xref: /openbmc/linux/kernel/printk/printk.c (revision 085354f9)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 enum devkmsg_log_bits {
89 	__DEVKMSG_LOG_BIT_ON = 0,
90 	__DEVKMSG_LOG_BIT_OFF,
91 	__DEVKMSG_LOG_BIT_LOCK,
92 };
93 
94 enum devkmsg_log_masks {
95 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
96 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
97 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99 
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT	0
102 
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104 
105 static int __control_devkmsg(char *str)
106 {
107 	if (!str)
108 		return -EINVAL;
109 
110 	if (!strncmp(str, "on", 2)) {
111 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 		return 2;
113 	} else if (!strncmp(str, "off", 3)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 		return 3;
116 	} else if (!strncmp(str, "ratelimit", 9)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 		return 9;
119 	}
120 	return -EINVAL;
121 }
122 
123 static int __init control_devkmsg(char *str)
124 {
125 	if (__control_devkmsg(str) < 0)
126 		return 1;
127 
128 	/*
129 	 * Set sysctl string accordingly:
130 	 */
131 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 		strncpy(devkmsg_log_str, "on", 2);
134 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "off", 3);
137 	}
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	if (down_trylock(&console_sem))
217 		return 1;
218 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 	return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222 
223 #define up_console_sem() do { \
224 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 	up(&console_sem);\
226 } while (0)
227 
228 /*
229  * This is used for debugging the mess that is the VT code by
230  * keeping track if we have the console semaphore held. It's
231  * definitely not the perfect debug tool (we don't know if _WE_
232  * hold it and are racing, but it helps tracking those weird code
233  * paths in the console code where we end up in places I want
234  * locked without the console sempahore held).
235  */
236 static int console_locked, console_suspended;
237 
238 /*
239  * If exclusive_console is non-NULL then only this console is to be printed to.
240  */
241 static struct console *exclusive_console;
242 
243 /*
244  *	Array of consoles built from command line options (console=)
245  */
246 
247 #define MAX_CMDLINECONSOLES 8
248 
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250 
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255 
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258 
259 /*
260  * The printk log buffer consists of a chain of concatenated variable
261  * length records. Every record starts with a record header, containing
262  * the overall length of the record.
263  *
264  * The heads to the first and last entry in the buffer, as well as the
265  * sequence numbers of these entries are maintained when messages are
266  * stored.
267  *
268  * If the heads indicate available messages, the length in the header
269  * tells the start next message. A length == 0 for the next message
270  * indicates a wrap-around to the beginning of the buffer.
271  *
272  * Every record carries the monotonic timestamp in microseconds, as well as
273  * the standard userspace syslog level and syslog facility. The usual
274  * kernel messages use LOG_KERN; userspace-injected messages always carry
275  * a matching syslog facility, by default LOG_USER. The origin of every
276  * message can be reliably determined that way.
277  *
278  * The human readable log message directly follows the message header. The
279  * length of the message text is stored in the header, the stored message
280  * is not terminated.
281  *
282  * Optionally, a message can carry a dictionary of properties (key/value pairs),
283  * to provide userspace with a machine-readable message context.
284  *
285  * Examples for well-defined, commonly used property names are:
286  *   DEVICE=b12:8               device identifier
287  *                                b12:8         block dev_t
288  *                                c127:3        char dev_t
289  *                                n8            netdev ifindex
290  *                                +sound:card0  subsystem:devname
291  *   SUBSYSTEM=pci              driver-core subsystem name
292  *
293  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294  * follows directly after a '=' character. Every property is terminated by
295  * a '\0' character. The last property is not terminated.
296  *
297  * Example of a message structure:
298  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
299  *   0008  34 00                        record is 52 bytes long
300  *   000a        0b 00                  text is 11 bytes long
301  *   000c              1f 00            dictionary is 23 bytes long
302  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
303  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
304  *         69 6e 65                     "ine"
305  *   001b           44 45 56 49 43      "DEVIC"
306  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
307  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
308  *         67                           "g"
309  *   0032     00 00 00                  padding to next message header
310  *
311  * The 'struct printk_log' buffer header must never be directly exported to
312  * userspace, it is a kernel-private implementation detail that might
313  * need to be changed in the future, when the requirements change.
314  *
315  * /dev/kmsg exports the structured data in the following line format:
316  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317  *
318  * Users of the export format should ignore possible additional values
319  * separated by ',', and find the message after the ';' character.
320  *
321  * The optional key/value pairs are attached as continuation lines starting
322  * with a space character and terminated by a newline. All possible
323  * non-prinatable characters are escaped in the "\xff" notation.
324  */
325 
326 enum log_flags {
327 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
328 	LOG_NEWLINE	= 2,	/* text ended with a newline */
329 	LOG_PREFIX	= 4,	/* text started with a prefix */
330 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
331 };
332 
333 struct printk_log {
334 	u64 ts_nsec;		/* timestamp in nanoseconds */
335 	u16 len;		/* length of entire record */
336 	u16 text_len;		/* length of text buffer */
337 	u16 dict_len;		/* length of dictionary buffer */
338 	u8 facility;		/* syslog facility */
339 	u8 flags:5;		/* internal record flags */
340 	u8 level:3;		/* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346 
347 /*
348  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
349  * within the scheduler's rq lock. It must be released before calling
350  * console_unlock() or anything else that might wake up a process.
351  */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353 
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static enum log_flags syslog_prev;
360 static size_t syslog_partial;
361 
362 /* index and sequence number of the first record stored in the buffer */
363 static u64 log_first_seq;
364 static u32 log_first_idx;
365 
366 /* index and sequence number of the next record to store in the buffer */
367 static u64 log_next_seq;
368 static u32 log_next_idx;
369 
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u32 console_idx;
373 static enum log_flags console_prev;
374 
375 /* the next printk record to read after the last 'clear' command */
376 static u64 clear_seq;
377 static u32 clear_idx;
378 
379 #define PREFIX_MAX		32
380 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
381 
382 #define LOG_LEVEL(v)		((v) & 0x07)
383 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
384 
385 /* record buffer */
386 #define LOG_ALIGN __alignof__(struct printk_log)
387 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
388 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
389 static char *log_buf = __log_buf;
390 static u32 log_buf_len = __LOG_BUF_LEN;
391 
392 /* Return log buffer address */
393 char *log_buf_addr_get(void)
394 {
395 	return log_buf;
396 }
397 
398 /* Return log buffer size */
399 u32 log_buf_len_get(void)
400 {
401 	return log_buf_len;
402 }
403 
404 /* human readable text of the record */
405 static char *log_text(const struct printk_log *msg)
406 {
407 	return (char *)msg + sizeof(struct printk_log);
408 }
409 
410 /* optional key/value pair dictionary attached to the record */
411 static char *log_dict(const struct printk_log *msg)
412 {
413 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
414 }
415 
416 /* get record by index; idx must point to valid msg */
417 static struct printk_log *log_from_idx(u32 idx)
418 {
419 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
420 
421 	/*
422 	 * A length == 0 record is the end of buffer marker. Wrap around and
423 	 * read the message at the start of the buffer.
424 	 */
425 	if (!msg->len)
426 		return (struct printk_log *)log_buf;
427 	return msg;
428 }
429 
430 /* get next record; idx must point to valid msg */
431 static u32 log_next(u32 idx)
432 {
433 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
434 
435 	/* length == 0 indicates the end of the buffer; wrap */
436 	/*
437 	 * A length == 0 record is the end of buffer marker. Wrap around and
438 	 * read the message at the start of the buffer as *this* one, and
439 	 * return the one after that.
440 	 */
441 	if (!msg->len) {
442 		msg = (struct printk_log *)log_buf;
443 		return msg->len;
444 	}
445 	return idx + msg->len;
446 }
447 
448 /*
449  * Check whether there is enough free space for the given message.
450  *
451  * The same values of first_idx and next_idx mean that the buffer
452  * is either empty or full.
453  *
454  * If the buffer is empty, we must respect the position of the indexes.
455  * They cannot be reset to the beginning of the buffer.
456  */
457 static int logbuf_has_space(u32 msg_size, bool empty)
458 {
459 	u32 free;
460 
461 	if (log_next_idx > log_first_idx || empty)
462 		free = max(log_buf_len - log_next_idx, log_first_idx);
463 	else
464 		free = log_first_idx - log_next_idx;
465 
466 	/*
467 	 * We need space also for an empty header that signalizes wrapping
468 	 * of the buffer.
469 	 */
470 	return free >= msg_size + sizeof(struct printk_log);
471 }
472 
473 static int log_make_free_space(u32 msg_size)
474 {
475 	while (log_first_seq < log_next_seq &&
476 	       !logbuf_has_space(msg_size, false)) {
477 		/* drop old messages until we have enough contiguous space */
478 		log_first_idx = log_next(log_first_idx);
479 		log_first_seq++;
480 	}
481 
482 	if (clear_seq < log_first_seq) {
483 		clear_seq = log_first_seq;
484 		clear_idx = log_first_idx;
485 	}
486 
487 	/* sequence numbers are equal, so the log buffer is empty */
488 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
489 		return 0;
490 
491 	return -ENOMEM;
492 }
493 
494 /* compute the message size including the padding bytes */
495 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
496 {
497 	u32 size;
498 
499 	size = sizeof(struct printk_log) + text_len + dict_len;
500 	*pad_len = (-size) & (LOG_ALIGN - 1);
501 	size += *pad_len;
502 
503 	return size;
504 }
505 
506 /*
507  * Define how much of the log buffer we could take at maximum. The value
508  * must be greater than two. Note that only half of the buffer is available
509  * when the index points to the middle.
510  */
511 #define MAX_LOG_TAKE_PART 4
512 static const char trunc_msg[] = "<truncated>";
513 
514 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
515 			u16 *dict_len, u32 *pad_len)
516 {
517 	/*
518 	 * The message should not take the whole buffer. Otherwise, it might
519 	 * get removed too soon.
520 	 */
521 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
522 	if (*text_len > max_text_len)
523 		*text_len = max_text_len;
524 	/* enable the warning message */
525 	*trunc_msg_len = strlen(trunc_msg);
526 	/* disable the "dict" completely */
527 	*dict_len = 0;
528 	/* compute the size again, count also the warning message */
529 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
530 }
531 
532 /* insert record into the buffer, discard old ones, update heads */
533 static int log_store(int facility, int level,
534 		     enum log_flags flags, u64 ts_nsec,
535 		     const char *dict, u16 dict_len,
536 		     const char *text, u16 text_len)
537 {
538 	struct printk_log *msg;
539 	u32 size, pad_len;
540 	u16 trunc_msg_len = 0;
541 
542 	/* number of '\0' padding bytes to next message */
543 	size = msg_used_size(text_len, dict_len, &pad_len);
544 
545 	if (log_make_free_space(size)) {
546 		/* truncate the message if it is too long for empty buffer */
547 		size = truncate_msg(&text_len, &trunc_msg_len,
548 				    &dict_len, &pad_len);
549 		/* survive when the log buffer is too small for trunc_msg */
550 		if (log_make_free_space(size))
551 			return 0;
552 	}
553 
554 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
555 		/*
556 		 * This message + an additional empty header does not fit
557 		 * at the end of the buffer. Add an empty header with len == 0
558 		 * to signify a wrap around.
559 		 */
560 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
561 		log_next_idx = 0;
562 	}
563 
564 	/* fill message */
565 	msg = (struct printk_log *)(log_buf + log_next_idx);
566 	memcpy(log_text(msg), text, text_len);
567 	msg->text_len = text_len;
568 	if (trunc_msg_len) {
569 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
570 		msg->text_len += trunc_msg_len;
571 	}
572 	memcpy(log_dict(msg), dict, dict_len);
573 	msg->dict_len = dict_len;
574 	msg->facility = facility;
575 	msg->level = level & 7;
576 	msg->flags = flags & 0x1f;
577 	if (ts_nsec > 0)
578 		msg->ts_nsec = ts_nsec;
579 	else
580 		msg->ts_nsec = local_clock();
581 	memset(log_dict(msg) + dict_len, 0, pad_len);
582 	msg->len = size;
583 
584 	/* insert message */
585 	log_next_idx += msg->len;
586 	log_next_seq++;
587 
588 	return msg->text_len;
589 }
590 
591 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
592 
593 static int syslog_action_restricted(int type)
594 {
595 	if (dmesg_restrict)
596 		return 1;
597 	/*
598 	 * Unless restricted, we allow "read all" and "get buffer size"
599 	 * for everybody.
600 	 */
601 	return type != SYSLOG_ACTION_READ_ALL &&
602 	       type != SYSLOG_ACTION_SIZE_BUFFER;
603 }
604 
605 int check_syslog_permissions(int type, int source)
606 {
607 	/*
608 	 * If this is from /proc/kmsg and we've already opened it, then we've
609 	 * already done the capabilities checks at open time.
610 	 */
611 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
612 		goto ok;
613 
614 	if (syslog_action_restricted(type)) {
615 		if (capable(CAP_SYSLOG))
616 			goto ok;
617 		/*
618 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
619 		 * a warning.
620 		 */
621 		if (capable(CAP_SYS_ADMIN)) {
622 			pr_warn_once("%s (%d): Attempt to access syslog with "
623 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
624 				     "(deprecated).\n",
625 				 current->comm, task_pid_nr(current));
626 			goto ok;
627 		}
628 		return -EPERM;
629 	}
630 ok:
631 	return security_syslog(type);
632 }
633 EXPORT_SYMBOL_GPL(check_syslog_permissions);
634 
635 static void append_char(char **pp, char *e, char c)
636 {
637 	if (*pp < e)
638 		*(*pp)++ = c;
639 }
640 
641 static ssize_t msg_print_ext_header(char *buf, size_t size,
642 				    struct printk_log *msg, u64 seq,
643 				    enum log_flags prev_flags)
644 {
645 	u64 ts_usec = msg->ts_nsec;
646 	char cont = '-';
647 
648 	do_div(ts_usec, 1000);
649 
650 	/*
651 	 * If we couldn't merge continuation line fragments during the print,
652 	 * export the stored flags to allow an optional external merge of the
653 	 * records. Merging the records isn't always neccessarily correct, like
654 	 * when we hit a race during printing. In most cases though, it produces
655 	 * better readable output. 'c' in the record flags mark the first
656 	 * fragment of a line, '+' the following.
657 	 */
658 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
659 		cont = 'c';
660 	else if ((msg->flags & LOG_CONT) ||
661 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
662 		cont = '+';
663 
664 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
665 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
666 }
667 
668 static ssize_t msg_print_ext_body(char *buf, size_t size,
669 				  char *dict, size_t dict_len,
670 				  char *text, size_t text_len)
671 {
672 	char *p = buf, *e = buf + size;
673 	size_t i;
674 
675 	/* escape non-printable characters */
676 	for (i = 0; i < text_len; i++) {
677 		unsigned char c = text[i];
678 
679 		if (c < ' ' || c >= 127 || c == '\\')
680 			p += scnprintf(p, e - p, "\\x%02x", c);
681 		else
682 			append_char(&p, e, c);
683 	}
684 	append_char(&p, e, '\n');
685 
686 	if (dict_len) {
687 		bool line = true;
688 
689 		for (i = 0; i < dict_len; i++) {
690 			unsigned char c = dict[i];
691 
692 			if (line) {
693 				append_char(&p, e, ' ');
694 				line = false;
695 			}
696 
697 			if (c == '\0') {
698 				append_char(&p, e, '\n');
699 				line = true;
700 				continue;
701 			}
702 
703 			if (c < ' ' || c >= 127 || c == '\\') {
704 				p += scnprintf(p, e - p, "\\x%02x", c);
705 				continue;
706 			}
707 
708 			append_char(&p, e, c);
709 		}
710 		append_char(&p, e, '\n');
711 	}
712 
713 	return p - buf;
714 }
715 
716 /* /dev/kmsg - userspace message inject/listen interface */
717 struct devkmsg_user {
718 	u64 seq;
719 	u32 idx;
720 	enum log_flags prev;
721 	struct ratelimit_state rs;
722 	struct mutex lock;
723 	char buf[CONSOLE_EXT_LOG_MAX];
724 };
725 
726 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
727 {
728 	char *buf, *line;
729 	int level = default_message_loglevel;
730 	int facility = 1;	/* LOG_USER */
731 	struct file *file = iocb->ki_filp;
732 	struct devkmsg_user *user = file->private_data;
733 	size_t len = iov_iter_count(from);
734 	ssize_t ret = len;
735 
736 	if (!user || len > LOG_LINE_MAX)
737 		return -EINVAL;
738 
739 	/* Ignore when user logging is disabled. */
740 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
741 		return len;
742 
743 	/* Ratelimit when not explicitly enabled. */
744 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
745 		if (!___ratelimit(&user->rs, current->comm))
746 			return ret;
747 	}
748 
749 	buf = kmalloc(len+1, GFP_KERNEL);
750 	if (buf == NULL)
751 		return -ENOMEM;
752 
753 	buf[len] = '\0';
754 	if (copy_from_iter(buf, len, from) != len) {
755 		kfree(buf);
756 		return -EFAULT;
757 	}
758 
759 	/*
760 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
761 	 * the decimal value represents 32bit, the lower 3 bit are the log
762 	 * level, the rest are the log facility.
763 	 *
764 	 * If no prefix or no userspace facility is specified, we
765 	 * enforce LOG_USER, to be able to reliably distinguish
766 	 * kernel-generated messages from userspace-injected ones.
767 	 */
768 	line = buf;
769 	if (line[0] == '<') {
770 		char *endp = NULL;
771 		unsigned int u;
772 
773 		u = simple_strtoul(line + 1, &endp, 10);
774 		if (endp && endp[0] == '>') {
775 			level = LOG_LEVEL(u);
776 			if (LOG_FACILITY(u) != 0)
777 				facility = LOG_FACILITY(u);
778 			endp++;
779 			len -= endp - line;
780 			line = endp;
781 		}
782 	}
783 
784 	printk_emit(facility, level, NULL, 0, "%s", line);
785 	kfree(buf);
786 	return ret;
787 }
788 
789 static ssize_t devkmsg_read(struct file *file, char __user *buf,
790 			    size_t count, loff_t *ppos)
791 {
792 	struct devkmsg_user *user = file->private_data;
793 	struct printk_log *msg;
794 	size_t len;
795 	ssize_t ret;
796 
797 	if (!user)
798 		return -EBADF;
799 
800 	ret = mutex_lock_interruptible(&user->lock);
801 	if (ret)
802 		return ret;
803 	raw_spin_lock_irq(&logbuf_lock);
804 	while (user->seq == log_next_seq) {
805 		if (file->f_flags & O_NONBLOCK) {
806 			ret = -EAGAIN;
807 			raw_spin_unlock_irq(&logbuf_lock);
808 			goto out;
809 		}
810 
811 		raw_spin_unlock_irq(&logbuf_lock);
812 		ret = wait_event_interruptible(log_wait,
813 					       user->seq != log_next_seq);
814 		if (ret)
815 			goto out;
816 		raw_spin_lock_irq(&logbuf_lock);
817 	}
818 
819 	if (user->seq < log_first_seq) {
820 		/* our last seen message is gone, return error and reset */
821 		user->idx = log_first_idx;
822 		user->seq = log_first_seq;
823 		ret = -EPIPE;
824 		raw_spin_unlock_irq(&logbuf_lock);
825 		goto out;
826 	}
827 
828 	msg = log_from_idx(user->idx);
829 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
830 				   msg, user->seq, user->prev);
831 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
832 				  log_dict(msg), msg->dict_len,
833 				  log_text(msg), msg->text_len);
834 
835 	user->prev = msg->flags;
836 	user->idx = log_next(user->idx);
837 	user->seq++;
838 	raw_spin_unlock_irq(&logbuf_lock);
839 
840 	if (len > count) {
841 		ret = -EINVAL;
842 		goto out;
843 	}
844 
845 	if (copy_to_user(buf, user->buf, len)) {
846 		ret = -EFAULT;
847 		goto out;
848 	}
849 	ret = len;
850 out:
851 	mutex_unlock(&user->lock);
852 	return ret;
853 }
854 
855 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
856 {
857 	struct devkmsg_user *user = file->private_data;
858 	loff_t ret = 0;
859 
860 	if (!user)
861 		return -EBADF;
862 	if (offset)
863 		return -ESPIPE;
864 
865 	raw_spin_lock_irq(&logbuf_lock);
866 	switch (whence) {
867 	case SEEK_SET:
868 		/* the first record */
869 		user->idx = log_first_idx;
870 		user->seq = log_first_seq;
871 		break;
872 	case SEEK_DATA:
873 		/*
874 		 * The first record after the last SYSLOG_ACTION_CLEAR,
875 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 		 * changes no global state, and does not clear anything.
877 		 */
878 		user->idx = clear_idx;
879 		user->seq = clear_seq;
880 		break;
881 	case SEEK_END:
882 		/* after the last record */
883 		user->idx = log_next_idx;
884 		user->seq = log_next_seq;
885 		break;
886 	default:
887 		ret = -EINVAL;
888 	}
889 	raw_spin_unlock_irq(&logbuf_lock);
890 	return ret;
891 }
892 
893 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
894 {
895 	struct devkmsg_user *user = file->private_data;
896 	int ret = 0;
897 
898 	if (!user)
899 		return POLLERR|POLLNVAL;
900 
901 	poll_wait(file, &log_wait, wait);
902 
903 	raw_spin_lock_irq(&logbuf_lock);
904 	if (user->seq < log_next_seq) {
905 		/* return error when data has vanished underneath us */
906 		if (user->seq < log_first_seq)
907 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
908 		else
909 			ret = POLLIN|POLLRDNORM;
910 	}
911 	raw_spin_unlock_irq(&logbuf_lock);
912 
913 	return ret;
914 }
915 
916 static int devkmsg_open(struct inode *inode, struct file *file)
917 {
918 	struct devkmsg_user *user;
919 	int err;
920 
921 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
922 		return -EPERM;
923 
924 	/* write-only does not need any file context */
925 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
926 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
927 					       SYSLOG_FROM_READER);
928 		if (err)
929 			return err;
930 	}
931 
932 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
933 	if (!user)
934 		return -ENOMEM;
935 
936 	ratelimit_default_init(&user->rs);
937 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
938 
939 	mutex_init(&user->lock);
940 
941 	raw_spin_lock_irq(&logbuf_lock);
942 	user->idx = log_first_idx;
943 	user->seq = log_first_seq;
944 	raw_spin_unlock_irq(&logbuf_lock);
945 
946 	file->private_data = user;
947 	return 0;
948 }
949 
950 static int devkmsg_release(struct inode *inode, struct file *file)
951 {
952 	struct devkmsg_user *user = file->private_data;
953 
954 	if (!user)
955 		return 0;
956 
957 	ratelimit_state_exit(&user->rs);
958 
959 	mutex_destroy(&user->lock);
960 	kfree(user);
961 	return 0;
962 }
963 
964 const struct file_operations kmsg_fops = {
965 	.open = devkmsg_open,
966 	.read = devkmsg_read,
967 	.write_iter = devkmsg_write,
968 	.llseek = devkmsg_llseek,
969 	.poll = devkmsg_poll,
970 	.release = devkmsg_release,
971 };
972 
973 #ifdef CONFIG_KEXEC_CORE
974 /*
975  * This appends the listed symbols to /proc/vmcore
976  *
977  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
978  * obtain access to symbols that are otherwise very difficult to locate.  These
979  * symbols are specifically used so that utilities can access and extract the
980  * dmesg log from a vmcore file after a crash.
981  */
982 void log_buf_kexec_setup(void)
983 {
984 	VMCOREINFO_SYMBOL(log_buf);
985 	VMCOREINFO_SYMBOL(log_buf_len);
986 	VMCOREINFO_SYMBOL(log_first_idx);
987 	VMCOREINFO_SYMBOL(clear_idx);
988 	VMCOREINFO_SYMBOL(log_next_idx);
989 	/*
990 	 * Export struct printk_log size and field offsets. User space tools can
991 	 * parse it and detect any changes to structure down the line.
992 	 */
993 	VMCOREINFO_STRUCT_SIZE(printk_log);
994 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
995 	VMCOREINFO_OFFSET(printk_log, len);
996 	VMCOREINFO_OFFSET(printk_log, text_len);
997 	VMCOREINFO_OFFSET(printk_log, dict_len);
998 }
999 #endif
1000 
1001 /* requested log_buf_len from kernel cmdline */
1002 static unsigned long __initdata new_log_buf_len;
1003 
1004 /* we practice scaling the ring buffer by powers of 2 */
1005 static void __init log_buf_len_update(unsigned size)
1006 {
1007 	if (size)
1008 		size = roundup_pow_of_two(size);
1009 	if (size > log_buf_len)
1010 		new_log_buf_len = size;
1011 }
1012 
1013 /* save requested log_buf_len since it's too early to process it */
1014 static int __init log_buf_len_setup(char *str)
1015 {
1016 	unsigned size = memparse(str, &str);
1017 
1018 	log_buf_len_update(size);
1019 
1020 	return 0;
1021 }
1022 early_param("log_buf_len", log_buf_len_setup);
1023 
1024 #ifdef CONFIG_SMP
1025 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1026 
1027 static void __init log_buf_add_cpu(void)
1028 {
1029 	unsigned int cpu_extra;
1030 
1031 	/*
1032 	 * archs should set up cpu_possible_bits properly with
1033 	 * set_cpu_possible() after setup_arch() but just in
1034 	 * case lets ensure this is valid.
1035 	 */
1036 	if (num_possible_cpus() == 1)
1037 		return;
1038 
1039 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1040 
1041 	/* by default this will only continue through for large > 64 CPUs */
1042 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1043 		return;
1044 
1045 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1046 		__LOG_CPU_MAX_BUF_LEN);
1047 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1048 		cpu_extra);
1049 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1050 
1051 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1052 }
1053 #else /* !CONFIG_SMP */
1054 static inline void log_buf_add_cpu(void) {}
1055 #endif /* CONFIG_SMP */
1056 
1057 void __init setup_log_buf(int early)
1058 {
1059 	unsigned long flags;
1060 	char *new_log_buf;
1061 	int free;
1062 
1063 	if (log_buf != __log_buf)
1064 		return;
1065 
1066 	if (!early && !new_log_buf_len)
1067 		log_buf_add_cpu();
1068 
1069 	if (!new_log_buf_len)
1070 		return;
1071 
1072 	if (early) {
1073 		new_log_buf =
1074 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1075 	} else {
1076 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1077 							  LOG_ALIGN);
1078 	}
1079 
1080 	if (unlikely(!new_log_buf)) {
1081 		pr_err("log_buf_len: %ld bytes not available\n",
1082 			new_log_buf_len);
1083 		return;
1084 	}
1085 
1086 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1087 	log_buf_len = new_log_buf_len;
1088 	log_buf = new_log_buf;
1089 	new_log_buf_len = 0;
1090 	free = __LOG_BUF_LEN - log_next_idx;
1091 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1092 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1093 
1094 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1095 	pr_info("early log buf free: %d(%d%%)\n",
1096 		free, (free * 100) / __LOG_BUF_LEN);
1097 }
1098 
1099 static bool __read_mostly ignore_loglevel;
1100 
1101 static int __init ignore_loglevel_setup(char *str)
1102 {
1103 	ignore_loglevel = true;
1104 	pr_info("debug: ignoring loglevel setting.\n");
1105 
1106 	return 0;
1107 }
1108 
1109 early_param("ignore_loglevel", ignore_loglevel_setup);
1110 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1111 MODULE_PARM_DESC(ignore_loglevel,
1112 		 "ignore loglevel setting (prints all kernel messages to the console)");
1113 
1114 static bool suppress_message_printing(int level)
1115 {
1116 	return (level >= console_loglevel && !ignore_loglevel);
1117 }
1118 
1119 #ifdef CONFIG_BOOT_PRINTK_DELAY
1120 
1121 static int boot_delay; /* msecs delay after each printk during bootup */
1122 static unsigned long long loops_per_msec;	/* based on boot_delay */
1123 
1124 static int __init boot_delay_setup(char *str)
1125 {
1126 	unsigned long lpj;
1127 
1128 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1129 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1130 
1131 	get_option(&str, &boot_delay);
1132 	if (boot_delay > 10 * 1000)
1133 		boot_delay = 0;
1134 
1135 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1136 		"HZ: %d, loops_per_msec: %llu\n",
1137 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1138 	return 0;
1139 }
1140 early_param("boot_delay", boot_delay_setup);
1141 
1142 static void boot_delay_msec(int level)
1143 {
1144 	unsigned long long k;
1145 	unsigned long timeout;
1146 
1147 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1148 		|| suppress_message_printing(level)) {
1149 		return;
1150 	}
1151 
1152 	k = (unsigned long long)loops_per_msec * boot_delay;
1153 
1154 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1155 	while (k) {
1156 		k--;
1157 		cpu_relax();
1158 		/*
1159 		 * use (volatile) jiffies to prevent
1160 		 * compiler reduction; loop termination via jiffies
1161 		 * is secondary and may or may not happen.
1162 		 */
1163 		if (time_after(jiffies, timeout))
1164 			break;
1165 		touch_nmi_watchdog();
1166 	}
1167 }
1168 #else
1169 static inline void boot_delay_msec(int level)
1170 {
1171 }
1172 #endif
1173 
1174 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1175 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1176 
1177 static size_t print_time(u64 ts, char *buf)
1178 {
1179 	unsigned long rem_nsec;
1180 
1181 	if (!printk_time)
1182 		return 0;
1183 
1184 	rem_nsec = do_div(ts, 1000000000);
1185 
1186 	if (!buf)
1187 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1188 
1189 	return sprintf(buf, "[%5lu.%06lu] ",
1190 		       (unsigned long)ts, rem_nsec / 1000);
1191 }
1192 
1193 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1194 {
1195 	size_t len = 0;
1196 	unsigned int prefix = (msg->facility << 3) | msg->level;
1197 
1198 	if (syslog) {
1199 		if (buf) {
1200 			len += sprintf(buf, "<%u>", prefix);
1201 		} else {
1202 			len += 3;
1203 			if (prefix > 999)
1204 				len += 3;
1205 			else if (prefix > 99)
1206 				len += 2;
1207 			else if (prefix > 9)
1208 				len++;
1209 		}
1210 	}
1211 
1212 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1213 	return len;
1214 }
1215 
1216 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1217 			     bool syslog, char *buf, size_t size)
1218 {
1219 	const char *text = log_text(msg);
1220 	size_t text_size = msg->text_len;
1221 	bool prefix = true;
1222 	bool newline = true;
1223 	size_t len = 0;
1224 
1225 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1226 		prefix = false;
1227 
1228 	if (msg->flags & LOG_CONT) {
1229 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1230 			prefix = false;
1231 
1232 		if (!(msg->flags & LOG_NEWLINE))
1233 			newline = false;
1234 	}
1235 
1236 	do {
1237 		const char *next = memchr(text, '\n', text_size);
1238 		size_t text_len;
1239 
1240 		if (next) {
1241 			text_len = next - text;
1242 			next++;
1243 			text_size -= next - text;
1244 		} else {
1245 			text_len = text_size;
1246 		}
1247 
1248 		if (buf) {
1249 			if (print_prefix(msg, syslog, NULL) +
1250 			    text_len + 1 >= size - len)
1251 				break;
1252 
1253 			if (prefix)
1254 				len += print_prefix(msg, syslog, buf + len);
1255 			memcpy(buf + len, text, text_len);
1256 			len += text_len;
1257 			if (next || newline)
1258 				buf[len++] = '\n';
1259 		} else {
1260 			/* SYSLOG_ACTION_* buffer size only calculation */
1261 			if (prefix)
1262 				len += print_prefix(msg, syslog, NULL);
1263 			len += text_len;
1264 			if (next || newline)
1265 				len++;
1266 		}
1267 
1268 		prefix = true;
1269 		text = next;
1270 	} while (text);
1271 
1272 	return len;
1273 }
1274 
1275 static int syslog_print(char __user *buf, int size)
1276 {
1277 	char *text;
1278 	struct printk_log *msg;
1279 	int len = 0;
1280 
1281 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1282 	if (!text)
1283 		return -ENOMEM;
1284 
1285 	while (size > 0) {
1286 		size_t n;
1287 		size_t skip;
1288 
1289 		raw_spin_lock_irq(&logbuf_lock);
1290 		if (syslog_seq < log_first_seq) {
1291 			/* messages are gone, move to first one */
1292 			syslog_seq = log_first_seq;
1293 			syslog_idx = log_first_idx;
1294 			syslog_prev = 0;
1295 			syslog_partial = 0;
1296 		}
1297 		if (syslog_seq == log_next_seq) {
1298 			raw_spin_unlock_irq(&logbuf_lock);
1299 			break;
1300 		}
1301 
1302 		skip = syslog_partial;
1303 		msg = log_from_idx(syslog_idx);
1304 		n = msg_print_text(msg, syslog_prev, true, text,
1305 				   LOG_LINE_MAX + PREFIX_MAX);
1306 		if (n - syslog_partial <= size) {
1307 			/* message fits into buffer, move forward */
1308 			syslog_idx = log_next(syslog_idx);
1309 			syslog_seq++;
1310 			syslog_prev = msg->flags;
1311 			n -= syslog_partial;
1312 			syslog_partial = 0;
1313 		} else if (!len){
1314 			/* partial read(), remember position */
1315 			n = size;
1316 			syslog_partial += n;
1317 		} else
1318 			n = 0;
1319 		raw_spin_unlock_irq(&logbuf_lock);
1320 
1321 		if (!n)
1322 			break;
1323 
1324 		if (copy_to_user(buf, text + skip, n)) {
1325 			if (!len)
1326 				len = -EFAULT;
1327 			break;
1328 		}
1329 
1330 		len += n;
1331 		size -= n;
1332 		buf += n;
1333 	}
1334 
1335 	kfree(text);
1336 	return len;
1337 }
1338 
1339 static int syslog_print_all(char __user *buf, int size, bool clear)
1340 {
1341 	char *text;
1342 	int len = 0;
1343 
1344 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1345 	if (!text)
1346 		return -ENOMEM;
1347 
1348 	raw_spin_lock_irq(&logbuf_lock);
1349 	if (buf) {
1350 		u64 next_seq;
1351 		u64 seq;
1352 		u32 idx;
1353 		enum log_flags prev;
1354 
1355 		/*
1356 		 * Find first record that fits, including all following records,
1357 		 * into the user-provided buffer for this dump.
1358 		 */
1359 		seq = clear_seq;
1360 		idx = clear_idx;
1361 		prev = 0;
1362 		while (seq < log_next_seq) {
1363 			struct printk_log *msg = log_from_idx(idx);
1364 
1365 			len += msg_print_text(msg, prev, true, NULL, 0);
1366 			prev = msg->flags;
1367 			idx = log_next(idx);
1368 			seq++;
1369 		}
1370 
1371 		/* move first record forward until length fits into the buffer */
1372 		seq = clear_seq;
1373 		idx = clear_idx;
1374 		prev = 0;
1375 		while (len > size && seq < log_next_seq) {
1376 			struct printk_log *msg = log_from_idx(idx);
1377 
1378 			len -= msg_print_text(msg, prev, true, NULL, 0);
1379 			prev = msg->flags;
1380 			idx = log_next(idx);
1381 			seq++;
1382 		}
1383 
1384 		/* last message fitting into this dump */
1385 		next_seq = log_next_seq;
1386 
1387 		len = 0;
1388 		while (len >= 0 && seq < next_seq) {
1389 			struct printk_log *msg = log_from_idx(idx);
1390 			int textlen;
1391 
1392 			textlen = msg_print_text(msg, prev, true, text,
1393 						 LOG_LINE_MAX + PREFIX_MAX);
1394 			if (textlen < 0) {
1395 				len = textlen;
1396 				break;
1397 			}
1398 			idx = log_next(idx);
1399 			seq++;
1400 			prev = msg->flags;
1401 
1402 			raw_spin_unlock_irq(&logbuf_lock);
1403 			if (copy_to_user(buf + len, text, textlen))
1404 				len = -EFAULT;
1405 			else
1406 				len += textlen;
1407 			raw_spin_lock_irq(&logbuf_lock);
1408 
1409 			if (seq < log_first_seq) {
1410 				/* messages are gone, move to next one */
1411 				seq = log_first_seq;
1412 				idx = log_first_idx;
1413 				prev = 0;
1414 			}
1415 		}
1416 	}
1417 
1418 	if (clear) {
1419 		clear_seq = log_next_seq;
1420 		clear_idx = log_next_idx;
1421 	}
1422 	raw_spin_unlock_irq(&logbuf_lock);
1423 
1424 	kfree(text);
1425 	return len;
1426 }
1427 
1428 int do_syslog(int type, char __user *buf, int len, int source)
1429 {
1430 	bool clear = false;
1431 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1432 	int error;
1433 
1434 	error = check_syslog_permissions(type, source);
1435 	if (error)
1436 		goto out;
1437 
1438 	switch (type) {
1439 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1440 		break;
1441 	case SYSLOG_ACTION_OPEN:	/* Open log */
1442 		break;
1443 	case SYSLOG_ACTION_READ:	/* Read from log */
1444 		error = -EINVAL;
1445 		if (!buf || len < 0)
1446 			goto out;
1447 		error = 0;
1448 		if (!len)
1449 			goto out;
1450 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1451 			error = -EFAULT;
1452 			goto out;
1453 		}
1454 		error = wait_event_interruptible(log_wait,
1455 						 syslog_seq != log_next_seq);
1456 		if (error)
1457 			goto out;
1458 		error = syslog_print(buf, len);
1459 		break;
1460 	/* Read/clear last kernel messages */
1461 	case SYSLOG_ACTION_READ_CLEAR:
1462 		clear = true;
1463 		/* FALL THRU */
1464 	/* Read last kernel messages */
1465 	case SYSLOG_ACTION_READ_ALL:
1466 		error = -EINVAL;
1467 		if (!buf || len < 0)
1468 			goto out;
1469 		error = 0;
1470 		if (!len)
1471 			goto out;
1472 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1473 			error = -EFAULT;
1474 			goto out;
1475 		}
1476 		error = syslog_print_all(buf, len, clear);
1477 		break;
1478 	/* Clear ring buffer */
1479 	case SYSLOG_ACTION_CLEAR:
1480 		syslog_print_all(NULL, 0, true);
1481 		break;
1482 	/* Disable logging to console */
1483 	case SYSLOG_ACTION_CONSOLE_OFF:
1484 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1485 			saved_console_loglevel = console_loglevel;
1486 		console_loglevel = minimum_console_loglevel;
1487 		break;
1488 	/* Enable logging to console */
1489 	case SYSLOG_ACTION_CONSOLE_ON:
1490 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1491 			console_loglevel = saved_console_loglevel;
1492 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1493 		}
1494 		break;
1495 	/* Set level of messages printed to console */
1496 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1497 		error = -EINVAL;
1498 		if (len < 1 || len > 8)
1499 			goto out;
1500 		if (len < minimum_console_loglevel)
1501 			len = minimum_console_loglevel;
1502 		console_loglevel = len;
1503 		/* Implicitly re-enable logging to console */
1504 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1505 		error = 0;
1506 		break;
1507 	/* Number of chars in the log buffer */
1508 	case SYSLOG_ACTION_SIZE_UNREAD:
1509 		raw_spin_lock_irq(&logbuf_lock);
1510 		if (syslog_seq < log_first_seq) {
1511 			/* messages are gone, move to first one */
1512 			syslog_seq = log_first_seq;
1513 			syslog_idx = log_first_idx;
1514 			syslog_prev = 0;
1515 			syslog_partial = 0;
1516 		}
1517 		if (source == SYSLOG_FROM_PROC) {
1518 			/*
1519 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1520 			 * for pending data, not the size; return the count of
1521 			 * records, not the length.
1522 			 */
1523 			error = log_next_seq - syslog_seq;
1524 		} else {
1525 			u64 seq = syslog_seq;
1526 			u32 idx = syslog_idx;
1527 			enum log_flags prev = syslog_prev;
1528 
1529 			error = 0;
1530 			while (seq < log_next_seq) {
1531 				struct printk_log *msg = log_from_idx(idx);
1532 
1533 				error += msg_print_text(msg, prev, true, NULL, 0);
1534 				idx = log_next(idx);
1535 				seq++;
1536 				prev = msg->flags;
1537 			}
1538 			error -= syslog_partial;
1539 		}
1540 		raw_spin_unlock_irq(&logbuf_lock);
1541 		break;
1542 	/* Size of the log buffer */
1543 	case SYSLOG_ACTION_SIZE_BUFFER:
1544 		error = log_buf_len;
1545 		break;
1546 	default:
1547 		error = -EINVAL;
1548 		break;
1549 	}
1550 out:
1551 	return error;
1552 }
1553 
1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1555 {
1556 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1557 }
1558 
1559 /*
1560  * Call the console drivers, asking them to write out
1561  * log_buf[start] to log_buf[end - 1].
1562  * The console_lock must be held.
1563  */
1564 static void call_console_drivers(int level,
1565 				 const char *ext_text, size_t ext_len,
1566 				 const char *text, size_t len)
1567 {
1568 	struct console *con;
1569 
1570 	trace_console(text, len);
1571 
1572 	if (!console_drivers)
1573 		return;
1574 
1575 	for_each_console(con) {
1576 		if (exclusive_console && con != exclusive_console)
1577 			continue;
1578 		if (!(con->flags & CON_ENABLED))
1579 			continue;
1580 		if (!con->write)
1581 			continue;
1582 		if (!cpu_online(smp_processor_id()) &&
1583 		    !(con->flags & CON_ANYTIME))
1584 			continue;
1585 		if (con->flags & CON_EXTENDED)
1586 			con->write(con, ext_text, ext_len);
1587 		else
1588 			con->write(con, text, len);
1589 	}
1590 }
1591 
1592 /*
1593  * Zap console related locks when oopsing.
1594  * To leave time for slow consoles to print a full oops,
1595  * only zap at most once every 30 seconds.
1596  */
1597 static void zap_locks(void)
1598 {
1599 	static unsigned long oops_timestamp;
1600 
1601 	if (time_after_eq(jiffies, oops_timestamp) &&
1602 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1603 		return;
1604 
1605 	oops_timestamp = jiffies;
1606 
1607 	debug_locks_off();
1608 	/* If a crash is occurring, make sure we can't deadlock */
1609 	raw_spin_lock_init(&logbuf_lock);
1610 	/* And make sure that we print immediately */
1611 	sema_init(&console_sem, 1);
1612 }
1613 
1614 int printk_delay_msec __read_mostly;
1615 
1616 static inline void printk_delay(void)
1617 {
1618 	if (unlikely(printk_delay_msec)) {
1619 		int m = printk_delay_msec;
1620 
1621 		while (m--) {
1622 			mdelay(1);
1623 			touch_nmi_watchdog();
1624 		}
1625 	}
1626 }
1627 
1628 /*
1629  * Continuation lines are buffered, and not committed to the record buffer
1630  * until the line is complete, or a race forces it. The line fragments
1631  * though, are printed immediately to the consoles to ensure everything has
1632  * reached the console in case of a kernel crash.
1633  */
1634 static struct cont {
1635 	char buf[LOG_LINE_MAX];
1636 	size_t len;			/* length == 0 means unused buffer */
1637 	size_t cons;			/* bytes written to console */
1638 	struct task_struct *owner;	/* task of first print*/
1639 	u64 ts_nsec;			/* time of first print */
1640 	u8 level;			/* log level of first message */
1641 	u8 facility;			/* log facility of first message */
1642 	enum log_flags flags;		/* prefix, newline flags */
1643 	bool flushed:1;			/* buffer sealed and committed */
1644 } cont;
1645 
1646 static void cont_flush(enum log_flags flags)
1647 {
1648 	if (cont.flushed)
1649 		return;
1650 	if (cont.len == 0)
1651 		return;
1652 
1653 	if (cont.cons) {
1654 		/*
1655 		 * If a fragment of this line was directly flushed to the
1656 		 * console; wait for the console to pick up the rest of the
1657 		 * line. LOG_NOCONS suppresses a duplicated output.
1658 		 */
1659 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1660 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1661 		cont.flags = flags;
1662 		cont.flushed = true;
1663 	} else {
1664 		/*
1665 		 * If no fragment of this line ever reached the console,
1666 		 * just submit it to the store and free the buffer.
1667 		 */
1668 		log_store(cont.facility, cont.level, flags, 0,
1669 			  NULL, 0, cont.buf, cont.len);
1670 		cont.len = 0;
1671 	}
1672 }
1673 
1674 static bool cont_add(int facility, int level, const char *text, size_t len)
1675 {
1676 	if (cont.len && cont.flushed)
1677 		return false;
1678 
1679 	/*
1680 	 * If ext consoles are present, flush and skip in-kernel
1681 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1682 	 * the line gets too long, split it up in separate records.
1683 	 */
1684 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1685 		cont_flush(LOG_CONT);
1686 		return false;
1687 	}
1688 
1689 	if (!cont.len) {
1690 		cont.facility = facility;
1691 		cont.level = level;
1692 		cont.owner = current;
1693 		cont.ts_nsec = local_clock();
1694 		cont.flags = 0;
1695 		cont.cons = 0;
1696 		cont.flushed = false;
1697 	}
1698 
1699 	memcpy(cont.buf + cont.len, text, len);
1700 	cont.len += len;
1701 
1702 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1703 		cont_flush(LOG_CONT);
1704 
1705 	return true;
1706 }
1707 
1708 static size_t cont_print_text(char *text, size_t size)
1709 {
1710 	size_t textlen = 0;
1711 	size_t len;
1712 
1713 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1714 		textlen += print_time(cont.ts_nsec, text);
1715 		size -= textlen;
1716 	}
1717 
1718 	len = cont.len - cont.cons;
1719 	if (len > 0) {
1720 		if (len+1 > size)
1721 			len = size-1;
1722 		memcpy(text + textlen, cont.buf + cont.cons, len);
1723 		textlen += len;
1724 		cont.cons = cont.len;
1725 	}
1726 
1727 	if (cont.flushed) {
1728 		if (cont.flags & LOG_NEWLINE)
1729 			text[textlen++] = '\n';
1730 		/* got everything, release buffer */
1731 		cont.len = 0;
1732 	}
1733 	return textlen;
1734 }
1735 
1736 asmlinkage int vprintk_emit(int facility, int level,
1737 			    const char *dict, size_t dictlen,
1738 			    const char *fmt, va_list args)
1739 {
1740 	static bool recursion_bug;
1741 	static char textbuf[LOG_LINE_MAX];
1742 	char *text = textbuf;
1743 	size_t text_len = 0;
1744 	enum log_flags lflags = 0;
1745 	unsigned long flags;
1746 	int this_cpu;
1747 	int printed_len = 0;
1748 	int nmi_message_lost;
1749 	bool in_sched = false;
1750 	/* cpu currently holding logbuf_lock in this function */
1751 	static unsigned int logbuf_cpu = UINT_MAX;
1752 
1753 	if (level == LOGLEVEL_SCHED) {
1754 		level = LOGLEVEL_DEFAULT;
1755 		in_sched = true;
1756 	}
1757 
1758 	boot_delay_msec(level);
1759 	printk_delay();
1760 
1761 	local_irq_save(flags);
1762 	this_cpu = smp_processor_id();
1763 
1764 	/*
1765 	 * Ouch, printk recursed into itself!
1766 	 */
1767 	if (unlikely(logbuf_cpu == this_cpu)) {
1768 		/*
1769 		 * If a crash is occurring during printk() on this CPU,
1770 		 * then try to get the crash message out but make sure
1771 		 * we can't deadlock. Otherwise just return to avoid the
1772 		 * recursion and return - but flag the recursion so that
1773 		 * it can be printed at the next appropriate moment:
1774 		 */
1775 		if (!oops_in_progress && !lockdep_recursing(current)) {
1776 			recursion_bug = true;
1777 			local_irq_restore(flags);
1778 			return 0;
1779 		}
1780 		zap_locks();
1781 	}
1782 
1783 	lockdep_off();
1784 	/* This stops the holder of console_sem just where we want him */
1785 	raw_spin_lock(&logbuf_lock);
1786 	logbuf_cpu = this_cpu;
1787 
1788 	if (unlikely(recursion_bug)) {
1789 		static const char recursion_msg[] =
1790 			"BUG: recent printk recursion!";
1791 
1792 		recursion_bug = false;
1793 		/* emit KERN_CRIT message */
1794 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1795 					 NULL, 0, recursion_msg,
1796 					 strlen(recursion_msg));
1797 	}
1798 
1799 	nmi_message_lost = get_nmi_message_lost();
1800 	if (unlikely(nmi_message_lost)) {
1801 		text_len = scnprintf(textbuf, sizeof(textbuf),
1802 				     "BAD LUCK: lost %d message(s) from NMI context!",
1803 				     nmi_message_lost);
1804 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1805 					 NULL, 0, textbuf, text_len);
1806 	}
1807 
1808 	/*
1809 	 * The printf needs to come first; we need the syslog
1810 	 * prefix which might be passed-in as a parameter.
1811 	 */
1812 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1813 
1814 	/* mark and strip a trailing newline */
1815 	if (text_len && text[text_len-1] == '\n') {
1816 		text_len--;
1817 		lflags |= LOG_NEWLINE;
1818 	}
1819 
1820 	/* strip kernel syslog prefix and extract log level or control flags */
1821 	if (facility == 0) {
1822 		int kern_level = printk_get_level(text);
1823 
1824 		if (kern_level) {
1825 			const char *end_of_header = printk_skip_level(text);
1826 			switch (kern_level) {
1827 			case '0' ... '7':
1828 				if (level == LOGLEVEL_DEFAULT)
1829 					level = kern_level - '0';
1830 				/* fallthrough */
1831 			case 'd':	/* KERN_DEFAULT */
1832 				lflags |= LOG_PREFIX;
1833 			}
1834 			/*
1835 			 * No need to check length here because vscnprintf
1836 			 * put '\0' at the end of the string. Only valid and
1837 			 * newly printed level is detected.
1838 			 */
1839 			text_len -= end_of_header - text;
1840 			text = (char *)end_of_header;
1841 		}
1842 	}
1843 
1844 	if (level == LOGLEVEL_DEFAULT)
1845 		level = default_message_loglevel;
1846 
1847 	if (dict)
1848 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1849 
1850 	if (!(lflags & LOG_NEWLINE)) {
1851 		/*
1852 		 * Flush the conflicting buffer. An earlier newline was missing,
1853 		 * or another task also prints continuation lines.
1854 		 */
1855 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1856 			cont_flush(LOG_NEWLINE);
1857 
1858 		/* buffer line if possible, otherwise store it right away */
1859 		if (cont_add(facility, level, text, text_len))
1860 			printed_len += text_len;
1861 		else
1862 			printed_len += log_store(facility, level,
1863 						 lflags | LOG_CONT, 0,
1864 						 dict, dictlen, text, text_len);
1865 	} else {
1866 		bool stored = false;
1867 
1868 		/*
1869 		 * If an earlier newline was missing and it was the same task,
1870 		 * either merge it with the current buffer and flush, or if
1871 		 * there was a race with interrupts (prefix == true) then just
1872 		 * flush it out and store this line separately.
1873 		 * If the preceding printk was from a different task and missed
1874 		 * a newline, flush and append the newline.
1875 		 */
1876 		if (cont.len) {
1877 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1878 				stored = cont_add(facility, level, text,
1879 						  text_len);
1880 			cont_flush(LOG_NEWLINE);
1881 		}
1882 
1883 		if (stored)
1884 			printed_len += text_len;
1885 		else
1886 			printed_len += log_store(facility, level, lflags, 0,
1887 						 dict, dictlen, text, text_len);
1888 	}
1889 
1890 	logbuf_cpu = UINT_MAX;
1891 	raw_spin_unlock(&logbuf_lock);
1892 	lockdep_on();
1893 	local_irq_restore(flags);
1894 
1895 	/* If called from the scheduler, we can not call up(). */
1896 	if (!in_sched) {
1897 		lockdep_off();
1898 		/*
1899 		 * Try to acquire and then immediately release the console
1900 		 * semaphore.  The release will print out buffers and wake up
1901 		 * /dev/kmsg and syslog() users.
1902 		 */
1903 		if (console_trylock())
1904 			console_unlock();
1905 		lockdep_on();
1906 	}
1907 
1908 	return printed_len;
1909 }
1910 EXPORT_SYMBOL(vprintk_emit);
1911 
1912 asmlinkage int vprintk(const char *fmt, va_list args)
1913 {
1914 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1915 }
1916 EXPORT_SYMBOL(vprintk);
1917 
1918 asmlinkage int printk_emit(int facility, int level,
1919 			   const char *dict, size_t dictlen,
1920 			   const char *fmt, ...)
1921 {
1922 	va_list args;
1923 	int r;
1924 
1925 	va_start(args, fmt);
1926 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1927 	va_end(args);
1928 
1929 	return r;
1930 }
1931 EXPORT_SYMBOL(printk_emit);
1932 
1933 int vprintk_default(const char *fmt, va_list args)
1934 {
1935 	int r;
1936 
1937 #ifdef CONFIG_KGDB_KDB
1938 	if (unlikely(kdb_trap_printk)) {
1939 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1940 		return r;
1941 	}
1942 #endif
1943 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1944 
1945 	return r;
1946 }
1947 EXPORT_SYMBOL_GPL(vprintk_default);
1948 
1949 /**
1950  * printk - print a kernel message
1951  * @fmt: format string
1952  *
1953  * This is printk(). It can be called from any context. We want it to work.
1954  *
1955  * We try to grab the console_lock. If we succeed, it's easy - we log the
1956  * output and call the console drivers.  If we fail to get the semaphore, we
1957  * place the output into the log buffer and return. The current holder of
1958  * the console_sem will notice the new output in console_unlock(); and will
1959  * send it to the consoles before releasing the lock.
1960  *
1961  * One effect of this deferred printing is that code which calls printk() and
1962  * then changes console_loglevel may break. This is because console_loglevel
1963  * is inspected when the actual printing occurs.
1964  *
1965  * See also:
1966  * printf(3)
1967  *
1968  * See the vsnprintf() documentation for format string extensions over C99.
1969  */
1970 asmlinkage __visible int printk(const char *fmt, ...)
1971 {
1972 	va_list args;
1973 	int r;
1974 
1975 	va_start(args, fmt);
1976 	r = vprintk_func(fmt, args);
1977 	va_end(args);
1978 
1979 	return r;
1980 }
1981 EXPORT_SYMBOL(printk);
1982 
1983 #else /* CONFIG_PRINTK */
1984 
1985 #define LOG_LINE_MAX		0
1986 #define PREFIX_MAX		0
1987 
1988 static u64 syslog_seq;
1989 static u32 syslog_idx;
1990 static u64 console_seq;
1991 static u32 console_idx;
1992 static enum log_flags syslog_prev;
1993 static u64 log_first_seq;
1994 static u32 log_first_idx;
1995 static u64 log_next_seq;
1996 static enum log_flags console_prev;
1997 static struct cont {
1998 	size_t len;
1999 	size_t cons;
2000 	u8 level;
2001 	bool flushed:1;
2002 } cont;
2003 static char *log_text(const struct printk_log *msg) { return NULL; }
2004 static char *log_dict(const struct printk_log *msg) { return NULL; }
2005 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2006 static u32 log_next(u32 idx) { return 0; }
2007 static ssize_t msg_print_ext_header(char *buf, size_t size,
2008 				    struct printk_log *msg, u64 seq,
2009 				    enum log_flags prev_flags) { return 0; }
2010 static ssize_t msg_print_ext_body(char *buf, size_t size,
2011 				  char *dict, size_t dict_len,
2012 				  char *text, size_t text_len) { return 0; }
2013 static void call_console_drivers(int level,
2014 				 const char *ext_text, size_t ext_len,
2015 				 const char *text, size_t len) {}
2016 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2017 			     bool syslog, char *buf, size_t size) { return 0; }
2018 static size_t cont_print_text(char *text, size_t size) { return 0; }
2019 static bool suppress_message_printing(int level) { return false; }
2020 
2021 /* Still needs to be defined for users */
2022 DEFINE_PER_CPU(printk_func_t, printk_func);
2023 
2024 #endif /* CONFIG_PRINTK */
2025 
2026 #ifdef CONFIG_EARLY_PRINTK
2027 struct console *early_console;
2028 
2029 asmlinkage __visible void early_printk(const char *fmt, ...)
2030 {
2031 	va_list ap;
2032 	char buf[512];
2033 	int n;
2034 
2035 	if (!early_console)
2036 		return;
2037 
2038 	va_start(ap, fmt);
2039 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2040 	va_end(ap);
2041 
2042 	early_console->write(early_console, buf, n);
2043 }
2044 #endif
2045 
2046 static int __add_preferred_console(char *name, int idx, char *options,
2047 				   char *brl_options)
2048 {
2049 	struct console_cmdline *c;
2050 	int i;
2051 
2052 	/*
2053 	 *	See if this tty is not yet registered, and
2054 	 *	if we have a slot free.
2055 	 */
2056 	for (i = 0, c = console_cmdline;
2057 	     i < MAX_CMDLINECONSOLES && c->name[0];
2058 	     i++, c++) {
2059 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2060 			if (!brl_options)
2061 				selected_console = i;
2062 			return 0;
2063 		}
2064 	}
2065 	if (i == MAX_CMDLINECONSOLES)
2066 		return -E2BIG;
2067 	if (!brl_options)
2068 		selected_console = i;
2069 	strlcpy(c->name, name, sizeof(c->name));
2070 	c->options = options;
2071 	braille_set_options(c, brl_options);
2072 
2073 	c->index = idx;
2074 	return 0;
2075 }
2076 /*
2077  * Set up a console.  Called via do_early_param() in init/main.c
2078  * for each "console=" parameter in the boot command line.
2079  */
2080 static int __init console_setup(char *str)
2081 {
2082 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2083 	char *s, *options, *brl_options = NULL;
2084 	int idx;
2085 
2086 	if (_braille_console_setup(&str, &brl_options))
2087 		return 1;
2088 
2089 	/*
2090 	 * Decode str into name, index, options.
2091 	 */
2092 	if (str[0] >= '0' && str[0] <= '9') {
2093 		strcpy(buf, "ttyS");
2094 		strncpy(buf + 4, str, sizeof(buf) - 5);
2095 	} else {
2096 		strncpy(buf, str, sizeof(buf) - 1);
2097 	}
2098 	buf[sizeof(buf) - 1] = 0;
2099 	options = strchr(str, ',');
2100 	if (options)
2101 		*(options++) = 0;
2102 #ifdef __sparc__
2103 	if (!strcmp(str, "ttya"))
2104 		strcpy(buf, "ttyS0");
2105 	if (!strcmp(str, "ttyb"))
2106 		strcpy(buf, "ttyS1");
2107 #endif
2108 	for (s = buf; *s; s++)
2109 		if (isdigit(*s) || *s == ',')
2110 			break;
2111 	idx = simple_strtoul(s, NULL, 10);
2112 	*s = 0;
2113 
2114 	__add_preferred_console(buf, idx, options, brl_options);
2115 	console_set_on_cmdline = 1;
2116 	return 1;
2117 }
2118 __setup("console=", console_setup);
2119 
2120 /**
2121  * add_preferred_console - add a device to the list of preferred consoles.
2122  * @name: device name
2123  * @idx: device index
2124  * @options: options for this console
2125  *
2126  * The last preferred console added will be used for kernel messages
2127  * and stdin/out/err for init.  Normally this is used by console_setup
2128  * above to handle user-supplied console arguments; however it can also
2129  * be used by arch-specific code either to override the user or more
2130  * commonly to provide a default console (ie from PROM variables) when
2131  * the user has not supplied one.
2132  */
2133 int add_preferred_console(char *name, int idx, char *options)
2134 {
2135 	return __add_preferred_console(name, idx, options, NULL);
2136 }
2137 
2138 bool console_suspend_enabled = true;
2139 EXPORT_SYMBOL(console_suspend_enabled);
2140 
2141 static int __init console_suspend_disable(char *str)
2142 {
2143 	console_suspend_enabled = false;
2144 	return 1;
2145 }
2146 __setup("no_console_suspend", console_suspend_disable);
2147 module_param_named(console_suspend, console_suspend_enabled,
2148 		bool, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2150 	" and hibernate operations");
2151 
2152 /**
2153  * suspend_console - suspend the console subsystem
2154  *
2155  * This disables printk() while we go into suspend states
2156  */
2157 void suspend_console(void)
2158 {
2159 	if (!console_suspend_enabled)
2160 		return;
2161 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2162 	console_lock();
2163 	console_suspended = 1;
2164 	up_console_sem();
2165 }
2166 
2167 void resume_console(void)
2168 {
2169 	if (!console_suspend_enabled)
2170 		return;
2171 	down_console_sem();
2172 	console_suspended = 0;
2173 	console_unlock();
2174 }
2175 
2176 /**
2177  * console_cpu_notify - print deferred console messages after CPU hotplug
2178  * @self: notifier struct
2179  * @action: CPU hotplug event
2180  * @hcpu: unused
2181  *
2182  * If printk() is called from a CPU that is not online yet, the messages
2183  * will be spooled but will not show up on the console.  This function is
2184  * called when a new CPU comes online (or fails to come up), and ensures
2185  * that any such output gets printed.
2186  */
2187 static int console_cpu_notify(struct notifier_block *self,
2188 	unsigned long action, void *hcpu)
2189 {
2190 	switch (action) {
2191 	case CPU_ONLINE:
2192 	case CPU_DEAD:
2193 	case CPU_DOWN_FAILED:
2194 	case CPU_UP_CANCELED:
2195 		console_lock();
2196 		console_unlock();
2197 	}
2198 	return NOTIFY_OK;
2199 }
2200 
2201 /**
2202  * console_lock - lock the console system for exclusive use.
2203  *
2204  * Acquires a lock which guarantees that the caller has
2205  * exclusive access to the console system and the console_drivers list.
2206  *
2207  * Can sleep, returns nothing.
2208  */
2209 void console_lock(void)
2210 {
2211 	might_sleep();
2212 
2213 	down_console_sem();
2214 	if (console_suspended)
2215 		return;
2216 	console_locked = 1;
2217 	console_may_schedule = 1;
2218 }
2219 EXPORT_SYMBOL(console_lock);
2220 
2221 /**
2222  * console_trylock - try to lock the console system for exclusive use.
2223  *
2224  * Try to acquire a lock which guarantees that the caller has exclusive
2225  * access to the console system and the console_drivers list.
2226  *
2227  * returns 1 on success, and 0 on failure to acquire the lock.
2228  */
2229 int console_trylock(void)
2230 {
2231 	if (down_trylock_console_sem())
2232 		return 0;
2233 	if (console_suspended) {
2234 		up_console_sem();
2235 		return 0;
2236 	}
2237 	console_locked = 1;
2238 	/*
2239 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2240 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2241 	 * because preempt_disable()/preempt_enable() are just barriers there
2242 	 * and preempt_count() is always 0.
2243 	 *
2244 	 * RCU read sections have a separate preemption counter when
2245 	 * PREEMPT_RCU enabled thus we must take extra care and check
2246 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2247 	 * preempt_count().
2248 	 */
2249 	console_may_schedule = !oops_in_progress &&
2250 			preemptible() &&
2251 			!rcu_preempt_depth();
2252 	return 1;
2253 }
2254 EXPORT_SYMBOL(console_trylock);
2255 
2256 int is_console_locked(void)
2257 {
2258 	return console_locked;
2259 }
2260 
2261 /*
2262  * Check if we have any console that is capable of printing while cpu is
2263  * booting or shutting down. Requires console_sem.
2264  */
2265 static int have_callable_console(void)
2266 {
2267 	struct console *con;
2268 
2269 	for_each_console(con)
2270 		if ((con->flags & CON_ENABLED) &&
2271 				(con->flags & CON_ANYTIME))
2272 			return 1;
2273 
2274 	return 0;
2275 }
2276 
2277 /*
2278  * Can we actually use the console at this time on this cpu?
2279  *
2280  * Console drivers may assume that per-cpu resources have been allocated. So
2281  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2282  * call them until this CPU is officially up.
2283  */
2284 static inline int can_use_console(void)
2285 {
2286 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2287 }
2288 
2289 static void console_cont_flush(char *text, size_t size)
2290 {
2291 	unsigned long flags;
2292 	size_t len;
2293 
2294 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2295 
2296 	if (!cont.len)
2297 		goto out;
2298 
2299 	if (suppress_message_printing(cont.level)) {
2300 		cont.cons = cont.len;
2301 		if (cont.flushed)
2302 			cont.len = 0;
2303 		goto out;
2304 	}
2305 
2306 	/*
2307 	 * We still queue earlier records, likely because the console was
2308 	 * busy. The earlier ones need to be printed before this one, we
2309 	 * did not flush any fragment so far, so just let it queue up.
2310 	 */
2311 	if (console_seq < log_next_seq && !cont.cons)
2312 		goto out;
2313 
2314 	len = cont_print_text(text, size);
2315 	raw_spin_unlock(&logbuf_lock);
2316 	stop_critical_timings();
2317 	call_console_drivers(cont.level, NULL, 0, text, len);
2318 	start_critical_timings();
2319 	local_irq_restore(flags);
2320 	return;
2321 out:
2322 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2323 }
2324 
2325 /**
2326  * console_unlock - unlock the console system
2327  *
2328  * Releases the console_lock which the caller holds on the console system
2329  * and the console driver list.
2330  *
2331  * While the console_lock was held, console output may have been buffered
2332  * by printk().  If this is the case, console_unlock(); emits
2333  * the output prior to releasing the lock.
2334  *
2335  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2336  *
2337  * console_unlock(); may be called from any context.
2338  */
2339 void console_unlock(void)
2340 {
2341 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2342 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2343 	static u64 seen_seq;
2344 	unsigned long flags;
2345 	bool wake_klogd = false;
2346 	bool do_cond_resched, retry;
2347 
2348 	if (console_suspended) {
2349 		up_console_sem();
2350 		return;
2351 	}
2352 
2353 	/*
2354 	 * Console drivers are called under logbuf_lock, so
2355 	 * @console_may_schedule should be cleared before; however, we may
2356 	 * end up dumping a lot of lines, for example, if called from
2357 	 * console registration path, and should invoke cond_resched()
2358 	 * between lines if allowable.  Not doing so can cause a very long
2359 	 * scheduling stall on a slow console leading to RCU stall and
2360 	 * softlockup warnings which exacerbate the issue with more
2361 	 * messages practically incapacitating the system.
2362 	 */
2363 	do_cond_resched = console_may_schedule;
2364 	console_may_schedule = 0;
2365 
2366 again:
2367 	/*
2368 	 * We released the console_sem lock, so we need to recheck if
2369 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2370 	 * console.
2371 	 */
2372 	if (!can_use_console()) {
2373 		console_locked = 0;
2374 		up_console_sem();
2375 		return;
2376 	}
2377 
2378 	/* flush buffered message fragment immediately to console */
2379 	console_cont_flush(text, sizeof(text));
2380 
2381 	for (;;) {
2382 		struct printk_log *msg;
2383 		size_t ext_len = 0;
2384 		size_t len;
2385 		int level;
2386 
2387 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2388 		if (seen_seq != log_next_seq) {
2389 			wake_klogd = true;
2390 			seen_seq = log_next_seq;
2391 		}
2392 
2393 		if (console_seq < log_first_seq) {
2394 			len = sprintf(text, "** %u printk messages dropped ** ",
2395 				      (unsigned)(log_first_seq - console_seq));
2396 
2397 			/* messages are gone, move to first one */
2398 			console_seq = log_first_seq;
2399 			console_idx = log_first_idx;
2400 			console_prev = 0;
2401 		} else {
2402 			len = 0;
2403 		}
2404 skip:
2405 		if (console_seq == log_next_seq)
2406 			break;
2407 
2408 		msg = log_from_idx(console_idx);
2409 		level = msg->level;
2410 		if ((msg->flags & LOG_NOCONS) ||
2411 				suppress_message_printing(level)) {
2412 			/*
2413 			 * Skip record we have buffered and already printed
2414 			 * directly to the console when we received it, and
2415 			 * record that has level above the console loglevel.
2416 			 */
2417 			console_idx = log_next(console_idx);
2418 			console_seq++;
2419 			/*
2420 			 * We will get here again when we register a new
2421 			 * CON_PRINTBUFFER console. Clear the flag so we
2422 			 * will properly dump everything later.
2423 			 */
2424 			msg->flags &= ~LOG_NOCONS;
2425 			console_prev = msg->flags;
2426 			goto skip;
2427 		}
2428 
2429 		len += msg_print_text(msg, console_prev, false,
2430 				      text + len, sizeof(text) - len);
2431 		if (nr_ext_console_drivers) {
2432 			ext_len = msg_print_ext_header(ext_text,
2433 						sizeof(ext_text),
2434 						msg, console_seq, console_prev);
2435 			ext_len += msg_print_ext_body(ext_text + ext_len,
2436 						sizeof(ext_text) - ext_len,
2437 						log_dict(msg), msg->dict_len,
2438 						log_text(msg), msg->text_len);
2439 		}
2440 		console_idx = log_next(console_idx);
2441 		console_seq++;
2442 		console_prev = msg->flags;
2443 		raw_spin_unlock(&logbuf_lock);
2444 
2445 		stop_critical_timings();	/* don't trace print latency */
2446 		call_console_drivers(level, ext_text, ext_len, text, len);
2447 		start_critical_timings();
2448 		local_irq_restore(flags);
2449 
2450 		if (do_cond_resched)
2451 			cond_resched();
2452 	}
2453 	console_locked = 0;
2454 
2455 	/* Release the exclusive_console once it is used */
2456 	if (unlikely(exclusive_console))
2457 		exclusive_console = NULL;
2458 
2459 	raw_spin_unlock(&logbuf_lock);
2460 
2461 	up_console_sem();
2462 
2463 	/*
2464 	 * Someone could have filled up the buffer again, so re-check if there's
2465 	 * something to flush. In case we cannot trylock the console_sem again,
2466 	 * there's a new owner and the console_unlock() from them will do the
2467 	 * flush, no worries.
2468 	 */
2469 	raw_spin_lock(&logbuf_lock);
2470 	retry = console_seq != log_next_seq;
2471 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2472 
2473 	if (retry && console_trylock())
2474 		goto again;
2475 
2476 	if (wake_klogd)
2477 		wake_up_klogd();
2478 }
2479 EXPORT_SYMBOL(console_unlock);
2480 
2481 /**
2482  * console_conditional_schedule - yield the CPU if required
2483  *
2484  * If the console code is currently allowed to sleep, and
2485  * if this CPU should yield the CPU to another task, do
2486  * so here.
2487  *
2488  * Must be called within console_lock();.
2489  */
2490 void __sched console_conditional_schedule(void)
2491 {
2492 	if (console_may_schedule)
2493 		cond_resched();
2494 }
2495 EXPORT_SYMBOL(console_conditional_schedule);
2496 
2497 void console_unblank(void)
2498 {
2499 	struct console *c;
2500 
2501 	/*
2502 	 * console_unblank can no longer be called in interrupt context unless
2503 	 * oops_in_progress is set to 1..
2504 	 */
2505 	if (oops_in_progress) {
2506 		if (down_trylock_console_sem() != 0)
2507 			return;
2508 	} else
2509 		console_lock();
2510 
2511 	console_locked = 1;
2512 	console_may_schedule = 0;
2513 	for_each_console(c)
2514 		if ((c->flags & CON_ENABLED) && c->unblank)
2515 			c->unblank();
2516 	console_unlock();
2517 }
2518 
2519 /**
2520  * console_flush_on_panic - flush console content on panic
2521  *
2522  * Immediately output all pending messages no matter what.
2523  */
2524 void console_flush_on_panic(void)
2525 {
2526 	/*
2527 	 * If someone else is holding the console lock, trylock will fail
2528 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2529 	 * that messages are flushed out.  As this can be called from any
2530 	 * context and we don't want to get preempted while flushing,
2531 	 * ensure may_schedule is cleared.
2532 	 */
2533 	console_trylock();
2534 	console_may_schedule = 0;
2535 	console_unlock();
2536 }
2537 
2538 /*
2539  * Return the console tty driver structure and its associated index
2540  */
2541 struct tty_driver *console_device(int *index)
2542 {
2543 	struct console *c;
2544 	struct tty_driver *driver = NULL;
2545 
2546 	console_lock();
2547 	for_each_console(c) {
2548 		if (!c->device)
2549 			continue;
2550 		driver = c->device(c, index);
2551 		if (driver)
2552 			break;
2553 	}
2554 	console_unlock();
2555 	return driver;
2556 }
2557 
2558 /*
2559  * Prevent further output on the passed console device so that (for example)
2560  * serial drivers can disable console output before suspending a port, and can
2561  * re-enable output afterwards.
2562  */
2563 void console_stop(struct console *console)
2564 {
2565 	console_lock();
2566 	console->flags &= ~CON_ENABLED;
2567 	console_unlock();
2568 }
2569 EXPORT_SYMBOL(console_stop);
2570 
2571 void console_start(struct console *console)
2572 {
2573 	console_lock();
2574 	console->flags |= CON_ENABLED;
2575 	console_unlock();
2576 }
2577 EXPORT_SYMBOL(console_start);
2578 
2579 static int __read_mostly keep_bootcon;
2580 
2581 static int __init keep_bootcon_setup(char *str)
2582 {
2583 	keep_bootcon = 1;
2584 	pr_info("debug: skip boot console de-registration.\n");
2585 
2586 	return 0;
2587 }
2588 
2589 early_param("keep_bootcon", keep_bootcon_setup);
2590 
2591 /*
2592  * The console driver calls this routine during kernel initialization
2593  * to register the console printing procedure with printk() and to
2594  * print any messages that were printed by the kernel before the
2595  * console driver was initialized.
2596  *
2597  * This can happen pretty early during the boot process (because of
2598  * early_printk) - sometimes before setup_arch() completes - be careful
2599  * of what kernel features are used - they may not be initialised yet.
2600  *
2601  * There are two types of consoles - bootconsoles (early_printk) and
2602  * "real" consoles (everything which is not a bootconsole) which are
2603  * handled differently.
2604  *  - Any number of bootconsoles can be registered at any time.
2605  *  - As soon as a "real" console is registered, all bootconsoles
2606  *    will be unregistered automatically.
2607  *  - Once a "real" console is registered, any attempt to register a
2608  *    bootconsoles will be rejected
2609  */
2610 void register_console(struct console *newcon)
2611 {
2612 	int i;
2613 	unsigned long flags;
2614 	struct console *bcon = NULL;
2615 	struct console_cmdline *c;
2616 
2617 	if (console_drivers)
2618 		for_each_console(bcon)
2619 			if (WARN(bcon == newcon,
2620 					"console '%s%d' already registered\n",
2621 					bcon->name, bcon->index))
2622 				return;
2623 
2624 	/*
2625 	 * before we register a new CON_BOOT console, make sure we don't
2626 	 * already have a valid console
2627 	 */
2628 	if (console_drivers && newcon->flags & CON_BOOT) {
2629 		/* find the last or real console */
2630 		for_each_console(bcon) {
2631 			if (!(bcon->flags & CON_BOOT)) {
2632 				pr_info("Too late to register bootconsole %s%d\n",
2633 					newcon->name, newcon->index);
2634 				return;
2635 			}
2636 		}
2637 	}
2638 
2639 	if (console_drivers && console_drivers->flags & CON_BOOT)
2640 		bcon = console_drivers;
2641 
2642 	if (preferred_console < 0 || bcon || !console_drivers)
2643 		preferred_console = selected_console;
2644 
2645 	/*
2646 	 *	See if we want to use this console driver. If we
2647 	 *	didn't select a console we take the first one
2648 	 *	that registers here.
2649 	 */
2650 	if (preferred_console < 0) {
2651 		if (newcon->index < 0)
2652 			newcon->index = 0;
2653 		if (newcon->setup == NULL ||
2654 		    newcon->setup(newcon, NULL) == 0) {
2655 			newcon->flags |= CON_ENABLED;
2656 			if (newcon->device) {
2657 				newcon->flags |= CON_CONSDEV;
2658 				preferred_console = 0;
2659 			}
2660 		}
2661 	}
2662 
2663 	/*
2664 	 *	See if this console matches one we selected on
2665 	 *	the command line.
2666 	 */
2667 	for (i = 0, c = console_cmdline;
2668 	     i < MAX_CMDLINECONSOLES && c->name[0];
2669 	     i++, c++) {
2670 		if (!newcon->match ||
2671 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2672 			/* default matching */
2673 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2674 			if (strcmp(c->name, newcon->name) != 0)
2675 				continue;
2676 			if (newcon->index >= 0 &&
2677 			    newcon->index != c->index)
2678 				continue;
2679 			if (newcon->index < 0)
2680 				newcon->index = c->index;
2681 
2682 			if (_braille_register_console(newcon, c))
2683 				return;
2684 
2685 			if (newcon->setup &&
2686 			    newcon->setup(newcon, c->options) != 0)
2687 				break;
2688 		}
2689 
2690 		newcon->flags |= CON_ENABLED;
2691 		if (i == selected_console) {
2692 			newcon->flags |= CON_CONSDEV;
2693 			preferred_console = selected_console;
2694 		}
2695 		break;
2696 	}
2697 
2698 	if (!(newcon->flags & CON_ENABLED))
2699 		return;
2700 
2701 	/*
2702 	 * If we have a bootconsole, and are switching to a real console,
2703 	 * don't print everything out again, since when the boot console, and
2704 	 * the real console are the same physical device, it's annoying to
2705 	 * see the beginning boot messages twice
2706 	 */
2707 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2708 		newcon->flags &= ~CON_PRINTBUFFER;
2709 
2710 	/*
2711 	 *	Put this console in the list - keep the
2712 	 *	preferred driver at the head of the list.
2713 	 */
2714 	console_lock();
2715 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2716 		newcon->next = console_drivers;
2717 		console_drivers = newcon;
2718 		if (newcon->next)
2719 			newcon->next->flags &= ~CON_CONSDEV;
2720 	} else {
2721 		newcon->next = console_drivers->next;
2722 		console_drivers->next = newcon;
2723 	}
2724 
2725 	if (newcon->flags & CON_EXTENDED)
2726 		if (!nr_ext_console_drivers++)
2727 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2728 
2729 	if (newcon->flags & CON_PRINTBUFFER) {
2730 		/*
2731 		 * console_unlock(); will print out the buffered messages
2732 		 * for us.
2733 		 */
2734 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2735 		console_seq = syslog_seq;
2736 		console_idx = syslog_idx;
2737 		console_prev = syslog_prev;
2738 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2739 		/*
2740 		 * We're about to replay the log buffer.  Only do this to the
2741 		 * just-registered console to avoid excessive message spam to
2742 		 * the already-registered consoles.
2743 		 */
2744 		exclusive_console = newcon;
2745 	}
2746 	console_unlock();
2747 	console_sysfs_notify();
2748 
2749 	/*
2750 	 * By unregistering the bootconsoles after we enable the real console
2751 	 * we get the "console xxx enabled" message on all the consoles -
2752 	 * boot consoles, real consoles, etc - this is to ensure that end
2753 	 * users know there might be something in the kernel's log buffer that
2754 	 * went to the bootconsole (that they do not see on the real console)
2755 	 */
2756 	pr_info("%sconsole [%s%d] enabled\n",
2757 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2758 		newcon->name, newcon->index);
2759 	if (bcon &&
2760 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2761 	    !keep_bootcon) {
2762 		/* We need to iterate through all boot consoles, to make
2763 		 * sure we print everything out, before we unregister them.
2764 		 */
2765 		for_each_console(bcon)
2766 			if (bcon->flags & CON_BOOT)
2767 				unregister_console(bcon);
2768 	}
2769 }
2770 EXPORT_SYMBOL(register_console);
2771 
2772 int unregister_console(struct console *console)
2773 {
2774         struct console *a, *b;
2775 	int res;
2776 
2777 	pr_info("%sconsole [%s%d] disabled\n",
2778 		(console->flags & CON_BOOT) ? "boot" : "" ,
2779 		console->name, console->index);
2780 
2781 	res = _braille_unregister_console(console);
2782 	if (res)
2783 		return res;
2784 
2785 	res = 1;
2786 	console_lock();
2787 	if (console_drivers == console) {
2788 		console_drivers=console->next;
2789 		res = 0;
2790 	} else if (console_drivers) {
2791 		for (a=console_drivers->next, b=console_drivers ;
2792 		     a; b=a, a=b->next) {
2793 			if (a == console) {
2794 				b->next = a->next;
2795 				res = 0;
2796 				break;
2797 			}
2798 		}
2799 	}
2800 
2801 	if (!res && (console->flags & CON_EXTENDED))
2802 		nr_ext_console_drivers--;
2803 
2804 	/*
2805 	 * If this isn't the last console and it has CON_CONSDEV set, we
2806 	 * need to set it on the next preferred console.
2807 	 */
2808 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2809 		console_drivers->flags |= CON_CONSDEV;
2810 
2811 	console->flags &= ~CON_ENABLED;
2812 	console_unlock();
2813 	console_sysfs_notify();
2814 	return res;
2815 }
2816 EXPORT_SYMBOL(unregister_console);
2817 
2818 /*
2819  * Some boot consoles access data that is in the init section and which will
2820  * be discarded after the initcalls have been run. To make sure that no code
2821  * will access this data, unregister the boot consoles in a late initcall.
2822  *
2823  * If for some reason, such as deferred probe or the driver being a loadable
2824  * module, the real console hasn't registered yet at this point, there will
2825  * be a brief interval in which no messages are logged to the console, which
2826  * makes it difficult to diagnose problems that occur during this time.
2827  *
2828  * To mitigate this problem somewhat, only unregister consoles whose memory
2829  * intersects with the init section. Note that code exists elsewhere to get
2830  * rid of the boot console as soon as the proper console shows up, so there
2831  * won't be side-effects from postponing the removal.
2832  */
2833 static int __init printk_late_init(void)
2834 {
2835 	struct console *con;
2836 
2837 	for_each_console(con) {
2838 		if (!keep_bootcon && con->flags & CON_BOOT) {
2839 			/*
2840 			 * Make sure to unregister boot consoles whose data
2841 			 * resides in the init section before the init section
2842 			 * is discarded. Boot consoles whose data will stick
2843 			 * around will automatically be unregistered when the
2844 			 * proper console replaces them.
2845 			 */
2846 			if (init_section_intersects(con, sizeof(*con)))
2847 				unregister_console(con);
2848 		}
2849 	}
2850 	hotcpu_notifier(console_cpu_notify, 0);
2851 	return 0;
2852 }
2853 late_initcall(printk_late_init);
2854 
2855 #if defined CONFIG_PRINTK
2856 /*
2857  * Delayed printk version, for scheduler-internal messages:
2858  */
2859 #define PRINTK_PENDING_WAKEUP	0x01
2860 #define PRINTK_PENDING_OUTPUT	0x02
2861 
2862 static DEFINE_PER_CPU(int, printk_pending);
2863 
2864 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2865 {
2866 	int pending = __this_cpu_xchg(printk_pending, 0);
2867 
2868 	if (pending & PRINTK_PENDING_OUTPUT) {
2869 		/* If trylock fails, someone else is doing the printing */
2870 		if (console_trylock())
2871 			console_unlock();
2872 	}
2873 
2874 	if (pending & PRINTK_PENDING_WAKEUP)
2875 		wake_up_interruptible(&log_wait);
2876 }
2877 
2878 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2879 	.func = wake_up_klogd_work_func,
2880 	.flags = IRQ_WORK_LAZY,
2881 };
2882 
2883 void wake_up_klogd(void)
2884 {
2885 	preempt_disable();
2886 	if (waitqueue_active(&log_wait)) {
2887 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2888 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2889 	}
2890 	preempt_enable();
2891 }
2892 
2893 int printk_deferred(const char *fmt, ...)
2894 {
2895 	va_list args;
2896 	int r;
2897 
2898 	preempt_disable();
2899 	va_start(args, fmt);
2900 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2901 	va_end(args);
2902 
2903 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2904 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2905 	preempt_enable();
2906 
2907 	return r;
2908 }
2909 
2910 /*
2911  * printk rate limiting, lifted from the networking subsystem.
2912  *
2913  * This enforces a rate limit: not more than 10 kernel messages
2914  * every 5s to make a denial-of-service attack impossible.
2915  */
2916 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2917 
2918 int __printk_ratelimit(const char *func)
2919 {
2920 	return ___ratelimit(&printk_ratelimit_state, func);
2921 }
2922 EXPORT_SYMBOL(__printk_ratelimit);
2923 
2924 /**
2925  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2926  * @caller_jiffies: pointer to caller's state
2927  * @interval_msecs: minimum interval between prints
2928  *
2929  * printk_timed_ratelimit() returns true if more than @interval_msecs
2930  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2931  * returned true.
2932  */
2933 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2934 			unsigned int interval_msecs)
2935 {
2936 	unsigned long elapsed = jiffies - *caller_jiffies;
2937 
2938 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2939 		return false;
2940 
2941 	*caller_jiffies = jiffies;
2942 	return true;
2943 }
2944 EXPORT_SYMBOL(printk_timed_ratelimit);
2945 
2946 static DEFINE_SPINLOCK(dump_list_lock);
2947 static LIST_HEAD(dump_list);
2948 
2949 /**
2950  * kmsg_dump_register - register a kernel log dumper.
2951  * @dumper: pointer to the kmsg_dumper structure
2952  *
2953  * Adds a kernel log dumper to the system. The dump callback in the
2954  * structure will be called when the kernel oopses or panics and must be
2955  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2956  */
2957 int kmsg_dump_register(struct kmsg_dumper *dumper)
2958 {
2959 	unsigned long flags;
2960 	int err = -EBUSY;
2961 
2962 	/* The dump callback needs to be set */
2963 	if (!dumper->dump)
2964 		return -EINVAL;
2965 
2966 	spin_lock_irqsave(&dump_list_lock, flags);
2967 	/* Don't allow registering multiple times */
2968 	if (!dumper->registered) {
2969 		dumper->registered = 1;
2970 		list_add_tail_rcu(&dumper->list, &dump_list);
2971 		err = 0;
2972 	}
2973 	spin_unlock_irqrestore(&dump_list_lock, flags);
2974 
2975 	return err;
2976 }
2977 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2978 
2979 /**
2980  * kmsg_dump_unregister - unregister a kmsg dumper.
2981  * @dumper: pointer to the kmsg_dumper structure
2982  *
2983  * Removes a dump device from the system. Returns zero on success and
2984  * %-EINVAL otherwise.
2985  */
2986 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2987 {
2988 	unsigned long flags;
2989 	int err = -EINVAL;
2990 
2991 	spin_lock_irqsave(&dump_list_lock, flags);
2992 	if (dumper->registered) {
2993 		dumper->registered = 0;
2994 		list_del_rcu(&dumper->list);
2995 		err = 0;
2996 	}
2997 	spin_unlock_irqrestore(&dump_list_lock, flags);
2998 	synchronize_rcu();
2999 
3000 	return err;
3001 }
3002 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3003 
3004 static bool always_kmsg_dump;
3005 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3006 
3007 /**
3008  * kmsg_dump - dump kernel log to kernel message dumpers.
3009  * @reason: the reason (oops, panic etc) for dumping
3010  *
3011  * Call each of the registered dumper's dump() callback, which can
3012  * retrieve the kmsg records with kmsg_dump_get_line() or
3013  * kmsg_dump_get_buffer().
3014  */
3015 void kmsg_dump(enum kmsg_dump_reason reason)
3016 {
3017 	struct kmsg_dumper *dumper;
3018 	unsigned long flags;
3019 
3020 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3021 		return;
3022 
3023 	rcu_read_lock();
3024 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3025 		if (dumper->max_reason && reason > dumper->max_reason)
3026 			continue;
3027 
3028 		/* initialize iterator with data about the stored records */
3029 		dumper->active = true;
3030 
3031 		raw_spin_lock_irqsave(&logbuf_lock, flags);
3032 		dumper->cur_seq = clear_seq;
3033 		dumper->cur_idx = clear_idx;
3034 		dumper->next_seq = log_next_seq;
3035 		dumper->next_idx = log_next_idx;
3036 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3037 
3038 		/* invoke dumper which will iterate over records */
3039 		dumper->dump(dumper, reason);
3040 
3041 		/* reset iterator */
3042 		dumper->active = false;
3043 	}
3044 	rcu_read_unlock();
3045 }
3046 
3047 /**
3048  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3049  * @dumper: registered kmsg dumper
3050  * @syslog: include the "<4>" prefixes
3051  * @line: buffer to copy the line to
3052  * @size: maximum size of the buffer
3053  * @len: length of line placed into buffer
3054  *
3055  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3056  * record, and copy one record into the provided buffer.
3057  *
3058  * Consecutive calls will return the next available record moving
3059  * towards the end of the buffer with the youngest messages.
3060  *
3061  * A return value of FALSE indicates that there are no more records to
3062  * read.
3063  *
3064  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3065  */
3066 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3067 			       char *line, size_t size, size_t *len)
3068 {
3069 	struct printk_log *msg;
3070 	size_t l = 0;
3071 	bool ret = false;
3072 
3073 	if (!dumper->active)
3074 		goto out;
3075 
3076 	if (dumper->cur_seq < log_first_seq) {
3077 		/* messages are gone, move to first available one */
3078 		dumper->cur_seq = log_first_seq;
3079 		dumper->cur_idx = log_first_idx;
3080 	}
3081 
3082 	/* last entry */
3083 	if (dumper->cur_seq >= log_next_seq)
3084 		goto out;
3085 
3086 	msg = log_from_idx(dumper->cur_idx);
3087 	l = msg_print_text(msg, 0, syslog, line, size);
3088 
3089 	dumper->cur_idx = log_next(dumper->cur_idx);
3090 	dumper->cur_seq++;
3091 	ret = true;
3092 out:
3093 	if (len)
3094 		*len = l;
3095 	return ret;
3096 }
3097 
3098 /**
3099  * kmsg_dump_get_line - retrieve one kmsg log line
3100  * @dumper: registered kmsg dumper
3101  * @syslog: include the "<4>" prefixes
3102  * @line: buffer to copy the line to
3103  * @size: maximum size of the buffer
3104  * @len: length of line placed into buffer
3105  *
3106  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3107  * record, and copy one record into the provided buffer.
3108  *
3109  * Consecutive calls will return the next available record moving
3110  * towards the end of the buffer with the youngest messages.
3111  *
3112  * A return value of FALSE indicates that there are no more records to
3113  * read.
3114  */
3115 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3116 			char *line, size_t size, size_t *len)
3117 {
3118 	unsigned long flags;
3119 	bool ret;
3120 
3121 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3122 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3123 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3124 
3125 	return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3128 
3129 /**
3130  * kmsg_dump_get_buffer - copy kmsg log lines
3131  * @dumper: registered kmsg dumper
3132  * @syslog: include the "<4>" prefixes
3133  * @buf: buffer to copy the line to
3134  * @size: maximum size of the buffer
3135  * @len: length of line placed into buffer
3136  *
3137  * Start at the end of the kmsg buffer and fill the provided buffer
3138  * with as many of the the *youngest* kmsg records that fit into it.
3139  * If the buffer is large enough, all available kmsg records will be
3140  * copied with a single call.
3141  *
3142  * Consecutive calls will fill the buffer with the next block of
3143  * available older records, not including the earlier retrieved ones.
3144  *
3145  * A return value of FALSE indicates that there are no more records to
3146  * read.
3147  */
3148 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3149 			  char *buf, size_t size, size_t *len)
3150 {
3151 	unsigned long flags;
3152 	u64 seq;
3153 	u32 idx;
3154 	u64 next_seq;
3155 	u32 next_idx;
3156 	enum log_flags prev;
3157 	size_t l = 0;
3158 	bool ret = false;
3159 
3160 	if (!dumper->active)
3161 		goto out;
3162 
3163 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3164 	if (dumper->cur_seq < log_first_seq) {
3165 		/* messages are gone, move to first available one */
3166 		dumper->cur_seq = log_first_seq;
3167 		dumper->cur_idx = log_first_idx;
3168 	}
3169 
3170 	/* last entry */
3171 	if (dumper->cur_seq >= dumper->next_seq) {
3172 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3173 		goto out;
3174 	}
3175 
3176 	/* calculate length of entire buffer */
3177 	seq = dumper->cur_seq;
3178 	idx = dumper->cur_idx;
3179 	prev = 0;
3180 	while (seq < dumper->next_seq) {
3181 		struct printk_log *msg = log_from_idx(idx);
3182 
3183 		l += msg_print_text(msg, prev, true, NULL, 0);
3184 		idx = log_next(idx);
3185 		seq++;
3186 		prev = msg->flags;
3187 	}
3188 
3189 	/* move first record forward until length fits into the buffer */
3190 	seq = dumper->cur_seq;
3191 	idx = dumper->cur_idx;
3192 	prev = 0;
3193 	while (l > size && seq < dumper->next_seq) {
3194 		struct printk_log *msg = log_from_idx(idx);
3195 
3196 		l -= msg_print_text(msg, prev, true, NULL, 0);
3197 		idx = log_next(idx);
3198 		seq++;
3199 		prev = msg->flags;
3200 	}
3201 
3202 	/* last message in next interation */
3203 	next_seq = seq;
3204 	next_idx = idx;
3205 
3206 	l = 0;
3207 	while (seq < dumper->next_seq) {
3208 		struct printk_log *msg = log_from_idx(idx);
3209 
3210 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3211 		idx = log_next(idx);
3212 		seq++;
3213 		prev = msg->flags;
3214 	}
3215 
3216 	dumper->next_seq = next_seq;
3217 	dumper->next_idx = next_idx;
3218 	ret = true;
3219 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3220 out:
3221 	if (len)
3222 		*len = l;
3223 	return ret;
3224 }
3225 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3226 
3227 /**
3228  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3229  * @dumper: registered kmsg dumper
3230  *
3231  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3232  * kmsg_dump_get_buffer() can be called again and used multiple
3233  * times within the same dumper.dump() callback.
3234  *
3235  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3236  */
3237 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3238 {
3239 	dumper->cur_seq = clear_seq;
3240 	dumper->cur_idx = clear_idx;
3241 	dumper->next_seq = log_next_seq;
3242 	dumper->next_idx = log_next_idx;
3243 }
3244 
3245 /**
3246  * kmsg_dump_rewind - reset the interator
3247  * @dumper: registered kmsg dumper
3248  *
3249  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3250  * kmsg_dump_get_buffer() can be called again and used multiple
3251  * times within the same dumper.dump() callback.
3252  */
3253 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3254 {
3255 	unsigned long flags;
3256 
3257 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3258 	kmsg_dump_rewind_nolock(dumper);
3259 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3260 }
3261 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3262 
3263 static char dump_stack_arch_desc_str[128];
3264 
3265 /**
3266  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3267  * @fmt: printf-style format string
3268  * @...: arguments for the format string
3269  *
3270  * The configured string will be printed right after utsname during task
3271  * dumps.  Usually used to add arch-specific system identifiers.  If an
3272  * arch wants to make use of such an ID string, it should initialize this
3273  * as soon as possible during boot.
3274  */
3275 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3276 {
3277 	va_list args;
3278 
3279 	va_start(args, fmt);
3280 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3281 		  fmt, args);
3282 	va_end(args);
3283 }
3284 
3285 /**
3286  * dump_stack_print_info - print generic debug info for dump_stack()
3287  * @log_lvl: log level
3288  *
3289  * Arch-specific dump_stack() implementations can use this function to
3290  * print out the same debug information as the generic dump_stack().
3291  */
3292 void dump_stack_print_info(const char *log_lvl)
3293 {
3294 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3295 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3296 	       print_tainted(), init_utsname()->release,
3297 	       (int)strcspn(init_utsname()->version, " "),
3298 	       init_utsname()->version);
3299 
3300 	if (dump_stack_arch_desc_str[0] != '\0')
3301 		printk("%sHardware name: %s\n",
3302 		       log_lvl, dump_stack_arch_desc_str);
3303 
3304 	print_worker_info(log_lvl, current);
3305 }
3306 
3307 /**
3308  * show_regs_print_info - print generic debug info for show_regs()
3309  * @log_lvl: log level
3310  *
3311  * show_regs() implementations can use this function to print out generic
3312  * debug information.
3313  */
3314 void show_regs_print_info(const char *log_lvl)
3315 {
3316 	dump_stack_print_info(log_lvl);
3317 
3318 	printk("%stask: %p task.stack: %p\n",
3319 	       log_lvl, current, task_stack_page(current));
3320 }
3321 
3322 #endif
3323