pairs), to provide userspace with a machine-readable message context. 314 * 315 * Examples for well-defined, commonly used property names are: 316 * DEVICE=b12:8 device identifier 317 * b12:8 block dev_t 318 * c127:3 char dev_t 319 * n8 netdev ifindex 320 * +sound:card0 subsystem:devname 321 * SUBSYSTEM=pci driver-core subsystem name 322 * 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 324 * and values are terminated by a '\0' character. 325 * 326 * Example of record values: 327 * record.text_buf = "it's a line" (unterminated) 328 * record.info.seq = 56 329 * record.info.ts_nsec = 36863 330 * record.info.text_len = 11 331 * record.info.facility = 0 (LOG_KERN) 332 * record.info.flags = 0 333 * record.info.level = 3 (LOG_ERR) 334 * record.info.caller_id = 299 (task 299) 335 * record.info.dev_info.subsystem = "pci" (terminated) 336 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 337 * 338 * The 'struct printk_info' buffer must never be directly exported to 339 * userspace, it is a kernel-private implementation detail that might 340 * need to be changed in the future, when the requirements change. 341 * 342 * /dev/kmsg exports the structured data in the following line format: 343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 344 * 345 * Users of the export format should ignore possible additional values 346 * separated by ',', and find the message after the ';' character. 347 * 348 * The optional key/value pairs are attached as continuation lines starting 349 * with a space character and terminated by a newline. All possible 350 * non-prinatable characters are escaped in the "\xff" notation. 351 */ 352 353 enum log_flags { 354 LOG_NEWLINE = 2, /* text ended with a newline */ 355 LOG_CONT = 8, /* text is a fragment of a continuation line */ 356 }; 357 358 /* 359 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 360 * within the scheduler's rq lock. It must be released before calling 361 * console_unlock() or anything else that might wake up a process. 362 */ 363 DEFINE_RAW_SPINLOCK(logbuf_lock); 364 365 /* 366 * Helper macros to lock/unlock logbuf_lock and switch between 367 * printk-safe/unsafe modes. 368 */ 369 #define logbuf_lock_irq() \ 370 do { \ 371 printk_safe_enter_irq(); \ 372 raw_spin_lock(&logbuf_lock); \ 373 } while (0) 374 375 #define logbuf_unlock_irq() \ 376 do { \ 377 raw_spin_unlock(&logbuf_lock); \ 378 printk_safe_exit_irq(); \ 379 } while (0) 380 381 #define logbuf_lock_irqsave(flags) \ 382 do { \ 383 printk_safe_enter_irqsave(flags); \ 384 raw_spin_lock(&logbuf_lock); \ 385 } while (0) 386 387 #define logbuf_unlock_irqrestore(flags) \ 388 do { \ 389 raw_spin_unlock(&logbuf_lock); \ 390 printk_safe_exit_irqrestore(flags); \ 391 } while (0) 392 393 #ifdef CONFIG_PRINTK 394 DECLARE_WAIT_QUEUE_HEAD(log_wait); 395 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 396 static u64 syslog_seq; 397 static size_t syslog_partial; 398 static bool syslog_time; 399 400 /* the next printk record to write to the console */ 401 static u64 console_seq; 402 static u64 exclusive_console_stop_seq; 403 static unsigned long console_dropped; 404 405 /* the next printk record to read after the last 'clear' command */ 406 static u64 clear_seq; 407 408 #ifdef CONFIG_PRINTK_CALLER 409 #define PREFIX_MAX 48 410 #else 411 #define PREFIX_MAX 32 412 #endif 413 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 414 415 #define LOG_LEVEL(v) ((v) & 0x07) 416 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 417 418 /* record buffer */ 419 #define LOG_ALIGN __alignof__(unsigned long) 420 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 421 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 422 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 423 static char *log_buf = __log_buf; 424 static u32 log_buf_len = __LOG_BUF_LEN; 425 426 /* 427 * Define the average message size. This only affects the number of 428 * descriptors that will be available. Underestimating is better than 429 * overestimating (too many available descriptors is better than not enough). 430 */ 431 #define PRB_AVGBITS 5 /* 32 character average length */ 432 433 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 434 #error CONFIG_LOG_BUF_SHIFT value too small. 435 #endif 436 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 437 PRB_AVGBITS, &__log_buf[0]); 438 439 static struct printk_ringbuffer printk_rb_dynamic; 440 441 static struct printk_ringbuffer *prb = &printk_rb_static; 442 443 /* 444 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 445 * per_cpu_areas are initialised. This variable is set to true when 446 * it's safe to access per-CPU data. 447 */ 448 static bool __printk_percpu_data_ready __read_mostly; 449 450 bool printk_percpu_data_ready(void) 451 { 452 return __printk_percpu_data_ready; 453 } 454 455 /* Return log buffer address */ 456 char *log_buf_addr_get(void) 457 { 458 return log_buf; 459 } 460 461 /* Return log buffer size */ 462 u32 log_buf_len_get(void) 463 { 464 return log_buf_len; 465 } 466 467 /* 468 * Define how much of the log buffer we could take at maximum. The value 469 * must be greater than two. Note that only half of the buffer is available 470 * when the index points to the middle. 471 */ 472 #define MAX_LOG_TAKE_PART 4 473 static const char trunc_msg[] = "<truncated>"; 474 475 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 476 { 477 /* 478 * The message should not take the whole buffer. Otherwise, it might 479 * get removed too soon. 480 */ 481 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 482 483 if (*text_len > max_text_len) 484 *text_len = max_text_len; 485 486 /* enable the warning message (if there is room) */ 487 *trunc_msg_len = strlen(trunc_msg); 488 if (*text_len >= *trunc_msg_len) 489 *text_len -= *trunc_msg_len; 490 else 491 *trunc_msg_len = 0; 492 } 493 494 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 495 496 static int syslog_action_restricted(int type) 497 { 498 if (dmesg_restrict) 499 return 1; 500 /* 501 * Unless restricted, we allow "read all" and "get buffer size" 502 * for everybody. 503 */ 504 return type != SYSLOG_ACTION_READ_ALL && 505 type != SYSLOG_ACTION_SIZE_BUFFER; 506 } 507 508 static int check_syslog_permissions(int type, int source) 509 { 510 /* 511 * If this is from /proc/kmsg and we've already opened it, then we've 512 * already done the capabilities checks at open time. 513 */ 514 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 515 goto ok; 516 517 if (syslog_action_restricted(type)) { 518 if (capable(CAP_SYSLOG)) 519 goto ok; 520 /* 521 * For historical reasons, accept CAP_SYS_ADMIN too, with 522 * a warning. 523 */ 524 if (capable(CAP_SYS_ADMIN)) { 525 pr_warn_once("%s (%d): Attempt to access syslog with " 526 "CAP_SYS_ADMIN but no CAP_SYSLOG " 527 "(deprecated).\n", 528 current->comm, task_pid_nr(current)); 529 goto ok; 530 } 531 return -EPERM; 532 } 533 ok: 534 return security_syslog(type); 535 } 536 537 static void append_char(char **pp, char *e, char c) 538 { 539 if (*pp < e) 540 *(*pp)++ = c; 541 } 542 543 static ssize_t info_print_ext_header(char *buf, size_t size, 544 struct printk_info *info) 545 { 546 u64 ts_usec = info->ts_nsec; 547 char caller[20]; 548 #ifdef CONFIG_PRINTK_CALLER 549 u32 id = info->caller_id; 550 551 snprintf(caller, sizeof(caller), ",caller=%c%u", 552 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 553 #else 554 caller[0] = '\0'; 555 #endif 556 557 do_div(ts_usec, 1000); 558 559 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 560 (info->facility << 3) | info->level, info->seq, 561 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 562 } 563 564 static ssize_t msg_add_ext_text(char *buf, size_t size, 565 const char *text, size_t text_len, 566 unsigned char endc) 567 { 568 char *p = buf, *e = buf + size; 569 size_t i; 570 571 /* escape non-printable characters */ 572 for (i = 0; i < text_len; i++) { 573 unsigned char c = text[i]; 574 575 if (c < ' ' || c >= 127 || c == '\\') 576 p += scnprintf(p, e - p, "\\x%02x", c); 577 else 578 append_char(&p, e, c); 579 } 580 append_char(&p, e, endc); 581 582 return p - buf; 583 } 584 585 static ssize_t msg_add_dict_text(char *buf, size_t size, 586 const char *key, const char *val) 587 { 588 size_t val_len = strlen(val); 589 ssize_t len; 590 591 if (!val_len) 592 return 0; 593 594 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 595 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 596 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 597 598 return len; 599 } 600 601 static ssize_t msg_print_ext_body(char *buf, size_t size, 602 char *text, size_t text_len, 603 struct dev_printk_info *dev_info) 604 { 605 ssize_t len; 606 607 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 608 609 if (!dev_info) 610 goto out; 611 612 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 613 dev_info->subsystem); 614 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 615 dev_info->device); 616 out: 617 return len; 618 } 619 620 /* /dev/kmsg - userspace message inject/listen interface */ 621 struct devkmsg_user { 622 u64 seq; 623 struct ratelimit_state rs; 624 struct mutex lock; 625 char buf[CONSOLE_EXT_LOG_MAX]; 626 627 struct printk_info info; 628 char text_buf[CONSOLE_EXT_LOG_MAX]; 629 struct printk_record record; 630 }; 631 632 static __printf(3, 4) __cold 633 int devkmsg_emit(int facility, int level, const char *fmt, ...) 634 { 635 va_list args; 636 int r; 637 638 va_start(args, fmt); 639 r = vprintk_emit(facility, level, NULL, fmt, args); 640 va_end(args); 641 642 return r; 643 } 644 645 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 646 { 647 char *buf, *line; 648 int level = default_message_loglevel; 649 int facility = 1; /* LOG_USER */ 650 struct file *file = iocb->ki_filp; 651 struct devkmsg_user *user = file->private_data; 652 size_t len = iov_iter_count(from); 653 ssize_t ret = len; 654 655 if (!user || len > LOG_LINE_MAX) 656 return -EINVAL; 657 658 /* Ignore when user logging is disabled. */ 659 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 660 return len; 661 662 /* Ratelimit when not explicitly enabled. */ 663 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 664 if (!___ratelimit(&user->rs, current->comm)) 665 return ret; 666 } 667 668 buf = kmalloc(len+1, GFP_KERNEL); 669 if (buf == NULL) 670 return -ENOMEM; 671 672 buf[len] = '\0'; 673 if (!copy_from_iter_full(buf, len, from)) { 674 kfree(buf); 675 return -EFAULT; 676 } 677 678 /* 679 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 680 * the decimal value represents 32bit, the lower 3 bit are the log 681 * level, the rest are the log facility. 682 * 683 * If no prefix or no userspace facility is specified, we 684 * enforce LOG_USER, to be able to reliably distinguish 685 * kernel-generated messages from userspace-injected ones. 686 */ 687 line = buf; 688 if (line[0] == '<') { 689 char *endp = NULL; 690 unsigned int u; 691 692 u = simple_strtoul(line + 1, &endp, 10); 693 if (endp && endp[0] == '>') { 694 level = LOG_LEVEL(u); 695 if (LOG_FACILITY(u) != 0) 696 facility = LOG_FACILITY(u); 697 endp++; 698 line = endp; 699 } 700 } 701 702 devkmsg_emit(facility, level, "%s", line); 703 kfree(buf); 704 return ret; 705 } 706 707 static ssize_t devkmsg_read(struct file *file, char __user *buf, 708 size_t count, loff_t *ppos) 709 { 710 struct devkmsg_user *user = file->private_data; 711 struct printk_record *r = &user->record; 712 size_t len; 713 ssize_t ret; 714 715 if (!user) 716 return -EBADF; 717 718 ret = mutex_lock_interruptible(&user->lock); 719 if (ret) 720 return ret; 721 722 logbuf_lock_irq(); 723 if (!prb_read_valid(prb, user->seq, r)) { 724 if (file->f_flags & O_NONBLOCK) { 725 ret = -EAGAIN; 726 logbuf_unlock_irq(); 727 goto out; 728 } 729 730 logbuf_unlock_irq(); 731 ret = wait_event_interruptible(log_wait, 732 prb_read_valid(prb, user->seq, r)); 733 if (ret) 734 goto out; 735 logbuf_lock_irq(); 736 } 737 738 if (r->info->seq != user->seq) { 739 /* our last seen message is gone, return error and reset */ 740 user->seq = r->info->seq; 741 ret = -EPIPE; 742 logbuf_unlock_irq(); 743 goto out; 744 } 745 746 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 747 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 748 &r->text_buf[0], r->info->text_len, 749 &r->info->dev_info); 750 751 user->seq = r->info->seq + 1; 752 logbuf_unlock_irq(); 753 754 if (len > count) { 755 ret = -EINVAL; 756 goto out; 757 } 758 759 if (copy_to_user(buf, user->buf, len)) { 760 ret = -EFAULT; 761 goto out; 762 } 763 ret = len; 764 out: 765 mutex_unlock(&user->lock); 766 return ret; 767 } 768 769 /* 770 * Be careful when modifying this function!!! 771 * 772 * Only few operations are supported because the device works only with the 773 * entire variable length messages (records). Non-standard values are 774 * returned in the other cases and has been this way for quite some time. 775 * User space applications might depend on this behavior. 776 */ 777 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 778 { 779 struct devkmsg_user *user = file->private_data; 780 loff_t ret = 0; 781 782 if (!user) 783 return -EBADF; 784 if (offset) 785 return -ESPIPE; 786 787 logbuf_lock_irq(); 788 switch (whence) { 789 case SEEK_SET: 790 /* the first record */ 791 user->seq = prb_first_valid_seq(prb); 792 break; 793 case SEEK_DATA: 794 /* 795 * The first record after the last SYSLOG_ACTION_CLEAR, 796 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 797 * changes no global state, and does not clear anything. 798 */ 799 user->seq = clear_seq; 800 break; 801 case SEEK_END: 802 /* after the last record */ 803 user->seq = prb_next_seq(prb); 804 break; 805 default: 806 ret = -EINVAL; 807 } 808 logbuf_unlock_irq(); 809 return ret; 810 } 811 812 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 813 { 814 struct devkmsg_user *user = file->private_data; 815 struct printk_info info; 816 __poll_t ret = 0; 817 818 if (!user) 819 return EPOLLERR|EPOLLNVAL; 820 821 poll_wait(file, &log_wait, wait); 822 823 logbuf_lock_irq(); 824 if (prb_read_valid_info(prb, user->seq, &info, NULL)) { 825 /* return error when data has vanished underneath us */ 826 if (info.seq != user->seq) 827 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 828 else 829 ret = EPOLLIN|EPOLLRDNORM; 830 } 831 logbuf_unlock_irq(); 832 833 return ret; 834 } 835 836 static int devkmsg_open(struct inode *inode, struct file *file) 837 { 838 struct devkmsg_user *user; 839 int err; 840 841 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 842 return -EPERM; 843 844 /* write-only does not need any file context */ 845 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 846 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 847 SYSLOG_FROM_READER); 848 if (err) 849 return err; 850 } 851 852 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 853 if (!user) 854 return -ENOMEM; 855 856 ratelimit_default_init(&user->rs); 857 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 858 859 mutex_init(&user->lock); 860 861 prb_rec_init_rd(&user->record, &user->info, 862 &user->text_buf[0], sizeof(user->text_buf)); 863 864 logbuf_lock_irq(); 865 user->seq = prb_first_valid_seq(prb); 866 logbuf_unlock_irq(); 867 868 file->private_data = user; 869 return 0; 870 } 871 872 static int devkmsg_release(struct inode *inode, struct file *file) 873 { 874 struct devkmsg_user *user = file->private_data; 875 876 if (!user) 877 return 0; 878 879 ratelimit_state_exit(&user->rs); 880 881 mutex_destroy(&user->lock); 882 kfree(user); 883 return 0; 884 } 885 886 const struct file_operations kmsg_fops = { 887 .open = devkmsg_open, 888 .read = devkmsg_read, 889 .write_iter = devkmsg_write, 890 .llseek = devkmsg_llseek, 891 .poll = devkmsg_poll, 892 .release = devkmsg_release, 893 }; 894 895 #ifdef CONFIG_CRASH_CORE 896 /* 897 * This appends the listed symbols to /proc/vmcore 898 * 899 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 900 * obtain access to symbols that are otherwise very difficult to locate. These 901 * symbols are specifically used so that utilities can access and extract the 902 * dmesg log from a vmcore file after a crash. 903 */ 904 void log_buf_vmcoreinfo_setup(void) 905 { 906 struct dev_printk_info *dev_info = NULL; 907 908 VMCOREINFO_SYMBOL(prb); 909 VMCOREINFO_SYMBOL(printk_rb_static); 910 VMCOREINFO_SYMBOL(clear_seq); 911 912 /* 913 * Export struct size and field offsets. User space tools can 914 * parse it and detect any changes to structure down the line. 915 */ 916 917 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 918 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 919 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 920 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 921 922 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 923 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 924 VMCOREINFO_OFFSET(prb_desc_ring, descs); 925 VMCOREINFO_OFFSET(prb_desc_ring, infos); 926 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 927 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 928 929 VMCOREINFO_STRUCT_SIZE(prb_desc); 930 VMCOREINFO_OFFSET(prb_desc, state_var); 931 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 932 933 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 934 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 935 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 936 937 VMCOREINFO_STRUCT_SIZE(printk_info); 938 VMCOREINFO_OFFSET(printk_info, seq); 939 VMCOREINFO_OFFSET(printk_info, ts_nsec); 940 VMCOREINFO_OFFSET(printk_info, text_len); 941 VMCOREINFO_OFFSET(printk_info, caller_id); 942 VMCOREINFO_OFFSET(printk_info, dev_info); 943 944 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 945 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 946 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 947 VMCOREINFO_OFFSET(dev_printk_info, device); 948 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 949 950 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 951 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 952 VMCOREINFO_OFFSET(prb_data_ring, data); 953 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 954 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 955 956 VMCOREINFO_SIZE(atomic_long_t); 957 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 958 } 959 #endif 960 961 /* requested log_buf_len from kernel cmdline */ 962 static unsigned long __initdata new_log_buf_len; 963 964 /* we practice scaling the ring buffer by powers of 2 */ 965 static void __init log_buf_len_update(u64 size) 966 { 967 if (size > (u64)LOG_BUF_LEN_MAX) { 968 size = (u64)LOG_BUF_LEN_MAX; 969 pr_err("log_buf over 2G is not supported.\n"); 970 } 971 972 if (size) 973 size = roundup_pow_of_two(size); 974 if (size > log_buf_len) 975 new_log_buf_len = (unsigned long)size; 976 } 977 978 /* save requested log_buf_len since it's too early to process it */ 979 static int __init log_buf_len_setup(char *str) 980 { 981 u64 size; 982 983 if (!str) 984 return -EINVAL; 985 986 size = memparse(str, &str); 987 988 log_buf_len_update(size); 989 990 return 0; 991 } 992 early_param("log_buf_len", log_buf_len_setup); 993 994 #ifdef CONFIG_SMP 995 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 996 997 static void __init log_buf_add_cpu(void) 998 { 999 unsigned int cpu_extra; 1000 1001 /* 1002 * archs should set up cpu_possible_bits properly with 1003 * set_cpu_possible() after setup_arch() but just in 1004 * case lets ensure this is valid. 1005 */ 1006 if (num_possible_cpus() == 1) 1007 return; 1008 1009 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1010 1011 /* by default this will only continue through for large > 64 CPUs */ 1012 if (cpu_extra <= __LOG_BUF_LEN / 2) 1013 return; 1014 1015 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1016 __LOG_CPU_MAX_BUF_LEN); 1017 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1018 cpu_extra); 1019 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1020 1021 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1022 } 1023 #else /* !CONFIG_SMP */ 1024 static inline void log_buf_add_cpu(void) {} 1025 #endif /* CONFIG_SMP */ 1026 1027 static void __init set_percpu_data_ready(void) 1028 { 1029 printk_safe_init(); 1030 /* Make sure we set this flag only after printk_safe() init is done */ 1031 barrier(); 1032 __printk_percpu_data_ready = true; 1033 } 1034 1035 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1036 struct printk_record *r) 1037 { 1038 struct prb_reserved_entry e; 1039 struct printk_record dest_r; 1040 1041 prb_rec_init_wr(&dest_r, r->info->text_len); 1042 1043 if (!prb_reserve(&e, rb, &dest_r)) 1044 return 0; 1045 1046 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1047 dest_r.info->text_len = r->info->text_len; 1048 dest_r.info->facility = r->info->facility; 1049 dest_r.info->level = r->info->level; 1050 dest_r.info->flags = r->info->flags; 1051 dest_r.info->ts_nsec = r->info->ts_nsec; 1052 dest_r.info->caller_id = r->info->caller_id; 1053 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1054 1055 prb_final_commit(&e); 1056 1057 return prb_record_text_space(&e); 1058 } 1059 1060 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1061 1062 void __init setup_log_buf(int early) 1063 { 1064 struct printk_info *new_infos; 1065 unsigned int new_descs_count; 1066 struct prb_desc *new_descs; 1067 struct printk_info info; 1068 struct printk_record r; 1069 size_t new_descs_size; 1070 size_t new_infos_size; 1071 unsigned long flags; 1072 char *new_log_buf; 1073 unsigned int free; 1074 u64 seq; 1075 1076 /* 1077 * Some archs call setup_log_buf() multiple times - first is very 1078 * early, e.g. from setup_arch(), and second - when percpu_areas 1079 * are initialised. 1080 */ 1081 if (!early) 1082 set_percpu_data_ready(); 1083 1084 if (log_buf != __log_buf) 1085 return; 1086 1087 if (!early && !new_log_buf_len) 1088 log_buf_add_cpu(); 1089 1090 if (!new_log_buf_len) 1091 return; 1092 1093 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1094 if (new_descs_count == 0) { 1095 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1096 return; 1097 } 1098 1099 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1100 if (unlikely(!new_log_buf)) { 1101 pr_err("log_buf_len: %lu text bytes not available\n", 1102 new_log_buf_len); 1103 return; 1104 } 1105 1106 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1107 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1108 if (unlikely(!new_descs)) { 1109 pr_err("log_buf_len: %zu desc bytes not available\n", 1110 new_descs_size); 1111 goto err_free_log_buf; 1112 } 1113 1114 new_infos_size = new_descs_count * sizeof(struct printk_info); 1115 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1116 if (unlikely(!new_infos)) { 1117 pr_err("log_buf_len: %zu info bytes not available\n", 1118 new_infos_size); 1119 goto err_free_descs; 1120 } 1121 1122 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1123 1124 prb_init(&printk_rb_dynamic, 1125 new_log_buf, ilog2(new_log_buf_len), 1126 new_descs, ilog2(new_descs_count), 1127 new_infos); 1128 1129 printk_safe_enter_irqsave(flags); 1130 1131 log_buf_len = new_log_buf_len; 1132 log_buf = new_log_buf; 1133 new_log_buf_len = 0; 1134 1135 free = __LOG_BUF_LEN; 1136 prb_for_each_record(0, &printk_rb_static, seq, &r) 1137 free -= add_to_rb(&printk_rb_dynamic, &r); 1138 1139 /* 1140 * This is early enough that everything is still running on the 1141 * boot CPU and interrupts are disabled. So no new messages will 1142 * appear during the transition to the dynamic buffer. 1143 */ 1144 prb = &printk_rb_dynamic; 1145 1146 printk_safe_exit_irqrestore(flags); 1147 1148 if (seq != prb_next_seq(&printk_rb_static)) { 1149 pr_err("dropped %llu messages\n", 1150 prb_next_seq(&printk_rb_static) - seq); 1151 } 1152 1153 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1154 pr_info("early log buf free: %u(%u%%)\n", 1155 free, (free * 100) / __LOG_BUF_LEN); 1156 return; 1157 1158 err_free_descs: 1159 memblock_free(__pa(new_descs), new_descs_size); 1160 err_free_log_buf: 1161 memblock_free(__pa(new_log_buf), new_log_buf_len); 1162 } 1163 1164 static bool __read_mostly ignore_loglevel; 1165 1166 static int __init ignore_loglevel_setup(char *str) 1167 { 1168 ignore_loglevel = true; 1169 pr_info("debug: ignoring loglevel setting.\n"); 1170 1171 return 0; 1172 } 1173 1174 early_param("ignore_loglevel", ignore_loglevel_setup); 1175 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1176 MODULE_PARM_DESC(ignore_loglevel, 1177 "ignore loglevel setting (prints all kernel messages to the console)"); 1178 1179 static bool suppress_message_printing(int level) 1180 { 1181 return (level >= console_loglevel && !ignore_loglevel); 1182 } 1183 1184 #ifdef CONFIG_BOOT_PRINTK_DELAY 1185 1186 static int boot_delay; /* msecs delay after each printk during bootup */ 1187 static unsigned long long loops_per_msec; /* based on boot_delay */ 1188 1189 static int __init boot_delay_setup(char *str) 1190 { 1191 unsigned long lpj; 1192 1193 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1194 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1195 1196 get_option(&str, &boot_delay); 1197 if (boot_delay > 10 * 1000) 1198 boot_delay = 0; 1199 1200 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1201 "HZ: %d, loops_per_msec: %llu\n", 1202 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1203 return 0; 1204 } 1205 early_param("boot_delay", boot_delay_setup); 1206 1207 static void boot_delay_msec(int level) 1208 { 1209 unsigned long long k; 1210 unsigned long timeout; 1211 1212 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1213 || suppress_message_printing(level)) { 1214 return; 1215 } 1216 1217 k = (unsigned long long)loops_per_msec * boot_delay; 1218 1219 timeout = jiffies + msecs_to_jiffies(boot_delay); 1220 while (k) { 1221 k--; 1222 cpu_relax(); 1223 /* 1224 * use (volatile) jiffies to prevent 1225 * compiler reduction; loop termination via jiffies 1226 * is secondary and may or may not happen. 1227 */ 1228 if (time_after(jiffies, timeout)) 1229 break; 1230 touch_nmi_watchdog(); 1231 } 1232 } 1233 #else 1234 static inline void boot_delay_msec(int level) 1235 { 1236 } 1237 #endif 1238 1239 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1240 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1241 1242 static size_t print_syslog(unsigned int level, char *buf) 1243 { 1244 return sprintf(buf, "<%u>", level); 1245 } 1246 1247 static size_t print_time(u64 ts, char *buf) 1248 { 1249 unsigned long rem_nsec = do_div(ts, 1000000000); 1250 1251 return sprintf(buf, "[%5lu.%06lu]", 1252 (unsigned long)ts, rem_nsec / 1000); 1253 } 1254 1255 #ifdef CONFIG_PRINTK_CALLER 1256 static size_t print_caller(u32 id, char *buf) 1257 { 1258 char caller[12]; 1259 1260 snprintf(caller, sizeof(caller), "%c%u", 1261 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1262 return sprintf(buf, "[%6s]", caller); 1263 } 1264 #else 1265 #define print_caller(id, buf) 0 1266 #endif 1267 1268 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1269 bool time, char *buf) 1270 { 1271 size_t len = 0; 1272 1273 if (syslog) 1274 len = print_syslog((info->facility << 3) | info->level, buf); 1275 1276 if (time) 1277 len += print_time(info->ts_nsec, buf + len); 1278 1279 len += print_caller(info->caller_id, buf + len); 1280 1281 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1282 buf[len++] = ' '; 1283 buf[len] = '\0'; 1284 } 1285 1286 return len; 1287 } 1288 1289 /* 1290 * Prepare the record for printing. The text is shifted within the given 1291 * buffer to avoid a need for another one. The following operations are 1292 * done: 1293 * 1294 * - Add prefix for each line. 1295 * - Drop truncated lines that no longer fit into the buffer. 1296 * - Add the trailing newline that has been removed in vprintk_store(). 1297 * - Add a string terminator. 1298 * 1299 * Since the produced string is always terminated, the maximum possible 1300 * return value is @r->text_buf_size - 1; 1301 * 1302 * Return: The length of the updated/prepared text, including the added 1303 * prefixes and the newline. The terminator is not counted. The dropped 1304 * line(s) are not counted. 1305 */ 1306 static size_t record_print_text(struct printk_record *r, bool syslog, 1307 bool time) 1308 { 1309 size_t text_len = r->info->text_len; 1310 size_t buf_size = r->text_buf_size; 1311 char *text = r->text_buf; 1312 char prefix[PREFIX_MAX]; 1313 bool truncated = false; 1314 size_t prefix_len; 1315 size_t line_len; 1316 size_t len = 0; 1317 char *next; 1318 1319 /* 1320 * If the message was truncated because the buffer was not large 1321 * enough, treat the available text as if it were the full text. 1322 */ 1323 if (text_len > buf_size) 1324 text_len = buf_size; 1325 1326 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1327 1328 /* 1329 * @text_len: bytes of unprocessed text 1330 * @line_len: bytes of current line _without_ newline 1331 * @text: pointer to beginning of current line 1332 * @len: number of bytes prepared in r->text_buf 1333 */ 1334 for (;;) { 1335 next = memchr(text, '\n', text_len); 1336 if (next) { 1337 line_len = next - text; 1338 } else { 1339 /* Drop truncated line(s). */ 1340 if (truncated) 1341 break; 1342 line_len = text_len; 1343 } 1344 1345 /* 1346 * Truncate the text if there is not enough space to add the 1347 * prefix and a trailing newline and a terminator. 1348 */ 1349 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1350 /* Drop even the current line if no space. */ 1351 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1352 break; 1353 1354 text_len = buf_size - len - prefix_len - 1 - 1; 1355 truncated = true; 1356 } 1357 1358 memmove(text + prefix_len, text, text_len); 1359 memcpy(text, prefix, prefix_len); 1360 1361 /* 1362 * Increment the prepared length to include the text and 1363 * prefix that were just moved+copied. Also increment for the 1364 * newline at the end of this line. If this is the last line, 1365 * there is no newline, but it will be added immediately below. 1366 */ 1367 len += prefix_len + line_len + 1; 1368 if (text_len == line_len) { 1369 /* 1370 * This is the last line. Add the trailing newline 1371 * removed in vprintk_store(). 1372 */ 1373 text[prefix_len + line_len] = '\n'; 1374 break; 1375 } 1376 1377 /* 1378 * Advance beyond the added prefix and the related line with 1379 * its newline. 1380 */ 1381 text += prefix_len + line_len + 1; 1382 1383 /* 1384 * The remaining text has only decreased by the line with its 1385 * newline. 1386 * 1387 * Note that @text_len can become zero. It happens when @text 1388 * ended with a newline (either due to truncation or the 1389 * original string ending with "\n\n"). The loop is correctly 1390 * repeated and (if not truncated) an empty line with a prefix 1391 * will be prepared. 1392 */ 1393 text_len -= line_len + 1; 1394 } 1395 1396 /* 1397 * If a buffer was provided, it will be terminated. Space for the 1398 * string terminator is guaranteed to be available. The terminator is 1399 * not counted in the return value. 1400 */ 1401 if (buf_size > 0) 1402 r->text_buf[len] = 0; 1403 1404 return len; 1405 } 1406 1407 static size_t get_record_print_text_size(struct printk_info *info, 1408 unsigned int line_count, 1409 bool syslog, bool time) 1410 { 1411 char prefix[PREFIX_MAX]; 1412 size_t prefix_len; 1413 1414 prefix_len = info_print_prefix(info, syslog, time, prefix); 1415 1416 /* 1417 * Each line will be preceded with a prefix. The intermediate 1418 * newlines are already within the text, but a final trailing 1419 * newline will be added. 1420 */ 1421 return ((prefix_len * line_count) + info->text_len + 1); 1422 } 1423 1424 static int syslog_print(char __user *buf, int size) 1425 { 1426 struct printk_info info; 1427 struct printk_record r; 1428 char *text; 1429 int len = 0; 1430 1431 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1432 if (!text) 1433 return -ENOMEM; 1434 1435 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); 1436 1437 while (size > 0) { 1438 size_t n; 1439 size_t skip; 1440 1441 logbuf_lock_irq(); 1442 if (!prb_read_valid(prb, syslog_seq, &r)) { 1443 logbuf_unlock_irq(); 1444 break; 1445 } 1446 if (r.info->seq != syslog_seq) { 1447 /* message is gone, move to next valid one */ 1448 syslog_seq = r.info->seq; 1449 syslog_partial = 0; 1450 } 1451 1452 /* 1453 * To keep reading/counting partial line consistent, 1454 * use printk_time value as of the beginning of a line. 1455 */ 1456 if (!syslog_partial) 1457 syslog_time = printk_time; 1458 1459 skip = syslog_partial; 1460 n = record_print_text(&r, true, syslog_time); 1461 if (n - syslog_partial <= size) { 1462 /* message fits into buffer, move forward */ 1463 syslog_seq = r.info->seq + 1; 1464 n -= syslog_partial; 1465 syslog_partial = 0; 1466 } else if (!len){ 1467 /* partial read(), remember position */ 1468 n = size; 1469 syslog_partial += n; 1470 } else 1471 n = 0; 1472 logbuf_unlock_irq(); 1473 1474 if (!n) 1475 break; 1476 1477 if (copy_to_user(buf, text + skip, n)) { 1478 if (!len) 1479 len = -EFAULT; 1480 break; 1481 } 1482 1483 len += n; 1484 size -= n; 1485 buf += n; 1486 } 1487 1488 kfree(text); 1489 return len; 1490 } 1491 1492 static int syslog_print_all(char __user *buf, int size, bool clear) 1493 { 1494 struct printk_info info; 1495 unsigned int line_count; 1496 struct printk_record r; 1497 char *text; 1498 int len = 0; 1499 u64 seq; 1500 bool time; 1501 1502 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1503 if (!text) 1504 return -ENOMEM; 1505 1506 time = printk_time; 1507 logbuf_lock_irq(); 1508 /* 1509 * Find first record that fits, including all following records, 1510 * into the user-provided buffer for this dump. 1511 */ 1512 prb_for_each_info(clear_seq, prb, seq, &info, &line_count) 1513 len += get_record_print_text_size(&info, line_count, true, time); 1514 1515 /* move first record forward until length fits into the buffer */ 1516 prb_for_each_info(clear_seq, prb, seq, &info, &line_count) { 1517 if (len <= size) 1518 break; 1519 len -= get_record_print_text_size(&info, line_count, true, time); 1520 } 1521 1522 prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX); 1523 1524 len = 0; 1525 prb_for_each_record(seq, prb, seq, &r) { 1526 int textlen; 1527 1528 textlen = record_print_text(&r, true, time); 1529 1530 if (len + textlen > size) { 1531 seq--; 1532 break; 1533 } 1534 1535 logbuf_unlock_irq(); 1536 if (copy_to_user(buf + len, text, textlen)) 1537 len = -EFAULT; 1538 else 1539 len += textlen; 1540 logbuf_lock_irq(); 1541 1542 if (len < 0) 1543 break; 1544 } 1545 1546 if (clear) 1547 clear_seq = seq; 1548 logbuf_unlock_irq(); 1549 1550 kfree(text); 1551 return len; 1552 } 1553 1554 static void syslog_clear(void) 1555 { 1556 logbuf_lock_irq(); 1557 clear_seq = prb_next_seq(prb); 1558 logbuf_unlock_irq(); 1559 } 1560 1561 int do_syslog(int type, char __user *buf, int len, int source) 1562 { 1563 struct printk_info info; 1564 bool clear = false; 1565 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1566 int error; 1567 1568 error = check_syslog_permissions(type, source); 1569 if (error) 1570 return error; 1571 1572 switch (type) { 1573 case SYSLOG_ACTION_CLOSE: /* Close log */ 1574 break; 1575 case SYSLOG_ACTION_OPEN: /* Open log */ 1576 break; 1577 case SYSLOG_ACTION_READ: /* Read from log */ 1578 if (!buf || len < 0) 1579 return -EINVAL; 1580 if (!len) 1581 return 0; 1582 if (!access_ok(buf, len)) 1583 return -EFAULT; 1584 error = wait_event_interruptible(log_wait, 1585 prb_read_valid(prb, syslog_seq, NULL)); 1586 if (error) 1587 return error; 1588 error = syslog_print(buf, len); 1589 break; 1590 /* Read/clear last kernel messages */ 1591 case SYSLOG_ACTION_READ_CLEAR: 1592 clear = true; 1593 fallthrough; 1594 /* Read last kernel messages */ 1595 case SYSLOG_ACTION_READ_ALL: 1596 if (!buf || len < 0) 1597 return -EINVAL; 1598 if (!len) 1599 return 0; 1600 if (!access_ok(buf, len)) 1601 return -EFAULT; 1602 error = syslog_print_all(buf, len, clear); 1603 break; 1604 /* Clear ring buffer */ 1605 case SYSLOG_ACTION_CLEAR: 1606 syslog_clear(); 1607 break; 1608 /* Disable logging to console */ 1609 case SYSLOG_ACTION_CONSOLE_OFF: 1610 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1611 saved_console_loglevel = console_loglevel; 1612 console_loglevel = minimum_console_loglevel; 1613 break; 1614 /* Enable logging to console */ 1615 case SYSLOG_ACTION_CONSOLE_ON: 1616 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1617 console_loglevel = saved_console_loglevel; 1618 saved_console_loglevel = LOGLEVEL_DEFAULT; 1619 } 1620 break; 1621 /* Set level of messages printed to console */ 1622 case SYSLOG_ACTION_CONSOLE_LEVEL: 1623 if (len < 1 || len > 8) 1624 return -EINVAL; 1625 if (len < minimum_console_loglevel) 1626 len = minimum_console_loglevel; 1627 console_loglevel = len; 1628 /* Implicitly re-enable logging to console */ 1629 saved_console_loglevel = LOGLEVEL_DEFAULT; 1630 break; 1631 /* Number of chars in the log buffer */ 1632 case SYSLOG_ACTION_SIZE_UNREAD: 1633 logbuf_lock_irq(); 1634 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1635 /* No unread messages. */ 1636 logbuf_unlock_irq(); 1637 return 0; 1638 } 1639 if (info.seq != syslog_seq) { 1640 /* messages are gone, move to first one */ 1641 syslog_seq = info.seq; 1642 syslog_partial = 0; 1643 } 1644 if (source == SYSLOG_FROM_PROC) { 1645 /* 1646 * Short-cut for poll(/"proc/kmsg") which simply checks 1647 * for pending data, not the size; return the count of 1648 * records, not the length. 1649 */ 1650 error = prb_next_seq(prb) - syslog_seq; 1651 } else { 1652 bool time = syslog_partial ? syslog_time : printk_time; 1653 unsigned int line_count; 1654 u64 seq; 1655 1656 prb_for_each_info(syslog_seq, prb, seq, &info, 1657 &line_count) { 1658 error += get_record_print_text_size(&info, line_count, 1659 true, time); 1660 time = printk_time; 1661 } 1662 error -= syslog_partial; 1663 } 1664 logbuf_unlock_irq(); 1665 break; 1666 /* Size of the log buffer */ 1667 case SYSLOG_ACTION_SIZE_BUFFER: 1668 error = log_buf_len; 1669 break; 1670 default: 1671 error = -EINVAL; 1672 break; 1673 } 1674 1675 return error; 1676 } 1677 1678 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1679 { 1680 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1681 } 1682 1683 /* 1684 * Special console_lock variants that help to reduce the risk of soft-lockups. 1685 * They allow to pass console_lock to another printk() call using a busy wait. 1686 */ 1687 1688 #ifdef CONFIG_LOCKDEP 1689 static struct lockdep_map console_owner_dep_map = { 1690 .name = "console_owner" 1691 }; 1692 #endif 1693 1694 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1695 static struct task_struct *console_owner; 1696 static bool console_waiter; 1697 1698 /** 1699 * console_lock_spinning_enable - mark beginning of code where another 1700 * thread might safely busy wait 1701 * 1702 * This basically converts console_lock into a spinlock. This marks 1703 * the section where the console_lock owner can not sleep, because 1704 * there may be a waiter spinning (like a spinlock). Also it must be 1705 * ready to hand over the lock at the end of the section. 1706 */ 1707 static void console_lock_spinning_enable(void) 1708 { 1709 raw_spin_lock(&console_owner_lock); 1710 console_owner = current; 1711 raw_spin_unlock(&console_owner_lock); 1712 1713 /* The waiter may spin on us after setting console_owner */ 1714 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1715 } 1716 1717 /** 1718 * console_lock_spinning_disable_and_check - mark end of code where another 1719 * thread was able to busy wait and check if there is a waiter 1720 * 1721 * This is called at the end of the section where spinning is allowed. 1722 * It has two functions. First, it is a signal that it is no longer 1723 * safe to start busy waiting for the lock. Second, it checks if 1724 * there is a busy waiter and passes the lock rights to her. 1725 * 1726 * Important: Callers lose the lock if there was a busy waiter. 1727 * They must not touch items synchronized by console_lock 1728 * in this case. 1729 * 1730 * Return: 1 if the lock rights were passed, 0 otherwise. 1731 */ 1732 static int console_lock_spinning_disable_and_check(void) 1733 { 1734 int waiter; 1735 1736 raw_spin_lock(&console_owner_lock); 1737 waiter = READ_ONCE(console_waiter); 1738 console_owner = NULL; 1739 raw_spin_unlock(&console_owner_lock); 1740 1741 if (!waiter) { 1742 spin_release(&console_owner_dep_map, _THIS_IP_); 1743 return 0; 1744 } 1745 1746 /* The waiter is now free to continue */ 1747 WRITE_ONCE(console_waiter, false); 1748 1749 spin_release(&console_owner_dep_map, _THIS_IP_); 1750 1751 /* 1752 * Hand off console_lock to waiter. The waiter will perform 1753 * the up(). After this, the waiter is the console_lock owner. 1754 */ 1755 mutex_release(&console_lock_dep_map, _THIS_IP_); 1756 return 1; 1757 } 1758 1759 /** 1760 * console_trylock_spinning - try to get console_lock by busy waiting 1761 * 1762 * This allows to busy wait for the console_lock when the current 1763 * owner is running in specially marked sections. It means that 1764 * the current owner is running and cannot reschedule until it 1765 * is ready to lose the lock. 1766 * 1767 * Return: 1 if we got the lock, 0 othrewise 1768 */ 1769 static int console_trylock_spinning(void) 1770 { 1771 struct task_struct *owner = NULL; 1772 bool waiter; 1773 bool spin = false; 1774 unsigned long flags; 1775 1776 if (console_trylock()) 1777 return 1; 1778 1779 printk_safe_enter_irqsave(flags); 1780 1781 raw_spin_lock(&console_owner_lock); 1782 owner = READ_ONCE(console_owner); 1783 waiter = READ_ONCE(console_waiter); 1784 if (!waiter && owner && owner != current) { 1785 WRITE_ONCE(console_waiter, true); 1786 spin = true; 1787 } 1788 raw_spin_unlock(&console_owner_lock); 1789 1790 /* 1791 * If there is an active printk() writing to the 1792 * consoles, instead of having it write our data too, 1793 * see if we can offload that load from the active 1794 * printer, and do some printing ourselves. 1795 * Go into a spin only if there isn't already a waiter 1796 * spinning, and there is an active printer, and 1797 * that active printer isn't us (recursive printk?). 1798 */ 1799 if (!spin) { 1800 printk_safe_exit_irqrestore(flags); 1801 return 0; 1802 } 1803 1804 /* We spin waiting for the owner to release us */ 1805 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1806 /* Owner will clear console_waiter on hand off */ 1807 while (READ_ONCE(console_waiter)) 1808 cpu_relax(); 1809 spin_release(&console_owner_dep_map, _THIS_IP_); 1810 1811 printk_safe_exit_irqrestore(flags); 1812 /* 1813 * The owner passed the console lock to us. 1814 * Since we did not spin on console lock, annotate 1815 * this as a trylock. Otherwise lockdep will 1816 * complain. 1817 */ 1818 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1819 1820 return 1; 1821 } 1822 1823 /* 1824 * Call the console drivers, asking them to write out 1825 * log_buf[start] to log_buf[end - 1]. 1826 * The console_lock must be held. 1827 */ 1828 static void call_console_drivers(const char *ext_text, size_t ext_len, 1829 const char *text, size_t len) 1830 { 1831 static char dropped_text[64]; 1832 size_t dropped_len = 0; 1833 struct console *con; 1834 1835 trace_console_rcuidle(text, len); 1836 1837 if (!console_drivers) 1838 return; 1839 1840 if (console_dropped) { 1841 dropped_len = snprintf(dropped_text, sizeof(dropped_text), 1842 "** %lu printk messages dropped **\n", 1843 console_dropped); 1844 console_dropped = 0; 1845 } 1846 1847 for_each_console(con) { 1848 if (exclusive_console && con != exclusive_console) 1849 continue; 1850 if (!(con->flags & CON_ENABLED)) 1851 continue; 1852 if (!con->write) 1853 continue; 1854 if (!cpu_online(smp_processor_id()) && 1855 !(con->flags & CON_ANYTIME)) 1856 continue; 1857 if (con->flags & CON_EXTENDED) 1858 con->write(con, ext_text, ext_len); 1859 else { 1860 if (dropped_len) 1861 con->write(con, dropped_text, dropped_len); 1862 con->write(con, text, len); 1863 } 1864 } 1865 } 1866 1867 int printk_delay_msec __read_mostly; 1868 1869 static inline void printk_delay(void) 1870 { 1871 if (unlikely(printk_delay_msec)) { 1872 int m = printk_delay_msec; 1873 1874 while (m--) { 1875 mdelay(1); 1876 touch_nmi_watchdog(); 1877 } 1878 } 1879 } 1880 1881 static inline u32 printk_caller_id(void) 1882 { 1883 return in_task() ? task_pid_nr(current) : 1884 0x80000000 + raw_smp_processor_id(); 1885 } 1886 1887 /** 1888 * parse_prefix - Parse level and control flags. 1889 * 1890 * @text: The terminated text message. 1891 * @level: A pointer to the current level value, will be updated. 1892 * @lflags: A pointer to the current log flags, will be updated. 1893 * 1894 * @level may be NULL if the caller is not interested in the parsed value. 1895 * Otherwise the variable pointed to by @level must be set to 1896 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 1897 * 1898 * @lflags may be NULL if the caller is not interested in the parsed value. 1899 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed 1900 * value. 1901 * 1902 * Return: The length of the parsed level and control flags. 1903 */ 1904 static u16 parse_prefix(char *text, int *level, enum log_flags *lflags) 1905 { 1906 u16 prefix_len = 0; 1907 int kern_level; 1908 1909 while (*text) { 1910 kern_level = printk_get_level(text); 1911 if (!kern_level) 1912 break; 1913 1914 switch (kern_level) { 1915 case '0' ... '7': 1916 if (level && *level == LOGLEVEL_DEFAULT) 1917 *level = kern_level - '0'; 1918 break; 1919 case 'c': /* KERN_CONT */ 1920 if (lflags) 1921 *lflags |= LOG_CONT; 1922 } 1923 1924 prefix_len += 2; 1925 text += 2; 1926 } 1927 1928 return prefix_len; 1929 } 1930 1931 static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags, 1932 const char *fmt, va_list args) 1933 { 1934 u16 text_len; 1935 1936 text_len = vscnprintf(text, size, fmt, args); 1937 1938 /* Mark and strip a trailing newline. */ 1939 if (text_len && text[text_len - 1] == '\n') { 1940 text_len--; 1941 *lflags |= LOG_NEWLINE; 1942 } 1943 1944 /* Strip log level and control flags. */ 1945 if (facility == 0) { 1946 u16 prefix_len; 1947 1948 prefix_len = parse_prefix(text, NULL, NULL); 1949 if (prefix_len) { 1950 text_len -= prefix_len; 1951 memmove(text, text + prefix_len, text_len); 1952 } 1953 } 1954 1955 return text_len; 1956 } 1957 1958 __printf(4, 0) 1959 int vprintk_store(int facility, int level, 1960 const struct dev_printk_info *dev_info, 1961 const char *fmt, va_list args) 1962 { 1963 const u32 caller_id = printk_caller_id(); 1964 struct prb_reserved_entry e; 1965 enum log_flags lflags = 0; 1966 struct printk_record r; 1967 u16 trunc_msg_len = 0; 1968 char prefix_buf[8]; 1969 u16 reserve_size; 1970 va_list args2; 1971 u16 text_len; 1972 u64 ts_nsec; 1973 1974 /* 1975 * Since the duration of printk() can vary depending on the message 1976 * and state of the ringbuffer, grab the timestamp now so that it is 1977 * close to the call of printk(). This provides a more deterministic 1978 * timestamp with respect to the caller. 1979 */ 1980 ts_nsec = local_clock(); 1981 1982 /* 1983 * The sprintf needs to come first since the syslog prefix might be 1984 * passed in as a parameter. An extra byte must be reserved so that 1985 * later the vscnprintf() into the reserved buffer has room for the 1986 * terminating '\0', which is not counted by vsnprintf(). 1987 */ 1988 va_copy(args2, args); 1989 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 1990 va_end(args2); 1991 1992 if (reserve_size > LOG_LINE_MAX) 1993 reserve_size = LOG_LINE_MAX; 1994 1995 /* Extract log level or control flags. */ 1996 if (facility == 0) 1997 parse_prefix(&prefix_buf[0], &level, &lflags); 1998 1999 if (level == LOGLEVEL_DEFAULT) 2000 level = default_message_loglevel; 2001 2002 if (dev_info) 2003 lflags |= LOG_NEWLINE; 2004 2005 if (lflags & LOG_CONT) { 2006 prb_rec_init_wr(&r, reserve_size); 2007 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2008 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2009 facility, &lflags, fmt, args); 2010 r.info->text_len += text_len; 2011 2012 if (lflags & LOG_NEWLINE) { 2013 r.info->flags |= LOG_NEWLINE; 2014 prb_final_commit(&e); 2015 } else { 2016 prb_commit(&e); 2017 } 2018 2019 return text_len; 2020 } 2021 } 2022 2023 /* 2024 * Explicitly initialize the record before every prb_reserve() call. 2025 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2026 * structure when they fail. 2027 */ 2028 prb_rec_init_wr(&r, reserve_size); 2029 if (!prb_reserve(&e, prb, &r)) { 2030 /* truncate the message if it is too long for empty buffer */ 2031 truncate_msg(&reserve_size, &trunc_msg_len); 2032 2033 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2034 if (!prb_reserve(&e, prb, &r)) 2035 return 0; 2036 } 2037 2038 /* fill message */ 2039 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args); 2040 if (trunc_msg_len) 2041 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2042 r.info->text_len = text_len + trunc_msg_len; 2043 r.info->facility = facility; 2044 r.info->level = level & 7; 2045 r.info->flags = lflags & 0x1f; 2046 r.info->ts_nsec = ts_nsec; 2047 r.info->caller_id = caller_id; 2048 if (dev_info) 2049 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2050 2051 /* A message without a trailing newline can be continued. */ 2052 if (!(lflags & LOG_NEWLINE)) 2053 prb_commit(&e); 2054 else 2055 prb_final_commit(&e); 2056 2057 return (text_len + trunc_msg_len); 2058 } 2059 2060 asmlinkage int vprintk_emit(int facility, int level, 2061 const struct dev_printk_info *dev_info, 2062 const char *fmt, va_list args) 2063 { 2064 int printed_len; 2065 bool in_sched = false; 2066 unsigned long flags; 2067 2068 /* Suppress unimportant messages after panic happens */ 2069 if (unlikely(suppress_printk)) 2070 return 0; 2071 2072 if (level == LOGLEVEL_SCHED) { 2073 level = LOGLEVEL_DEFAULT; 2074 in_sched = true; 2075 } 2076 2077 boot_delay_msec(level); 2078 printk_delay(); 2079 2080 printk_safe_enter_irqsave(flags); 2081 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2082 printk_safe_exit_irqrestore(flags); 2083 2084 /* If called from the scheduler, we can not call up(). */ 2085 if (!in_sched) { 2086 /* 2087 * Disable preemption to avoid being preempted while holding 2088 * console_sem which would prevent anyone from printing to 2089 * console 2090 */ 2091 preempt_disable(); 2092 /* 2093 * Try to acquire and then immediately release the console 2094 * semaphore. The release will print out buffers and wake up 2095 * /dev/kmsg and syslog() users. 2096 */ 2097 if (console_trylock_spinning()) 2098 console_unlock(); 2099 preempt_enable(); 2100 } 2101 2102 wake_up_klogd(); 2103 return printed_len; 2104 } 2105 EXPORT_SYMBOL(vprintk_emit); 2106 2107 asmlinkage int vprintk(const char *fmt, va_list args) 2108 { 2109 return vprintk_func(fmt, args); 2110 } 2111 EXPORT_SYMBOL(vprintk); 2112 2113 int vprintk_default(const char *fmt, va_list args) 2114 { 2115 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2116 } 2117 EXPORT_SYMBOL_GPL(vprintk_default); 2118 2119 /** 2120 * printk - print a kernel message 2121 * @fmt: format string 2122 * 2123 * This is printk(). It can be called from any context. We want it to work. 2124 * 2125 * We try to grab the console_lock. If we succeed, it's easy - we log the 2126 * output and call the console drivers. If we fail to get the semaphore, we 2127 * place the output into the log buffer and return. The current holder of 2128 * the console_sem will notice the new output in console_unlock(); and will 2129 * send it to the consoles before releasing the lock. 2130 * 2131 * One effect of this deferred printing is that code which calls printk() and 2132 * then changes console_loglevel may break. This is because console_loglevel 2133 * is inspected when the actual printing occurs. 2134 * 2135 * See also: 2136 * printf(3) 2137 * 2138 * See the vsnprintf() documentation for format string extensions over C99. 2139 */ 2140 asmlinkage __visible int printk(const char *fmt, ...) 2141 { 2142 va_list args; 2143 int r; 2144 2145 va_start(args, fmt); 2146 r = vprintk_func(fmt, args); 2147 va_end(args); 2148 2149 return r; 2150 } 2151 EXPORT_SYMBOL(printk); 2152 2153 #else /* CONFIG_PRINTK */ 2154 2155 #define LOG_LINE_MAX 0 2156 #define PREFIX_MAX 0 2157 #define printk_time false 2158 2159 #define prb_read_valid(rb, seq, r) false 2160 #define prb_first_valid_seq(rb) 0 2161 2162 static u64 syslog_seq; 2163 static u64 console_seq; 2164 static u64 exclusive_console_stop_seq; 2165 static unsigned long console_dropped; 2166 2167 static size_t record_print_text(const struct printk_record *r, 2168 bool syslog, bool time) 2169 { 2170 return 0; 2171 } 2172 static ssize_t info_print_ext_header(char *buf, size_t size, 2173 struct printk_info *info) 2174 { 2175 return 0; 2176 } 2177 static ssize_t msg_print_ext_body(char *buf, size_t size, 2178 char *text, size_t text_len, 2179 struct dev_printk_info *dev_info) { return 0; } 2180 static void console_lock_spinning_enable(void) { } 2181 static int console_lock_spinning_disable_and_check(void) { return 0; } 2182 static void call_console_drivers(const char *ext_text, size_t ext_len, 2183 const char *text, size_t len) {} 2184 static bool suppress_message_printing(int level) { return false; } 2185 2186 #endif /* CONFIG_PRINTK */ 2187 2188 #ifdef CONFIG_EARLY_PRINTK 2189 struct console *early_console; 2190 2191 asmlinkage __visible void early_printk(const char *fmt, ...) 2192 { 2193 va_list ap; 2194 char buf[512]; 2195 int n; 2196 2197 if (!early_console) 2198 return; 2199 2200 va_start(ap, fmt); 2201 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2202 va_end(ap); 2203 2204 early_console->write(early_console, buf, n); 2205 } 2206 #endif 2207 2208 static int __add_preferred_console(char *name, int idx, char *options, 2209 char *brl_options, bool user_specified) 2210 { 2211 struct console_cmdline *c; 2212 int i; 2213 2214 /* 2215 * See if this tty is not yet registered, and 2216 * if we have a slot free. 2217 */ 2218 for (i = 0, c = console_cmdline; 2219 i < MAX_CMDLINECONSOLES && c->name[0]; 2220 i++, c++) { 2221 if (strcmp(c->name, name) == 0 && c->index == idx) { 2222 if (!brl_options) 2223 preferred_console = i; 2224 if (user_specified) 2225 c->user_specified = true; 2226 return 0; 2227 } 2228 } 2229 if (i == MAX_CMDLINECONSOLES) 2230 return -E2BIG; 2231 if (!brl_options) 2232 preferred_console = i; 2233 strlcpy(c->name, name, sizeof(c->name)); 2234 c->options = options; 2235 c->user_specified = user_specified; 2236 braille_set_options(c, brl_options); 2237 2238 c->index = idx; 2239 return 0; 2240 } 2241 2242 static int __init console_msg_format_setup(char *str) 2243 { 2244 if (!strcmp(str, "syslog")) 2245 console_msg_format = MSG_FORMAT_SYSLOG; 2246 if (!strcmp(str, "default")) 2247 console_msg_format = MSG_FORMAT_DEFAULT; 2248 return 1; 2249 } 2250 __setup("console_msg_format=", console_msg_format_setup); 2251 2252 /* 2253 * Set up a console. Called via do_early_param() in init/main.c 2254 * for each "console=" parameter in the boot command line. 2255 */ 2256 static int __init console_setup(char *str) 2257 { 2258 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2259 char *s, *options, *brl_options = NULL; 2260 int idx; 2261 2262 /* 2263 * console="" or console=null have been suggested as a way to 2264 * disable console output. Use ttynull that has been created 2265 * for exacly this purpose. 2266 */ 2267 if (str[0] == 0 || strcmp(str, "null") == 0) { 2268 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2269 return 1; 2270 } 2271 2272 if (_braille_console_setup(&str, &brl_options)) 2273 return 1; 2274 2275 /* 2276 * Decode str into name, index, options. 2277 */ 2278 if (str[0] >= '0' && str[0] <= '9') { 2279 strcpy(buf, "ttyS"); 2280 strncpy(buf + 4, str, sizeof(buf) - 5); 2281 } else { 2282 strncpy(buf, str, sizeof(buf) - 1); 2283 } 2284 buf[sizeof(buf) - 1] = 0; 2285 options = strchr(str, ','); 2286 if (options) 2287 *(options++) = 0; 2288 #ifdef __sparc__ 2289 if (!strcmp(str, "ttya")) 2290 strcpy(buf, "ttyS0"); 2291 if (!strcmp(str, "ttyb")) 2292 strcpy(buf, "ttyS1"); 2293 #endif 2294 for (s = buf; *s; s++) 2295 if (isdigit(*s) || *s == ',') 2296 break; 2297 idx = simple_strtoul(s, NULL, 10); 2298 *s = 0; 2299 2300 __add_preferred_console(buf, idx, options, brl_options, true); 2301 console_set_on_cmdline = 1; 2302 return 1; 2303 } 2304 __setup("console=", console_setup); 2305 2306 /** 2307 * add_preferred_console - add a device to the list of preferred consoles. 2308 * @name: device name 2309 * @idx: device index 2310 * @options: options for this console 2311 * 2312 * The last preferred console added will be used for kernel messages 2313 * and stdin/out/err for init. Normally this is used by console_setup 2314 * above to handle user-supplied console arguments; however it can also 2315 * be used by arch-specific code either to override the user or more 2316 * commonly to provide a default console (ie from PROM variables) when 2317 * the user has not supplied one. 2318 */ 2319 int add_preferred_console(char *name, int idx, char *options) 2320 { 2321 return __add_preferred_console(name, idx, options, NULL, false); 2322 } 2323 2324 bool console_suspend_enabled = true; 2325 EXPORT_SYMBOL(console_suspend_enabled); 2326 2327 static int __init console_suspend_disable(char *str) 2328 { 2329 console_suspend_enabled = false; 2330 return 1; 2331 } 2332 __setup("no_console_suspend", console_suspend_disable); 2333 module_param_named(console_suspend, console_suspend_enabled, 2334 bool, S_IRUGO | S_IWUSR); 2335 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2336 " and hibernate operations"); 2337 2338 /** 2339 * suspend_console - suspend the console subsystem 2340 * 2341 * This disables printk() while we go into suspend states 2342 */ 2343 void suspend_console(void) 2344 { 2345 if (!console_suspend_enabled) 2346 return; 2347 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2348 console_lock(); 2349 console_suspended = 1; 2350 up_console_sem(); 2351 } 2352 2353 void resume_console(void) 2354 { 2355 if (!console_suspend_enabled) 2356 return; 2357 down_console_sem(); 2358 console_suspended = 0; 2359 console_unlock(); 2360 } 2361 2362 /** 2363 * console_cpu_notify - print deferred console messages after CPU hotplug 2364 * @cpu: unused 2365 * 2366 * If printk() is called from a CPU that is not online yet, the messages 2367 * will be printed on the console only if there are CON_ANYTIME consoles. 2368 * This function is called when a new CPU comes online (or fails to come 2369 * up) or goes offline. 2370 */ 2371 static int console_cpu_notify(unsigned int cpu) 2372 { 2373 if (!cpuhp_tasks_frozen) { 2374 /* If trylock fails, someone else is doing the printing */ 2375 if (console_trylock()) 2376 console_unlock(); 2377 } 2378 return 0; 2379 } 2380 2381 /** 2382 * console_lock - lock the console system for exclusive use. 2383 * 2384 * Acquires a lock which guarantees that the caller has 2385 * exclusive access to the console system and the console_drivers list. 2386 * 2387 * Can sleep, returns nothing. 2388 */ 2389 void console_lock(void) 2390 { 2391 might_sleep(); 2392 2393 down_console_sem(); 2394 if (console_suspended) 2395 return; 2396 console_locked = 1; 2397 console_may_schedule = 1; 2398 } 2399 EXPORT_SYMBOL(console_lock); 2400 2401 /** 2402 * console_trylock - try to lock the console system for exclusive use. 2403 * 2404 * Try to acquire a lock which guarantees that the caller has exclusive 2405 * access to the console system and the console_drivers list. 2406 * 2407 * returns 1 on success, and 0 on failure to acquire the lock. 2408 */ 2409 int console_trylock(void) 2410 { 2411 if (down_trylock_console_sem()) 2412 return 0; 2413 if (console_suspended) { 2414 up_console_sem(); 2415 return 0; 2416 } 2417 console_locked = 1; 2418 console_may_schedule = 0; 2419 return 1; 2420 } 2421 EXPORT_SYMBOL(console_trylock); 2422 2423 int is_console_locked(void) 2424 { 2425 return console_locked; 2426 } 2427 EXPORT_SYMBOL(is_console_locked); 2428 2429 /* 2430 * Check if we have any console that is capable of printing while cpu is 2431 * booting or shutting down. Requires console_sem. 2432 */ 2433 static int have_callable_console(void) 2434 { 2435 struct console *con; 2436 2437 for_each_console(con) 2438 if ((con->flags & CON_ENABLED) && 2439 (con->flags & CON_ANYTIME)) 2440 return 1; 2441 2442 return 0; 2443 } 2444 2445 /* 2446 * Can we actually use the console at this time on this cpu? 2447 * 2448 * Console drivers may assume that per-cpu resources have been allocated. So 2449 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2450 * call them until this CPU is officially up. 2451 */ 2452 static inline int can_use_console(void) 2453 { 2454 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2455 } 2456 2457 /** 2458 * console_unlock - unlock the console system 2459 * 2460 * Releases the console_lock which the caller holds on the console system 2461 * and the console driver list. 2462 * 2463 * While the console_lock was held, console output may have been buffered 2464 * by printk(). If this is the case, console_unlock(); emits 2465 * the output prior to releasing the lock. 2466 * 2467 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2468 * 2469 * console_unlock(); may be called from any context. 2470 */ 2471 void console_unlock(void) 2472 { 2473 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2474 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2475 unsigned long flags; 2476 bool do_cond_resched, retry; 2477 struct printk_info info; 2478 struct printk_record r; 2479 2480 if (console_suspended) { 2481 up_console_sem(); 2482 return; 2483 } 2484 2485 prb_rec_init_rd(&r, &info, text, sizeof(text)); 2486 2487 /* 2488 * Console drivers are called with interrupts disabled, so 2489 * @console_may_schedule should be cleared before; however, we may 2490 * end up dumping a lot of lines, for example, if called from 2491 * console registration path, and should invoke cond_resched() 2492 * between lines if allowable. Not doing so can cause a very long 2493 * scheduling stall on a slow console leading to RCU stall and 2494 * softlockup warnings which exacerbate the issue with more 2495 * messages practically incapacitating the system. 2496 * 2497 * console_trylock() is not able to detect the preemptive 2498 * context reliably. Therefore the value must be stored before 2499 * and cleared after the "again" goto label. 2500 */ 2501 do_cond_resched = console_may_schedule; 2502 again: 2503 console_may_schedule = 0; 2504 2505 /* 2506 * We released the console_sem lock, so we need to recheck if 2507 * cpu is online and (if not) is there at least one CON_ANYTIME 2508 * console. 2509 */ 2510 if (!can_use_console()) { 2511 console_locked = 0; 2512 up_console_sem(); 2513 return; 2514 } 2515 2516 for (;;) { 2517 size_t ext_len = 0; 2518 size_t len; 2519 2520 printk_safe_enter_irqsave(flags); 2521 raw_spin_lock(&logbuf_lock); 2522 skip: 2523 if (!prb_read_valid(prb, console_seq, &r)) 2524 break; 2525 2526 if (console_seq != r.info->seq) { 2527 console_dropped += r.info->seq - console_seq; 2528 console_seq = r.info->seq; 2529 } 2530 2531 if (suppress_message_printing(r.info->level)) { 2532 /* 2533 * Skip record we have buffered and already printed 2534 * directly to the console when we received it, and 2535 * record that has level above the console loglevel. 2536 */ 2537 console_seq++; 2538 goto skip; 2539 } 2540 2541 /* Output to all consoles once old messages replayed. */ 2542 if (unlikely(exclusive_console && 2543 console_seq >= exclusive_console_stop_seq)) { 2544 exclusive_console = NULL; 2545 } 2546 2547 /* 2548 * Handle extended console text first because later 2549 * record_print_text() will modify the record buffer in-place. 2550 */ 2551 if (nr_ext_console_drivers) { 2552 ext_len = info_print_ext_header(ext_text, 2553 sizeof(ext_text), 2554 r.info); 2555 ext_len += msg_print_ext_body(ext_text + ext_len, 2556 sizeof(ext_text) - ext_len, 2557 &r.text_buf[0], 2558 r.info->text_len, 2559 &r.info->dev_info); 2560 } 2561 len = record_print_text(&r, 2562 console_msg_format & MSG_FORMAT_SYSLOG, 2563 printk_time); 2564 console_seq++; 2565 raw_spin_unlock(&logbuf_lock); 2566 2567 /* 2568 * While actively printing out messages, if another printk() 2569 * were to occur on another CPU, it may wait for this one to 2570 * finish. This task can not be preempted if there is a 2571 * waiter waiting to take over. 2572 */ 2573 console_lock_spinning_enable(); 2574 2575 stop_critical_timings(); /* don't trace print latency */ 2576 call_console_drivers(ext_text, ext_len, text, len); 2577 start_critical_timings(); 2578 2579 if (console_lock_spinning_disable_and_check()) { 2580 printk_safe_exit_irqrestore(flags); 2581 return; 2582 } 2583 2584 printk_safe_exit_irqrestore(flags); 2585 2586 if (do_cond_resched) 2587 cond_resched(); 2588 } 2589 2590 console_locked = 0; 2591 2592 raw_spin_unlock(&logbuf_lock); 2593 2594 up_console_sem(); 2595 2596 /* 2597 * Someone could have filled up the buffer again, so re-check if there's 2598 * something to flush. In case we cannot trylock the console_sem again, 2599 * there's a new owner and the console_unlock() from them will do the 2600 * flush, no worries. 2601 */ 2602 raw_spin_lock(&logbuf_lock); 2603 retry = prb_read_valid(prb, console_seq, NULL); 2604 raw_spin_unlock(&logbuf_lock); 2605 printk_safe_exit_irqrestore(flags); 2606 2607 if (retry && console_trylock()) 2608 goto again; 2609 } 2610 EXPORT_SYMBOL(console_unlock); 2611 2612 /** 2613 * console_conditional_schedule - yield the CPU if required 2614 * 2615 * If the console code is currently allowed to sleep, and 2616 * if this CPU should yield the CPU to another task, do 2617 * so here. 2618 * 2619 * Must be called within console_lock();. 2620 */ 2621 void __sched console_conditional_schedule(void) 2622 { 2623 if (console_may_schedule) 2624 cond_resched(); 2625 } 2626 EXPORT_SYMBOL(console_conditional_schedule); 2627 2628 void console_unblank(void) 2629 { 2630 struct console *c; 2631 2632 /* 2633 * console_unblank can no longer be called in interrupt context unless 2634 * oops_in_progress is set to 1.. 2635 */ 2636 if (oops_in_progress) { 2637 if (down_trylock_console_sem() != 0) 2638 return; 2639 } else 2640 console_lock(); 2641 2642 console_locked = 1; 2643 console_may_schedule = 0; 2644 for_each_console(c) 2645 if ((c->flags & CON_ENABLED) && c->unblank) 2646 c->unblank(); 2647 console_unlock(); 2648 } 2649 2650 /** 2651 * console_flush_on_panic - flush console content on panic 2652 * @mode: flush all messages in buffer or just the pending ones 2653 * 2654 * Immediately output all pending messages no matter what. 2655 */ 2656 void console_flush_on_panic(enum con_flush_mode mode) 2657 { 2658 /* 2659 * If someone else is holding the console lock, trylock will fail 2660 * and may_schedule may be set. Ignore and proceed to unlock so 2661 * that messages are flushed out. As this can be called from any 2662 * context and we don't want to get preempted while flushing, 2663 * ensure may_schedule is cleared. 2664 */ 2665 console_trylock(); 2666 console_may_schedule = 0; 2667 2668 if (mode == CONSOLE_REPLAY_ALL) { 2669 unsigned long flags; 2670 2671 logbuf_lock_irqsave(flags); 2672 console_seq = prb_first_valid_seq(prb); 2673 logbuf_unlock_irqrestore(flags); 2674 } 2675 console_unlock(); 2676 } 2677 2678 /* 2679 * Return the console tty driver structure and its associated index 2680 */ 2681 struct tty_driver *console_device(int *index) 2682 { 2683 struct console *c; 2684 struct tty_driver *driver = NULL; 2685 2686 console_lock(); 2687 for_each_console(c) { 2688 if (!c->device) 2689 continue; 2690 driver = c->device(c, index); 2691 if (driver) 2692 break; 2693 } 2694 console_unlock(); 2695 return driver; 2696 } 2697 2698 /* 2699 * Prevent further output on the passed console device so that (for example) 2700 * serial drivers can disable console output before suspending a port, and can 2701 * re-enable output afterwards. 2702 */ 2703 void console_stop(struct console *console) 2704 { 2705 console_lock(); 2706 console->flags &= ~CON_ENABLED; 2707 console_unlock(); 2708 } 2709 EXPORT_SYMBOL(console_stop); 2710 2711 void console_start(struct console *console) 2712 { 2713 console_lock(); 2714 console->flags |= CON_ENABLED; 2715 console_unlock(); 2716 } 2717 EXPORT_SYMBOL(console_start); 2718 2719 static int __read_mostly keep_bootcon; 2720 2721 static int __init keep_bootcon_setup(char *str) 2722 { 2723 keep_bootcon = 1; 2724 pr_info("debug: skip boot console de-registration.\n"); 2725 2726 return 0; 2727 } 2728 2729 early_param("keep_bootcon", keep_bootcon_setup); 2730 2731 /* 2732 * This is called by register_console() to try to match 2733 * the newly registered console with any of the ones selected 2734 * by either the command line or add_preferred_console() and 2735 * setup/enable it. 2736 * 2737 * Care need to be taken with consoles that are statically 2738 * enabled such as netconsole 2739 */ 2740 static int try_enable_new_console(struct console *newcon, bool user_specified) 2741 { 2742 struct console_cmdline *c; 2743 int i, err; 2744 2745 for (i = 0, c = console_cmdline; 2746 i < MAX_CMDLINECONSOLES && c->name[0]; 2747 i++, c++) { 2748 if (c->user_specified != user_specified) 2749 continue; 2750 if (!newcon->match || 2751 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2752 /* default matching */ 2753 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2754 if (strcmp(c->name, newcon->name) != 0) 2755 continue; 2756 if (newcon->index >= 0 && 2757 newcon->index != c->index) 2758 continue; 2759 if (newcon->index < 0) 2760 newcon->index = c->index; 2761 2762 if (_braille_register_console(newcon, c)) 2763 return 0; 2764 2765 if (newcon->setup && 2766 (err = newcon->setup(newcon, c->options)) != 0) 2767 return err; 2768 } 2769 newcon->flags |= CON_ENABLED; 2770 if (i == preferred_console) { 2771 newcon->flags |= CON_CONSDEV; 2772 has_preferred_console = true; 2773 } 2774 return 0; 2775 } 2776 2777 /* 2778 * Some consoles, such as pstore and netconsole, can be enabled even 2779 * without matching. Accept the pre-enabled consoles only when match() 2780 * and setup() had a chance to be called. 2781 */ 2782 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2783 return 0; 2784 2785 return -ENOENT; 2786 } 2787 2788 /* 2789 * The console driver calls this routine during kernel initialization 2790 * to register the console printing procedure with printk() and to 2791 * print any messages that were printed by the kernel before the 2792 * console driver was initialized. 2793 * 2794 * This can happen pretty early during the boot process (because of 2795 * early_printk) - sometimes before setup_arch() completes - be careful 2796 * of what kernel features are used - they may not be initialised yet. 2797 * 2798 * There are two types of consoles - bootconsoles (early_printk) and 2799 * "real" consoles (everything which is not a bootconsole) which are 2800 * handled differently. 2801 * - Any number of bootconsoles can be registered at any time. 2802 * - As soon as a "real" console is registered, all bootconsoles 2803 * will be unregistered automatically. 2804 * - Once a "real" console is registered, any attempt to register a 2805 * bootconsoles will be rejected 2806 */ 2807 void register_console(struct console *newcon) 2808 { 2809 unsigned long flags; 2810 struct console *bcon = NULL; 2811 int err; 2812 2813 for_each_console(bcon) { 2814 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2815 bcon->name, bcon->index)) 2816 return; 2817 } 2818 2819 /* 2820 * before we register a new CON_BOOT console, make sure we don't 2821 * already have a valid console 2822 */ 2823 if (newcon->flags & CON_BOOT) { 2824 for_each_console(bcon) { 2825 if (!(bcon->flags & CON_BOOT)) { 2826 pr_info("Too late to register bootconsole %s%d\n", 2827 newcon->name, newcon->index); 2828 return; 2829 } 2830 } 2831 } 2832 2833 if (console_drivers && console_drivers->flags & CON_BOOT) 2834 bcon = console_drivers; 2835 2836 if (!has_preferred_console || bcon || !console_drivers) 2837 has_preferred_console = preferred_console >= 0; 2838 2839 /* 2840 * See if we want to use this console driver. If we 2841 * didn't select a console we take the first one 2842 * that registers here. 2843 */ 2844 if (!has_preferred_console) { 2845 if (newcon->index < 0) 2846 newcon->index = 0; 2847 if (newcon->setup == NULL || 2848 newcon->setup(newcon, NULL) == 0) { 2849 newcon->flags |= CON_ENABLED; 2850 if (newcon->device) { 2851 newcon->flags |= CON_CONSDEV; 2852 has_preferred_console = true; 2853 } 2854 } 2855 } 2856 2857 /* See if this console matches one we selected on the command line */ 2858 err = try_enable_new_console(newcon, true); 2859 2860 /* If not, try to match against the platform default(s) */ 2861 if (err == -ENOENT) 2862 err = try_enable_new_console(newcon, false); 2863 2864 /* printk() messages are not printed to the Braille console. */ 2865 if (err || newcon->flags & CON_BRL) 2866 return; 2867 2868 /* 2869 * If we have a bootconsole, and are switching to a real console, 2870 * don't print everything out again, since when the boot console, and 2871 * the real console are the same physical device, it's annoying to 2872 * see the beginning boot messages twice 2873 */ 2874 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2875 newcon->flags &= ~CON_PRINTBUFFER; 2876 2877 /* 2878 * Put this console in the list - keep the 2879 * preferred driver at the head of the list. 2880 */ 2881 console_lock(); 2882 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2883 newcon->next = console_drivers; 2884 console_drivers = newcon; 2885 if (newcon->next) 2886 newcon->next->flags &= ~CON_CONSDEV; 2887 /* Ensure this flag is always set for the head of the list */ 2888 newcon->flags |= CON_CONSDEV; 2889 } else { 2890 newcon->next = console_drivers->next; 2891 console_drivers->next = newcon; 2892 } 2893 2894 if (newcon->flags & CON_EXTENDED) 2895 nr_ext_console_drivers++; 2896 2897 if (newcon->flags & CON_PRINTBUFFER) { 2898 /* 2899 * console_unlock(); will print out the buffered messages 2900 * for us. 2901 */ 2902 logbuf_lock_irqsave(flags); 2903 /* 2904 * We're about to replay the log buffer. Only do this to the 2905 * just-registered console to avoid excessive message spam to 2906 * the already-registered consoles. 2907 * 2908 * Set exclusive_console with disabled interrupts to reduce 2909 * race window with eventual console_flush_on_panic() that 2910 * ignores console_lock. 2911 */ 2912 exclusive_console = newcon; 2913 exclusive_console_stop_seq = console_seq; 2914 console_seq = syslog_seq; 2915 logbuf_unlock_irqrestore(flags); 2916 } 2917 console_unlock(); 2918 console_sysfs_notify(); 2919 2920 /* 2921 * By unregistering the bootconsoles after we enable the real console 2922 * we get the "console xxx enabled" message on all the consoles - 2923 * boot consoles, real consoles, etc - this is to ensure that end 2924 * users know there might be something in the kernel's log buffer that 2925 * went to the bootconsole (that they do not see on the real console) 2926 */ 2927 pr_info("%sconsole [%s%d] enabled\n", 2928 (newcon->flags & CON_BOOT) ? "boot" : "" , 2929 newcon->name, newcon->index); 2930 if (bcon && 2931 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2932 !keep_bootcon) { 2933 /* We need to iterate through all boot consoles, to make 2934 * sure we print everything out, before we unregister them. 2935 */ 2936 for_each_console(bcon) 2937 if (bcon->flags & CON_BOOT) 2938 unregister_console(bcon); 2939 } 2940 } 2941 EXPORT_SYMBOL(register_console); 2942 2943 int unregister_console(struct console *console) 2944 { 2945 struct console *con; 2946 int res; 2947 2948 pr_info("%sconsole [%s%d] disabled\n", 2949 (console->flags & CON_BOOT) ? "boot" : "" , 2950 console->name, console->index); 2951 2952 res = _braille_unregister_console(console); 2953 if (res < 0) 2954 return res; 2955 if (res > 0) 2956 return 0; 2957 2958 res = -ENODEV; 2959 console_lock(); 2960 if (console_drivers == console) { 2961 console_drivers=console->next; 2962 res = 0; 2963 } else { 2964 for_each_console(con) { 2965 if (con->next == console) { 2966 con->next = console->next; 2967 res = 0; 2968 break; 2969 } 2970 } 2971 } 2972 2973 if (res) 2974 goto out_disable_unlock; 2975 2976 if (console->flags & CON_EXTENDED) 2977 nr_ext_console_drivers--; 2978 2979 /* 2980 * If this isn't the last console and it has CON_CONSDEV set, we 2981 * need to set it on the next preferred console. 2982 */ 2983 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2984 console_drivers->flags |= CON_CONSDEV; 2985 2986 console->flags &= ~CON_ENABLED; 2987 console_unlock(); 2988 console_sysfs_notify(); 2989 2990 if (console->exit) 2991 res = console->exit(console); 2992 2993 return res; 2994 2995 out_disable_unlock: 2996 console->flags &= ~CON_ENABLED; 2997 console_unlock(); 2998 2999 return res; 3000 } 3001 EXPORT_SYMBOL(unregister_console); 3002 3003 /* 3004 * Initialize the console device. This is called *early*, so 3005 * we can't necessarily depend on lots of kernel help here. 3006 * Just do some early initializations, and do the complex setup 3007 * later. 3008 */ 3009 void __init console_init(void) 3010 { 3011 int ret; 3012 initcall_t call; 3013 initcall_entry_t *ce; 3014 3015 /* Setup the default TTY line discipline. */ 3016 n_tty_init(); 3017 3018 /* 3019 * set up the console device so that later boot sequences can 3020 * inform about problems etc.. 3021 */ 3022 ce = __con_initcall_start; 3023 trace_initcall_level("console"); 3024 while (ce < __con_initcall_end) { 3025 call = initcall_from_entry(ce); 3026 trace_initcall_start(call); 3027 ret = call(); 3028 trace_initcall_finish(call, ret); 3029 ce++; 3030 } 3031 } 3032 3033 /* 3034 * Some boot consoles access data that is in the init section and which will 3035 * be discarded after the initcalls have been run. To make sure that no code 3036 * will access this data, unregister the boot consoles in a late initcall. 3037 * 3038 * If for some reason, such as deferred probe or the driver being a loadable 3039 * module, the real console hasn't registered yet at this point, there will 3040 * be a brief interval in which no messages are logged to the console, which 3041 * makes it difficult to diagnose problems that occur during this time. 3042 * 3043 * To mitigate this problem somewhat, only unregister consoles whose memory 3044 * intersects with the init section. Note that all other boot consoles will 3045 * get unregistred when the real preferred console is registered. 3046 */ 3047 static int __init printk_late_init(void) 3048 { 3049 struct console *con; 3050 int ret; 3051 3052 for_each_console(con) { 3053 if (!(con->flags & CON_BOOT)) 3054 continue; 3055 3056 /* Check addresses that might be used for enabled consoles. */ 3057 if (init_section_intersects(con, sizeof(*con)) || 3058 init_section_contains(con->write, 0) || 3059 init_section_contains(con->read, 0) || 3060 init_section_contains(con->device, 0) || 3061 init_section_contains(con->unblank, 0) || 3062 init_section_contains(con->data, 0)) { 3063 /* 3064 * Please, consider moving the reported consoles out 3065 * of the init section. 3066 */ 3067 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3068 con->name, con->index); 3069 unregister_console(con); 3070 } 3071 } 3072 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3073 console_cpu_notify); 3074 WARN_ON(ret < 0); 3075 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3076 console_cpu_notify, NULL); 3077 WARN_ON(ret < 0); 3078 return 0; 3079 } 3080 late_initcall(printk_late_init); 3081 3082 #if defined CONFIG_PRINTK 3083 /* 3084 * Delayed printk version, for scheduler-internal messages: 3085 */ 3086 #define PRINTK_PENDING_WAKEUP 0x01 3087 #define PRINTK_PENDING_OUTPUT 0x02 3088 3089 static DEFINE_PER_CPU(int, printk_pending); 3090 3091 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3092 { 3093 int pending = __this_cpu_xchg(printk_pending, 0); 3094 3095 if (pending & PRINTK_PENDING_OUTPUT) { 3096 /* If trylock fails, someone else is doing the printing */ 3097 if (console_trylock()) 3098 console_unlock(); 3099 } 3100 3101 if (pending & PRINTK_PENDING_WAKEUP) 3102 wake_up_interruptible(&log_wait); 3103 } 3104 3105 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3106 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3107 3108 void wake_up_klogd(void) 3109 { 3110 if (!printk_percpu_data_ready()) 3111 return; 3112 3113 preempt_disable(); 3114 if (waitqueue_active(&log_wait)) { 3115 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3116 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3117 } 3118 preempt_enable(); 3119 } 3120 3121 void defer_console_output(void) 3122 { 3123 if (!printk_percpu_data_ready()) 3124 return; 3125 3126 preempt_disable(); 3127 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3128 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3129 preempt_enable(); 3130 } 3131 3132 int vprintk_deferred(const char *fmt, va_list args) 3133 { 3134 int r; 3135 3136 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3137 defer_console_output(); 3138 3139 return r; 3140 } 3141 3142 int printk_deferred(const char *fmt, ...) 3143 { 3144 va_list args; 3145 int r; 3146 3147 va_start(args, fmt); 3148 r = vprintk_deferred(fmt, args); 3149 va_end(args); 3150 3151 return r; 3152 } 3153 3154 /* 3155 * printk rate limiting, lifted from the networking subsystem. 3156 * 3157 * This enforces a rate limit: not more than 10 kernel messages 3158 * every 5s to make a denial-of-service attack impossible. 3159 */ 3160 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3161 3162 int __printk_ratelimit(const char *func) 3163 { 3164 return ___ratelimit(&printk_ratelimit_state, func); 3165 } 3166 EXPORT_SYMBOL(__printk_ratelimit); 3167 3168 /** 3169 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3170 * @caller_jiffies: pointer to caller's state 3171 * @interval_msecs: minimum interval between prints 3172 * 3173 * printk_timed_ratelimit() returns true if more than @interval_msecs 3174 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3175 * returned true. 3176 */ 3177 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3178 unsigned int interval_msecs) 3179 { 3180 unsigned long elapsed = jiffies - *caller_jiffies; 3181 3182 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3183 return false; 3184 3185 *caller_jiffies = jiffies; 3186 return true; 3187 } 3188 EXPORT_SYMBOL(printk_timed_ratelimit); 3189 3190 static DEFINE_SPINLOCK(dump_list_lock); 3191 static LIST_HEAD(dump_list); 3192 3193 /** 3194 * kmsg_dump_register - register a kernel log dumper. 3195 * @dumper: pointer to the kmsg_dumper structure 3196 * 3197 * Adds a kernel log dumper to the system. The dump callback in the 3198 * structure will be called when the kernel oopses or panics and must be 3199 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3200 */ 3201 int kmsg_dump_register(struct kmsg_dumper *dumper) 3202 { 3203 unsigned long flags; 3204 int err = -EBUSY; 3205 3206 /* The dump callback needs to be set */ 3207 if (!dumper->dump) 3208 return -EINVAL; 3209 3210 spin_lock_irqsave(&dump_list_lock, flags); 3211 /* Don't allow registering multiple times */ 3212 if (!dumper->registered) { 3213 dumper->registered = 1; 3214 list_add_tail_rcu(&dumper->list, &dump_list); 3215 err = 0; 3216 } 3217 spin_unlock_irqrestore(&dump_list_lock, flags); 3218 3219 return err; 3220 } 3221 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3222 3223 /** 3224 * kmsg_dump_unregister - unregister a kmsg dumper. 3225 * @dumper: pointer to the kmsg_dumper structure 3226 * 3227 * Removes a dump device from the system. Returns zero on success and 3228 * %-EINVAL otherwise. 3229 */ 3230 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3231 { 3232 unsigned long flags; 3233 int err = -EINVAL; 3234 3235 spin_lock_irqsave(&dump_list_lock, flags); 3236 if (dumper->registered) { 3237 dumper->registered = 0; 3238 list_del_rcu(&dumper->list); 3239 err = 0; 3240 } 3241 spin_unlock_irqrestore(&dump_list_lock, flags); 3242 synchronize_rcu(); 3243 3244 return err; 3245 } 3246 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3247 3248 static bool always_kmsg_dump; 3249 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3250 3251 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3252 { 3253 switch (reason) { 3254 case KMSG_DUMP_PANIC: 3255 return "Panic"; 3256 case KMSG_DUMP_OOPS: 3257 return "Oops"; 3258 case KMSG_DUMP_EMERG: 3259 return "Emergency"; 3260 case KMSG_DUMP_SHUTDOWN: 3261 return "Shutdown"; 3262 default: 3263 return "Unknown"; 3264 } 3265 } 3266 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3267 3268 /** 3269 * kmsg_dump - dump kernel log to kernel message dumpers. 3270 * @reason: the reason (oops, panic etc) for dumping 3271 * 3272 * Call each of the registered dumper's dump() callback, which can 3273 * retrieve the kmsg records with kmsg_dump_get_line() or 3274 * kmsg_dump_get_buffer(). 3275 */ 3276 void kmsg_dump(enum kmsg_dump_reason reason) 3277 { 3278 struct kmsg_dumper *dumper; 3279 unsigned long flags; 3280 3281 rcu_read_lock(); 3282 list_for_each_entry_rcu(dumper, &dump_list, list) { 3283 enum kmsg_dump_reason max_reason = dumper->max_reason; 3284 3285 /* 3286 * If client has not provided a specific max_reason, default 3287 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3288 */ 3289 if (max_reason == KMSG_DUMP_UNDEF) { 3290 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3291 KMSG_DUMP_OOPS; 3292 } 3293 if (reason > max_reason) 3294 continue; 3295 3296 /* initialize iterator with data about the stored records */ 3297 dumper->active = true; 3298 3299 logbuf_lock_irqsave(flags); 3300 dumper->cur_seq = clear_seq; 3301 dumper->next_seq = prb_next_seq(prb); 3302 logbuf_unlock_irqrestore(flags); 3303 3304 /* invoke dumper which will iterate over records */ 3305 dumper->dump(dumper, reason); 3306 3307 /* reset iterator */ 3308 dumper->active = false; 3309 } 3310 rcu_read_unlock(); 3311 } 3312 3313 /** 3314 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3315 * @dumper: registered kmsg dumper 3316 * @syslog: include the "<4>" prefixes 3317 * @line: buffer to copy the line to 3318 * @size: maximum size of the buffer 3319 * @len: length of line placed into buffer 3320 * 3321 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3322 * record, and copy one record into the provided buffer. 3323 * 3324 * Consecutive calls will return the next available record moving 3325 * towards the end of the buffer with the youngest messages. 3326 * 3327 * A return value of FALSE indicates that there are no more records to 3328 * read. 3329 * 3330 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3331 */ 3332 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3333 char *line, size_t size, size_t *len) 3334 { 3335 struct printk_info info; 3336 unsigned int line_count; 3337 struct printk_record r; 3338 size_t l = 0; 3339 bool ret = false; 3340 3341 prb_rec_init_rd(&r, &info, line, size); 3342 3343 if (!dumper->active) 3344 goto out; 3345 3346 /* Read text or count text lines? */ 3347 if (line) { 3348 if (!prb_read_valid(prb, dumper->cur_seq, &r)) 3349 goto out; 3350 l = record_print_text(&r, syslog, printk_time); 3351 } else { 3352 if (!prb_read_valid_info(prb, dumper->cur_seq, 3353 &info, &line_count)) { 3354 goto out; 3355 } 3356 l = get_record_print_text_size(&info, line_count, syslog, 3357 printk_time); 3358 3359 } 3360 3361 dumper->cur_seq = r.info->seq + 1; 3362 ret = true; 3363 out: 3364 if (len) 3365 *len = l; 3366 return ret; 3367 } 3368 3369 /** 3370 * kmsg_dump_get_line - retrieve one kmsg log line 3371 * @dumper: registered kmsg dumper 3372 * @syslog: include the "<4>" prefixes 3373 * @line: buffer to copy the line to 3374 * @size: maximum size of the buffer 3375 * @len: length of line placed into buffer 3376 * 3377 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3378 * record, and copy one record into the provided buffer. 3379 * 3380 * Consecutive calls will return the next available record moving 3381 * towards the end of the buffer with the youngest messages. 3382 * 3383 * A return value of FALSE indicates that there are no more records to 3384 * read. 3385 */ 3386 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3387 char *line, size_t size, size_t *len) 3388 { 3389 unsigned long flags; 3390 bool ret; 3391 3392 logbuf_lock_irqsave(flags); 3393 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3394 logbuf_unlock_irqrestore(flags); 3395 3396 return ret; 3397 } 3398 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3399 3400 /** 3401 * kmsg_dump_get_buffer - copy kmsg log lines 3402 * @dumper: registered kmsg dumper 3403 * @syslog: include the "<4>" prefixes 3404 * @buf: buffer to copy the line to 3405 * @size: maximum size of the buffer 3406 * @len: length of line placed into buffer 3407 * 3408 * Start at the end of the kmsg buffer and fill the provided buffer 3409 * with as many of the *youngest* kmsg records that fit into it. 3410 * If the buffer is large enough, all available kmsg records will be 3411 * copied with a single call. 3412 * 3413 * Consecutive calls will fill the buffer with the next block of 3414 * available older records, not including the earlier retrieved ones. 3415 * 3416 * A return value of FALSE indicates that there are no more records to 3417 * read. 3418 */ 3419 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3420 char *buf, size_t size, size_t *len) 3421 { 3422 struct printk_info info; 3423 unsigned int line_count; 3424 struct printk_record r; 3425 unsigned long flags; 3426 u64 seq; 3427 u64 next_seq; 3428 size_t l = 0; 3429 bool ret = false; 3430 bool time = printk_time; 3431 3432 prb_rec_init_rd(&r, &info, buf, size); 3433 3434 if (!dumper->active || !buf || !size) 3435 goto out; 3436 3437 logbuf_lock_irqsave(flags); 3438 if (prb_read_valid_info(prb, dumper->cur_seq, &info, NULL)) { 3439 if (info.seq != dumper->cur_seq) { 3440 /* messages are gone, move to first available one */ 3441 dumper->cur_seq = info.seq; 3442 } 3443 } 3444 3445 /* last entry */ 3446 if (dumper->cur_seq >= dumper->next_seq) { 3447 logbuf_unlock_irqrestore(flags); 3448 goto out; 3449 } 3450 3451 /* calculate length of entire buffer */ 3452 seq = dumper->cur_seq; 3453 while (prb_read_valid_info(prb, seq, &info, &line_count)) { 3454 if (r.info->seq >= dumper->next_seq) 3455 break; 3456 l += get_record_print_text_size(&info, line_count, syslog, time); 3457 seq = r.info->seq + 1; 3458 } 3459 3460 /* move first record forward until length fits into the buffer */ 3461 seq = dumper->cur_seq; 3462 while (l >= size && prb_read_valid_info(prb, seq, 3463 &info, &line_count)) { 3464 if (r.info->seq >= dumper->next_seq) 3465 break; 3466 l -= get_record_print_text_size(&info, line_count, syslog, time); 3467 seq = r.info->seq + 1; 3468 } 3469 3470 /* last message in next interation */ 3471 next_seq = seq; 3472 3473 /* actually read text into the buffer now */ 3474 l = 0; 3475 while (prb_read_valid(prb, seq, &r)) { 3476 if (r.info->seq >= dumper->next_seq) 3477 break; 3478 3479 l += record_print_text(&r, syslog, time); 3480 3481 /* adjust record to store to remaining buffer space */ 3482 prb_rec_init_rd(&r, &info, buf + l, size - l); 3483 3484 seq = r.info->seq + 1; 3485 } 3486 3487 dumper->next_seq = next_seq; 3488 ret = true; 3489 logbuf_unlock_irqrestore(flags); 3490 out: 3491 if (len) 3492 *len = l; 3493 return ret; 3494 } 3495 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3496 3497 /** 3498 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) 3499 * @dumper: registered kmsg dumper 3500 * 3501 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3502 * kmsg_dump_get_buffer() can be called again and used multiple 3503 * times within the same dumper.dump() callback. 3504 * 3505 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3506 */ 3507 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3508 { 3509 dumper->cur_seq = clear_seq; 3510 dumper->next_seq = prb_next_seq(prb); 3511 } 3512 3513 /** 3514 * kmsg_dump_rewind - reset the iterator 3515 * @dumper: registered kmsg dumper 3516 * 3517 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3518 * kmsg_dump_get_buffer() can be called again and used multiple 3519 * times within the same dumper.dump() callback. 3520 */ 3521 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3522 { 3523 unsigned long flags; 3524 3525 logbuf_lock_irqsave(flags); 3526 kmsg_dump_rewind_nolock(dumper); 3527 logbuf_unlock_irqrestore(flags); 3528 } 3529 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3530 3531 #endif 3532