1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 49 #include <asm/uaccess.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/printk.h> 53 54 #include "console_cmdline.h" 55 #include "braille.h" 56 57 /* printk's without a loglevel use this.. */ 58 #define DEFAULT_MESSAGE_LOGLEVEL CONFIG_DEFAULT_MESSAGE_LOGLEVEL 59 60 /* We show everything that is MORE important than this.. */ 61 #define MINIMUM_CONSOLE_LOGLEVEL 1 /* Minimum loglevel we let people use */ 62 #define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */ 63 64 int console_printk[4] = { 65 DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */ 66 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */ 67 MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */ 68 DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */ 69 }; 70 71 /* 72 * Low level drivers may need that to know if they can schedule in 73 * their unblank() callback or not. So let's export it. 74 */ 75 int oops_in_progress; 76 EXPORT_SYMBOL(oops_in_progress); 77 78 /* 79 * console_sem protects the console_drivers list, and also 80 * provides serialisation for access to the entire console 81 * driver system. 82 */ 83 static DEFINE_SEMAPHORE(console_sem); 84 struct console *console_drivers; 85 EXPORT_SYMBOL_GPL(console_drivers); 86 87 #ifdef CONFIG_LOCKDEP 88 static struct lockdep_map console_lock_dep_map = { 89 .name = "console_lock" 90 }; 91 #endif 92 93 /* 94 * This is used for debugging the mess that is the VT code by 95 * keeping track if we have the console semaphore held. It's 96 * definitely not the perfect debug tool (we don't know if _WE_ 97 * hold it are racing, but it helps tracking those weird code 98 * path in the console code where we end up in places I want 99 * locked without the console sempahore held 100 */ 101 static int console_locked, console_suspended; 102 103 /* 104 * If exclusive_console is non-NULL then only this console is to be printed to. 105 */ 106 static struct console *exclusive_console; 107 108 /* 109 * Array of consoles built from command line options (console=) 110 */ 111 112 #define MAX_CMDLINECONSOLES 8 113 114 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 115 116 static int selected_console = -1; 117 static int preferred_console = -1; 118 int console_set_on_cmdline; 119 EXPORT_SYMBOL(console_set_on_cmdline); 120 121 /* Flag: console code may call schedule() */ 122 static int console_may_schedule; 123 124 /* 125 * The printk log buffer consists of a chain of concatenated variable 126 * length records. Every record starts with a record header, containing 127 * the overall length of the record. 128 * 129 * The heads to the first and last entry in the buffer, as well as the 130 * sequence numbers of these both entries are maintained when messages 131 * are stored.. 132 * 133 * If the heads indicate available messages, the length in the header 134 * tells the start next message. A length == 0 for the next message 135 * indicates a wrap-around to the beginning of the buffer. 136 * 137 * Every record carries the monotonic timestamp in microseconds, as well as 138 * the standard userspace syslog level and syslog facility. The usual 139 * kernel messages use LOG_KERN; userspace-injected messages always carry 140 * a matching syslog facility, by default LOG_USER. The origin of every 141 * message can be reliably determined that way. 142 * 143 * The human readable log message directly follows the message header. The 144 * length of the message text is stored in the header, the stored message 145 * is not terminated. 146 * 147 * Optionally, a message can carry a dictionary of properties (key/value pairs), 148 * to provide userspace with a machine-readable message context. 149 * 150 * Examples for well-defined, commonly used property names are: 151 * DEVICE=b12:8 device identifier 152 * b12:8 block dev_t 153 * c127:3 char dev_t 154 * n8 netdev ifindex 155 * +sound:card0 subsystem:devname 156 * SUBSYSTEM=pci driver-core subsystem name 157 * 158 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 159 * follows directly after a '=' character. Every property is terminated by 160 * a '\0' character. The last property is not terminated. 161 * 162 * Example of a message structure: 163 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 164 * 0008 34 00 record is 52 bytes long 165 * 000a 0b 00 text is 11 bytes long 166 * 000c 1f 00 dictionary is 23 bytes long 167 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 168 * 0010 69 74 27 73 20 61 20 6c "it's a l" 169 * 69 6e 65 "ine" 170 * 001b 44 45 56 49 43 "DEVIC" 171 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 172 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 173 * 67 "g" 174 * 0032 00 00 00 padding to next message header 175 * 176 * The 'struct printk_log' buffer header must never be directly exported to 177 * userspace, it is a kernel-private implementation detail that might 178 * need to be changed in the future, when the requirements change. 179 * 180 * /dev/kmsg exports the structured data in the following line format: 181 * "level,sequnum,timestamp;<message text>\n" 182 * 183 * The optional key/value pairs are attached as continuation lines starting 184 * with a space character and terminated by a newline. All possible 185 * non-prinatable characters are escaped in the "\xff" notation. 186 * 187 * Users of the export format should ignore possible additional values 188 * separated by ',', and find the message after the ';' character. 189 */ 190 191 enum log_flags { 192 LOG_NOCONS = 1, /* already flushed, do not print to console */ 193 LOG_NEWLINE = 2, /* text ended with a newline */ 194 LOG_PREFIX = 4, /* text started with a prefix */ 195 LOG_CONT = 8, /* text is a fragment of a continuation line */ 196 }; 197 198 struct printk_log { 199 u64 ts_nsec; /* timestamp in nanoseconds */ 200 u16 len; /* length of entire record */ 201 u16 text_len; /* length of text buffer */ 202 u16 dict_len; /* length of dictionary buffer */ 203 u8 facility; /* syslog facility */ 204 u8 flags:5; /* internal record flags */ 205 u8 level:3; /* syslog level */ 206 }; 207 208 /* 209 * The logbuf_lock protects kmsg buffer, indices, counters. It is also 210 * used in interesting ways to provide interlocking in console_unlock(); 211 */ 212 static DEFINE_RAW_SPINLOCK(logbuf_lock); 213 214 #ifdef CONFIG_PRINTK 215 DECLARE_WAIT_QUEUE_HEAD(log_wait); 216 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 217 static u64 syslog_seq; 218 static u32 syslog_idx; 219 static enum log_flags syslog_prev; 220 static size_t syslog_partial; 221 222 /* index and sequence number of the first record stored in the buffer */ 223 static u64 log_first_seq; 224 static u32 log_first_idx; 225 226 /* index and sequence number of the next record to store in the buffer */ 227 static u64 log_next_seq; 228 static u32 log_next_idx; 229 230 /* the next printk record to write to the console */ 231 static u64 console_seq; 232 static u32 console_idx; 233 static enum log_flags console_prev; 234 235 /* the next printk record to read after the last 'clear' command */ 236 static u64 clear_seq; 237 static u32 clear_idx; 238 239 #define PREFIX_MAX 32 240 #define LOG_LINE_MAX 1024 - PREFIX_MAX 241 242 /* record buffer */ 243 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 244 #define LOG_ALIGN 4 245 #else 246 #define LOG_ALIGN __alignof__(struct printk_log) 247 #endif 248 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 249 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 250 static char *log_buf = __log_buf; 251 static u32 log_buf_len = __LOG_BUF_LEN; 252 253 /* cpu currently holding logbuf_lock */ 254 static volatile unsigned int logbuf_cpu = UINT_MAX; 255 256 /* human readable text of the record */ 257 static char *log_text(const struct printk_log *msg) 258 { 259 return (char *)msg + sizeof(struct printk_log); 260 } 261 262 /* optional key/value pair dictionary attached to the record */ 263 static char *log_dict(const struct printk_log *msg) 264 { 265 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 266 } 267 268 /* get record by index; idx must point to valid msg */ 269 static struct printk_log *log_from_idx(u32 idx) 270 { 271 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 272 273 /* 274 * A length == 0 record is the end of buffer marker. Wrap around and 275 * read the message at the start of the buffer. 276 */ 277 if (!msg->len) 278 return (struct printk_log *)log_buf; 279 return msg; 280 } 281 282 /* get next record; idx must point to valid msg */ 283 static u32 log_next(u32 idx) 284 { 285 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 286 287 /* length == 0 indicates the end of the buffer; wrap */ 288 /* 289 * A length == 0 record is the end of buffer marker. Wrap around and 290 * read the message at the start of the buffer as *this* one, and 291 * return the one after that. 292 */ 293 if (!msg->len) { 294 msg = (struct printk_log *)log_buf; 295 return msg->len; 296 } 297 return idx + msg->len; 298 } 299 300 /* insert record into the buffer, discard old ones, update heads */ 301 static void log_store(int facility, int level, 302 enum log_flags flags, u64 ts_nsec, 303 const char *dict, u16 dict_len, 304 const char *text, u16 text_len) 305 { 306 struct printk_log *msg; 307 u32 size, pad_len; 308 309 /* number of '\0' padding bytes to next message */ 310 size = sizeof(struct printk_log) + text_len + dict_len; 311 pad_len = (-size) & (LOG_ALIGN - 1); 312 size += pad_len; 313 314 while (log_first_seq < log_next_seq) { 315 u32 free; 316 317 if (log_next_idx > log_first_idx) 318 free = max(log_buf_len - log_next_idx, log_first_idx); 319 else 320 free = log_first_idx - log_next_idx; 321 322 if (free > size + sizeof(struct printk_log)) 323 break; 324 325 /* drop old messages until we have enough contiuous space */ 326 log_first_idx = log_next(log_first_idx); 327 log_first_seq++; 328 } 329 330 if (log_next_idx + size + sizeof(struct printk_log) >= log_buf_len) { 331 /* 332 * This message + an additional empty header does not fit 333 * at the end of the buffer. Add an empty header with len == 0 334 * to signify a wrap around. 335 */ 336 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 337 log_next_idx = 0; 338 } 339 340 /* fill message */ 341 msg = (struct printk_log *)(log_buf + log_next_idx); 342 memcpy(log_text(msg), text, text_len); 343 msg->text_len = text_len; 344 memcpy(log_dict(msg), dict, dict_len); 345 msg->dict_len = dict_len; 346 msg->facility = facility; 347 msg->level = level & 7; 348 msg->flags = flags & 0x1f; 349 if (ts_nsec > 0) 350 msg->ts_nsec = ts_nsec; 351 else 352 msg->ts_nsec = local_clock(); 353 memset(log_dict(msg) + dict_len, 0, pad_len); 354 msg->len = sizeof(struct printk_log) + text_len + dict_len + pad_len; 355 356 /* insert message */ 357 log_next_idx += msg->len; 358 log_next_seq++; 359 } 360 361 #ifdef CONFIG_SECURITY_DMESG_RESTRICT 362 int dmesg_restrict = 1; 363 #else 364 int dmesg_restrict; 365 #endif 366 367 static int syslog_action_restricted(int type) 368 { 369 if (dmesg_restrict) 370 return 1; 371 /* 372 * Unless restricted, we allow "read all" and "get buffer size" 373 * for everybody. 374 */ 375 return type != SYSLOG_ACTION_READ_ALL && 376 type != SYSLOG_ACTION_SIZE_BUFFER; 377 } 378 379 static int check_syslog_permissions(int type, bool from_file) 380 { 381 /* 382 * If this is from /proc/kmsg and we've already opened it, then we've 383 * already done the capabilities checks at open time. 384 */ 385 if (from_file && type != SYSLOG_ACTION_OPEN) 386 return 0; 387 388 if (syslog_action_restricted(type)) { 389 if (capable(CAP_SYSLOG)) 390 return 0; 391 /* 392 * For historical reasons, accept CAP_SYS_ADMIN too, with 393 * a warning. 394 */ 395 if (capable(CAP_SYS_ADMIN)) { 396 pr_warn_once("%s (%d): Attempt to access syslog with " 397 "CAP_SYS_ADMIN but no CAP_SYSLOG " 398 "(deprecated).\n", 399 current->comm, task_pid_nr(current)); 400 return 0; 401 } 402 return -EPERM; 403 } 404 return security_syslog(type); 405 } 406 407 408 /* /dev/kmsg - userspace message inject/listen interface */ 409 struct devkmsg_user { 410 u64 seq; 411 u32 idx; 412 enum log_flags prev; 413 struct mutex lock; 414 char buf[8192]; 415 }; 416 417 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 418 unsigned long count, loff_t pos) 419 { 420 char *buf, *line; 421 int i; 422 int level = default_message_loglevel; 423 int facility = 1; /* LOG_USER */ 424 size_t len = iov_length(iv, count); 425 ssize_t ret = len; 426 427 if (len > LOG_LINE_MAX) 428 return -EINVAL; 429 buf = kmalloc(len+1, GFP_KERNEL); 430 if (buf == NULL) 431 return -ENOMEM; 432 433 line = buf; 434 for (i = 0; i < count; i++) { 435 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 436 ret = -EFAULT; 437 goto out; 438 } 439 line += iv[i].iov_len; 440 } 441 442 /* 443 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 444 * the decimal value represents 32bit, the lower 3 bit are the log 445 * level, the rest are the log facility. 446 * 447 * If no prefix or no userspace facility is specified, we 448 * enforce LOG_USER, to be able to reliably distinguish 449 * kernel-generated messages from userspace-injected ones. 450 */ 451 line = buf; 452 if (line[0] == '<') { 453 char *endp = NULL; 454 455 i = simple_strtoul(line+1, &endp, 10); 456 if (endp && endp[0] == '>') { 457 level = i & 7; 458 if (i >> 3) 459 facility = i >> 3; 460 endp++; 461 len -= endp - line; 462 line = endp; 463 } 464 } 465 line[len] = '\0'; 466 467 printk_emit(facility, level, NULL, 0, "%s", line); 468 out: 469 kfree(buf); 470 return ret; 471 } 472 473 static ssize_t devkmsg_read(struct file *file, char __user *buf, 474 size_t count, loff_t *ppos) 475 { 476 struct devkmsg_user *user = file->private_data; 477 struct printk_log *msg; 478 u64 ts_usec; 479 size_t i; 480 char cont = '-'; 481 size_t len; 482 ssize_t ret; 483 484 if (!user) 485 return -EBADF; 486 487 ret = mutex_lock_interruptible(&user->lock); 488 if (ret) 489 return ret; 490 raw_spin_lock_irq(&logbuf_lock); 491 while (user->seq == log_next_seq) { 492 if (file->f_flags & O_NONBLOCK) { 493 ret = -EAGAIN; 494 raw_spin_unlock_irq(&logbuf_lock); 495 goto out; 496 } 497 498 raw_spin_unlock_irq(&logbuf_lock); 499 ret = wait_event_interruptible(log_wait, 500 user->seq != log_next_seq); 501 if (ret) 502 goto out; 503 raw_spin_lock_irq(&logbuf_lock); 504 } 505 506 if (user->seq < log_first_seq) { 507 /* our last seen message is gone, return error and reset */ 508 user->idx = log_first_idx; 509 user->seq = log_first_seq; 510 ret = -EPIPE; 511 raw_spin_unlock_irq(&logbuf_lock); 512 goto out; 513 } 514 515 msg = log_from_idx(user->idx); 516 ts_usec = msg->ts_nsec; 517 do_div(ts_usec, 1000); 518 519 /* 520 * If we couldn't merge continuation line fragments during the print, 521 * export the stored flags to allow an optional external merge of the 522 * records. Merging the records isn't always neccessarily correct, like 523 * when we hit a race during printing. In most cases though, it produces 524 * better readable output. 'c' in the record flags mark the first 525 * fragment of a line, '+' the following. 526 */ 527 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 528 cont = 'c'; 529 else if ((msg->flags & LOG_CONT) || 530 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 531 cont = '+'; 532 533 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 534 (msg->facility << 3) | msg->level, 535 user->seq, ts_usec, cont); 536 user->prev = msg->flags; 537 538 /* escape non-printable characters */ 539 for (i = 0; i < msg->text_len; i++) { 540 unsigned char c = log_text(msg)[i]; 541 542 if (c < ' ' || c >= 127 || c == '\\') 543 len += sprintf(user->buf + len, "\\x%02x", c); 544 else 545 user->buf[len++] = c; 546 } 547 user->buf[len++] = '\n'; 548 549 if (msg->dict_len) { 550 bool line = true; 551 552 for (i = 0; i < msg->dict_len; i++) { 553 unsigned char c = log_dict(msg)[i]; 554 555 if (line) { 556 user->buf[len++] = ' '; 557 line = false; 558 } 559 560 if (c == '\0') { 561 user->buf[len++] = '\n'; 562 line = true; 563 continue; 564 } 565 566 if (c < ' ' || c >= 127 || c == '\\') { 567 len += sprintf(user->buf + len, "\\x%02x", c); 568 continue; 569 } 570 571 user->buf[len++] = c; 572 } 573 user->buf[len++] = '\n'; 574 } 575 576 user->idx = log_next(user->idx); 577 user->seq++; 578 raw_spin_unlock_irq(&logbuf_lock); 579 580 if (len > count) { 581 ret = -EINVAL; 582 goto out; 583 } 584 585 if (copy_to_user(buf, user->buf, len)) { 586 ret = -EFAULT; 587 goto out; 588 } 589 ret = len; 590 out: 591 mutex_unlock(&user->lock); 592 return ret; 593 } 594 595 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 596 { 597 struct devkmsg_user *user = file->private_data; 598 loff_t ret = 0; 599 600 if (!user) 601 return -EBADF; 602 if (offset) 603 return -ESPIPE; 604 605 raw_spin_lock_irq(&logbuf_lock); 606 switch (whence) { 607 case SEEK_SET: 608 /* the first record */ 609 user->idx = log_first_idx; 610 user->seq = log_first_seq; 611 break; 612 case SEEK_DATA: 613 /* 614 * The first record after the last SYSLOG_ACTION_CLEAR, 615 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 616 * changes no global state, and does not clear anything. 617 */ 618 user->idx = clear_idx; 619 user->seq = clear_seq; 620 break; 621 case SEEK_END: 622 /* after the last record */ 623 user->idx = log_next_idx; 624 user->seq = log_next_seq; 625 break; 626 default: 627 ret = -EINVAL; 628 } 629 raw_spin_unlock_irq(&logbuf_lock); 630 return ret; 631 } 632 633 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 634 { 635 struct devkmsg_user *user = file->private_data; 636 int ret = 0; 637 638 if (!user) 639 return POLLERR|POLLNVAL; 640 641 poll_wait(file, &log_wait, wait); 642 643 raw_spin_lock_irq(&logbuf_lock); 644 if (user->seq < log_next_seq) { 645 /* return error when data has vanished underneath us */ 646 if (user->seq < log_first_seq) 647 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 648 else 649 ret = POLLIN|POLLRDNORM; 650 } 651 raw_spin_unlock_irq(&logbuf_lock); 652 653 return ret; 654 } 655 656 static int devkmsg_open(struct inode *inode, struct file *file) 657 { 658 struct devkmsg_user *user; 659 int err; 660 661 /* write-only does not need any file context */ 662 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 663 return 0; 664 665 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 666 SYSLOG_FROM_READER); 667 if (err) 668 return err; 669 670 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 671 if (!user) 672 return -ENOMEM; 673 674 mutex_init(&user->lock); 675 676 raw_spin_lock_irq(&logbuf_lock); 677 user->idx = log_first_idx; 678 user->seq = log_first_seq; 679 raw_spin_unlock_irq(&logbuf_lock); 680 681 file->private_data = user; 682 return 0; 683 } 684 685 static int devkmsg_release(struct inode *inode, struct file *file) 686 { 687 struct devkmsg_user *user = file->private_data; 688 689 if (!user) 690 return 0; 691 692 mutex_destroy(&user->lock); 693 kfree(user); 694 return 0; 695 } 696 697 const struct file_operations kmsg_fops = { 698 .open = devkmsg_open, 699 .read = devkmsg_read, 700 .aio_write = devkmsg_writev, 701 .llseek = devkmsg_llseek, 702 .poll = devkmsg_poll, 703 .release = devkmsg_release, 704 }; 705 706 #ifdef CONFIG_KEXEC 707 /* 708 * This appends the listed symbols to /proc/vmcoreinfo 709 * 710 * /proc/vmcoreinfo is used by various utiilties, like crash and makedumpfile to 711 * obtain access to symbols that are otherwise very difficult to locate. These 712 * symbols are specifically used so that utilities can access and extract the 713 * dmesg log from a vmcore file after a crash. 714 */ 715 void log_buf_kexec_setup(void) 716 { 717 VMCOREINFO_SYMBOL(log_buf); 718 VMCOREINFO_SYMBOL(log_buf_len); 719 VMCOREINFO_SYMBOL(log_first_idx); 720 VMCOREINFO_SYMBOL(log_next_idx); 721 /* 722 * Export struct printk_log size and field offsets. User space tools can 723 * parse it and detect any changes to structure down the line. 724 */ 725 VMCOREINFO_STRUCT_SIZE(printk_log); 726 VMCOREINFO_OFFSET(printk_log, ts_nsec); 727 VMCOREINFO_OFFSET(printk_log, len); 728 VMCOREINFO_OFFSET(printk_log, text_len); 729 VMCOREINFO_OFFSET(printk_log, dict_len); 730 } 731 #endif 732 733 /* requested log_buf_len from kernel cmdline */ 734 static unsigned long __initdata new_log_buf_len; 735 736 /* save requested log_buf_len since it's too early to process it */ 737 static int __init log_buf_len_setup(char *str) 738 { 739 unsigned size = memparse(str, &str); 740 741 if (size) 742 size = roundup_pow_of_two(size); 743 if (size > log_buf_len) 744 new_log_buf_len = size; 745 746 return 0; 747 } 748 early_param("log_buf_len", log_buf_len_setup); 749 750 void __init setup_log_buf(int early) 751 { 752 unsigned long flags; 753 char *new_log_buf; 754 int free; 755 756 if (!new_log_buf_len) 757 return; 758 759 if (early) { 760 unsigned long mem; 761 762 mem = memblock_alloc(new_log_buf_len, PAGE_SIZE); 763 if (!mem) 764 return; 765 new_log_buf = __va(mem); 766 } else { 767 new_log_buf = alloc_bootmem_nopanic(new_log_buf_len); 768 } 769 770 if (unlikely(!new_log_buf)) { 771 pr_err("log_buf_len: %ld bytes not available\n", 772 new_log_buf_len); 773 return; 774 } 775 776 raw_spin_lock_irqsave(&logbuf_lock, flags); 777 log_buf_len = new_log_buf_len; 778 log_buf = new_log_buf; 779 new_log_buf_len = 0; 780 free = __LOG_BUF_LEN - log_next_idx; 781 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 782 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 783 784 pr_info("log_buf_len: %d\n", log_buf_len); 785 pr_info("early log buf free: %d(%d%%)\n", 786 free, (free * 100) / __LOG_BUF_LEN); 787 } 788 789 static bool __read_mostly ignore_loglevel; 790 791 static int __init ignore_loglevel_setup(char *str) 792 { 793 ignore_loglevel = 1; 794 printk(KERN_INFO "debug: ignoring loglevel setting.\n"); 795 796 return 0; 797 } 798 799 early_param("ignore_loglevel", ignore_loglevel_setup); 800 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 801 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 802 "print all kernel messages to the console."); 803 804 #ifdef CONFIG_BOOT_PRINTK_DELAY 805 806 static int boot_delay; /* msecs delay after each printk during bootup */ 807 static unsigned long long loops_per_msec; /* based on boot_delay */ 808 809 static int __init boot_delay_setup(char *str) 810 { 811 unsigned long lpj; 812 813 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 814 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 815 816 get_option(&str, &boot_delay); 817 if (boot_delay > 10 * 1000) 818 boot_delay = 0; 819 820 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 821 "HZ: %d, loops_per_msec: %llu\n", 822 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 823 return 1; 824 } 825 __setup("boot_delay=", boot_delay_setup); 826 827 static void boot_delay_msec(int level) 828 { 829 unsigned long long k; 830 unsigned long timeout; 831 832 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 833 || (level >= console_loglevel && !ignore_loglevel)) { 834 return; 835 } 836 837 k = (unsigned long long)loops_per_msec * boot_delay; 838 839 timeout = jiffies + msecs_to_jiffies(boot_delay); 840 while (k) { 841 k--; 842 cpu_relax(); 843 /* 844 * use (volatile) jiffies to prevent 845 * compiler reduction; loop termination via jiffies 846 * is secondary and may or may not happen. 847 */ 848 if (time_after(jiffies, timeout)) 849 break; 850 touch_nmi_watchdog(); 851 } 852 } 853 #else 854 static inline void boot_delay_msec(int level) 855 { 856 } 857 #endif 858 859 #if defined(CONFIG_PRINTK_TIME) 860 static bool printk_time = 1; 861 #else 862 static bool printk_time; 863 #endif 864 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 865 866 static size_t print_time(u64 ts, char *buf) 867 { 868 unsigned long rem_nsec; 869 870 if (!printk_time) 871 return 0; 872 873 rem_nsec = do_div(ts, 1000000000); 874 875 if (!buf) 876 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 877 878 return sprintf(buf, "[%5lu.%06lu] ", 879 (unsigned long)ts, rem_nsec / 1000); 880 } 881 882 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 883 { 884 size_t len = 0; 885 unsigned int prefix = (msg->facility << 3) | msg->level; 886 887 if (syslog) { 888 if (buf) { 889 len += sprintf(buf, "<%u>", prefix); 890 } else { 891 len += 3; 892 if (prefix > 999) 893 len += 3; 894 else if (prefix > 99) 895 len += 2; 896 else if (prefix > 9) 897 len++; 898 } 899 } 900 901 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 902 return len; 903 } 904 905 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 906 bool syslog, char *buf, size_t size) 907 { 908 const char *text = log_text(msg); 909 size_t text_size = msg->text_len; 910 bool prefix = true; 911 bool newline = true; 912 size_t len = 0; 913 914 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 915 prefix = false; 916 917 if (msg->flags & LOG_CONT) { 918 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 919 prefix = false; 920 921 if (!(msg->flags & LOG_NEWLINE)) 922 newline = false; 923 } 924 925 do { 926 const char *next = memchr(text, '\n', text_size); 927 size_t text_len; 928 929 if (next) { 930 text_len = next - text; 931 next++; 932 text_size -= next - text; 933 } else { 934 text_len = text_size; 935 } 936 937 if (buf) { 938 if (print_prefix(msg, syslog, NULL) + 939 text_len + 1 >= size - len) 940 break; 941 942 if (prefix) 943 len += print_prefix(msg, syslog, buf + len); 944 memcpy(buf + len, text, text_len); 945 len += text_len; 946 if (next || newline) 947 buf[len++] = '\n'; 948 } else { 949 /* SYSLOG_ACTION_* buffer size only calculation */ 950 if (prefix) 951 len += print_prefix(msg, syslog, NULL); 952 len += text_len; 953 if (next || newline) 954 len++; 955 } 956 957 prefix = true; 958 text = next; 959 } while (text); 960 961 return len; 962 } 963 964 static int syslog_print(char __user *buf, int size) 965 { 966 char *text; 967 struct printk_log *msg; 968 int len = 0; 969 970 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 971 if (!text) 972 return -ENOMEM; 973 974 while (size > 0) { 975 size_t n; 976 size_t skip; 977 978 raw_spin_lock_irq(&logbuf_lock); 979 if (syslog_seq < log_first_seq) { 980 /* messages are gone, move to first one */ 981 syslog_seq = log_first_seq; 982 syslog_idx = log_first_idx; 983 syslog_prev = 0; 984 syslog_partial = 0; 985 } 986 if (syslog_seq == log_next_seq) { 987 raw_spin_unlock_irq(&logbuf_lock); 988 break; 989 } 990 991 skip = syslog_partial; 992 msg = log_from_idx(syslog_idx); 993 n = msg_print_text(msg, syslog_prev, true, text, 994 LOG_LINE_MAX + PREFIX_MAX); 995 if (n - syslog_partial <= size) { 996 /* message fits into buffer, move forward */ 997 syslog_idx = log_next(syslog_idx); 998 syslog_seq++; 999 syslog_prev = msg->flags; 1000 n -= syslog_partial; 1001 syslog_partial = 0; 1002 } else if (!len){ 1003 /* partial read(), remember position */ 1004 n = size; 1005 syslog_partial += n; 1006 } else 1007 n = 0; 1008 raw_spin_unlock_irq(&logbuf_lock); 1009 1010 if (!n) 1011 break; 1012 1013 if (copy_to_user(buf, text + skip, n)) { 1014 if (!len) 1015 len = -EFAULT; 1016 break; 1017 } 1018 1019 len += n; 1020 size -= n; 1021 buf += n; 1022 } 1023 1024 kfree(text); 1025 return len; 1026 } 1027 1028 static int syslog_print_all(char __user *buf, int size, bool clear) 1029 { 1030 char *text; 1031 int len = 0; 1032 1033 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1034 if (!text) 1035 return -ENOMEM; 1036 1037 raw_spin_lock_irq(&logbuf_lock); 1038 if (buf) { 1039 u64 next_seq; 1040 u64 seq; 1041 u32 idx; 1042 enum log_flags prev; 1043 1044 if (clear_seq < log_first_seq) { 1045 /* messages are gone, move to first available one */ 1046 clear_seq = log_first_seq; 1047 clear_idx = log_first_idx; 1048 } 1049 1050 /* 1051 * Find first record that fits, including all following records, 1052 * into the user-provided buffer for this dump. 1053 */ 1054 seq = clear_seq; 1055 idx = clear_idx; 1056 prev = 0; 1057 while (seq < log_next_seq) { 1058 struct printk_log *msg = log_from_idx(idx); 1059 1060 len += msg_print_text(msg, prev, true, NULL, 0); 1061 prev = msg->flags; 1062 idx = log_next(idx); 1063 seq++; 1064 } 1065 1066 /* move first record forward until length fits into the buffer */ 1067 seq = clear_seq; 1068 idx = clear_idx; 1069 prev = 0; 1070 while (len > size && seq < log_next_seq) { 1071 struct printk_log *msg = log_from_idx(idx); 1072 1073 len -= msg_print_text(msg, prev, true, NULL, 0); 1074 prev = msg->flags; 1075 idx = log_next(idx); 1076 seq++; 1077 } 1078 1079 /* last message fitting into this dump */ 1080 next_seq = log_next_seq; 1081 1082 len = 0; 1083 prev = 0; 1084 while (len >= 0 && seq < next_seq) { 1085 struct printk_log *msg = log_from_idx(idx); 1086 int textlen; 1087 1088 textlen = msg_print_text(msg, prev, true, text, 1089 LOG_LINE_MAX + PREFIX_MAX); 1090 if (textlen < 0) { 1091 len = textlen; 1092 break; 1093 } 1094 idx = log_next(idx); 1095 seq++; 1096 prev = msg->flags; 1097 1098 raw_spin_unlock_irq(&logbuf_lock); 1099 if (copy_to_user(buf + len, text, textlen)) 1100 len = -EFAULT; 1101 else 1102 len += textlen; 1103 raw_spin_lock_irq(&logbuf_lock); 1104 1105 if (seq < log_first_seq) { 1106 /* messages are gone, move to next one */ 1107 seq = log_first_seq; 1108 idx = log_first_idx; 1109 prev = 0; 1110 } 1111 } 1112 } 1113 1114 if (clear) { 1115 clear_seq = log_next_seq; 1116 clear_idx = log_next_idx; 1117 } 1118 raw_spin_unlock_irq(&logbuf_lock); 1119 1120 kfree(text); 1121 return len; 1122 } 1123 1124 int do_syslog(int type, char __user *buf, int len, bool from_file) 1125 { 1126 bool clear = false; 1127 static int saved_console_loglevel = -1; 1128 int error; 1129 1130 error = check_syslog_permissions(type, from_file); 1131 if (error) 1132 goto out; 1133 1134 error = security_syslog(type); 1135 if (error) 1136 return error; 1137 1138 switch (type) { 1139 case SYSLOG_ACTION_CLOSE: /* Close log */ 1140 break; 1141 case SYSLOG_ACTION_OPEN: /* Open log */ 1142 break; 1143 case SYSLOG_ACTION_READ: /* Read from log */ 1144 error = -EINVAL; 1145 if (!buf || len < 0) 1146 goto out; 1147 error = 0; 1148 if (!len) 1149 goto out; 1150 if (!access_ok(VERIFY_WRITE, buf, len)) { 1151 error = -EFAULT; 1152 goto out; 1153 } 1154 error = wait_event_interruptible(log_wait, 1155 syslog_seq != log_next_seq); 1156 if (error) 1157 goto out; 1158 error = syslog_print(buf, len); 1159 break; 1160 /* Read/clear last kernel messages */ 1161 case SYSLOG_ACTION_READ_CLEAR: 1162 clear = true; 1163 /* FALL THRU */ 1164 /* Read last kernel messages */ 1165 case SYSLOG_ACTION_READ_ALL: 1166 error = -EINVAL; 1167 if (!buf || len < 0) 1168 goto out; 1169 error = 0; 1170 if (!len) 1171 goto out; 1172 if (!access_ok(VERIFY_WRITE, buf, len)) { 1173 error = -EFAULT; 1174 goto out; 1175 } 1176 error = syslog_print_all(buf, len, clear); 1177 break; 1178 /* Clear ring buffer */ 1179 case SYSLOG_ACTION_CLEAR: 1180 syslog_print_all(NULL, 0, true); 1181 break; 1182 /* Disable logging to console */ 1183 case SYSLOG_ACTION_CONSOLE_OFF: 1184 if (saved_console_loglevel == -1) 1185 saved_console_loglevel = console_loglevel; 1186 console_loglevel = minimum_console_loglevel; 1187 break; 1188 /* Enable logging to console */ 1189 case SYSLOG_ACTION_CONSOLE_ON: 1190 if (saved_console_loglevel != -1) { 1191 console_loglevel = saved_console_loglevel; 1192 saved_console_loglevel = -1; 1193 } 1194 break; 1195 /* Set level of messages printed to console */ 1196 case SYSLOG_ACTION_CONSOLE_LEVEL: 1197 error = -EINVAL; 1198 if (len < 1 || len > 8) 1199 goto out; 1200 if (len < minimum_console_loglevel) 1201 len = minimum_console_loglevel; 1202 console_loglevel = len; 1203 /* Implicitly re-enable logging to console */ 1204 saved_console_loglevel = -1; 1205 error = 0; 1206 break; 1207 /* Number of chars in the log buffer */ 1208 case SYSLOG_ACTION_SIZE_UNREAD: 1209 raw_spin_lock_irq(&logbuf_lock); 1210 if (syslog_seq < log_first_seq) { 1211 /* messages are gone, move to first one */ 1212 syslog_seq = log_first_seq; 1213 syslog_idx = log_first_idx; 1214 syslog_prev = 0; 1215 syslog_partial = 0; 1216 } 1217 if (from_file) { 1218 /* 1219 * Short-cut for poll(/"proc/kmsg") which simply checks 1220 * for pending data, not the size; return the count of 1221 * records, not the length. 1222 */ 1223 error = log_next_idx - syslog_idx; 1224 } else { 1225 u64 seq = syslog_seq; 1226 u32 idx = syslog_idx; 1227 enum log_flags prev = syslog_prev; 1228 1229 error = 0; 1230 while (seq < log_next_seq) { 1231 struct printk_log *msg = log_from_idx(idx); 1232 1233 error += msg_print_text(msg, prev, true, NULL, 0); 1234 idx = log_next(idx); 1235 seq++; 1236 prev = msg->flags; 1237 } 1238 error -= syslog_partial; 1239 } 1240 raw_spin_unlock_irq(&logbuf_lock); 1241 break; 1242 /* Size of the log buffer */ 1243 case SYSLOG_ACTION_SIZE_BUFFER: 1244 error = log_buf_len; 1245 break; 1246 default: 1247 error = -EINVAL; 1248 break; 1249 } 1250 out: 1251 return error; 1252 } 1253 1254 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1255 { 1256 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1257 } 1258 1259 /* 1260 * Call the console drivers, asking them to write out 1261 * log_buf[start] to log_buf[end - 1]. 1262 * The console_lock must be held. 1263 */ 1264 static void call_console_drivers(int level, const char *text, size_t len) 1265 { 1266 struct console *con; 1267 1268 trace_console(text, len); 1269 1270 if (level >= console_loglevel && !ignore_loglevel) 1271 return; 1272 if (!console_drivers) 1273 return; 1274 1275 for_each_console(con) { 1276 if (exclusive_console && con != exclusive_console) 1277 continue; 1278 if (!(con->flags & CON_ENABLED)) 1279 continue; 1280 if (!con->write) 1281 continue; 1282 if (!cpu_online(smp_processor_id()) && 1283 !(con->flags & CON_ANYTIME)) 1284 continue; 1285 con->write(con, text, len); 1286 } 1287 } 1288 1289 /* 1290 * Zap console related locks when oopsing. Only zap at most once 1291 * every 10 seconds, to leave time for slow consoles to print a 1292 * full oops. 1293 */ 1294 static void zap_locks(void) 1295 { 1296 static unsigned long oops_timestamp; 1297 1298 if (time_after_eq(jiffies, oops_timestamp) && 1299 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1300 return; 1301 1302 oops_timestamp = jiffies; 1303 1304 debug_locks_off(); 1305 /* If a crash is occurring, make sure we can't deadlock */ 1306 raw_spin_lock_init(&logbuf_lock); 1307 /* And make sure that we print immediately */ 1308 sema_init(&console_sem, 1); 1309 } 1310 1311 /* Check if we have any console registered that can be called early in boot. */ 1312 static int have_callable_console(void) 1313 { 1314 struct console *con; 1315 1316 for_each_console(con) 1317 if (con->flags & CON_ANYTIME) 1318 return 1; 1319 1320 return 0; 1321 } 1322 1323 /* 1324 * Can we actually use the console at this time on this cpu? 1325 * 1326 * Console drivers may assume that per-cpu resources have 1327 * been allocated. So unless they're explicitly marked as 1328 * being able to cope (CON_ANYTIME) don't call them until 1329 * this CPU is officially up. 1330 */ 1331 static inline int can_use_console(unsigned int cpu) 1332 { 1333 return cpu_online(cpu) || have_callable_console(); 1334 } 1335 1336 /* 1337 * Try to get console ownership to actually show the kernel 1338 * messages from a 'printk'. Return true (and with the 1339 * console_lock held, and 'console_locked' set) if it 1340 * is successful, false otherwise. 1341 * 1342 * This gets called with the 'logbuf_lock' spinlock held and 1343 * interrupts disabled. It should return with 'lockbuf_lock' 1344 * released but interrupts still disabled. 1345 */ 1346 static int console_trylock_for_printk(unsigned int cpu) 1347 __releases(&logbuf_lock) 1348 { 1349 int retval = 0, wake = 0; 1350 1351 if (console_trylock()) { 1352 retval = 1; 1353 1354 /* 1355 * If we can't use the console, we need to release 1356 * the console semaphore by hand to avoid flushing 1357 * the buffer. We need to hold the console semaphore 1358 * in order to do this test safely. 1359 */ 1360 if (!can_use_console(cpu)) { 1361 console_locked = 0; 1362 wake = 1; 1363 retval = 0; 1364 } 1365 } 1366 logbuf_cpu = UINT_MAX; 1367 raw_spin_unlock(&logbuf_lock); 1368 if (wake) 1369 up(&console_sem); 1370 return retval; 1371 } 1372 1373 int printk_delay_msec __read_mostly; 1374 1375 static inline void printk_delay(void) 1376 { 1377 if (unlikely(printk_delay_msec)) { 1378 int m = printk_delay_msec; 1379 1380 while (m--) { 1381 mdelay(1); 1382 touch_nmi_watchdog(); 1383 } 1384 } 1385 } 1386 1387 /* 1388 * Continuation lines are buffered, and not committed to the record buffer 1389 * until the line is complete, or a race forces it. The line fragments 1390 * though, are printed immediately to the consoles to ensure everything has 1391 * reached the console in case of a kernel crash. 1392 */ 1393 static struct cont { 1394 char buf[LOG_LINE_MAX]; 1395 size_t len; /* length == 0 means unused buffer */ 1396 size_t cons; /* bytes written to console */ 1397 struct task_struct *owner; /* task of first print*/ 1398 u64 ts_nsec; /* time of first print */ 1399 u8 level; /* log level of first message */ 1400 u8 facility; /* log level of first message */ 1401 enum log_flags flags; /* prefix, newline flags */ 1402 bool flushed:1; /* buffer sealed and committed */ 1403 } cont; 1404 1405 static void cont_flush(enum log_flags flags) 1406 { 1407 if (cont.flushed) 1408 return; 1409 if (cont.len == 0) 1410 return; 1411 1412 if (cont.cons) { 1413 /* 1414 * If a fragment of this line was directly flushed to the 1415 * console; wait for the console to pick up the rest of the 1416 * line. LOG_NOCONS suppresses a duplicated output. 1417 */ 1418 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1419 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1420 cont.flags = flags; 1421 cont.flushed = true; 1422 } else { 1423 /* 1424 * If no fragment of this line ever reached the console, 1425 * just submit it to the store and free the buffer. 1426 */ 1427 log_store(cont.facility, cont.level, flags, 0, 1428 NULL, 0, cont.buf, cont.len); 1429 cont.len = 0; 1430 } 1431 } 1432 1433 static bool cont_add(int facility, int level, const char *text, size_t len) 1434 { 1435 if (cont.len && cont.flushed) 1436 return false; 1437 1438 if (cont.len + len > sizeof(cont.buf)) { 1439 /* the line gets too long, split it up in separate records */ 1440 cont_flush(LOG_CONT); 1441 return false; 1442 } 1443 1444 if (!cont.len) { 1445 cont.facility = facility; 1446 cont.level = level; 1447 cont.owner = current; 1448 cont.ts_nsec = local_clock(); 1449 cont.flags = 0; 1450 cont.cons = 0; 1451 cont.flushed = false; 1452 } 1453 1454 memcpy(cont.buf + cont.len, text, len); 1455 cont.len += len; 1456 1457 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1458 cont_flush(LOG_CONT); 1459 1460 return true; 1461 } 1462 1463 static size_t cont_print_text(char *text, size_t size) 1464 { 1465 size_t textlen = 0; 1466 size_t len; 1467 1468 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1469 textlen += print_time(cont.ts_nsec, text); 1470 size -= textlen; 1471 } 1472 1473 len = cont.len - cont.cons; 1474 if (len > 0) { 1475 if (len+1 > size) 1476 len = size-1; 1477 memcpy(text + textlen, cont.buf + cont.cons, len); 1478 textlen += len; 1479 cont.cons = cont.len; 1480 } 1481 1482 if (cont.flushed) { 1483 if (cont.flags & LOG_NEWLINE) 1484 text[textlen++] = '\n'; 1485 /* got everything, release buffer */ 1486 cont.len = 0; 1487 } 1488 return textlen; 1489 } 1490 1491 asmlinkage int vprintk_emit(int facility, int level, 1492 const char *dict, size_t dictlen, 1493 const char *fmt, va_list args) 1494 { 1495 static int recursion_bug; 1496 static char textbuf[LOG_LINE_MAX]; 1497 char *text = textbuf; 1498 size_t text_len; 1499 enum log_flags lflags = 0; 1500 unsigned long flags; 1501 int this_cpu; 1502 int printed_len = 0; 1503 1504 boot_delay_msec(level); 1505 printk_delay(); 1506 1507 /* This stops the holder of console_sem just where we want him */ 1508 local_irq_save(flags); 1509 this_cpu = smp_processor_id(); 1510 1511 /* 1512 * Ouch, printk recursed into itself! 1513 */ 1514 if (unlikely(logbuf_cpu == this_cpu)) { 1515 /* 1516 * If a crash is occurring during printk() on this CPU, 1517 * then try to get the crash message out but make sure 1518 * we can't deadlock. Otherwise just return to avoid the 1519 * recursion and return - but flag the recursion so that 1520 * it can be printed at the next appropriate moment: 1521 */ 1522 if (!oops_in_progress && !lockdep_recursing(current)) { 1523 recursion_bug = 1; 1524 goto out_restore_irqs; 1525 } 1526 zap_locks(); 1527 } 1528 1529 lockdep_off(); 1530 raw_spin_lock(&logbuf_lock); 1531 logbuf_cpu = this_cpu; 1532 1533 if (recursion_bug) { 1534 static const char recursion_msg[] = 1535 "BUG: recent printk recursion!"; 1536 1537 recursion_bug = 0; 1538 printed_len += strlen(recursion_msg); 1539 /* emit KERN_CRIT message */ 1540 log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1541 NULL, 0, recursion_msg, printed_len); 1542 } 1543 1544 /* 1545 * The printf needs to come first; we need the syslog 1546 * prefix which might be passed-in as a parameter. 1547 */ 1548 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1549 1550 /* mark and strip a trailing newline */ 1551 if (text_len && text[text_len-1] == '\n') { 1552 text_len--; 1553 lflags |= LOG_NEWLINE; 1554 } 1555 1556 /* strip kernel syslog prefix and extract log level or control flags */ 1557 if (facility == 0) { 1558 int kern_level = printk_get_level(text); 1559 1560 if (kern_level) { 1561 const char *end_of_header = printk_skip_level(text); 1562 switch (kern_level) { 1563 case '0' ... '7': 1564 if (level == -1) 1565 level = kern_level - '0'; 1566 case 'd': /* KERN_DEFAULT */ 1567 lflags |= LOG_PREFIX; 1568 case 'c': /* KERN_CONT */ 1569 break; 1570 } 1571 text_len -= end_of_header - text; 1572 text = (char *)end_of_header; 1573 } 1574 } 1575 1576 if (level == -1) 1577 level = default_message_loglevel; 1578 1579 if (dict) 1580 lflags |= LOG_PREFIX|LOG_NEWLINE; 1581 1582 if (!(lflags & LOG_NEWLINE)) { 1583 /* 1584 * Flush the conflicting buffer. An earlier newline was missing, 1585 * or another task also prints continuation lines. 1586 */ 1587 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1588 cont_flush(LOG_NEWLINE); 1589 1590 /* buffer line if possible, otherwise store it right away */ 1591 if (!cont_add(facility, level, text, text_len)) 1592 log_store(facility, level, lflags | LOG_CONT, 0, 1593 dict, dictlen, text, text_len); 1594 } else { 1595 bool stored = false; 1596 1597 /* 1598 * If an earlier newline was missing and it was the same task, 1599 * either merge it with the current buffer and flush, or if 1600 * there was a race with interrupts (prefix == true) then just 1601 * flush it out and store this line separately. 1602 */ 1603 if (cont.len && cont.owner == current) { 1604 if (!(lflags & LOG_PREFIX)) 1605 stored = cont_add(facility, level, text, text_len); 1606 cont_flush(LOG_NEWLINE); 1607 } 1608 1609 if (!stored) 1610 log_store(facility, level, lflags, 0, 1611 dict, dictlen, text, text_len); 1612 } 1613 printed_len += text_len; 1614 1615 /* 1616 * Try to acquire and then immediately release the console semaphore. 1617 * The release will print out buffers and wake up /dev/kmsg and syslog() 1618 * users. 1619 * 1620 * The console_trylock_for_printk() function will release 'logbuf_lock' 1621 * regardless of whether it actually gets the console semaphore or not. 1622 */ 1623 if (console_trylock_for_printk(this_cpu)) 1624 console_unlock(); 1625 1626 lockdep_on(); 1627 out_restore_irqs: 1628 local_irq_restore(flags); 1629 1630 return printed_len; 1631 } 1632 EXPORT_SYMBOL(vprintk_emit); 1633 1634 asmlinkage int vprintk(const char *fmt, va_list args) 1635 { 1636 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1637 } 1638 EXPORT_SYMBOL(vprintk); 1639 1640 asmlinkage int printk_emit(int facility, int level, 1641 const char *dict, size_t dictlen, 1642 const char *fmt, ...) 1643 { 1644 va_list args; 1645 int r; 1646 1647 va_start(args, fmt); 1648 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1649 va_end(args); 1650 1651 return r; 1652 } 1653 EXPORT_SYMBOL(printk_emit); 1654 1655 /** 1656 * printk - print a kernel message 1657 * @fmt: format string 1658 * 1659 * This is printk(). It can be called from any context. We want it to work. 1660 * 1661 * We try to grab the console_lock. If we succeed, it's easy - we log the 1662 * output and call the console drivers. If we fail to get the semaphore, we 1663 * place the output into the log buffer and return. The current holder of 1664 * the console_sem will notice the new output in console_unlock(); and will 1665 * send it to the consoles before releasing the lock. 1666 * 1667 * One effect of this deferred printing is that code which calls printk() and 1668 * then changes console_loglevel may break. This is because console_loglevel 1669 * is inspected when the actual printing occurs. 1670 * 1671 * See also: 1672 * printf(3) 1673 * 1674 * See the vsnprintf() documentation for format string extensions over C99. 1675 */ 1676 asmlinkage int printk(const char *fmt, ...) 1677 { 1678 va_list args; 1679 int r; 1680 1681 #ifdef CONFIG_KGDB_KDB 1682 if (unlikely(kdb_trap_printk)) { 1683 va_start(args, fmt); 1684 r = vkdb_printf(fmt, args); 1685 va_end(args); 1686 return r; 1687 } 1688 #endif 1689 va_start(args, fmt); 1690 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1691 va_end(args); 1692 1693 return r; 1694 } 1695 EXPORT_SYMBOL(printk); 1696 1697 #else /* CONFIG_PRINTK */ 1698 1699 #define LOG_LINE_MAX 0 1700 #define PREFIX_MAX 0 1701 #define LOG_LINE_MAX 0 1702 static u64 syslog_seq; 1703 static u32 syslog_idx; 1704 static u64 console_seq; 1705 static u32 console_idx; 1706 static enum log_flags syslog_prev; 1707 static u64 log_first_seq; 1708 static u32 log_first_idx; 1709 static u64 log_next_seq; 1710 static enum log_flags console_prev; 1711 static struct cont { 1712 size_t len; 1713 size_t cons; 1714 u8 level; 1715 bool flushed:1; 1716 } cont; 1717 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1718 static u32 log_next(u32 idx) { return 0; } 1719 static void call_console_drivers(int level, const char *text, size_t len) {} 1720 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1721 bool syslog, char *buf, size_t size) { return 0; } 1722 static size_t cont_print_text(char *text, size_t size) { return 0; } 1723 1724 #endif /* CONFIG_PRINTK */ 1725 1726 #ifdef CONFIG_EARLY_PRINTK 1727 struct console *early_console; 1728 1729 void early_vprintk(const char *fmt, va_list ap) 1730 { 1731 if (early_console) { 1732 char buf[512]; 1733 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1734 1735 early_console->write(early_console, buf, n); 1736 } 1737 } 1738 1739 asmlinkage void early_printk(const char *fmt, ...) 1740 { 1741 va_list ap; 1742 1743 va_start(ap, fmt); 1744 early_vprintk(fmt, ap); 1745 va_end(ap); 1746 } 1747 #endif 1748 1749 static int __add_preferred_console(char *name, int idx, char *options, 1750 char *brl_options) 1751 { 1752 struct console_cmdline *c; 1753 int i; 1754 1755 /* 1756 * See if this tty is not yet registered, and 1757 * if we have a slot free. 1758 */ 1759 for (i = 0, c = console_cmdline; 1760 i < MAX_CMDLINECONSOLES && c->name[0]; 1761 i++, c++) { 1762 if (strcmp(c->name, name) == 0 && c->index == idx) { 1763 if (!brl_options) 1764 selected_console = i; 1765 return 0; 1766 } 1767 } 1768 if (i == MAX_CMDLINECONSOLES) 1769 return -E2BIG; 1770 if (!brl_options) 1771 selected_console = i; 1772 strlcpy(c->name, name, sizeof(c->name)); 1773 c->options = options; 1774 braille_set_options(c, brl_options); 1775 1776 c->index = idx; 1777 return 0; 1778 } 1779 /* 1780 * Set up a list of consoles. Called from init/main.c 1781 */ 1782 static int __init console_setup(char *str) 1783 { 1784 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */ 1785 char *s, *options, *brl_options = NULL; 1786 int idx; 1787 1788 if (_braille_console_setup(&str, &brl_options)) 1789 return 1; 1790 1791 /* 1792 * Decode str into name, index, options. 1793 */ 1794 if (str[0] >= '0' && str[0] <= '9') { 1795 strcpy(buf, "ttyS"); 1796 strncpy(buf + 4, str, sizeof(buf) - 5); 1797 } else { 1798 strncpy(buf, str, sizeof(buf) - 1); 1799 } 1800 buf[sizeof(buf) - 1] = 0; 1801 if ((options = strchr(str, ',')) != NULL) 1802 *(options++) = 0; 1803 #ifdef __sparc__ 1804 if (!strcmp(str, "ttya")) 1805 strcpy(buf, "ttyS0"); 1806 if (!strcmp(str, "ttyb")) 1807 strcpy(buf, "ttyS1"); 1808 #endif 1809 for (s = buf; *s; s++) 1810 if ((*s >= '0' && *s <= '9') || *s == ',') 1811 break; 1812 idx = simple_strtoul(s, NULL, 10); 1813 *s = 0; 1814 1815 __add_preferred_console(buf, idx, options, brl_options); 1816 console_set_on_cmdline = 1; 1817 return 1; 1818 } 1819 __setup("console=", console_setup); 1820 1821 /** 1822 * add_preferred_console - add a device to the list of preferred consoles. 1823 * @name: device name 1824 * @idx: device index 1825 * @options: options for this console 1826 * 1827 * The last preferred console added will be used for kernel messages 1828 * and stdin/out/err for init. Normally this is used by console_setup 1829 * above to handle user-supplied console arguments; however it can also 1830 * be used by arch-specific code either to override the user or more 1831 * commonly to provide a default console (ie from PROM variables) when 1832 * the user has not supplied one. 1833 */ 1834 int add_preferred_console(char *name, int idx, char *options) 1835 { 1836 return __add_preferred_console(name, idx, options, NULL); 1837 } 1838 1839 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1840 { 1841 struct console_cmdline *c; 1842 int i; 1843 1844 for (i = 0, c = console_cmdline; 1845 i < MAX_CMDLINECONSOLES && c->name[0]; 1846 i++, c++) 1847 if (strcmp(c->name, name) == 0 && c->index == idx) { 1848 strlcpy(c->name, name_new, sizeof(c->name)); 1849 c->name[sizeof(c->name) - 1] = 0; 1850 c->options = options; 1851 c->index = idx_new; 1852 return i; 1853 } 1854 /* not found */ 1855 return -1; 1856 } 1857 1858 bool console_suspend_enabled = 1; 1859 EXPORT_SYMBOL(console_suspend_enabled); 1860 1861 static int __init console_suspend_disable(char *str) 1862 { 1863 console_suspend_enabled = 0; 1864 return 1; 1865 } 1866 __setup("no_console_suspend", console_suspend_disable); 1867 module_param_named(console_suspend, console_suspend_enabled, 1868 bool, S_IRUGO | S_IWUSR); 1869 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1870 " and hibernate operations"); 1871 1872 /** 1873 * suspend_console - suspend the console subsystem 1874 * 1875 * This disables printk() while we go into suspend states 1876 */ 1877 void suspend_console(void) 1878 { 1879 if (!console_suspend_enabled) 1880 return; 1881 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 1882 console_lock(); 1883 console_suspended = 1; 1884 up(&console_sem); 1885 } 1886 1887 void resume_console(void) 1888 { 1889 if (!console_suspend_enabled) 1890 return; 1891 down(&console_sem); 1892 console_suspended = 0; 1893 console_unlock(); 1894 } 1895 1896 /** 1897 * console_cpu_notify - print deferred console messages after CPU hotplug 1898 * @self: notifier struct 1899 * @action: CPU hotplug event 1900 * @hcpu: unused 1901 * 1902 * If printk() is called from a CPU that is not online yet, the messages 1903 * will be spooled but will not show up on the console. This function is 1904 * called when a new CPU comes online (or fails to come up), and ensures 1905 * that any such output gets printed. 1906 */ 1907 static int console_cpu_notify(struct notifier_block *self, 1908 unsigned long action, void *hcpu) 1909 { 1910 switch (action) { 1911 case CPU_ONLINE: 1912 case CPU_DEAD: 1913 case CPU_DOWN_FAILED: 1914 case CPU_UP_CANCELED: 1915 console_lock(); 1916 console_unlock(); 1917 } 1918 return NOTIFY_OK; 1919 } 1920 1921 /** 1922 * console_lock - lock the console system for exclusive use. 1923 * 1924 * Acquires a lock which guarantees that the caller has 1925 * exclusive access to the console system and the console_drivers list. 1926 * 1927 * Can sleep, returns nothing. 1928 */ 1929 void console_lock(void) 1930 { 1931 might_sleep(); 1932 1933 down(&console_sem); 1934 if (console_suspended) 1935 return; 1936 console_locked = 1; 1937 console_may_schedule = 1; 1938 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_); 1939 } 1940 EXPORT_SYMBOL(console_lock); 1941 1942 /** 1943 * console_trylock - try to lock the console system for exclusive use. 1944 * 1945 * Tried to acquire a lock which guarantees that the caller has 1946 * exclusive access to the console system and the console_drivers list. 1947 * 1948 * returns 1 on success, and 0 on failure to acquire the lock. 1949 */ 1950 int console_trylock(void) 1951 { 1952 if (down_trylock(&console_sem)) 1953 return 0; 1954 if (console_suspended) { 1955 up(&console_sem); 1956 return 0; 1957 } 1958 console_locked = 1; 1959 console_may_schedule = 0; 1960 mutex_acquire(&console_lock_dep_map, 0, 1, _RET_IP_); 1961 return 1; 1962 } 1963 EXPORT_SYMBOL(console_trylock); 1964 1965 int is_console_locked(void) 1966 { 1967 return console_locked; 1968 } 1969 1970 static void console_cont_flush(char *text, size_t size) 1971 { 1972 unsigned long flags; 1973 size_t len; 1974 1975 raw_spin_lock_irqsave(&logbuf_lock, flags); 1976 1977 if (!cont.len) 1978 goto out; 1979 1980 /* 1981 * We still queue earlier records, likely because the console was 1982 * busy. The earlier ones need to be printed before this one, we 1983 * did not flush any fragment so far, so just let it queue up. 1984 */ 1985 if (console_seq < log_next_seq && !cont.cons) 1986 goto out; 1987 1988 len = cont_print_text(text, size); 1989 raw_spin_unlock(&logbuf_lock); 1990 stop_critical_timings(); 1991 call_console_drivers(cont.level, text, len); 1992 start_critical_timings(); 1993 local_irq_restore(flags); 1994 return; 1995 out: 1996 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 1997 } 1998 1999 /** 2000 * console_unlock - unlock the console system 2001 * 2002 * Releases the console_lock which the caller holds on the console system 2003 * and the console driver list. 2004 * 2005 * While the console_lock was held, console output may have been buffered 2006 * by printk(). If this is the case, console_unlock(); emits 2007 * the output prior to releasing the lock. 2008 * 2009 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2010 * 2011 * console_unlock(); may be called from any context. 2012 */ 2013 void console_unlock(void) 2014 { 2015 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2016 static u64 seen_seq; 2017 unsigned long flags; 2018 bool wake_klogd = false; 2019 bool retry; 2020 2021 if (console_suspended) { 2022 up(&console_sem); 2023 return; 2024 } 2025 2026 console_may_schedule = 0; 2027 2028 /* flush buffered message fragment immediately to console */ 2029 console_cont_flush(text, sizeof(text)); 2030 again: 2031 for (;;) { 2032 struct printk_log *msg; 2033 size_t len; 2034 int level; 2035 2036 raw_spin_lock_irqsave(&logbuf_lock, flags); 2037 if (seen_seq != log_next_seq) { 2038 wake_klogd = true; 2039 seen_seq = log_next_seq; 2040 } 2041 2042 if (console_seq < log_first_seq) { 2043 /* messages are gone, move to first one */ 2044 console_seq = log_first_seq; 2045 console_idx = log_first_idx; 2046 console_prev = 0; 2047 } 2048 skip: 2049 if (console_seq == log_next_seq) 2050 break; 2051 2052 msg = log_from_idx(console_idx); 2053 if (msg->flags & LOG_NOCONS) { 2054 /* 2055 * Skip record we have buffered and already printed 2056 * directly to the console when we received it. 2057 */ 2058 console_idx = log_next(console_idx); 2059 console_seq++; 2060 /* 2061 * We will get here again when we register a new 2062 * CON_PRINTBUFFER console. Clear the flag so we 2063 * will properly dump everything later. 2064 */ 2065 msg->flags &= ~LOG_NOCONS; 2066 console_prev = msg->flags; 2067 goto skip; 2068 } 2069 2070 level = msg->level; 2071 len = msg_print_text(msg, console_prev, false, 2072 text, sizeof(text)); 2073 console_idx = log_next(console_idx); 2074 console_seq++; 2075 console_prev = msg->flags; 2076 raw_spin_unlock(&logbuf_lock); 2077 2078 stop_critical_timings(); /* don't trace print latency */ 2079 call_console_drivers(level, text, len); 2080 start_critical_timings(); 2081 local_irq_restore(flags); 2082 } 2083 console_locked = 0; 2084 mutex_release(&console_lock_dep_map, 1, _RET_IP_); 2085 2086 /* Release the exclusive_console once it is used */ 2087 if (unlikely(exclusive_console)) 2088 exclusive_console = NULL; 2089 2090 raw_spin_unlock(&logbuf_lock); 2091 2092 up(&console_sem); 2093 2094 /* 2095 * Someone could have filled up the buffer again, so re-check if there's 2096 * something to flush. In case we cannot trylock the console_sem again, 2097 * there's a new owner and the console_unlock() from them will do the 2098 * flush, no worries. 2099 */ 2100 raw_spin_lock(&logbuf_lock); 2101 retry = console_seq != log_next_seq; 2102 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2103 2104 if (retry && console_trylock()) 2105 goto again; 2106 2107 if (wake_klogd) 2108 wake_up_klogd(); 2109 } 2110 EXPORT_SYMBOL(console_unlock); 2111 2112 /** 2113 * console_conditional_schedule - yield the CPU if required 2114 * 2115 * If the console code is currently allowed to sleep, and 2116 * if this CPU should yield the CPU to another task, do 2117 * so here. 2118 * 2119 * Must be called within console_lock();. 2120 */ 2121 void __sched console_conditional_schedule(void) 2122 { 2123 if (console_may_schedule) 2124 cond_resched(); 2125 } 2126 EXPORT_SYMBOL(console_conditional_schedule); 2127 2128 void console_unblank(void) 2129 { 2130 struct console *c; 2131 2132 /* 2133 * console_unblank can no longer be called in interrupt context unless 2134 * oops_in_progress is set to 1.. 2135 */ 2136 if (oops_in_progress) { 2137 if (down_trylock(&console_sem) != 0) 2138 return; 2139 } else 2140 console_lock(); 2141 2142 console_locked = 1; 2143 console_may_schedule = 0; 2144 for_each_console(c) 2145 if ((c->flags & CON_ENABLED) && c->unblank) 2146 c->unblank(); 2147 console_unlock(); 2148 } 2149 2150 /* 2151 * Return the console tty driver structure and its associated index 2152 */ 2153 struct tty_driver *console_device(int *index) 2154 { 2155 struct console *c; 2156 struct tty_driver *driver = NULL; 2157 2158 console_lock(); 2159 for_each_console(c) { 2160 if (!c->device) 2161 continue; 2162 driver = c->device(c, index); 2163 if (driver) 2164 break; 2165 } 2166 console_unlock(); 2167 return driver; 2168 } 2169 2170 /* 2171 * Prevent further output on the passed console device so that (for example) 2172 * serial drivers can disable console output before suspending a port, and can 2173 * re-enable output afterwards. 2174 */ 2175 void console_stop(struct console *console) 2176 { 2177 console_lock(); 2178 console->flags &= ~CON_ENABLED; 2179 console_unlock(); 2180 } 2181 EXPORT_SYMBOL(console_stop); 2182 2183 void console_start(struct console *console) 2184 { 2185 console_lock(); 2186 console->flags |= CON_ENABLED; 2187 console_unlock(); 2188 } 2189 EXPORT_SYMBOL(console_start); 2190 2191 static int __read_mostly keep_bootcon; 2192 2193 static int __init keep_bootcon_setup(char *str) 2194 { 2195 keep_bootcon = 1; 2196 printk(KERN_INFO "debug: skip boot console de-registration.\n"); 2197 2198 return 0; 2199 } 2200 2201 early_param("keep_bootcon", keep_bootcon_setup); 2202 2203 /* 2204 * The console driver calls this routine during kernel initialization 2205 * to register the console printing procedure with printk() and to 2206 * print any messages that were printed by the kernel before the 2207 * console driver was initialized. 2208 * 2209 * This can happen pretty early during the boot process (because of 2210 * early_printk) - sometimes before setup_arch() completes - be careful 2211 * of what kernel features are used - they may not be initialised yet. 2212 * 2213 * There are two types of consoles - bootconsoles (early_printk) and 2214 * "real" consoles (everything which is not a bootconsole) which are 2215 * handled differently. 2216 * - Any number of bootconsoles can be registered at any time. 2217 * - As soon as a "real" console is registered, all bootconsoles 2218 * will be unregistered automatically. 2219 * - Once a "real" console is registered, any attempt to register a 2220 * bootconsoles will be rejected 2221 */ 2222 void register_console(struct console *newcon) 2223 { 2224 int i; 2225 unsigned long flags; 2226 struct console *bcon = NULL; 2227 struct console_cmdline *c; 2228 2229 if (console_drivers) 2230 for_each_console(bcon) 2231 if (WARN(bcon == newcon, 2232 "console '%s%d' already registered\n", 2233 bcon->name, bcon->index)) 2234 return; 2235 2236 /* 2237 * before we register a new CON_BOOT console, make sure we don't 2238 * already have a valid console 2239 */ 2240 if (console_drivers && newcon->flags & CON_BOOT) { 2241 /* find the last or real console */ 2242 for_each_console(bcon) { 2243 if (!(bcon->flags & CON_BOOT)) { 2244 printk(KERN_INFO "Too late to register bootconsole %s%d\n", 2245 newcon->name, newcon->index); 2246 return; 2247 } 2248 } 2249 } 2250 2251 if (console_drivers && console_drivers->flags & CON_BOOT) 2252 bcon = console_drivers; 2253 2254 if (preferred_console < 0 || bcon || !console_drivers) 2255 preferred_console = selected_console; 2256 2257 if (newcon->early_setup) 2258 newcon->early_setup(); 2259 2260 /* 2261 * See if we want to use this console driver. If we 2262 * didn't select a console we take the first one 2263 * that registers here. 2264 */ 2265 if (preferred_console < 0) { 2266 if (newcon->index < 0) 2267 newcon->index = 0; 2268 if (newcon->setup == NULL || 2269 newcon->setup(newcon, NULL) == 0) { 2270 newcon->flags |= CON_ENABLED; 2271 if (newcon->device) { 2272 newcon->flags |= CON_CONSDEV; 2273 preferred_console = 0; 2274 } 2275 } 2276 } 2277 2278 /* 2279 * See if this console matches one we selected on 2280 * the command line. 2281 */ 2282 for (i = 0, c = console_cmdline; 2283 i < MAX_CMDLINECONSOLES && c->name[0]; 2284 i++, c++) { 2285 if (strcmp(c->name, newcon->name) != 0) 2286 continue; 2287 if (newcon->index >= 0 && 2288 newcon->index != c->index) 2289 continue; 2290 if (newcon->index < 0) 2291 newcon->index = c->index; 2292 2293 if (_braille_register_console(newcon, c)) 2294 return; 2295 2296 if (newcon->setup && 2297 newcon->setup(newcon, console_cmdline[i].options) != 0) 2298 break; 2299 newcon->flags |= CON_ENABLED; 2300 newcon->index = c->index; 2301 if (i == selected_console) { 2302 newcon->flags |= CON_CONSDEV; 2303 preferred_console = selected_console; 2304 } 2305 break; 2306 } 2307 2308 if (!(newcon->flags & CON_ENABLED)) 2309 return; 2310 2311 /* 2312 * If we have a bootconsole, and are switching to a real console, 2313 * don't print everything out again, since when the boot console, and 2314 * the real console are the same physical device, it's annoying to 2315 * see the beginning boot messages twice 2316 */ 2317 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2318 newcon->flags &= ~CON_PRINTBUFFER; 2319 2320 /* 2321 * Put this console in the list - keep the 2322 * preferred driver at the head of the list. 2323 */ 2324 console_lock(); 2325 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2326 newcon->next = console_drivers; 2327 console_drivers = newcon; 2328 if (newcon->next) 2329 newcon->next->flags &= ~CON_CONSDEV; 2330 } else { 2331 newcon->next = console_drivers->next; 2332 console_drivers->next = newcon; 2333 } 2334 if (newcon->flags & CON_PRINTBUFFER) { 2335 /* 2336 * console_unlock(); will print out the buffered messages 2337 * for us. 2338 */ 2339 raw_spin_lock_irqsave(&logbuf_lock, flags); 2340 console_seq = syslog_seq; 2341 console_idx = syslog_idx; 2342 console_prev = syslog_prev; 2343 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2344 /* 2345 * We're about to replay the log buffer. Only do this to the 2346 * just-registered console to avoid excessive message spam to 2347 * the already-registered consoles. 2348 */ 2349 exclusive_console = newcon; 2350 } 2351 console_unlock(); 2352 console_sysfs_notify(); 2353 2354 /* 2355 * By unregistering the bootconsoles after we enable the real console 2356 * we get the "console xxx enabled" message on all the consoles - 2357 * boot consoles, real consoles, etc - this is to ensure that end 2358 * users know there might be something in the kernel's log buffer that 2359 * went to the bootconsole (that they do not see on the real console) 2360 */ 2361 if (bcon && 2362 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2363 !keep_bootcon) { 2364 /* we need to iterate through twice, to make sure we print 2365 * everything out, before we unregister the console(s) 2366 */ 2367 printk(KERN_INFO "console [%s%d] enabled, bootconsole disabled\n", 2368 newcon->name, newcon->index); 2369 for_each_console(bcon) 2370 if (bcon->flags & CON_BOOT) 2371 unregister_console(bcon); 2372 } else { 2373 printk(KERN_INFO "%sconsole [%s%d] enabled\n", 2374 (newcon->flags & CON_BOOT) ? "boot" : "" , 2375 newcon->name, newcon->index); 2376 } 2377 } 2378 EXPORT_SYMBOL(register_console); 2379 2380 int unregister_console(struct console *console) 2381 { 2382 struct console *a, *b; 2383 int res; 2384 2385 res = _braille_unregister_console(console); 2386 if (res) 2387 return res; 2388 2389 res = 1; 2390 console_lock(); 2391 if (console_drivers == console) { 2392 console_drivers=console->next; 2393 res = 0; 2394 } else if (console_drivers) { 2395 for (a=console_drivers->next, b=console_drivers ; 2396 a; b=a, a=b->next) { 2397 if (a == console) { 2398 b->next = a->next; 2399 res = 0; 2400 break; 2401 } 2402 } 2403 } 2404 2405 /* 2406 * If this isn't the last console and it has CON_CONSDEV set, we 2407 * need to set it on the next preferred console. 2408 */ 2409 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2410 console_drivers->flags |= CON_CONSDEV; 2411 2412 console_unlock(); 2413 console_sysfs_notify(); 2414 return res; 2415 } 2416 EXPORT_SYMBOL(unregister_console); 2417 2418 static int __init printk_late_init(void) 2419 { 2420 struct console *con; 2421 2422 for_each_console(con) { 2423 if (!keep_bootcon && con->flags & CON_BOOT) { 2424 printk(KERN_INFO "turn off boot console %s%d\n", 2425 con->name, con->index); 2426 unregister_console(con); 2427 } 2428 } 2429 hotcpu_notifier(console_cpu_notify, 0); 2430 return 0; 2431 } 2432 late_initcall(printk_late_init); 2433 2434 #if defined CONFIG_PRINTK 2435 /* 2436 * Delayed printk version, for scheduler-internal messages: 2437 */ 2438 #define PRINTK_BUF_SIZE 512 2439 2440 #define PRINTK_PENDING_WAKEUP 0x01 2441 #define PRINTK_PENDING_SCHED 0x02 2442 2443 static DEFINE_PER_CPU(int, printk_pending); 2444 static DEFINE_PER_CPU(char [PRINTK_BUF_SIZE], printk_sched_buf); 2445 2446 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2447 { 2448 int pending = __this_cpu_xchg(printk_pending, 0); 2449 2450 if (pending & PRINTK_PENDING_SCHED) { 2451 char *buf = __get_cpu_var(printk_sched_buf); 2452 printk(KERN_WARNING "[sched_delayed] %s", buf); 2453 } 2454 2455 if (pending & PRINTK_PENDING_WAKEUP) 2456 wake_up_interruptible(&log_wait); 2457 } 2458 2459 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2460 .func = wake_up_klogd_work_func, 2461 .flags = IRQ_WORK_LAZY, 2462 }; 2463 2464 void wake_up_klogd(void) 2465 { 2466 preempt_disable(); 2467 if (waitqueue_active(&log_wait)) { 2468 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2469 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2470 } 2471 preempt_enable(); 2472 } 2473 2474 int printk_sched(const char *fmt, ...) 2475 { 2476 unsigned long flags; 2477 va_list args; 2478 char *buf; 2479 int r; 2480 2481 local_irq_save(flags); 2482 buf = __get_cpu_var(printk_sched_buf); 2483 2484 va_start(args, fmt); 2485 r = vsnprintf(buf, PRINTK_BUF_SIZE, fmt, args); 2486 va_end(args); 2487 2488 __this_cpu_or(printk_pending, PRINTK_PENDING_SCHED); 2489 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2490 local_irq_restore(flags); 2491 2492 return r; 2493 } 2494 2495 /* 2496 * printk rate limiting, lifted from the networking subsystem. 2497 * 2498 * This enforces a rate limit: not more than 10 kernel messages 2499 * every 5s to make a denial-of-service attack impossible. 2500 */ 2501 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2502 2503 int __printk_ratelimit(const char *func) 2504 { 2505 return ___ratelimit(&printk_ratelimit_state, func); 2506 } 2507 EXPORT_SYMBOL(__printk_ratelimit); 2508 2509 /** 2510 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2511 * @caller_jiffies: pointer to caller's state 2512 * @interval_msecs: minimum interval between prints 2513 * 2514 * printk_timed_ratelimit() returns true if more than @interval_msecs 2515 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2516 * returned true. 2517 */ 2518 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2519 unsigned int interval_msecs) 2520 { 2521 if (*caller_jiffies == 0 2522 || !time_in_range(jiffies, *caller_jiffies, 2523 *caller_jiffies 2524 + msecs_to_jiffies(interval_msecs))) { 2525 *caller_jiffies = jiffies; 2526 return true; 2527 } 2528 return false; 2529 } 2530 EXPORT_SYMBOL(printk_timed_ratelimit); 2531 2532 static DEFINE_SPINLOCK(dump_list_lock); 2533 static LIST_HEAD(dump_list); 2534 2535 /** 2536 * kmsg_dump_register - register a kernel log dumper. 2537 * @dumper: pointer to the kmsg_dumper structure 2538 * 2539 * Adds a kernel log dumper to the system. The dump callback in the 2540 * structure will be called when the kernel oopses or panics and must be 2541 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2542 */ 2543 int kmsg_dump_register(struct kmsg_dumper *dumper) 2544 { 2545 unsigned long flags; 2546 int err = -EBUSY; 2547 2548 /* The dump callback needs to be set */ 2549 if (!dumper->dump) 2550 return -EINVAL; 2551 2552 spin_lock_irqsave(&dump_list_lock, flags); 2553 /* Don't allow registering multiple times */ 2554 if (!dumper->registered) { 2555 dumper->registered = 1; 2556 list_add_tail_rcu(&dumper->list, &dump_list); 2557 err = 0; 2558 } 2559 spin_unlock_irqrestore(&dump_list_lock, flags); 2560 2561 return err; 2562 } 2563 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2564 2565 /** 2566 * kmsg_dump_unregister - unregister a kmsg dumper. 2567 * @dumper: pointer to the kmsg_dumper structure 2568 * 2569 * Removes a dump device from the system. Returns zero on success and 2570 * %-EINVAL otherwise. 2571 */ 2572 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2573 { 2574 unsigned long flags; 2575 int err = -EINVAL; 2576 2577 spin_lock_irqsave(&dump_list_lock, flags); 2578 if (dumper->registered) { 2579 dumper->registered = 0; 2580 list_del_rcu(&dumper->list); 2581 err = 0; 2582 } 2583 spin_unlock_irqrestore(&dump_list_lock, flags); 2584 synchronize_rcu(); 2585 2586 return err; 2587 } 2588 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2589 2590 static bool always_kmsg_dump; 2591 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2592 2593 /** 2594 * kmsg_dump - dump kernel log to kernel message dumpers. 2595 * @reason: the reason (oops, panic etc) for dumping 2596 * 2597 * Call each of the registered dumper's dump() callback, which can 2598 * retrieve the kmsg records with kmsg_dump_get_line() or 2599 * kmsg_dump_get_buffer(). 2600 */ 2601 void kmsg_dump(enum kmsg_dump_reason reason) 2602 { 2603 struct kmsg_dumper *dumper; 2604 unsigned long flags; 2605 2606 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2607 return; 2608 2609 rcu_read_lock(); 2610 list_for_each_entry_rcu(dumper, &dump_list, list) { 2611 if (dumper->max_reason && reason > dumper->max_reason) 2612 continue; 2613 2614 /* initialize iterator with data about the stored records */ 2615 dumper->active = true; 2616 2617 raw_spin_lock_irqsave(&logbuf_lock, flags); 2618 dumper->cur_seq = clear_seq; 2619 dumper->cur_idx = clear_idx; 2620 dumper->next_seq = log_next_seq; 2621 dumper->next_idx = log_next_idx; 2622 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2623 2624 /* invoke dumper which will iterate over records */ 2625 dumper->dump(dumper, reason); 2626 2627 /* reset iterator */ 2628 dumper->active = false; 2629 } 2630 rcu_read_unlock(); 2631 } 2632 2633 /** 2634 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2635 * @dumper: registered kmsg dumper 2636 * @syslog: include the "<4>" prefixes 2637 * @line: buffer to copy the line to 2638 * @size: maximum size of the buffer 2639 * @len: length of line placed into buffer 2640 * 2641 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2642 * record, and copy one record into the provided buffer. 2643 * 2644 * Consecutive calls will return the next available record moving 2645 * towards the end of the buffer with the youngest messages. 2646 * 2647 * A return value of FALSE indicates that there are no more records to 2648 * read. 2649 * 2650 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2651 */ 2652 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2653 char *line, size_t size, size_t *len) 2654 { 2655 struct printk_log *msg; 2656 size_t l = 0; 2657 bool ret = false; 2658 2659 if (!dumper->active) 2660 goto out; 2661 2662 if (dumper->cur_seq < log_first_seq) { 2663 /* messages are gone, move to first available one */ 2664 dumper->cur_seq = log_first_seq; 2665 dumper->cur_idx = log_first_idx; 2666 } 2667 2668 /* last entry */ 2669 if (dumper->cur_seq >= log_next_seq) 2670 goto out; 2671 2672 msg = log_from_idx(dumper->cur_idx); 2673 l = msg_print_text(msg, 0, syslog, line, size); 2674 2675 dumper->cur_idx = log_next(dumper->cur_idx); 2676 dumper->cur_seq++; 2677 ret = true; 2678 out: 2679 if (len) 2680 *len = l; 2681 return ret; 2682 } 2683 2684 /** 2685 * kmsg_dump_get_line - retrieve one kmsg log line 2686 * @dumper: registered kmsg dumper 2687 * @syslog: include the "<4>" prefixes 2688 * @line: buffer to copy the line to 2689 * @size: maximum size of the buffer 2690 * @len: length of line placed into buffer 2691 * 2692 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2693 * record, and copy one record into the provided buffer. 2694 * 2695 * Consecutive calls will return the next available record moving 2696 * towards the end of the buffer with the youngest messages. 2697 * 2698 * A return value of FALSE indicates that there are no more records to 2699 * read. 2700 */ 2701 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2702 char *line, size_t size, size_t *len) 2703 { 2704 unsigned long flags; 2705 bool ret; 2706 2707 raw_spin_lock_irqsave(&logbuf_lock, flags); 2708 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2709 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2714 2715 /** 2716 * kmsg_dump_get_buffer - copy kmsg log lines 2717 * @dumper: registered kmsg dumper 2718 * @syslog: include the "<4>" prefixes 2719 * @buf: buffer to copy the line to 2720 * @size: maximum size of the buffer 2721 * @len: length of line placed into buffer 2722 * 2723 * Start at the end of the kmsg buffer and fill the provided buffer 2724 * with as many of the the *youngest* kmsg records that fit into it. 2725 * If the buffer is large enough, all available kmsg records will be 2726 * copied with a single call. 2727 * 2728 * Consecutive calls will fill the buffer with the next block of 2729 * available older records, not including the earlier retrieved ones. 2730 * 2731 * A return value of FALSE indicates that there are no more records to 2732 * read. 2733 */ 2734 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2735 char *buf, size_t size, size_t *len) 2736 { 2737 unsigned long flags; 2738 u64 seq; 2739 u32 idx; 2740 u64 next_seq; 2741 u32 next_idx; 2742 enum log_flags prev; 2743 size_t l = 0; 2744 bool ret = false; 2745 2746 if (!dumper->active) 2747 goto out; 2748 2749 raw_spin_lock_irqsave(&logbuf_lock, flags); 2750 if (dumper->cur_seq < log_first_seq) { 2751 /* messages are gone, move to first available one */ 2752 dumper->cur_seq = log_first_seq; 2753 dumper->cur_idx = log_first_idx; 2754 } 2755 2756 /* last entry */ 2757 if (dumper->cur_seq >= dumper->next_seq) { 2758 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2759 goto out; 2760 } 2761 2762 /* calculate length of entire buffer */ 2763 seq = dumper->cur_seq; 2764 idx = dumper->cur_idx; 2765 prev = 0; 2766 while (seq < dumper->next_seq) { 2767 struct printk_log *msg = log_from_idx(idx); 2768 2769 l += msg_print_text(msg, prev, true, NULL, 0); 2770 idx = log_next(idx); 2771 seq++; 2772 prev = msg->flags; 2773 } 2774 2775 /* move first record forward until length fits into the buffer */ 2776 seq = dumper->cur_seq; 2777 idx = dumper->cur_idx; 2778 prev = 0; 2779 while (l > size && seq < dumper->next_seq) { 2780 struct printk_log *msg = log_from_idx(idx); 2781 2782 l -= msg_print_text(msg, prev, true, NULL, 0); 2783 idx = log_next(idx); 2784 seq++; 2785 prev = msg->flags; 2786 } 2787 2788 /* last message in next interation */ 2789 next_seq = seq; 2790 next_idx = idx; 2791 2792 l = 0; 2793 prev = 0; 2794 while (seq < dumper->next_seq) { 2795 struct printk_log *msg = log_from_idx(idx); 2796 2797 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2798 idx = log_next(idx); 2799 seq++; 2800 prev = msg->flags; 2801 } 2802 2803 dumper->next_seq = next_seq; 2804 dumper->next_idx = next_idx; 2805 ret = true; 2806 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2807 out: 2808 if (len) 2809 *len = l; 2810 return ret; 2811 } 2812 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2813 2814 /** 2815 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2816 * @dumper: registered kmsg dumper 2817 * 2818 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2819 * kmsg_dump_get_buffer() can be called again and used multiple 2820 * times within the same dumper.dump() callback. 2821 * 2822 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2823 */ 2824 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2825 { 2826 dumper->cur_seq = clear_seq; 2827 dumper->cur_idx = clear_idx; 2828 dumper->next_seq = log_next_seq; 2829 dumper->next_idx = log_next_idx; 2830 } 2831 2832 /** 2833 * kmsg_dump_rewind - reset the interator 2834 * @dumper: registered kmsg dumper 2835 * 2836 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2837 * kmsg_dump_get_buffer() can be called again and used multiple 2838 * times within the same dumper.dump() callback. 2839 */ 2840 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2841 { 2842 unsigned long flags; 2843 2844 raw_spin_lock_irqsave(&logbuf_lock, flags); 2845 kmsg_dump_rewind_nolock(dumper); 2846 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2847 } 2848 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2849 2850 static char dump_stack_arch_desc_str[128]; 2851 2852 /** 2853 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2854 * @fmt: printf-style format string 2855 * @...: arguments for the format string 2856 * 2857 * The configured string will be printed right after utsname during task 2858 * dumps. Usually used to add arch-specific system identifiers. If an 2859 * arch wants to make use of such an ID string, it should initialize this 2860 * as soon as possible during boot. 2861 */ 2862 void __init dump_stack_set_arch_desc(const char *fmt, ...) 2863 { 2864 va_list args; 2865 2866 va_start(args, fmt); 2867 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 2868 fmt, args); 2869 va_end(args); 2870 } 2871 2872 /** 2873 * dump_stack_print_info - print generic debug info for dump_stack() 2874 * @log_lvl: log level 2875 * 2876 * Arch-specific dump_stack() implementations can use this function to 2877 * print out the same debug information as the generic dump_stack(). 2878 */ 2879 void dump_stack_print_info(const char *log_lvl) 2880 { 2881 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 2882 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 2883 print_tainted(), init_utsname()->release, 2884 (int)strcspn(init_utsname()->version, " "), 2885 init_utsname()->version); 2886 2887 if (dump_stack_arch_desc_str[0] != '\0') 2888 printk("%sHardware name: %s\n", 2889 log_lvl, dump_stack_arch_desc_str); 2890 2891 print_worker_info(log_lvl, current); 2892 } 2893 2894 /** 2895 * show_regs_print_info - print generic debug info for show_regs() 2896 * @log_lvl: log level 2897 * 2898 * show_regs() implementations can use this function to print out generic 2899 * debug information. 2900 */ 2901 void show_regs_print_info(const char *log_lvl) 2902 { 2903 dump_stack_print_info(log_lvl); 2904 2905 printk("%stask: %p ti: %p task.ti: %p\n", 2906 log_lvl, current, current_thread_info(), 2907 task_thread_info(current)); 2908 } 2909 2910 #endif 2911