1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75
76 /*
77 * Low level drivers may need that to know if they can schedule in
78 * their unblank() callback or not. So let's export it.
79 */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82
83 /*
84 * console_mutex protects console_list updates and console->flags updates.
85 * The flags are synchronized only for consoles that are registered, i.e.
86 * accessible via the console list.
87 */
88 static DEFINE_MUTEX(console_mutex);
89
90 /*
91 * console_sem protects updates to console->seq
92 * and also provides serialization for console printing.
93 */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98
99 /*
100 * System may need to suppress printk message under certain
101 * circumstances, like after kernel panic happens.
102 */
103 int __read_mostly suppress_printk;
104
105 /*
106 * During panic, heavy printk by other CPUs can delay the
107 * panic and risk deadlock on console resources.
108 */
109 static int __read_mostly suppress_panic_printk;
110
111 #ifdef CONFIG_LOCKDEP
112 static struct lockdep_map console_lock_dep_map = {
113 .name = "console_lock"
114 };
115
lockdep_assert_console_list_lock_held(void)116 void lockdep_assert_console_list_lock_held(void)
117 {
118 lockdep_assert_held(&console_mutex);
119 }
120 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
121 #endif
122
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
console_srcu_read_lock_is_held(void)124 bool console_srcu_read_lock_is_held(void)
125 {
126 return srcu_read_lock_held(&console_srcu);
127 }
128 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
129 #endif
130
131 enum devkmsg_log_bits {
132 __DEVKMSG_LOG_BIT_ON = 0,
133 __DEVKMSG_LOG_BIT_OFF,
134 __DEVKMSG_LOG_BIT_LOCK,
135 };
136
137 enum devkmsg_log_masks {
138 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
139 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
140 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
141 };
142
143 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
144 #define DEVKMSG_LOG_MASK_DEFAULT 0
145
146 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
147
__control_devkmsg(char * str)148 static int __control_devkmsg(char *str)
149 {
150 size_t len;
151
152 if (!str)
153 return -EINVAL;
154
155 len = str_has_prefix(str, "on");
156 if (len) {
157 devkmsg_log = DEVKMSG_LOG_MASK_ON;
158 return len;
159 }
160
161 len = str_has_prefix(str, "off");
162 if (len) {
163 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
164 return len;
165 }
166
167 len = str_has_prefix(str, "ratelimit");
168 if (len) {
169 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
170 return len;
171 }
172
173 return -EINVAL;
174 }
175
control_devkmsg(char * str)176 static int __init control_devkmsg(char *str)
177 {
178 if (__control_devkmsg(str) < 0) {
179 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
180 return 1;
181 }
182
183 /*
184 * Set sysctl string accordingly:
185 */
186 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
187 strcpy(devkmsg_log_str, "on");
188 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
189 strcpy(devkmsg_log_str, "off");
190 /* else "ratelimit" which is set by default. */
191
192 /*
193 * Sysctl cannot change it anymore. The kernel command line setting of
194 * this parameter is to force the setting to be permanent throughout the
195 * runtime of the system. This is a precation measure against userspace
196 * trying to be a smarta** and attempting to change it up on us.
197 */
198 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
199
200 return 1;
201 }
202 __setup("printk.devkmsg=", control_devkmsg);
203
204 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
205 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)206 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
207 void *buffer, size_t *lenp, loff_t *ppos)
208 {
209 char old_str[DEVKMSG_STR_MAX_SIZE];
210 unsigned int old;
211 int err;
212
213 if (write) {
214 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
215 return -EINVAL;
216
217 old = devkmsg_log;
218 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
219 }
220
221 err = proc_dostring(table, write, buffer, lenp, ppos);
222 if (err)
223 return err;
224
225 if (write) {
226 err = __control_devkmsg(devkmsg_log_str);
227
228 /*
229 * Do not accept an unknown string OR a known string with
230 * trailing crap...
231 */
232 if (err < 0 || (err + 1 != *lenp)) {
233
234 /* ... and restore old setting. */
235 devkmsg_log = old;
236 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
237
238 return -EINVAL;
239 }
240 }
241
242 return 0;
243 }
244 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
245
246 /**
247 * console_list_lock - Lock the console list
248 *
249 * For console list or console->flags updates
250 */
console_list_lock(void)251 void console_list_lock(void)
252 {
253 /*
254 * In unregister_console() and console_force_preferred_locked(),
255 * synchronize_srcu() is called with the console_list_lock held.
256 * Therefore it is not allowed that the console_list_lock is taken
257 * with the srcu_lock held.
258 *
259 * Detecting if this context is really in the read-side critical
260 * section is only possible if the appropriate debug options are
261 * enabled.
262 */
263 WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
264 srcu_read_lock_held(&console_srcu));
265
266 mutex_lock(&console_mutex);
267 }
268 EXPORT_SYMBOL(console_list_lock);
269
270 /**
271 * console_list_unlock - Unlock the console list
272 *
273 * Counterpart to console_list_lock()
274 */
console_list_unlock(void)275 void console_list_unlock(void)
276 {
277 mutex_unlock(&console_mutex);
278 }
279 EXPORT_SYMBOL(console_list_unlock);
280
281 /**
282 * console_srcu_read_lock - Register a new reader for the
283 * SRCU-protected console list
284 *
285 * Use for_each_console_srcu() to iterate the console list
286 *
287 * Context: Any context.
288 * Return: A cookie to pass to console_srcu_read_unlock().
289 */
console_srcu_read_lock(void)290 int console_srcu_read_lock(void)
291 {
292 return srcu_read_lock_nmisafe(&console_srcu);
293 }
294 EXPORT_SYMBOL(console_srcu_read_lock);
295
296 /**
297 * console_srcu_read_unlock - Unregister an old reader from
298 * the SRCU-protected console list
299 * @cookie: cookie returned from console_srcu_read_lock()
300 *
301 * Counterpart to console_srcu_read_lock()
302 */
console_srcu_read_unlock(int cookie)303 void console_srcu_read_unlock(int cookie)
304 {
305 srcu_read_unlock_nmisafe(&console_srcu, cookie);
306 }
307 EXPORT_SYMBOL(console_srcu_read_unlock);
308
309 /*
310 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
311 * macros instead of functions so that _RET_IP_ contains useful information.
312 */
313 #define down_console_sem() do { \
314 down(&console_sem);\
315 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 } while (0)
317
__down_trylock_console_sem(unsigned long ip)318 static int __down_trylock_console_sem(unsigned long ip)
319 {
320 int lock_failed;
321 unsigned long flags;
322
323 /*
324 * Here and in __up_console_sem() we need to be in safe mode,
325 * because spindump/WARN/etc from under console ->lock will
326 * deadlock in printk()->down_trylock_console_sem() otherwise.
327 */
328 printk_safe_enter_irqsave(flags);
329 lock_failed = down_trylock(&console_sem);
330 printk_safe_exit_irqrestore(flags);
331
332 if (lock_failed)
333 return 1;
334 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 return 0;
336 }
337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
338
__up_console_sem(unsigned long ip)339 static void __up_console_sem(unsigned long ip)
340 {
341 unsigned long flags;
342
343 mutex_release(&console_lock_dep_map, ip);
344
345 printk_safe_enter_irqsave(flags);
346 up(&console_sem);
347 printk_safe_exit_irqrestore(flags);
348 }
349 #define up_console_sem() __up_console_sem(_RET_IP_)
350
panic_in_progress(void)351 static bool panic_in_progress(void)
352 {
353 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
354 }
355
356 /*
357 * This is used for debugging the mess that is the VT code by
358 * keeping track if we have the console semaphore held. It's
359 * definitely not the perfect debug tool (we don't know if _WE_
360 * hold it and are racing, but it helps tracking those weird code
361 * paths in the console code where we end up in places I want
362 * locked without the console semaphore held).
363 */
364 static int console_locked;
365
366 /*
367 * Array of consoles built from command line options (console=)
368 */
369
370 #define MAX_CMDLINECONSOLES 8
371
372 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
373
374 static int preferred_console = -1;
375 int console_set_on_cmdline;
376 EXPORT_SYMBOL(console_set_on_cmdline);
377
378 /* Flag: console code may call schedule() */
379 static int console_may_schedule;
380
381 enum con_msg_format_flags {
382 MSG_FORMAT_DEFAULT = 0,
383 MSG_FORMAT_SYSLOG = (1 << 0),
384 };
385
386 static int console_msg_format = MSG_FORMAT_DEFAULT;
387
388 /*
389 * The printk log buffer consists of a sequenced collection of records, each
390 * containing variable length message text. Every record also contains its
391 * own meta-data (@info).
392 *
393 * Every record meta-data carries the timestamp in microseconds, as well as
394 * the standard userspace syslog level and syslog facility. The usual kernel
395 * messages use LOG_KERN; userspace-injected messages always carry a matching
396 * syslog facility, by default LOG_USER. The origin of every message can be
397 * reliably determined that way.
398 *
399 * The human readable log message of a record is available in @text, the
400 * length of the message text in @text_len. The stored message is not
401 * terminated.
402 *
403 * Optionally, a record can carry a dictionary of properties (key/value
404 * pairs), to provide userspace with a machine-readable message context.
405 *
406 * Examples for well-defined, commonly used property names are:
407 * DEVICE=b12:8 device identifier
408 * b12:8 block dev_t
409 * c127:3 char dev_t
410 * n8 netdev ifindex
411 * +sound:card0 subsystem:devname
412 * SUBSYSTEM=pci driver-core subsystem name
413 *
414 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
415 * and values are terminated by a '\0' character.
416 *
417 * Example of record values:
418 * record.text_buf = "it's a line" (unterminated)
419 * record.info.seq = 56
420 * record.info.ts_nsec = 36863
421 * record.info.text_len = 11
422 * record.info.facility = 0 (LOG_KERN)
423 * record.info.flags = 0
424 * record.info.level = 3 (LOG_ERR)
425 * record.info.caller_id = 299 (task 299)
426 * record.info.dev_info.subsystem = "pci" (terminated)
427 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated)
428 *
429 * The 'struct printk_info' buffer must never be directly exported to
430 * userspace, it is a kernel-private implementation detail that might
431 * need to be changed in the future, when the requirements change.
432 *
433 * /dev/kmsg exports the structured data in the following line format:
434 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
435 *
436 * Users of the export format should ignore possible additional values
437 * separated by ',', and find the message after the ';' character.
438 *
439 * The optional key/value pairs are attached as continuation lines starting
440 * with a space character and terminated by a newline. All possible
441 * non-prinatable characters are escaped in the "\xff" notation.
442 */
443
444 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
445 static DEFINE_MUTEX(syslog_lock);
446
447 #ifdef CONFIG_PRINTK
448 DECLARE_WAIT_QUEUE_HEAD(log_wait);
449 /* All 3 protected by @syslog_lock. */
450 /* the next printk record to read by syslog(READ) or /proc/kmsg */
451 static u64 syslog_seq;
452 static size_t syslog_partial;
453 static bool syslog_time;
454
455 struct latched_seq {
456 seqcount_latch_t latch;
457 u64 val[2];
458 };
459
460 /*
461 * The next printk record to read after the last 'clear' command. There are
462 * two copies (updated with seqcount_latch) so that reads can locklessly
463 * access a valid value. Writers are synchronized by @syslog_lock.
464 */
465 static struct latched_seq clear_seq = {
466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch),
467 .val[0] = 0,
468 .val[1] = 0,
469 };
470
471 #define LOG_LEVEL(v) ((v) & 0x07)
472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
473
474 /* record buffer */
475 #define LOG_ALIGN __alignof__(unsigned long)
476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
477 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
479 static char *log_buf = __log_buf;
480 static u32 log_buf_len = __LOG_BUF_LEN;
481
482 /*
483 * Define the average message size. This only affects the number of
484 * descriptors that will be available. Underestimating is better than
485 * overestimating (too many available descriptors is better than not enough).
486 */
487 #define PRB_AVGBITS 5 /* 32 character average length */
488
489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
490 #error CONFIG_LOG_BUF_SHIFT value too small.
491 #endif
492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
493 PRB_AVGBITS, &__log_buf[0]);
494
495 static struct printk_ringbuffer printk_rb_dynamic;
496
497 static struct printk_ringbuffer *prb = &printk_rb_static;
498
499 /*
500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
501 * per_cpu_areas are initialised. This variable is set to true when
502 * it's safe to access per-CPU data.
503 */
504 static bool __printk_percpu_data_ready __ro_after_init;
505
printk_percpu_data_ready(void)506 bool printk_percpu_data_ready(void)
507 {
508 return __printk_percpu_data_ready;
509 }
510
511 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)512 static void latched_seq_write(struct latched_seq *ls, u64 val)
513 {
514 raw_write_seqcount_latch(&ls->latch);
515 ls->val[0] = val;
516 raw_write_seqcount_latch(&ls->latch);
517 ls->val[1] = val;
518 }
519
520 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)521 static u64 latched_seq_read_nolock(struct latched_seq *ls)
522 {
523 unsigned int seq;
524 unsigned int idx;
525 u64 val;
526
527 do {
528 seq = raw_read_seqcount_latch(&ls->latch);
529 idx = seq & 0x1;
530 val = ls->val[idx];
531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq));
532
533 return val;
534 }
535
536 /* Return log buffer address */
log_buf_addr_get(void)537 char *log_buf_addr_get(void)
538 {
539 return log_buf;
540 }
541
542 /* Return log buffer size */
log_buf_len_get(void)543 u32 log_buf_len_get(void)
544 {
545 return log_buf_len;
546 }
547
548 /*
549 * Define how much of the log buffer we could take at maximum. The value
550 * must be greater than two. Note that only half of the buffer is available
551 * when the index points to the middle.
552 */
553 #define MAX_LOG_TAKE_PART 4
554 static const char trunc_msg[] = "<truncated>";
555
truncate_msg(u16 * text_len,u16 * trunc_msg_len)556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
557 {
558 /*
559 * The message should not take the whole buffer. Otherwise, it might
560 * get removed too soon.
561 */
562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
563
564 if (*text_len > max_text_len)
565 *text_len = max_text_len;
566
567 /* enable the warning message (if there is room) */
568 *trunc_msg_len = strlen(trunc_msg);
569 if (*text_len >= *trunc_msg_len)
570 *text_len -= *trunc_msg_len;
571 else
572 *trunc_msg_len = 0;
573 }
574
575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
576
syslog_action_restricted(int type)577 static int syslog_action_restricted(int type)
578 {
579 if (dmesg_restrict)
580 return 1;
581 /*
582 * Unless restricted, we allow "read all" and "get buffer size"
583 * for everybody.
584 */
585 return type != SYSLOG_ACTION_READ_ALL &&
586 type != SYSLOG_ACTION_SIZE_BUFFER;
587 }
588
check_syslog_permissions(int type,int source)589 static int check_syslog_permissions(int type, int source)
590 {
591 /*
592 * If this is from /proc/kmsg and we've already opened it, then we've
593 * already done the capabilities checks at open time.
594 */
595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
596 goto ok;
597
598 if (syslog_action_restricted(type)) {
599 if (capable(CAP_SYSLOG))
600 goto ok;
601 /*
602 * For historical reasons, accept CAP_SYS_ADMIN too, with
603 * a warning.
604 */
605 if (capable(CAP_SYS_ADMIN)) {
606 pr_warn_once("%s (%d): Attempt to access syslog with "
607 "CAP_SYS_ADMIN but no CAP_SYSLOG "
608 "(deprecated).\n",
609 current->comm, task_pid_nr(current));
610 goto ok;
611 }
612 return -EPERM;
613 }
614 ok:
615 return security_syslog(type);
616 }
617
append_char(char ** pp,char * e,char c)618 static void append_char(char **pp, char *e, char c)
619 {
620 if (*pp < e)
621 *(*pp)++ = c;
622 }
623
info_print_ext_header(char * buf,size_t size,struct printk_info * info)624 static ssize_t info_print_ext_header(char *buf, size_t size,
625 struct printk_info *info)
626 {
627 u64 ts_usec = info->ts_nsec;
628 char caller[20];
629 #ifdef CONFIG_PRINTK_CALLER
630 u32 id = info->caller_id;
631
632 snprintf(caller, sizeof(caller), ",caller=%c%u",
633 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
634 #else
635 caller[0] = '\0';
636 #endif
637
638 do_div(ts_usec, 1000);
639
640 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
641 (info->facility << 3) | info->level, info->seq,
642 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
643 }
644
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)645 static ssize_t msg_add_ext_text(char *buf, size_t size,
646 const char *text, size_t text_len,
647 unsigned char endc)
648 {
649 char *p = buf, *e = buf + size;
650 size_t i;
651
652 /* escape non-printable characters */
653 for (i = 0; i < text_len; i++) {
654 unsigned char c = text[i];
655
656 if (c < ' ' || c >= 127 || c == '\\')
657 p += scnprintf(p, e - p, "\\x%02x", c);
658 else
659 append_char(&p, e, c);
660 }
661 append_char(&p, e, endc);
662
663 return p - buf;
664 }
665
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)666 static ssize_t msg_add_dict_text(char *buf, size_t size,
667 const char *key, const char *val)
668 {
669 size_t val_len = strlen(val);
670 ssize_t len;
671
672 if (!val_len)
673 return 0;
674
675 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */
676 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
677 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
678
679 return len;
680 }
681
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)682 static ssize_t msg_print_ext_body(char *buf, size_t size,
683 char *text, size_t text_len,
684 struct dev_printk_info *dev_info)
685 {
686 ssize_t len;
687
688 len = msg_add_ext_text(buf, size, text, text_len, '\n');
689
690 if (!dev_info)
691 goto out;
692
693 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
694 dev_info->subsystem);
695 len += msg_add_dict_text(buf + len, size - len, "DEVICE",
696 dev_info->device);
697 out:
698 return len;
699 }
700
701 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
702 bool is_extended, bool may_supress);
703
704 /* /dev/kmsg - userspace message inject/listen interface */
705 struct devkmsg_user {
706 atomic64_t seq;
707 struct ratelimit_state rs;
708 struct mutex lock;
709 struct printk_buffers pbufs;
710 };
711
712 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)713 int devkmsg_emit(int facility, int level, const char *fmt, ...)
714 {
715 va_list args;
716 int r;
717
718 va_start(args, fmt);
719 r = vprintk_emit(facility, level, NULL, fmt, args);
720 va_end(args);
721
722 return r;
723 }
724
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
726 {
727 char *buf, *line;
728 int level = default_message_loglevel;
729 int facility = 1; /* LOG_USER */
730 struct file *file = iocb->ki_filp;
731 struct devkmsg_user *user = file->private_data;
732 size_t len = iov_iter_count(from);
733 ssize_t ret = len;
734
735 if (len > PRINTKRB_RECORD_MAX)
736 return -EINVAL;
737
738 /* Ignore when user logging is disabled. */
739 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
740 return len;
741
742 /* Ratelimit when not explicitly enabled. */
743 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
744 if (!___ratelimit(&user->rs, current->comm))
745 return ret;
746 }
747
748 buf = kmalloc(len+1, GFP_KERNEL);
749 if (buf == NULL)
750 return -ENOMEM;
751
752 buf[len] = '\0';
753 if (!copy_from_iter_full(buf, len, from)) {
754 kfree(buf);
755 return -EFAULT;
756 }
757
758 /*
759 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
760 * the decimal value represents 32bit, the lower 3 bit are the log
761 * level, the rest are the log facility.
762 *
763 * If no prefix or no userspace facility is specified, we
764 * enforce LOG_USER, to be able to reliably distinguish
765 * kernel-generated messages from userspace-injected ones.
766 */
767 line = buf;
768 if (line[0] == '<') {
769 char *endp = NULL;
770 unsigned int u;
771
772 u = simple_strtoul(line + 1, &endp, 10);
773 if (endp && endp[0] == '>') {
774 level = LOG_LEVEL(u);
775 if (LOG_FACILITY(u) != 0)
776 facility = LOG_FACILITY(u);
777 endp++;
778 line = endp;
779 }
780 }
781
782 devkmsg_emit(facility, level, "%s", line);
783 kfree(buf);
784 return ret;
785 }
786
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)787 static ssize_t devkmsg_read(struct file *file, char __user *buf,
788 size_t count, loff_t *ppos)
789 {
790 struct devkmsg_user *user = file->private_data;
791 char *outbuf = &user->pbufs.outbuf[0];
792 struct printk_message pmsg = {
793 .pbufs = &user->pbufs,
794 };
795 ssize_t ret;
796
797 ret = mutex_lock_interruptible(&user->lock);
798 if (ret)
799 return ret;
800
801 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
802 if (file->f_flags & O_NONBLOCK) {
803 ret = -EAGAIN;
804 goto out;
805 }
806
807 /*
808 * Guarantee this task is visible on the waitqueue before
809 * checking the wake condition.
810 *
811 * The full memory barrier within set_current_state() of
812 * prepare_to_wait_event() pairs with the full memory barrier
813 * within wq_has_sleeper().
814 *
815 * This pairs with __wake_up_klogd:A.
816 */
817 ret = wait_event_interruptible(log_wait,
818 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
819 false)); /* LMM(devkmsg_read:A) */
820 if (ret)
821 goto out;
822 }
823
824 if (pmsg.dropped) {
825 /* our last seen message is gone, return error and reset */
826 atomic64_set(&user->seq, pmsg.seq);
827 ret = -EPIPE;
828 goto out;
829 }
830
831 atomic64_set(&user->seq, pmsg.seq + 1);
832
833 if (pmsg.outbuf_len > count) {
834 ret = -EINVAL;
835 goto out;
836 }
837
838 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
839 ret = -EFAULT;
840 goto out;
841 }
842 ret = pmsg.outbuf_len;
843 out:
844 mutex_unlock(&user->lock);
845 return ret;
846 }
847
848 /*
849 * Be careful when modifying this function!!!
850 *
851 * Only few operations are supported because the device works only with the
852 * entire variable length messages (records). Non-standard values are
853 * returned in the other cases and has been this way for quite some time.
854 * User space applications might depend on this behavior.
855 */
devkmsg_llseek(struct file * file,loff_t offset,int whence)856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
857 {
858 struct devkmsg_user *user = file->private_data;
859 loff_t ret = 0;
860
861 if (offset)
862 return -ESPIPE;
863
864 switch (whence) {
865 case SEEK_SET:
866 /* the first record */
867 atomic64_set(&user->seq, prb_first_valid_seq(prb));
868 break;
869 case SEEK_DATA:
870 /*
871 * The first record after the last SYSLOG_ACTION_CLEAR,
872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
873 * changes no global state, and does not clear anything.
874 */
875 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
876 break;
877 case SEEK_END:
878 /* after the last record */
879 atomic64_set(&user->seq, prb_next_seq(prb));
880 break;
881 default:
882 ret = -EINVAL;
883 }
884 return ret;
885 }
886
devkmsg_poll(struct file * file,poll_table * wait)887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
888 {
889 struct devkmsg_user *user = file->private_data;
890 struct printk_info info;
891 __poll_t ret = 0;
892
893 poll_wait(file, &log_wait, wait);
894
895 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
896 /* return error when data has vanished underneath us */
897 if (info.seq != atomic64_read(&user->seq))
898 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
899 else
900 ret = EPOLLIN|EPOLLRDNORM;
901 }
902
903 return ret;
904 }
905
devkmsg_open(struct inode * inode,struct file * file)906 static int devkmsg_open(struct inode *inode, struct file *file)
907 {
908 struct devkmsg_user *user;
909 int err;
910
911 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
912 return -EPERM;
913
914 /* write-only does not need any file context */
915 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
916 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
917 SYSLOG_FROM_READER);
918 if (err)
919 return err;
920 }
921
922 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
923 if (!user)
924 return -ENOMEM;
925
926 ratelimit_default_init(&user->rs);
927 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
928
929 mutex_init(&user->lock);
930
931 atomic64_set(&user->seq, prb_first_valid_seq(prb));
932
933 file->private_data = user;
934 return 0;
935 }
936
devkmsg_release(struct inode * inode,struct file * file)937 static int devkmsg_release(struct inode *inode, struct file *file)
938 {
939 struct devkmsg_user *user = file->private_data;
940
941 ratelimit_state_exit(&user->rs);
942
943 mutex_destroy(&user->lock);
944 kvfree(user);
945 return 0;
946 }
947
948 const struct file_operations kmsg_fops = {
949 .open = devkmsg_open,
950 .read = devkmsg_read,
951 .write_iter = devkmsg_write,
952 .llseek = devkmsg_llseek,
953 .poll = devkmsg_poll,
954 .release = devkmsg_release,
955 };
956
957 #ifdef CONFIG_CRASH_CORE
958 /*
959 * This appends the listed symbols to /proc/vmcore
960 *
961 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
962 * obtain access to symbols that are otherwise very difficult to locate. These
963 * symbols are specifically used so that utilities can access and extract the
964 * dmesg log from a vmcore file after a crash.
965 */
log_buf_vmcoreinfo_setup(void)966 void log_buf_vmcoreinfo_setup(void)
967 {
968 struct dev_printk_info *dev_info = NULL;
969
970 VMCOREINFO_SYMBOL(prb);
971 VMCOREINFO_SYMBOL(printk_rb_static);
972 VMCOREINFO_SYMBOL(clear_seq);
973
974 /*
975 * Export struct size and field offsets. User space tools can
976 * parse it and detect any changes to structure down the line.
977 */
978
979 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
980 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
981 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
982 VMCOREINFO_OFFSET(printk_ringbuffer, fail);
983
984 VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
985 VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
986 VMCOREINFO_OFFSET(prb_desc_ring, descs);
987 VMCOREINFO_OFFSET(prb_desc_ring, infos);
988 VMCOREINFO_OFFSET(prb_desc_ring, head_id);
989 VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
990
991 VMCOREINFO_STRUCT_SIZE(prb_desc);
992 VMCOREINFO_OFFSET(prb_desc, state_var);
993 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
994
995 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
996 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
997 VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
998
999 VMCOREINFO_STRUCT_SIZE(printk_info);
1000 VMCOREINFO_OFFSET(printk_info, seq);
1001 VMCOREINFO_OFFSET(printk_info, ts_nsec);
1002 VMCOREINFO_OFFSET(printk_info, text_len);
1003 VMCOREINFO_OFFSET(printk_info, caller_id);
1004 VMCOREINFO_OFFSET(printk_info, dev_info);
1005
1006 VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1007 VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1008 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1009 VMCOREINFO_OFFSET(dev_printk_info, device);
1010 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1011
1012 VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1013 VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1014 VMCOREINFO_OFFSET(prb_data_ring, data);
1015 VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1016 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1017
1018 VMCOREINFO_SIZE(atomic_long_t);
1019 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1020
1021 VMCOREINFO_STRUCT_SIZE(latched_seq);
1022 VMCOREINFO_OFFSET(latched_seq, val);
1023 }
1024 #endif
1025
1026 /* requested log_buf_len from kernel cmdline */
1027 static unsigned long __initdata new_log_buf_len;
1028
1029 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1030 static void __init log_buf_len_update(u64 size)
1031 {
1032 if (size > (u64)LOG_BUF_LEN_MAX) {
1033 size = (u64)LOG_BUF_LEN_MAX;
1034 pr_err("log_buf over 2G is not supported.\n");
1035 }
1036
1037 if (size)
1038 size = roundup_pow_of_two(size);
1039 if (size > log_buf_len)
1040 new_log_buf_len = (unsigned long)size;
1041 }
1042
1043 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 u64 size;
1047
1048 if (!str)
1049 return -EINVAL;
1050
1051 size = memparse(str, &str);
1052
1053 log_buf_len_update(size);
1054
1055 return 0;
1056 }
1057 early_param("log_buf_len", log_buf_len_setup);
1058
1059 #ifdef CONFIG_SMP
1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1061
log_buf_add_cpu(void)1062 static void __init log_buf_add_cpu(void)
1063 {
1064 unsigned int cpu_extra;
1065
1066 /*
1067 * archs should set up cpu_possible_bits properly with
1068 * set_cpu_possible() after setup_arch() but just in
1069 * case lets ensure this is valid.
1070 */
1071 if (num_possible_cpus() == 1)
1072 return;
1073
1074 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1075
1076 /* by default this will only continue through for large > 64 CPUs */
1077 if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 return;
1079
1080 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1081 __LOG_CPU_MAX_BUF_LEN);
1082 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1083 cpu_extra);
1084 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1085
1086 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1087 }
1088 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1089 static inline void log_buf_add_cpu(void) {}
1090 #endif /* CONFIG_SMP */
1091
set_percpu_data_ready(void)1092 static void __init set_percpu_data_ready(void)
1093 {
1094 __printk_percpu_data_ready = true;
1095 }
1096
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1098 struct printk_record *r)
1099 {
1100 struct prb_reserved_entry e;
1101 struct printk_record dest_r;
1102
1103 prb_rec_init_wr(&dest_r, r->info->text_len);
1104
1105 if (!prb_reserve(&e, rb, &dest_r))
1106 return 0;
1107
1108 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1109 dest_r.info->text_len = r->info->text_len;
1110 dest_r.info->facility = r->info->facility;
1111 dest_r.info->level = r->info->level;
1112 dest_r.info->flags = r->info->flags;
1113 dest_r.info->ts_nsec = r->info->ts_nsec;
1114 dest_r.info->caller_id = r->info->caller_id;
1115 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1116
1117 prb_final_commit(&e);
1118
1119 return prb_record_text_space(&e);
1120 }
1121
1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1123
setup_log_buf(int early)1124 void __init setup_log_buf(int early)
1125 {
1126 struct printk_info *new_infos;
1127 unsigned int new_descs_count;
1128 struct prb_desc *new_descs;
1129 struct printk_info info;
1130 struct printk_record r;
1131 unsigned int text_size;
1132 size_t new_descs_size;
1133 size_t new_infos_size;
1134 unsigned long flags;
1135 char *new_log_buf;
1136 unsigned int free;
1137 u64 seq;
1138
1139 /*
1140 * Some archs call setup_log_buf() multiple times - first is very
1141 * early, e.g. from setup_arch(), and second - when percpu_areas
1142 * are initialised.
1143 */
1144 if (!early)
1145 set_percpu_data_ready();
1146
1147 if (log_buf != __log_buf)
1148 return;
1149
1150 if (!early && !new_log_buf_len)
1151 log_buf_add_cpu();
1152
1153 if (!new_log_buf_len)
1154 return;
1155
1156 new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1157 if (new_descs_count == 0) {
1158 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1159 return;
1160 }
1161
1162 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1163 if (unlikely(!new_log_buf)) {
1164 pr_err("log_buf_len: %lu text bytes not available\n",
1165 new_log_buf_len);
1166 return;
1167 }
1168
1169 new_descs_size = new_descs_count * sizeof(struct prb_desc);
1170 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1171 if (unlikely(!new_descs)) {
1172 pr_err("log_buf_len: %zu desc bytes not available\n",
1173 new_descs_size);
1174 goto err_free_log_buf;
1175 }
1176
1177 new_infos_size = new_descs_count * sizeof(struct printk_info);
1178 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1179 if (unlikely(!new_infos)) {
1180 pr_err("log_buf_len: %zu info bytes not available\n",
1181 new_infos_size);
1182 goto err_free_descs;
1183 }
1184
1185 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1186
1187 prb_init(&printk_rb_dynamic,
1188 new_log_buf, ilog2(new_log_buf_len),
1189 new_descs, ilog2(new_descs_count),
1190 new_infos);
1191
1192 local_irq_save(flags);
1193
1194 log_buf_len = new_log_buf_len;
1195 log_buf = new_log_buf;
1196 new_log_buf_len = 0;
1197
1198 free = __LOG_BUF_LEN;
1199 prb_for_each_record(0, &printk_rb_static, seq, &r) {
1200 text_size = add_to_rb(&printk_rb_dynamic, &r);
1201 if (text_size > free)
1202 free = 0;
1203 else
1204 free -= text_size;
1205 }
1206
1207 prb = &printk_rb_dynamic;
1208
1209 local_irq_restore(flags);
1210
1211 /*
1212 * Copy any remaining messages that might have appeared from
1213 * NMI context after copying but before switching to the
1214 * dynamic buffer.
1215 */
1216 prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1217 text_size = add_to_rb(&printk_rb_dynamic, &r);
1218 if (text_size > free)
1219 free = 0;
1220 else
1221 free -= text_size;
1222 }
1223
1224 if (seq != prb_next_seq(&printk_rb_static)) {
1225 pr_err("dropped %llu messages\n",
1226 prb_next_seq(&printk_rb_static) - seq);
1227 }
1228
1229 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1230 pr_info("early log buf free: %u(%u%%)\n",
1231 free, (free * 100) / __LOG_BUF_LEN);
1232 return;
1233
1234 err_free_descs:
1235 memblock_free(new_descs, new_descs_size);
1236 err_free_log_buf:
1237 memblock_free(new_log_buf, new_log_buf_len);
1238 }
1239
1240 static bool __read_mostly ignore_loglevel;
1241
ignore_loglevel_setup(char * str)1242 static int __init ignore_loglevel_setup(char *str)
1243 {
1244 ignore_loglevel = true;
1245 pr_info("debug: ignoring loglevel setting.\n");
1246
1247 return 0;
1248 }
1249
1250 early_param("ignore_loglevel", ignore_loglevel_setup);
1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1252 MODULE_PARM_DESC(ignore_loglevel,
1253 "ignore loglevel setting (prints all kernel messages to the console)");
1254
suppress_message_printing(int level)1255 static bool suppress_message_printing(int level)
1256 {
1257 return (level >= console_loglevel && !ignore_loglevel);
1258 }
1259
1260 #ifdef CONFIG_BOOT_PRINTK_DELAY
1261
1262 static int boot_delay; /* msecs delay after each printk during bootup */
1263 static unsigned long long loops_per_msec; /* based on boot_delay */
1264
boot_delay_setup(char * str)1265 static int __init boot_delay_setup(char *str)
1266 {
1267 unsigned long lpj;
1268
1269 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1270 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1271
1272 get_option(&str, &boot_delay);
1273 if (boot_delay > 10 * 1000)
1274 boot_delay = 0;
1275
1276 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1277 "HZ: %d, loops_per_msec: %llu\n",
1278 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1279 return 0;
1280 }
1281 early_param("boot_delay", boot_delay_setup);
1282
boot_delay_msec(int level)1283 static void boot_delay_msec(int level)
1284 {
1285 unsigned long long k;
1286 unsigned long timeout;
1287
1288 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1289 || suppress_message_printing(level)) {
1290 return;
1291 }
1292
1293 k = (unsigned long long)loops_per_msec * boot_delay;
1294
1295 timeout = jiffies + msecs_to_jiffies(boot_delay);
1296 while (k) {
1297 k--;
1298 cpu_relax();
1299 /*
1300 * use (volatile) jiffies to prevent
1301 * compiler reduction; loop termination via jiffies
1302 * is secondary and may or may not happen.
1303 */
1304 if (time_after(jiffies, timeout))
1305 break;
1306 touch_nmi_watchdog();
1307 }
1308 }
1309 #else
boot_delay_msec(int level)1310 static inline void boot_delay_msec(int level)
1311 {
1312 }
1313 #endif
1314
1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1317
print_syslog(unsigned int level,char * buf)1318 static size_t print_syslog(unsigned int level, char *buf)
1319 {
1320 return sprintf(buf, "<%u>", level);
1321 }
1322
print_time(u64 ts,char * buf)1323 static size_t print_time(u64 ts, char *buf)
1324 {
1325 unsigned long rem_nsec = do_div(ts, 1000000000);
1326
1327 return sprintf(buf, "[%5lu.%06lu]",
1328 (unsigned long)ts, rem_nsec / 1000);
1329 }
1330
1331 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1332 static size_t print_caller(u32 id, char *buf)
1333 {
1334 char caller[12];
1335
1336 snprintf(caller, sizeof(caller), "%c%u",
1337 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1338 return sprintf(buf, "[%6s]", caller);
1339 }
1340 #else
1341 #define print_caller(id, buf) 0
1342 #endif
1343
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1344 static size_t info_print_prefix(const struct printk_info *info, bool syslog,
1345 bool time, char *buf)
1346 {
1347 size_t len = 0;
1348
1349 if (syslog)
1350 len = print_syslog((info->facility << 3) | info->level, buf);
1351
1352 if (time)
1353 len += print_time(info->ts_nsec, buf + len);
1354
1355 len += print_caller(info->caller_id, buf + len);
1356
1357 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1358 buf[len++] = ' ';
1359 buf[len] = '\0';
1360 }
1361
1362 return len;
1363 }
1364
1365 /*
1366 * Prepare the record for printing. The text is shifted within the given
1367 * buffer to avoid a need for another one. The following operations are
1368 * done:
1369 *
1370 * - Add prefix for each line.
1371 * - Drop truncated lines that no longer fit into the buffer.
1372 * - Add the trailing newline that has been removed in vprintk_store().
1373 * - Add a string terminator.
1374 *
1375 * Since the produced string is always terminated, the maximum possible
1376 * return value is @r->text_buf_size - 1;
1377 *
1378 * Return: The length of the updated/prepared text, including the added
1379 * prefixes and the newline. The terminator is not counted. The dropped
1380 * line(s) are not counted.
1381 */
record_print_text(struct printk_record * r,bool syslog,bool time)1382 static size_t record_print_text(struct printk_record *r, bool syslog,
1383 bool time)
1384 {
1385 size_t text_len = r->info->text_len;
1386 size_t buf_size = r->text_buf_size;
1387 char *text = r->text_buf;
1388 char prefix[PRINTK_PREFIX_MAX];
1389 bool truncated = false;
1390 size_t prefix_len;
1391 size_t line_len;
1392 size_t len = 0;
1393 char *next;
1394
1395 /*
1396 * If the message was truncated because the buffer was not large
1397 * enough, treat the available text as if it were the full text.
1398 */
1399 if (text_len > buf_size)
1400 text_len = buf_size;
1401
1402 prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1403
1404 /*
1405 * @text_len: bytes of unprocessed text
1406 * @line_len: bytes of current line _without_ newline
1407 * @text: pointer to beginning of current line
1408 * @len: number of bytes prepared in r->text_buf
1409 */
1410 for (;;) {
1411 next = memchr(text, '\n', text_len);
1412 if (next) {
1413 line_len = next - text;
1414 } else {
1415 /* Drop truncated line(s). */
1416 if (truncated)
1417 break;
1418 line_len = text_len;
1419 }
1420
1421 /*
1422 * Truncate the text if there is not enough space to add the
1423 * prefix and a trailing newline and a terminator.
1424 */
1425 if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1426 /* Drop even the current line if no space. */
1427 if (len + prefix_len + line_len + 1 + 1 > buf_size)
1428 break;
1429
1430 text_len = buf_size - len - prefix_len - 1 - 1;
1431 truncated = true;
1432 }
1433
1434 memmove(text + prefix_len, text, text_len);
1435 memcpy(text, prefix, prefix_len);
1436
1437 /*
1438 * Increment the prepared length to include the text and
1439 * prefix that were just moved+copied. Also increment for the
1440 * newline at the end of this line. If this is the last line,
1441 * there is no newline, but it will be added immediately below.
1442 */
1443 len += prefix_len + line_len + 1;
1444 if (text_len == line_len) {
1445 /*
1446 * This is the last line. Add the trailing newline
1447 * removed in vprintk_store().
1448 */
1449 text[prefix_len + line_len] = '\n';
1450 break;
1451 }
1452
1453 /*
1454 * Advance beyond the added prefix and the related line with
1455 * its newline.
1456 */
1457 text += prefix_len + line_len + 1;
1458
1459 /*
1460 * The remaining text has only decreased by the line with its
1461 * newline.
1462 *
1463 * Note that @text_len can become zero. It happens when @text
1464 * ended with a newline (either due to truncation or the
1465 * original string ending with "\n\n"). The loop is correctly
1466 * repeated and (if not truncated) an empty line with a prefix
1467 * will be prepared.
1468 */
1469 text_len -= line_len + 1;
1470 }
1471
1472 /*
1473 * If a buffer was provided, it will be terminated. Space for the
1474 * string terminator is guaranteed to be available. The terminator is
1475 * not counted in the return value.
1476 */
1477 if (buf_size > 0)
1478 r->text_buf[len] = 0;
1479
1480 return len;
1481 }
1482
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1483 static size_t get_record_print_text_size(struct printk_info *info,
1484 unsigned int line_count,
1485 bool syslog, bool time)
1486 {
1487 char prefix[PRINTK_PREFIX_MAX];
1488 size_t prefix_len;
1489
1490 prefix_len = info_print_prefix(info, syslog, time, prefix);
1491
1492 /*
1493 * Each line will be preceded with a prefix. The intermediate
1494 * newlines are already within the text, but a final trailing
1495 * newline will be added.
1496 */
1497 return ((prefix_len * line_count) + info->text_len + 1);
1498 }
1499
1500 /*
1501 * Beginning with @start_seq, find the first record where it and all following
1502 * records up to (but not including) @max_seq fit into @size.
1503 *
1504 * @max_seq is simply an upper bound and does not need to exist. If the caller
1505 * does not require an upper bound, -1 can be used for @max_seq.
1506 */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1508 bool syslog, bool time)
1509 {
1510 struct printk_info info;
1511 unsigned int line_count;
1512 size_t len = 0;
1513 u64 seq;
1514
1515 /* Determine the size of the records up to @max_seq. */
1516 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1517 if (info.seq >= max_seq)
1518 break;
1519 len += get_record_print_text_size(&info, line_count, syslog, time);
1520 }
1521
1522 /*
1523 * Adjust the upper bound for the next loop to avoid subtracting
1524 * lengths that were never added.
1525 */
1526 if (seq < max_seq)
1527 max_seq = seq;
1528
1529 /*
1530 * Move first record forward until length fits into the buffer. Ignore
1531 * newest messages that were not counted in the above cycle. Messages
1532 * might appear and get lost in the meantime. This is a best effort
1533 * that prevents an infinite loop that could occur with a retry.
1534 */
1535 prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1536 if (len <= size || info.seq >= max_seq)
1537 break;
1538 len -= get_record_print_text_size(&info, line_count, syslog, time);
1539 }
1540
1541 return seq;
1542 }
1543
1544 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1545 static int syslog_print(char __user *buf, int size)
1546 {
1547 struct printk_info info;
1548 struct printk_record r;
1549 char *text;
1550 int len = 0;
1551 u64 seq;
1552
1553 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1554 if (!text)
1555 return -ENOMEM;
1556
1557 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1558
1559 mutex_lock(&syslog_lock);
1560
1561 /*
1562 * Wait for the @syslog_seq record to be available. @syslog_seq may
1563 * change while waiting.
1564 */
1565 do {
1566 seq = syslog_seq;
1567
1568 mutex_unlock(&syslog_lock);
1569 /*
1570 * Guarantee this task is visible on the waitqueue before
1571 * checking the wake condition.
1572 *
1573 * The full memory barrier within set_current_state() of
1574 * prepare_to_wait_event() pairs with the full memory barrier
1575 * within wq_has_sleeper().
1576 *
1577 * This pairs with __wake_up_klogd:A.
1578 */
1579 len = wait_event_interruptible(log_wait,
1580 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1581 mutex_lock(&syslog_lock);
1582
1583 if (len)
1584 goto out;
1585 } while (syslog_seq != seq);
1586
1587 /*
1588 * Copy records that fit into the buffer. The above cycle makes sure
1589 * that the first record is always available.
1590 */
1591 do {
1592 size_t n;
1593 size_t skip;
1594 int err;
1595
1596 if (!prb_read_valid(prb, syslog_seq, &r))
1597 break;
1598
1599 if (r.info->seq != syslog_seq) {
1600 /* message is gone, move to next valid one */
1601 syslog_seq = r.info->seq;
1602 syslog_partial = 0;
1603 }
1604
1605 /*
1606 * To keep reading/counting partial line consistent,
1607 * use printk_time value as of the beginning of a line.
1608 */
1609 if (!syslog_partial)
1610 syslog_time = printk_time;
1611
1612 skip = syslog_partial;
1613 n = record_print_text(&r, true, syslog_time);
1614 if (n - syslog_partial <= size) {
1615 /* message fits into buffer, move forward */
1616 syslog_seq = r.info->seq + 1;
1617 n -= syslog_partial;
1618 syslog_partial = 0;
1619 } else if (!len){
1620 /* partial read(), remember position */
1621 n = size;
1622 syslog_partial += n;
1623 } else
1624 n = 0;
1625
1626 if (!n)
1627 break;
1628
1629 mutex_unlock(&syslog_lock);
1630 err = copy_to_user(buf, text + skip, n);
1631 mutex_lock(&syslog_lock);
1632
1633 if (err) {
1634 if (!len)
1635 len = -EFAULT;
1636 break;
1637 }
1638
1639 len += n;
1640 size -= n;
1641 buf += n;
1642 } while (size);
1643 out:
1644 mutex_unlock(&syslog_lock);
1645 kfree(text);
1646 return len;
1647 }
1648
syslog_print_all(char __user * buf,int size,bool clear)1649 static int syslog_print_all(char __user *buf, int size, bool clear)
1650 {
1651 struct printk_info info;
1652 struct printk_record r;
1653 char *text;
1654 int len = 0;
1655 u64 seq;
1656 bool time;
1657
1658 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1659 if (!text)
1660 return -ENOMEM;
1661
1662 time = printk_time;
1663 /*
1664 * Find first record that fits, including all following records,
1665 * into the user-provided buffer for this dump.
1666 */
1667 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1668 size, true, time);
1669
1670 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1671
1672 len = 0;
1673 prb_for_each_record(seq, prb, seq, &r) {
1674 int textlen;
1675
1676 textlen = record_print_text(&r, true, time);
1677
1678 if (len + textlen > size) {
1679 seq--;
1680 break;
1681 }
1682
1683 if (copy_to_user(buf + len, text, textlen))
1684 len = -EFAULT;
1685 else
1686 len += textlen;
1687
1688 if (len < 0)
1689 break;
1690 }
1691
1692 if (clear) {
1693 mutex_lock(&syslog_lock);
1694 latched_seq_write(&clear_seq, seq);
1695 mutex_unlock(&syslog_lock);
1696 }
1697
1698 kfree(text);
1699 return len;
1700 }
1701
syslog_clear(void)1702 static void syslog_clear(void)
1703 {
1704 mutex_lock(&syslog_lock);
1705 latched_seq_write(&clear_seq, prb_next_seq(prb));
1706 mutex_unlock(&syslog_lock);
1707 }
1708
do_syslog(int type,char __user * buf,int len,int source)1709 int do_syslog(int type, char __user *buf, int len, int source)
1710 {
1711 struct printk_info info;
1712 bool clear = false;
1713 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1714 int error;
1715
1716 error = check_syslog_permissions(type, source);
1717 if (error)
1718 return error;
1719
1720 switch (type) {
1721 case SYSLOG_ACTION_CLOSE: /* Close log */
1722 break;
1723 case SYSLOG_ACTION_OPEN: /* Open log */
1724 break;
1725 case SYSLOG_ACTION_READ: /* Read from log */
1726 if (!buf || len < 0)
1727 return -EINVAL;
1728 if (!len)
1729 return 0;
1730 if (!access_ok(buf, len))
1731 return -EFAULT;
1732 error = syslog_print(buf, len);
1733 break;
1734 /* Read/clear last kernel messages */
1735 case SYSLOG_ACTION_READ_CLEAR:
1736 clear = true;
1737 fallthrough;
1738 /* Read last kernel messages */
1739 case SYSLOG_ACTION_READ_ALL:
1740 if (!buf || len < 0)
1741 return -EINVAL;
1742 if (!len)
1743 return 0;
1744 if (!access_ok(buf, len))
1745 return -EFAULT;
1746 error = syslog_print_all(buf, len, clear);
1747 break;
1748 /* Clear ring buffer */
1749 case SYSLOG_ACTION_CLEAR:
1750 syslog_clear();
1751 break;
1752 /* Disable logging to console */
1753 case SYSLOG_ACTION_CONSOLE_OFF:
1754 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1755 saved_console_loglevel = console_loglevel;
1756 console_loglevel = minimum_console_loglevel;
1757 break;
1758 /* Enable logging to console */
1759 case SYSLOG_ACTION_CONSOLE_ON:
1760 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1761 console_loglevel = saved_console_loglevel;
1762 saved_console_loglevel = LOGLEVEL_DEFAULT;
1763 }
1764 break;
1765 /* Set level of messages printed to console */
1766 case SYSLOG_ACTION_CONSOLE_LEVEL:
1767 if (len < 1 || len > 8)
1768 return -EINVAL;
1769 if (len < minimum_console_loglevel)
1770 len = minimum_console_loglevel;
1771 console_loglevel = len;
1772 /* Implicitly re-enable logging to console */
1773 saved_console_loglevel = LOGLEVEL_DEFAULT;
1774 break;
1775 /* Number of chars in the log buffer */
1776 case SYSLOG_ACTION_SIZE_UNREAD:
1777 mutex_lock(&syslog_lock);
1778 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1779 /* No unread messages. */
1780 mutex_unlock(&syslog_lock);
1781 return 0;
1782 }
1783 if (info.seq != syslog_seq) {
1784 /* messages are gone, move to first one */
1785 syslog_seq = info.seq;
1786 syslog_partial = 0;
1787 }
1788 if (source == SYSLOG_FROM_PROC) {
1789 /*
1790 * Short-cut for poll(/"proc/kmsg") which simply checks
1791 * for pending data, not the size; return the count of
1792 * records, not the length.
1793 */
1794 error = prb_next_seq(prb) - syslog_seq;
1795 } else {
1796 bool time = syslog_partial ? syslog_time : printk_time;
1797 unsigned int line_count;
1798 u64 seq;
1799
1800 prb_for_each_info(syslog_seq, prb, seq, &info,
1801 &line_count) {
1802 error += get_record_print_text_size(&info, line_count,
1803 true, time);
1804 time = printk_time;
1805 }
1806 error -= syslog_partial;
1807 }
1808 mutex_unlock(&syslog_lock);
1809 break;
1810 /* Size of the log buffer */
1811 case SYSLOG_ACTION_SIZE_BUFFER:
1812 error = log_buf_len;
1813 break;
1814 default:
1815 error = -EINVAL;
1816 break;
1817 }
1818
1819 return error;
1820 }
1821
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1822 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1823 {
1824 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1825 }
1826
1827 /*
1828 * Special console_lock variants that help to reduce the risk of soft-lockups.
1829 * They allow to pass console_lock to another printk() call using a busy wait.
1830 */
1831
1832 #ifdef CONFIG_LOCKDEP
1833 static struct lockdep_map console_owner_dep_map = {
1834 .name = "console_owner"
1835 };
1836 #endif
1837
1838 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1839 static struct task_struct *console_owner;
1840 static bool console_waiter;
1841
1842 /**
1843 * console_lock_spinning_enable - mark beginning of code where another
1844 * thread might safely busy wait
1845 *
1846 * This basically converts console_lock into a spinlock. This marks
1847 * the section where the console_lock owner can not sleep, because
1848 * there may be a waiter spinning (like a spinlock). Also it must be
1849 * ready to hand over the lock at the end of the section.
1850 */
console_lock_spinning_enable(void)1851 static void console_lock_spinning_enable(void)
1852 {
1853 /*
1854 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1855 * Non-panic CPUs abandon the flush anyway.
1856 *
1857 * Just keep the lockdep annotation. The panic-CPU should avoid
1858 * taking console_owner_lock because it might cause a deadlock.
1859 * This looks like the easiest way how to prevent false lockdep
1860 * reports without handling races a lockless way.
1861 */
1862 if (panic_in_progress())
1863 goto lockdep;
1864
1865 raw_spin_lock(&console_owner_lock);
1866 console_owner = current;
1867 raw_spin_unlock(&console_owner_lock);
1868
1869 lockdep:
1870 /* The waiter may spin on us after setting console_owner */
1871 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1872 }
1873
1874 /**
1875 * console_lock_spinning_disable_and_check - mark end of code where another
1876 * thread was able to busy wait and check if there is a waiter
1877 * @cookie: cookie returned from console_srcu_read_lock()
1878 *
1879 * This is called at the end of the section where spinning is allowed.
1880 * It has two functions. First, it is a signal that it is no longer
1881 * safe to start busy waiting for the lock. Second, it checks if
1882 * there is a busy waiter and passes the lock rights to her.
1883 *
1884 * Important: Callers lose both the console_lock and the SRCU read lock if
1885 * there was a busy waiter. They must not touch items synchronized by
1886 * console_lock or SRCU read lock in this case.
1887 *
1888 * Return: 1 if the lock rights were passed, 0 otherwise.
1889 */
console_lock_spinning_disable_and_check(int cookie)1890 static int console_lock_spinning_disable_and_check(int cookie)
1891 {
1892 int waiter;
1893
1894 /*
1895 * Ignore spinning waiters during panic() because they might get stopped
1896 * or blocked at any time,
1897 *
1898 * It is safe because nobody is allowed to start spinning during panic
1899 * in the first place. If there has been a waiter then non panic CPUs
1900 * might stay spinning. They would get stopped anyway. The panic context
1901 * will never start spinning and an interrupted spin on panic CPU will
1902 * never continue.
1903 */
1904 if (panic_in_progress()) {
1905 /* Keep lockdep happy. */
1906 spin_release(&console_owner_dep_map, _THIS_IP_);
1907 return 0;
1908 }
1909
1910 raw_spin_lock(&console_owner_lock);
1911 waiter = READ_ONCE(console_waiter);
1912 console_owner = NULL;
1913 raw_spin_unlock(&console_owner_lock);
1914
1915 if (!waiter) {
1916 spin_release(&console_owner_dep_map, _THIS_IP_);
1917 return 0;
1918 }
1919
1920 /* The waiter is now free to continue */
1921 WRITE_ONCE(console_waiter, false);
1922
1923 spin_release(&console_owner_dep_map, _THIS_IP_);
1924
1925 /*
1926 * Preserve lockdep lock ordering. Release the SRCU read lock before
1927 * releasing the console_lock.
1928 */
1929 console_srcu_read_unlock(cookie);
1930
1931 /*
1932 * Hand off console_lock to waiter. The waiter will perform
1933 * the up(). After this, the waiter is the console_lock owner.
1934 */
1935 mutex_release(&console_lock_dep_map, _THIS_IP_);
1936 return 1;
1937 }
1938
1939 /**
1940 * console_trylock_spinning - try to get console_lock by busy waiting
1941 *
1942 * This allows to busy wait for the console_lock when the current
1943 * owner is running in specially marked sections. It means that
1944 * the current owner is running and cannot reschedule until it
1945 * is ready to lose the lock.
1946 *
1947 * Return: 1 if we got the lock, 0 othrewise
1948 */
console_trylock_spinning(void)1949 static int console_trylock_spinning(void)
1950 {
1951 struct task_struct *owner = NULL;
1952 bool waiter;
1953 bool spin = false;
1954 unsigned long flags;
1955
1956 if (console_trylock())
1957 return 1;
1958
1959 /*
1960 * It's unsafe to spin once a panic has begun. If we are the
1961 * panic CPU, we may have already halted the owner of the
1962 * console_sem. If we are not the panic CPU, then we should
1963 * avoid taking console_sem, so the panic CPU has a better
1964 * chance of cleanly acquiring it later.
1965 */
1966 if (panic_in_progress())
1967 return 0;
1968
1969 printk_safe_enter_irqsave(flags);
1970
1971 raw_spin_lock(&console_owner_lock);
1972 owner = READ_ONCE(console_owner);
1973 waiter = READ_ONCE(console_waiter);
1974 if (!waiter && owner && owner != current) {
1975 WRITE_ONCE(console_waiter, true);
1976 spin = true;
1977 }
1978 raw_spin_unlock(&console_owner_lock);
1979
1980 /*
1981 * If there is an active printk() writing to the
1982 * consoles, instead of having it write our data too,
1983 * see if we can offload that load from the active
1984 * printer, and do some printing ourselves.
1985 * Go into a spin only if there isn't already a waiter
1986 * spinning, and there is an active printer, and
1987 * that active printer isn't us (recursive printk?).
1988 */
1989 if (!spin) {
1990 printk_safe_exit_irqrestore(flags);
1991 return 0;
1992 }
1993
1994 /* We spin waiting for the owner to release us */
1995 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1996 /* Owner will clear console_waiter on hand off */
1997 while (READ_ONCE(console_waiter))
1998 cpu_relax();
1999 spin_release(&console_owner_dep_map, _THIS_IP_);
2000
2001 printk_safe_exit_irqrestore(flags);
2002 /*
2003 * The owner passed the console lock to us.
2004 * Since we did not spin on console lock, annotate
2005 * this as a trylock. Otherwise lockdep will
2006 * complain.
2007 */
2008 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2009
2010 /*
2011 * Update @console_may_schedule for trylock because the previous
2012 * owner may have been schedulable.
2013 */
2014 console_may_schedule = 0;
2015
2016 return 1;
2017 }
2018
2019 /*
2020 * Recursion is tracked separately on each CPU. If NMIs are supported, an
2021 * additional NMI context per CPU is also separately tracked. Until per-CPU
2022 * is available, a separate "early tracking" is performed.
2023 */
2024 static DEFINE_PER_CPU(u8, printk_count);
2025 static u8 printk_count_early;
2026 #ifdef CONFIG_HAVE_NMI
2027 static DEFINE_PER_CPU(u8, printk_count_nmi);
2028 static u8 printk_count_nmi_early;
2029 #endif
2030
2031 /*
2032 * Recursion is limited to keep the output sane. printk() should not require
2033 * more than 1 level of recursion (allowing, for example, printk() to trigger
2034 * a WARN), but a higher value is used in case some printk-internal errors
2035 * exist, such as the ringbuffer validation checks failing.
2036 */
2037 #define PRINTK_MAX_RECURSION 3
2038
2039 /*
2040 * Return a pointer to the dedicated counter for the CPU+context of the
2041 * caller.
2042 */
__printk_recursion_counter(void)2043 static u8 *__printk_recursion_counter(void)
2044 {
2045 #ifdef CONFIG_HAVE_NMI
2046 if (in_nmi()) {
2047 if (printk_percpu_data_ready())
2048 return this_cpu_ptr(&printk_count_nmi);
2049 return &printk_count_nmi_early;
2050 }
2051 #endif
2052 if (printk_percpu_data_ready())
2053 return this_cpu_ptr(&printk_count);
2054 return &printk_count_early;
2055 }
2056
2057 /*
2058 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2059 * The caller must check the boolean return value to see if the recursion is
2060 * allowed. On failure, interrupts are not disabled.
2061 *
2062 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2063 * that is passed to printk_exit_irqrestore().
2064 */
2065 #define printk_enter_irqsave(recursion_ptr, flags) \
2066 ({ \
2067 bool success = true; \
2068 \
2069 typecheck(u8 *, recursion_ptr); \
2070 local_irq_save(flags); \
2071 (recursion_ptr) = __printk_recursion_counter(); \
2072 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
2073 local_irq_restore(flags); \
2074 success = false; \
2075 } else { \
2076 (*(recursion_ptr))++; \
2077 } \
2078 success; \
2079 })
2080
2081 /* Exit recursion tracking, restoring interrupts. */
2082 #define printk_exit_irqrestore(recursion_ptr, flags) \
2083 do { \
2084 typecheck(u8 *, recursion_ptr); \
2085 (*(recursion_ptr))--; \
2086 local_irq_restore(flags); \
2087 } while (0)
2088
2089 int printk_delay_msec __read_mostly;
2090
printk_delay(int level)2091 static inline void printk_delay(int level)
2092 {
2093 boot_delay_msec(level);
2094
2095 if (unlikely(printk_delay_msec)) {
2096 int m = printk_delay_msec;
2097
2098 while (m--) {
2099 mdelay(1);
2100 touch_nmi_watchdog();
2101 }
2102 }
2103 }
2104
printk_caller_id(void)2105 static inline u32 printk_caller_id(void)
2106 {
2107 return in_task() ? task_pid_nr(current) :
2108 0x80000000 + smp_processor_id();
2109 }
2110
2111 /**
2112 * printk_parse_prefix - Parse level and control flags.
2113 *
2114 * @text: The terminated text message.
2115 * @level: A pointer to the current level value, will be updated.
2116 * @flags: A pointer to the current printk_info flags, will be updated.
2117 *
2118 * @level may be NULL if the caller is not interested in the parsed value.
2119 * Otherwise the variable pointed to by @level must be set to
2120 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2121 *
2122 * @flags may be NULL if the caller is not interested in the parsed value.
2123 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2124 * value.
2125 *
2126 * Return: The length of the parsed level and control flags.
2127 */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2128 u16 printk_parse_prefix(const char *text, int *level,
2129 enum printk_info_flags *flags)
2130 {
2131 u16 prefix_len = 0;
2132 int kern_level;
2133
2134 while (*text) {
2135 kern_level = printk_get_level(text);
2136 if (!kern_level)
2137 break;
2138
2139 switch (kern_level) {
2140 case '0' ... '7':
2141 if (level && *level == LOGLEVEL_DEFAULT)
2142 *level = kern_level - '0';
2143 break;
2144 case 'c': /* KERN_CONT */
2145 if (flags)
2146 *flags |= LOG_CONT;
2147 }
2148
2149 prefix_len += 2;
2150 text += 2;
2151 }
2152
2153 return prefix_len;
2154 }
2155
2156 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2157 static u16 printk_sprint(char *text, u16 size, int facility,
2158 enum printk_info_flags *flags, const char *fmt,
2159 va_list args)
2160 {
2161 u16 text_len;
2162
2163 text_len = vscnprintf(text, size, fmt, args);
2164
2165 /* Mark and strip a trailing newline. */
2166 if (text_len && text[text_len - 1] == '\n') {
2167 text_len--;
2168 *flags |= LOG_NEWLINE;
2169 }
2170
2171 /* Strip log level and control flags. */
2172 if (facility == 0) {
2173 u16 prefix_len;
2174
2175 prefix_len = printk_parse_prefix(text, NULL, NULL);
2176 if (prefix_len) {
2177 text_len -= prefix_len;
2178 memmove(text, text + prefix_len, text_len);
2179 }
2180 }
2181
2182 trace_console(text, text_len);
2183
2184 return text_len;
2185 }
2186
2187 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2188 int vprintk_store(int facility, int level,
2189 const struct dev_printk_info *dev_info,
2190 const char *fmt, va_list args)
2191 {
2192 struct prb_reserved_entry e;
2193 enum printk_info_flags flags = 0;
2194 struct printk_record r;
2195 unsigned long irqflags;
2196 u16 trunc_msg_len = 0;
2197 char prefix_buf[8];
2198 u8 *recursion_ptr;
2199 u16 reserve_size;
2200 va_list args2;
2201 u32 caller_id;
2202 u16 text_len;
2203 int ret = 0;
2204 u64 ts_nsec;
2205
2206 if (!printk_enter_irqsave(recursion_ptr, irqflags))
2207 return 0;
2208
2209 /*
2210 * Since the duration of printk() can vary depending on the message
2211 * and state of the ringbuffer, grab the timestamp now so that it is
2212 * close to the call of printk(). This provides a more deterministic
2213 * timestamp with respect to the caller.
2214 */
2215 ts_nsec = local_clock();
2216
2217 caller_id = printk_caller_id();
2218
2219 /*
2220 * The sprintf needs to come first since the syslog prefix might be
2221 * passed in as a parameter. An extra byte must be reserved so that
2222 * later the vscnprintf() into the reserved buffer has room for the
2223 * terminating '\0', which is not counted by vsnprintf().
2224 */
2225 va_copy(args2, args);
2226 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2227 va_end(args2);
2228
2229 if (reserve_size > PRINTKRB_RECORD_MAX)
2230 reserve_size = PRINTKRB_RECORD_MAX;
2231
2232 /* Extract log level or control flags. */
2233 if (facility == 0)
2234 printk_parse_prefix(&prefix_buf[0], &level, &flags);
2235
2236 if (level == LOGLEVEL_DEFAULT)
2237 level = default_message_loglevel;
2238
2239 if (dev_info)
2240 flags |= LOG_NEWLINE;
2241
2242 if (flags & LOG_CONT) {
2243 prb_rec_init_wr(&r, reserve_size);
2244 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2245 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2246 facility, &flags, fmt, args);
2247 r.info->text_len += text_len;
2248
2249 if (flags & LOG_NEWLINE) {
2250 r.info->flags |= LOG_NEWLINE;
2251 prb_final_commit(&e);
2252 } else {
2253 prb_commit(&e);
2254 }
2255
2256 ret = text_len;
2257 goto out;
2258 }
2259 }
2260
2261 /*
2262 * Explicitly initialize the record before every prb_reserve() call.
2263 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2264 * structure when they fail.
2265 */
2266 prb_rec_init_wr(&r, reserve_size);
2267 if (!prb_reserve(&e, prb, &r)) {
2268 /* truncate the message if it is too long for empty buffer */
2269 truncate_msg(&reserve_size, &trunc_msg_len);
2270
2271 prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2272 if (!prb_reserve(&e, prb, &r))
2273 goto out;
2274 }
2275
2276 /* fill message */
2277 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2278 if (trunc_msg_len)
2279 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2280 r.info->text_len = text_len + trunc_msg_len;
2281 r.info->facility = facility;
2282 r.info->level = level & 7;
2283 r.info->flags = flags & 0x1f;
2284 r.info->ts_nsec = ts_nsec;
2285 r.info->caller_id = caller_id;
2286 if (dev_info)
2287 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2288
2289 /* A message without a trailing newline can be continued. */
2290 if (!(flags & LOG_NEWLINE))
2291 prb_commit(&e);
2292 else
2293 prb_final_commit(&e);
2294
2295 ret = text_len + trunc_msg_len;
2296 out:
2297 printk_exit_irqrestore(recursion_ptr, irqflags);
2298 return ret;
2299 }
2300
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2301 asmlinkage int vprintk_emit(int facility, int level,
2302 const struct dev_printk_info *dev_info,
2303 const char *fmt, va_list args)
2304 {
2305 int printed_len;
2306 bool in_sched = false;
2307
2308 /* Suppress unimportant messages after panic happens */
2309 if (unlikely(suppress_printk))
2310 return 0;
2311
2312 if (unlikely(suppress_panic_printk) && other_cpu_in_panic())
2313 return 0;
2314
2315 if (level == LOGLEVEL_SCHED) {
2316 level = LOGLEVEL_DEFAULT;
2317 in_sched = true;
2318 }
2319
2320 printk_delay(level);
2321
2322 printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2323
2324 /* If called from the scheduler, we can not call up(). */
2325 if (!in_sched) {
2326 /*
2327 * The caller may be holding system-critical or
2328 * timing-sensitive locks. Disable preemption during
2329 * printing of all remaining records to all consoles so that
2330 * this context can return as soon as possible. Hopefully
2331 * another printk() caller will take over the printing.
2332 */
2333 preempt_disable();
2334 /*
2335 * Try to acquire and then immediately release the console
2336 * semaphore. The release will print out buffers. With the
2337 * spinning variant, this context tries to take over the
2338 * printing from another printing context.
2339 */
2340 if (console_trylock_spinning())
2341 console_unlock();
2342 preempt_enable();
2343 }
2344
2345 if (in_sched)
2346 defer_console_output();
2347 else
2348 wake_up_klogd();
2349
2350 return printed_len;
2351 }
2352 EXPORT_SYMBOL(vprintk_emit);
2353
vprintk_default(const char * fmt,va_list args)2354 int vprintk_default(const char *fmt, va_list args)
2355 {
2356 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2357 }
2358 EXPORT_SYMBOL_GPL(vprintk_default);
2359
_printk(const char * fmt,...)2360 asmlinkage __visible int _printk(const char *fmt, ...)
2361 {
2362 va_list args;
2363 int r;
2364
2365 va_start(args, fmt);
2366 r = vprintk(fmt, args);
2367 va_end(args);
2368
2369 return r;
2370 }
2371 EXPORT_SYMBOL(_printk);
2372
2373 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2374 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2375
2376 #else /* CONFIG_PRINTK */
2377
2378 #define printk_time false
2379
2380 #define prb_read_valid(rb, seq, r) false
2381 #define prb_first_valid_seq(rb) 0
2382 #define prb_next_seq(rb) 0
2383
2384 static u64 syslog_seq;
2385
record_print_text(const struct printk_record * r,bool syslog,bool time)2386 static size_t record_print_text(const struct printk_record *r,
2387 bool syslog, bool time)
2388 {
2389 return 0;
2390 }
info_print_ext_header(char * buf,size_t size,struct printk_info * info)2391 static ssize_t info_print_ext_header(char *buf, size_t size,
2392 struct printk_info *info)
2393 {
2394 return 0;
2395 }
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)2396 static ssize_t msg_print_ext_body(char *buf, size_t size,
2397 char *text, size_t text_len,
2398 struct dev_printk_info *dev_info) { return 0; }
console_lock_spinning_enable(void)2399 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(int cookie)2400 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
suppress_message_printing(int level)2401 static bool suppress_message_printing(int level) { return false; }
pr_flush(int timeout_ms,bool reset_on_progress)2402 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)2403 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2404
2405 #endif /* CONFIG_PRINTK */
2406
2407 #ifdef CONFIG_EARLY_PRINTK
2408 struct console *early_console;
2409
early_printk(const char * fmt,...)2410 asmlinkage __visible void early_printk(const char *fmt, ...)
2411 {
2412 va_list ap;
2413 char buf[512];
2414 int n;
2415
2416 if (!early_console)
2417 return;
2418
2419 va_start(ap, fmt);
2420 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2421 va_end(ap);
2422
2423 early_console->write(early_console, buf, n);
2424 }
2425 #endif
2426
set_user_specified(struct console_cmdline * c,bool user_specified)2427 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2428 {
2429 if (!user_specified)
2430 return;
2431
2432 /*
2433 * @c console was defined by the user on the command line.
2434 * Do not clear when added twice also by SPCR or the device tree.
2435 */
2436 c->user_specified = true;
2437 /* At least one console defined by the user on the command line. */
2438 console_set_on_cmdline = 1;
2439 }
2440
__add_preferred_console(char * name,int idx,char * options,char * brl_options,bool user_specified)2441 static int __add_preferred_console(char *name, int idx, char *options,
2442 char *brl_options, bool user_specified)
2443 {
2444 struct console_cmdline *c;
2445 int i;
2446
2447 /*
2448 * See if this tty is not yet registered, and
2449 * if we have a slot free.
2450 */
2451 for (i = 0, c = console_cmdline;
2452 i < MAX_CMDLINECONSOLES && c->name[0];
2453 i++, c++) {
2454 if (strcmp(c->name, name) == 0 && c->index == idx) {
2455 if (!brl_options)
2456 preferred_console = i;
2457 set_user_specified(c, user_specified);
2458 return 0;
2459 }
2460 }
2461 if (i == MAX_CMDLINECONSOLES)
2462 return -E2BIG;
2463 if (!brl_options)
2464 preferred_console = i;
2465 strscpy(c->name, name, sizeof(c->name));
2466 c->options = options;
2467 set_user_specified(c, user_specified);
2468 braille_set_options(c, brl_options);
2469
2470 c->index = idx;
2471 return 0;
2472 }
2473
console_msg_format_setup(char * str)2474 static int __init console_msg_format_setup(char *str)
2475 {
2476 if (!strcmp(str, "syslog"))
2477 console_msg_format = MSG_FORMAT_SYSLOG;
2478 if (!strcmp(str, "default"))
2479 console_msg_format = MSG_FORMAT_DEFAULT;
2480 return 1;
2481 }
2482 __setup("console_msg_format=", console_msg_format_setup);
2483
2484 /*
2485 * Set up a console. Called via do_early_param() in init/main.c
2486 * for each "console=" parameter in the boot command line.
2487 */
console_setup(char * str)2488 static int __init console_setup(char *str)
2489 {
2490 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2491 char *s, *options, *brl_options = NULL;
2492 int idx;
2493
2494 /*
2495 * console="" or console=null have been suggested as a way to
2496 * disable console output. Use ttynull that has been created
2497 * for exactly this purpose.
2498 */
2499 if (str[0] == 0 || strcmp(str, "null") == 0) {
2500 __add_preferred_console("ttynull", 0, NULL, NULL, true);
2501 return 1;
2502 }
2503
2504 if (_braille_console_setup(&str, &brl_options))
2505 return 1;
2506
2507 /*
2508 * Decode str into name, index, options.
2509 */
2510 if (str[0] >= '0' && str[0] <= '9') {
2511 strcpy(buf, "ttyS");
2512 strncpy(buf + 4, str, sizeof(buf) - 5);
2513 } else {
2514 strncpy(buf, str, sizeof(buf) - 1);
2515 }
2516 buf[sizeof(buf) - 1] = 0;
2517 options = strchr(str, ',');
2518 if (options)
2519 *(options++) = 0;
2520 #ifdef __sparc__
2521 if (!strcmp(str, "ttya"))
2522 strcpy(buf, "ttyS0");
2523 if (!strcmp(str, "ttyb"))
2524 strcpy(buf, "ttyS1");
2525 #endif
2526 for (s = buf; *s; s++)
2527 if (isdigit(*s) || *s == ',')
2528 break;
2529 idx = simple_strtoul(s, NULL, 10);
2530 *s = 0;
2531
2532 __add_preferred_console(buf, idx, options, brl_options, true);
2533 return 1;
2534 }
2535 __setup("console=", console_setup);
2536
2537 /**
2538 * add_preferred_console - add a device to the list of preferred consoles.
2539 * @name: device name
2540 * @idx: device index
2541 * @options: options for this console
2542 *
2543 * The last preferred console added will be used for kernel messages
2544 * and stdin/out/err for init. Normally this is used by console_setup
2545 * above to handle user-supplied console arguments; however it can also
2546 * be used by arch-specific code either to override the user or more
2547 * commonly to provide a default console (ie from PROM variables) when
2548 * the user has not supplied one.
2549 */
add_preferred_console(char * name,int idx,char * options)2550 int add_preferred_console(char *name, int idx, char *options)
2551 {
2552 return __add_preferred_console(name, idx, options, NULL, false);
2553 }
2554
2555 bool console_suspend_enabled = true;
2556 EXPORT_SYMBOL(console_suspend_enabled);
2557
console_suspend_disable(char * str)2558 static int __init console_suspend_disable(char *str)
2559 {
2560 console_suspend_enabled = false;
2561 return 1;
2562 }
2563 __setup("no_console_suspend", console_suspend_disable);
2564 module_param_named(console_suspend, console_suspend_enabled,
2565 bool, S_IRUGO | S_IWUSR);
2566 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2567 " and hibernate operations");
2568
2569 static bool printk_console_no_auto_verbose;
2570
console_verbose(void)2571 void console_verbose(void)
2572 {
2573 if (console_loglevel && !printk_console_no_auto_verbose)
2574 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2575 }
2576 EXPORT_SYMBOL_GPL(console_verbose);
2577
2578 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2579 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2580
2581 /**
2582 * suspend_console - suspend the console subsystem
2583 *
2584 * This disables printk() while we go into suspend states
2585 */
suspend_console(void)2586 void suspend_console(void)
2587 {
2588 struct console *con;
2589
2590 if (!console_suspend_enabled)
2591 return;
2592 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2593 pr_flush(1000, true);
2594
2595 console_list_lock();
2596 for_each_console(con)
2597 console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2598 console_list_unlock();
2599
2600 /*
2601 * Ensure that all SRCU list walks have completed. All printing
2602 * contexts must be able to see that they are suspended so that it
2603 * is guaranteed that all printing has stopped when this function
2604 * completes.
2605 */
2606 synchronize_srcu(&console_srcu);
2607 }
2608
resume_console(void)2609 void resume_console(void)
2610 {
2611 struct console *con;
2612
2613 if (!console_suspend_enabled)
2614 return;
2615
2616 console_list_lock();
2617 for_each_console(con)
2618 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2619 console_list_unlock();
2620
2621 /*
2622 * Ensure that all SRCU list walks have completed. All printing
2623 * contexts must be able to see they are no longer suspended so
2624 * that they are guaranteed to wake up and resume printing.
2625 */
2626 synchronize_srcu(&console_srcu);
2627
2628 pr_flush(1000, true);
2629 }
2630
2631 /**
2632 * console_cpu_notify - print deferred console messages after CPU hotplug
2633 * @cpu: unused
2634 *
2635 * If printk() is called from a CPU that is not online yet, the messages
2636 * will be printed on the console only if there are CON_ANYTIME consoles.
2637 * This function is called when a new CPU comes online (or fails to come
2638 * up) or goes offline.
2639 */
console_cpu_notify(unsigned int cpu)2640 static int console_cpu_notify(unsigned int cpu)
2641 {
2642 if (!cpuhp_tasks_frozen) {
2643 /* If trylock fails, someone else is doing the printing */
2644 if (console_trylock())
2645 console_unlock();
2646 }
2647 return 0;
2648 }
2649
2650 /*
2651 * Return true if a panic is in progress on a remote CPU.
2652 *
2653 * On true, the local CPU should immediately release any printing resources
2654 * that may be needed by the panic CPU.
2655 */
other_cpu_in_panic(void)2656 bool other_cpu_in_panic(void)
2657 {
2658 if (!panic_in_progress())
2659 return false;
2660
2661 /*
2662 * We can use raw_smp_processor_id() here because it is impossible for
2663 * the task to be migrated to the panic_cpu, or away from it. If
2664 * panic_cpu has already been set, and we're not currently executing on
2665 * that CPU, then we never will be.
2666 */
2667 return atomic_read(&panic_cpu) != raw_smp_processor_id();
2668 }
2669
2670 /**
2671 * console_lock - block the console subsystem from printing
2672 *
2673 * Acquires a lock which guarantees that no consoles will
2674 * be in or enter their write() callback.
2675 *
2676 * Can sleep, returns nothing.
2677 */
console_lock(void)2678 void console_lock(void)
2679 {
2680 might_sleep();
2681
2682 /* On panic, the console_lock must be left to the panic cpu. */
2683 while (other_cpu_in_panic())
2684 msleep(1000);
2685
2686 down_console_sem();
2687 console_locked = 1;
2688 console_may_schedule = 1;
2689 }
2690 EXPORT_SYMBOL(console_lock);
2691
2692 /**
2693 * console_trylock - try to block the console subsystem from printing
2694 *
2695 * Try to acquire a lock which guarantees that no consoles will
2696 * be in or enter their write() callback.
2697 *
2698 * returns 1 on success, and 0 on failure to acquire the lock.
2699 */
console_trylock(void)2700 int console_trylock(void)
2701 {
2702 /* On panic, the console_lock must be left to the panic cpu. */
2703 if (other_cpu_in_panic())
2704 return 0;
2705 if (down_trylock_console_sem())
2706 return 0;
2707 console_locked = 1;
2708 console_may_schedule = 0;
2709 return 1;
2710 }
2711 EXPORT_SYMBOL(console_trylock);
2712
is_console_locked(void)2713 int is_console_locked(void)
2714 {
2715 return console_locked;
2716 }
2717 EXPORT_SYMBOL(is_console_locked);
2718
2719 /*
2720 * Check if the given console is currently capable and allowed to print
2721 * records.
2722 *
2723 * Requires the console_srcu_read_lock.
2724 */
console_is_usable(struct console * con)2725 static inline bool console_is_usable(struct console *con)
2726 {
2727 short flags = console_srcu_read_flags(con);
2728
2729 if (!(flags & CON_ENABLED))
2730 return false;
2731
2732 if ((flags & CON_SUSPENDED))
2733 return false;
2734
2735 if (!con->write)
2736 return false;
2737
2738 /*
2739 * Console drivers may assume that per-cpu resources have been
2740 * allocated. So unless they're explicitly marked as being able to
2741 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2742 */
2743 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2744 return false;
2745
2746 return true;
2747 }
2748
__console_unlock(void)2749 static void __console_unlock(void)
2750 {
2751 console_locked = 0;
2752 up_console_sem();
2753 }
2754
2755 /*
2756 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2757 * is achieved by shifting the existing message over and inserting the dropped
2758 * message.
2759 *
2760 * @pmsg is the printk message to prepend.
2761 *
2762 * @dropped is the dropped count to report in the dropped message.
2763 *
2764 * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2765 * the dropped message, the message text will be sufficiently truncated.
2766 *
2767 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2768 */
2769 #ifdef CONFIG_PRINTK
console_prepend_dropped(struct printk_message * pmsg,unsigned long dropped)2770 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2771 {
2772 struct printk_buffers *pbufs = pmsg->pbufs;
2773 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2774 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2775 char *scratchbuf = &pbufs->scratchbuf[0];
2776 char *outbuf = &pbufs->outbuf[0];
2777 size_t len;
2778
2779 len = scnprintf(scratchbuf, scratchbuf_sz,
2780 "** %lu printk messages dropped **\n", dropped);
2781
2782 /*
2783 * Make sure outbuf is sufficiently large before prepending.
2784 * Keep at least the prefix when the message must be truncated.
2785 * It is a rather theoretical problem when someone tries to
2786 * use a minimalist buffer.
2787 */
2788 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2789 return;
2790
2791 if (pmsg->outbuf_len + len >= outbuf_sz) {
2792 /* Truncate the message, but keep it terminated. */
2793 pmsg->outbuf_len = outbuf_sz - (len + 1);
2794 outbuf[pmsg->outbuf_len] = 0;
2795 }
2796
2797 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2798 memcpy(outbuf, scratchbuf, len);
2799 pmsg->outbuf_len += len;
2800 }
2801 #else
2802 #define console_prepend_dropped(pmsg, dropped)
2803 #endif /* CONFIG_PRINTK */
2804
2805 /*
2806 * Read and format the specified record (or a later record if the specified
2807 * record is not available).
2808 *
2809 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2810 * struct printk_buffers.
2811 *
2812 * @seq is the record to read and format. If it is not available, the next
2813 * valid record is read.
2814 *
2815 * @is_extended specifies if the message should be formatted for extended
2816 * console output.
2817 *
2818 * @may_supress specifies if records may be skipped based on loglevel.
2819 *
2820 * Returns false if no record is available. Otherwise true and all fields
2821 * of @pmsg are valid. (See the documentation of struct printk_message
2822 * for information about the @pmsg fields.)
2823 */
printk_get_next_message(struct printk_message * pmsg,u64 seq,bool is_extended,bool may_suppress)2824 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2825 bool is_extended, bool may_suppress)
2826 {
2827 static int panic_console_dropped;
2828
2829 struct printk_buffers *pbufs = pmsg->pbufs;
2830 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2831 const size_t outbuf_sz = sizeof(pbufs->outbuf);
2832 char *scratchbuf = &pbufs->scratchbuf[0];
2833 char *outbuf = &pbufs->outbuf[0];
2834 struct printk_info info;
2835 struct printk_record r;
2836 size_t len = 0;
2837
2838 /*
2839 * Formatting extended messages requires a separate buffer, so use the
2840 * scratch buffer to read in the ringbuffer text.
2841 *
2842 * Formatting normal messages is done in-place, so read the ringbuffer
2843 * text directly into the output buffer.
2844 */
2845 if (is_extended)
2846 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2847 else
2848 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2849
2850 if (!prb_read_valid(prb, seq, &r))
2851 return false;
2852
2853 pmsg->seq = r.info->seq;
2854 pmsg->dropped = r.info->seq - seq;
2855
2856 /*
2857 * Check for dropped messages in panic here so that printk
2858 * suppression can occur as early as possible if necessary.
2859 */
2860 if (pmsg->dropped &&
2861 panic_in_progress() &&
2862 panic_console_dropped++ > 10) {
2863 suppress_panic_printk = 1;
2864 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2865 }
2866
2867 /* Skip record that has level above the console loglevel. */
2868 if (may_suppress && suppress_message_printing(r.info->level))
2869 goto out;
2870
2871 if (is_extended) {
2872 len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2873 len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2874 &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2875 } else {
2876 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2877 }
2878 out:
2879 pmsg->outbuf_len = len;
2880 return true;
2881 }
2882
2883 /*
2884 * Print one record for the given console. The record printed is whatever
2885 * record is the next available record for the given console.
2886 *
2887 * @handover will be set to true if a printk waiter has taken over the
2888 * console_lock, in which case the caller is no longer holding both the
2889 * console_lock and the SRCU read lock. Otherwise it is set to false.
2890 *
2891 * @cookie is the cookie from the SRCU read lock.
2892 *
2893 * Returns false if the given console has no next record to print, otherwise
2894 * true.
2895 *
2896 * Requires the console_lock and the SRCU read lock.
2897 */
console_emit_next_record(struct console * con,bool * handover,int cookie)2898 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2899 {
2900 static struct printk_buffers pbufs;
2901
2902 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2903 char *outbuf = &pbufs.outbuf[0];
2904 struct printk_message pmsg = {
2905 .pbufs = &pbufs,
2906 };
2907 unsigned long flags;
2908
2909 *handover = false;
2910
2911 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2912 return false;
2913
2914 con->dropped += pmsg.dropped;
2915
2916 /* Skip messages of formatted length 0. */
2917 if (pmsg.outbuf_len == 0) {
2918 con->seq = pmsg.seq + 1;
2919 goto skip;
2920 }
2921
2922 if (con->dropped && !is_extended) {
2923 console_prepend_dropped(&pmsg, con->dropped);
2924 con->dropped = 0;
2925 }
2926
2927 /*
2928 * While actively printing out messages, if another printk()
2929 * were to occur on another CPU, it may wait for this one to
2930 * finish. This task can not be preempted if there is a
2931 * waiter waiting to take over.
2932 *
2933 * Interrupts are disabled because the hand over to a waiter
2934 * must not be interrupted until the hand over is completed
2935 * (@console_waiter is cleared).
2936 */
2937 printk_safe_enter_irqsave(flags);
2938 console_lock_spinning_enable();
2939
2940 /* Do not trace print latency. */
2941 stop_critical_timings();
2942
2943 /* Write everything out to the hardware. */
2944 con->write(con, outbuf, pmsg.outbuf_len);
2945
2946 start_critical_timings();
2947
2948 con->seq = pmsg.seq + 1;
2949
2950 *handover = console_lock_spinning_disable_and_check(cookie);
2951 printk_safe_exit_irqrestore(flags);
2952 skip:
2953 return true;
2954 }
2955
2956 /*
2957 * Print out all remaining records to all consoles.
2958 *
2959 * @do_cond_resched is set by the caller. It can be true only in schedulable
2960 * context.
2961 *
2962 * @next_seq is set to the sequence number after the last available record.
2963 * The value is valid only when this function returns true. It means that all
2964 * usable consoles are completely flushed.
2965 *
2966 * @handover will be set to true if a printk waiter has taken over the
2967 * console_lock, in which case the caller is no longer holding the
2968 * console_lock. Otherwise it is set to false.
2969 *
2970 * Returns true when there was at least one usable console and all messages
2971 * were flushed to all usable consoles. A returned false informs the caller
2972 * that everything was not flushed (either there were no usable consoles or
2973 * another context has taken over printing or it is a panic situation and this
2974 * is not the panic CPU). Regardless the reason, the caller should assume it
2975 * is not useful to immediately try again.
2976 *
2977 * Requires the console_lock.
2978 */
console_flush_all(bool do_cond_resched,u64 * next_seq,bool * handover)2979 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2980 {
2981 bool any_usable = false;
2982 struct console *con;
2983 bool any_progress;
2984 int cookie;
2985
2986 *next_seq = 0;
2987 *handover = false;
2988
2989 do {
2990 any_progress = false;
2991
2992 cookie = console_srcu_read_lock();
2993 for_each_console_srcu(con) {
2994 bool progress;
2995
2996 if (!console_is_usable(con))
2997 continue;
2998 any_usable = true;
2999
3000 progress = console_emit_next_record(con, handover, cookie);
3001
3002 /*
3003 * If a handover has occurred, the SRCU read lock
3004 * is already released.
3005 */
3006 if (*handover)
3007 return false;
3008
3009 /* Track the next of the highest seq flushed. */
3010 if (con->seq > *next_seq)
3011 *next_seq = con->seq;
3012
3013 if (!progress)
3014 continue;
3015 any_progress = true;
3016
3017 /* Allow panic_cpu to take over the consoles safely. */
3018 if (other_cpu_in_panic())
3019 goto abandon;
3020
3021 if (do_cond_resched)
3022 cond_resched();
3023 }
3024 console_srcu_read_unlock(cookie);
3025 } while (any_progress);
3026
3027 return any_usable;
3028
3029 abandon:
3030 console_srcu_read_unlock(cookie);
3031 return false;
3032 }
3033
3034 /**
3035 * console_unlock - unblock the console subsystem from printing
3036 *
3037 * Releases the console_lock which the caller holds to block printing of
3038 * the console subsystem.
3039 *
3040 * While the console_lock was held, console output may have been buffered
3041 * by printk(). If this is the case, console_unlock(); emits
3042 * the output prior to releasing the lock.
3043 *
3044 * console_unlock(); may be called from any context.
3045 */
console_unlock(void)3046 void console_unlock(void)
3047 {
3048 bool do_cond_resched;
3049 bool handover;
3050 bool flushed;
3051 u64 next_seq;
3052
3053 /*
3054 * Console drivers are called with interrupts disabled, so
3055 * @console_may_schedule should be cleared before; however, we may
3056 * end up dumping a lot of lines, for example, if called from
3057 * console registration path, and should invoke cond_resched()
3058 * between lines if allowable. Not doing so can cause a very long
3059 * scheduling stall on a slow console leading to RCU stall and
3060 * softlockup warnings which exacerbate the issue with more
3061 * messages practically incapacitating the system. Therefore, create
3062 * a local to use for the printing loop.
3063 */
3064 do_cond_resched = console_may_schedule;
3065
3066 do {
3067 console_may_schedule = 0;
3068
3069 flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3070 if (!handover)
3071 __console_unlock();
3072
3073 /*
3074 * Abort if there was a failure to flush all messages to all
3075 * usable consoles. Either it is not possible to flush (in
3076 * which case it would be an infinite loop of retrying) or
3077 * another context has taken over printing.
3078 */
3079 if (!flushed)
3080 break;
3081
3082 /*
3083 * Some context may have added new records after
3084 * console_flush_all() but before unlocking the console.
3085 * Re-check if there is a new record to flush. If the trylock
3086 * fails, another context is already handling the printing.
3087 */
3088 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3089 }
3090 EXPORT_SYMBOL(console_unlock);
3091
3092 /**
3093 * console_conditional_schedule - yield the CPU if required
3094 *
3095 * If the console code is currently allowed to sleep, and
3096 * if this CPU should yield the CPU to another task, do
3097 * so here.
3098 *
3099 * Must be called within console_lock();.
3100 */
console_conditional_schedule(void)3101 void __sched console_conditional_schedule(void)
3102 {
3103 if (console_may_schedule)
3104 cond_resched();
3105 }
3106 EXPORT_SYMBOL(console_conditional_schedule);
3107
console_unblank(void)3108 void console_unblank(void)
3109 {
3110 bool found_unblank = false;
3111 struct console *c;
3112 int cookie;
3113
3114 /*
3115 * First check if there are any consoles implementing the unblank()
3116 * callback. If not, there is no reason to continue and take the
3117 * console lock, which in particular can be dangerous if
3118 * @oops_in_progress is set.
3119 */
3120 cookie = console_srcu_read_lock();
3121 for_each_console_srcu(c) {
3122 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3123 found_unblank = true;
3124 break;
3125 }
3126 }
3127 console_srcu_read_unlock(cookie);
3128 if (!found_unblank)
3129 return;
3130
3131 /*
3132 * Stop console printing because the unblank() callback may
3133 * assume the console is not within its write() callback.
3134 *
3135 * If @oops_in_progress is set, this may be an atomic context.
3136 * In that case, attempt a trylock as best-effort.
3137 */
3138 if (oops_in_progress) {
3139 /* Semaphores are not NMI-safe. */
3140 if (in_nmi())
3141 return;
3142
3143 /*
3144 * Attempting to trylock the console lock can deadlock
3145 * if another CPU was stopped while modifying the
3146 * semaphore. "Hope and pray" that this is not the
3147 * current situation.
3148 */
3149 if (down_trylock_console_sem() != 0)
3150 return;
3151 } else
3152 console_lock();
3153
3154 console_locked = 1;
3155 console_may_schedule = 0;
3156
3157 cookie = console_srcu_read_lock();
3158 for_each_console_srcu(c) {
3159 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3160 c->unblank();
3161 }
3162 console_srcu_read_unlock(cookie);
3163
3164 console_unlock();
3165
3166 if (!oops_in_progress)
3167 pr_flush(1000, true);
3168 }
3169
3170 /**
3171 * console_flush_on_panic - flush console content on panic
3172 * @mode: flush all messages in buffer or just the pending ones
3173 *
3174 * Immediately output all pending messages no matter what.
3175 */
console_flush_on_panic(enum con_flush_mode mode)3176 void console_flush_on_panic(enum con_flush_mode mode)
3177 {
3178 bool handover;
3179 u64 next_seq;
3180
3181 /*
3182 * Ignore the console lock and flush out the messages. Attempting a
3183 * trylock would not be useful because:
3184 *
3185 * - if it is contended, it must be ignored anyway
3186 * - console_lock() and console_trylock() block and fail
3187 * respectively in panic for non-panic CPUs
3188 * - semaphores are not NMI-safe
3189 */
3190
3191 /*
3192 * If another context is holding the console lock,
3193 * @console_may_schedule might be set. Clear it so that
3194 * this context does not call cond_resched() while flushing.
3195 */
3196 console_may_schedule = 0;
3197
3198 if (mode == CONSOLE_REPLAY_ALL) {
3199 struct console *c;
3200 int cookie;
3201 u64 seq;
3202
3203 seq = prb_first_valid_seq(prb);
3204
3205 cookie = console_srcu_read_lock();
3206 for_each_console_srcu(c) {
3207 /*
3208 * This is an unsynchronized assignment, but the
3209 * kernel is in "hope and pray" mode anyway.
3210 */
3211 c->seq = seq;
3212 }
3213 console_srcu_read_unlock(cookie);
3214 }
3215
3216 console_flush_all(false, &next_seq, &handover);
3217 }
3218
3219 /*
3220 * Return the console tty driver structure and its associated index
3221 */
console_device(int * index)3222 struct tty_driver *console_device(int *index)
3223 {
3224 struct console *c;
3225 struct tty_driver *driver = NULL;
3226 int cookie;
3227
3228 /*
3229 * Take console_lock to serialize device() callback with
3230 * other console operations. For example, fg_console is
3231 * modified under console_lock when switching vt.
3232 */
3233 console_lock();
3234
3235 cookie = console_srcu_read_lock();
3236 for_each_console_srcu(c) {
3237 if (!c->device)
3238 continue;
3239 driver = c->device(c, index);
3240 if (driver)
3241 break;
3242 }
3243 console_srcu_read_unlock(cookie);
3244
3245 console_unlock();
3246 return driver;
3247 }
3248
3249 /*
3250 * Prevent further output on the passed console device so that (for example)
3251 * serial drivers can disable console output before suspending a port, and can
3252 * re-enable output afterwards.
3253 */
console_stop(struct console * console)3254 void console_stop(struct console *console)
3255 {
3256 __pr_flush(console, 1000, true);
3257 console_list_lock();
3258 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3259 console_list_unlock();
3260
3261 /*
3262 * Ensure that all SRCU list walks have completed. All contexts must
3263 * be able to see that this console is disabled so that (for example)
3264 * the caller can suspend the port without risk of another context
3265 * using the port.
3266 */
3267 synchronize_srcu(&console_srcu);
3268 }
3269 EXPORT_SYMBOL(console_stop);
3270
console_start(struct console * console)3271 void console_start(struct console *console)
3272 {
3273 console_list_lock();
3274 console_srcu_write_flags(console, console->flags | CON_ENABLED);
3275 console_list_unlock();
3276 __pr_flush(console, 1000, true);
3277 }
3278 EXPORT_SYMBOL(console_start);
3279
3280 static int __read_mostly keep_bootcon;
3281
keep_bootcon_setup(char * str)3282 static int __init keep_bootcon_setup(char *str)
3283 {
3284 keep_bootcon = 1;
3285 pr_info("debug: skip boot console de-registration.\n");
3286
3287 return 0;
3288 }
3289
3290 early_param("keep_bootcon", keep_bootcon_setup);
3291
console_call_setup(struct console * newcon,char * options)3292 static int console_call_setup(struct console *newcon, char *options)
3293 {
3294 int err;
3295
3296 if (!newcon->setup)
3297 return 0;
3298
3299 /* Synchronize with possible boot console. */
3300 console_lock();
3301 err = newcon->setup(newcon, options);
3302 console_unlock();
3303
3304 return err;
3305 }
3306
3307 /*
3308 * This is called by register_console() to try to match
3309 * the newly registered console with any of the ones selected
3310 * by either the command line or add_preferred_console() and
3311 * setup/enable it.
3312 *
3313 * Care need to be taken with consoles that are statically
3314 * enabled such as netconsole
3315 */
try_enable_preferred_console(struct console * newcon,bool user_specified)3316 static int try_enable_preferred_console(struct console *newcon,
3317 bool user_specified)
3318 {
3319 struct console_cmdline *c;
3320 int i, err;
3321
3322 for (i = 0, c = console_cmdline;
3323 i < MAX_CMDLINECONSOLES && c->name[0];
3324 i++, c++) {
3325 if (c->user_specified != user_specified)
3326 continue;
3327 if (!newcon->match ||
3328 newcon->match(newcon, c->name, c->index, c->options) != 0) {
3329 /* default matching */
3330 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3331 if (strcmp(c->name, newcon->name) != 0)
3332 continue;
3333 if (newcon->index >= 0 &&
3334 newcon->index != c->index)
3335 continue;
3336 if (newcon->index < 0)
3337 newcon->index = c->index;
3338
3339 if (_braille_register_console(newcon, c))
3340 return 0;
3341
3342 err = console_call_setup(newcon, c->options);
3343 if (err)
3344 return err;
3345 }
3346 newcon->flags |= CON_ENABLED;
3347 if (i == preferred_console)
3348 newcon->flags |= CON_CONSDEV;
3349 return 0;
3350 }
3351
3352 /*
3353 * Some consoles, such as pstore and netconsole, can be enabled even
3354 * without matching. Accept the pre-enabled consoles only when match()
3355 * and setup() had a chance to be called.
3356 */
3357 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified)
3358 return 0;
3359
3360 return -ENOENT;
3361 }
3362
3363 /* Try to enable the console unconditionally */
try_enable_default_console(struct console * newcon)3364 static void try_enable_default_console(struct console *newcon)
3365 {
3366 if (newcon->index < 0)
3367 newcon->index = 0;
3368
3369 if (console_call_setup(newcon, NULL) != 0)
3370 return;
3371
3372 newcon->flags |= CON_ENABLED;
3373
3374 if (newcon->device)
3375 newcon->flags |= CON_CONSDEV;
3376 }
3377
3378 #define con_printk(lvl, con, fmt, ...) \
3379 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \
3380 (con->flags & CON_BOOT) ? "boot" : "", \
3381 con->name, con->index, ##__VA_ARGS__)
3382
console_init_seq(struct console * newcon,bool bootcon_registered)3383 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3384 {
3385 struct console *con;
3386 bool handover;
3387
3388 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3389 /* Get a consistent copy of @syslog_seq. */
3390 mutex_lock(&syslog_lock);
3391 newcon->seq = syslog_seq;
3392 mutex_unlock(&syslog_lock);
3393 } else {
3394 /* Begin with next message added to ringbuffer. */
3395 newcon->seq = prb_next_seq(prb);
3396
3397 /*
3398 * If any enabled boot consoles are due to be unregistered
3399 * shortly, some may not be caught up and may be the same
3400 * device as @newcon. Since it is not known which boot console
3401 * is the same device, flush all consoles and, if necessary,
3402 * start with the message of the enabled boot console that is
3403 * the furthest behind.
3404 */
3405 if (bootcon_registered && !keep_bootcon) {
3406 /*
3407 * Hold the console_lock to stop console printing and
3408 * guarantee safe access to console->seq.
3409 */
3410 console_lock();
3411
3412 /*
3413 * Flush all consoles and set the console to start at
3414 * the next unprinted sequence number.
3415 */
3416 if (!console_flush_all(true, &newcon->seq, &handover)) {
3417 /*
3418 * Flushing failed. Just choose the lowest
3419 * sequence of the enabled boot consoles.
3420 */
3421
3422 /*
3423 * If there was a handover, this context no
3424 * longer holds the console_lock.
3425 */
3426 if (handover)
3427 console_lock();
3428
3429 newcon->seq = prb_next_seq(prb);
3430 for_each_console(con) {
3431 if ((con->flags & CON_BOOT) &&
3432 (con->flags & CON_ENABLED) &&
3433 con->seq < newcon->seq) {
3434 newcon->seq = con->seq;
3435 }
3436 }
3437 }
3438
3439 console_unlock();
3440 }
3441 }
3442 }
3443
3444 #define console_first() \
3445 hlist_entry(console_list.first, struct console, node)
3446
3447 static int unregister_console_locked(struct console *console);
3448
3449 /*
3450 * The console driver calls this routine during kernel initialization
3451 * to register the console printing procedure with printk() and to
3452 * print any messages that were printed by the kernel before the
3453 * console driver was initialized.
3454 *
3455 * This can happen pretty early during the boot process (because of
3456 * early_printk) - sometimes before setup_arch() completes - be careful
3457 * of what kernel features are used - they may not be initialised yet.
3458 *
3459 * There are two types of consoles - bootconsoles (early_printk) and
3460 * "real" consoles (everything which is not a bootconsole) which are
3461 * handled differently.
3462 * - Any number of bootconsoles can be registered at any time.
3463 * - As soon as a "real" console is registered, all bootconsoles
3464 * will be unregistered automatically.
3465 * - Once a "real" console is registered, any attempt to register a
3466 * bootconsoles will be rejected
3467 */
register_console(struct console * newcon)3468 void register_console(struct console *newcon)
3469 {
3470 struct console *con;
3471 bool bootcon_registered = false;
3472 bool realcon_registered = false;
3473 int err;
3474
3475 console_list_lock();
3476
3477 for_each_console(con) {
3478 if (WARN(con == newcon, "console '%s%d' already registered\n",
3479 con->name, con->index)) {
3480 goto unlock;
3481 }
3482
3483 if (con->flags & CON_BOOT)
3484 bootcon_registered = true;
3485 else
3486 realcon_registered = true;
3487 }
3488
3489 /* Do not register boot consoles when there already is a real one. */
3490 if ((newcon->flags & CON_BOOT) && realcon_registered) {
3491 pr_info("Too late to register bootconsole %s%d\n",
3492 newcon->name, newcon->index);
3493 goto unlock;
3494 }
3495
3496 /*
3497 * See if we want to enable this console driver by default.
3498 *
3499 * Nope when a console is preferred by the command line, device
3500 * tree, or SPCR.
3501 *
3502 * The first real console with tty binding (driver) wins. More
3503 * consoles might get enabled before the right one is found.
3504 *
3505 * Note that a console with tty binding will have CON_CONSDEV
3506 * flag set and will be first in the list.
3507 */
3508 if (preferred_console < 0) {
3509 if (hlist_empty(&console_list) || !console_first()->device ||
3510 console_first()->flags & CON_BOOT) {
3511 try_enable_default_console(newcon);
3512 }
3513 }
3514
3515 /* See if this console matches one we selected on the command line */
3516 err = try_enable_preferred_console(newcon, true);
3517
3518 /* If not, try to match against the platform default(s) */
3519 if (err == -ENOENT)
3520 err = try_enable_preferred_console(newcon, false);
3521
3522 /* printk() messages are not printed to the Braille console. */
3523 if (err || newcon->flags & CON_BRL)
3524 goto unlock;
3525
3526 /*
3527 * If we have a bootconsole, and are switching to a real console,
3528 * don't print everything out again, since when the boot console, and
3529 * the real console are the same physical device, it's annoying to
3530 * see the beginning boot messages twice
3531 */
3532 if (bootcon_registered &&
3533 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3534 newcon->flags &= ~CON_PRINTBUFFER;
3535 }
3536
3537 newcon->dropped = 0;
3538 console_init_seq(newcon, bootcon_registered);
3539
3540 /*
3541 * Put this console in the list - keep the
3542 * preferred driver at the head of the list.
3543 */
3544 if (hlist_empty(&console_list)) {
3545 /* Ensure CON_CONSDEV is always set for the head. */
3546 newcon->flags |= CON_CONSDEV;
3547 hlist_add_head_rcu(&newcon->node, &console_list);
3548
3549 } else if (newcon->flags & CON_CONSDEV) {
3550 /* Only the new head can have CON_CONSDEV set. */
3551 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3552 hlist_add_head_rcu(&newcon->node, &console_list);
3553
3554 } else {
3555 hlist_add_behind_rcu(&newcon->node, console_list.first);
3556 }
3557
3558 /*
3559 * No need to synchronize SRCU here! The caller does not rely
3560 * on all contexts being able to see the new console before
3561 * register_console() completes.
3562 */
3563
3564 console_sysfs_notify();
3565
3566 /*
3567 * By unregistering the bootconsoles after we enable the real console
3568 * we get the "console xxx enabled" message on all the consoles -
3569 * boot consoles, real consoles, etc - this is to ensure that end
3570 * users know there might be something in the kernel's log buffer that
3571 * went to the bootconsole (that they do not see on the real console)
3572 */
3573 con_printk(KERN_INFO, newcon, "enabled\n");
3574 if (bootcon_registered &&
3575 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3576 !keep_bootcon) {
3577 struct hlist_node *tmp;
3578
3579 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3580 if (con->flags & CON_BOOT)
3581 unregister_console_locked(con);
3582 }
3583 }
3584 unlock:
3585 console_list_unlock();
3586 }
3587 EXPORT_SYMBOL(register_console);
3588
3589 /* Must be called under console_list_lock(). */
unregister_console_locked(struct console * console)3590 static int unregister_console_locked(struct console *console)
3591 {
3592 int res;
3593
3594 lockdep_assert_console_list_lock_held();
3595
3596 con_printk(KERN_INFO, console, "disabled\n");
3597
3598 res = _braille_unregister_console(console);
3599 if (res < 0)
3600 return res;
3601 if (res > 0)
3602 return 0;
3603
3604 /* Disable it unconditionally */
3605 console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3606
3607 if (!console_is_registered_locked(console))
3608 return -ENODEV;
3609
3610 hlist_del_init_rcu(&console->node);
3611
3612 /*
3613 * <HISTORICAL>
3614 * If this isn't the last console and it has CON_CONSDEV set, we
3615 * need to set it on the next preferred console.
3616 * </HISTORICAL>
3617 *
3618 * The above makes no sense as there is no guarantee that the next
3619 * console has any device attached. Oh well....
3620 */
3621 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3622 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3623
3624 /*
3625 * Ensure that all SRCU list walks have completed. All contexts
3626 * must not be able to see this console in the list so that any
3627 * exit/cleanup routines can be performed safely.
3628 */
3629 synchronize_srcu(&console_srcu);
3630
3631 console_sysfs_notify();
3632
3633 if (console->exit)
3634 res = console->exit(console);
3635
3636 return res;
3637 }
3638
unregister_console(struct console * console)3639 int unregister_console(struct console *console)
3640 {
3641 int res;
3642
3643 console_list_lock();
3644 res = unregister_console_locked(console);
3645 console_list_unlock();
3646 return res;
3647 }
3648 EXPORT_SYMBOL(unregister_console);
3649
3650 /**
3651 * console_force_preferred_locked - force a registered console preferred
3652 * @con: The registered console to force preferred.
3653 *
3654 * Must be called under console_list_lock().
3655 */
console_force_preferred_locked(struct console * con)3656 void console_force_preferred_locked(struct console *con)
3657 {
3658 struct console *cur_pref_con;
3659
3660 if (!console_is_registered_locked(con))
3661 return;
3662
3663 cur_pref_con = console_first();
3664
3665 /* Already preferred? */
3666 if (cur_pref_con == con)
3667 return;
3668
3669 /*
3670 * Delete, but do not re-initialize the entry. This allows the console
3671 * to continue to appear registered (via any hlist_unhashed_lockless()
3672 * checks), even though it was briefly removed from the console list.
3673 */
3674 hlist_del_rcu(&con->node);
3675
3676 /*
3677 * Ensure that all SRCU list walks have completed so that the console
3678 * can be added to the beginning of the console list and its forward
3679 * list pointer can be re-initialized.
3680 */
3681 synchronize_srcu(&console_srcu);
3682
3683 con->flags |= CON_CONSDEV;
3684 WARN_ON(!con->device);
3685
3686 /* Only the new head can have CON_CONSDEV set. */
3687 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3688 hlist_add_head_rcu(&con->node, &console_list);
3689 }
3690 EXPORT_SYMBOL(console_force_preferred_locked);
3691
3692 /*
3693 * Initialize the console device. This is called *early*, so
3694 * we can't necessarily depend on lots of kernel help here.
3695 * Just do some early initializations, and do the complex setup
3696 * later.
3697 */
console_init(void)3698 void __init console_init(void)
3699 {
3700 int ret;
3701 initcall_t call;
3702 initcall_entry_t *ce;
3703
3704 /* Setup the default TTY line discipline. */
3705 n_tty_init();
3706
3707 /*
3708 * set up the console device so that later boot sequences can
3709 * inform about problems etc..
3710 */
3711 ce = __con_initcall_start;
3712 trace_initcall_level("console");
3713 while (ce < __con_initcall_end) {
3714 call = initcall_from_entry(ce);
3715 trace_initcall_start(call);
3716 ret = call();
3717 trace_initcall_finish(call, ret);
3718 ce++;
3719 }
3720 }
3721
3722 /*
3723 * Some boot consoles access data that is in the init section and which will
3724 * be discarded after the initcalls have been run. To make sure that no code
3725 * will access this data, unregister the boot consoles in a late initcall.
3726 *
3727 * If for some reason, such as deferred probe or the driver being a loadable
3728 * module, the real console hasn't registered yet at this point, there will
3729 * be a brief interval in which no messages are logged to the console, which
3730 * makes it difficult to diagnose problems that occur during this time.
3731 *
3732 * To mitigate this problem somewhat, only unregister consoles whose memory
3733 * intersects with the init section. Note that all other boot consoles will
3734 * get unregistered when the real preferred console is registered.
3735 */
printk_late_init(void)3736 static int __init printk_late_init(void)
3737 {
3738 struct hlist_node *tmp;
3739 struct console *con;
3740 int ret;
3741
3742 console_list_lock();
3743 hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3744 if (!(con->flags & CON_BOOT))
3745 continue;
3746
3747 /* Check addresses that might be used for enabled consoles. */
3748 if (init_section_intersects(con, sizeof(*con)) ||
3749 init_section_contains(con->write, 0) ||
3750 init_section_contains(con->read, 0) ||
3751 init_section_contains(con->device, 0) ||
3752 init_section_contains(con->unblank, 0) ||
3753 init_section_contains(con->data, 0)) {
3754 /*
3755 * Please, consider moving the reported consoles out
3756 * of the init section.
3757 */
3758 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3759 con->name, con->index);
3760 unregister_console_locked(con);
3761 }
3762 }
3763 console_list_unlock();
3764
3765 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3766 console_cpu_notify);
3767 WARN_ON(ret < 0);
3768 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3769 console_cpu_notify, NULL);
3770 WARN_ON(ret < 0);
3771 printk_sysctl_init();
3772 return 0;
3773 }
3774 late_initcall(printk_late_init);
3775
3776 #if defined CONFIG_PRINTK
3777 /* If @con is specified, only wait for that console. Otherwise wait for all. */
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)3778 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3779 {
3780 int remaining = timeout_ms;
3781 struct console *c;
3782 u64 last_diff = 0;
3783 u64 printk_seq;
3784 int cookie;
3785 u64 diff;
3786 u64 seq;
3787
3788 might_sleep();
3789
3790 seq = prb_next_seq(prb);
3791
3792 /* Flush the consoles so that records up to @seq are printed. */
3793 console_lock();
3794 console_unlock();
3795
3796 for (;;) {
3797 diff = 0;
3798
3799 /*
3800 * Hold the console_lock to guarantee safe access to
3801 * console->seq. Releasing console_lock flushes more
3802 * records in case @seq is still not printed on all
3803 * usable consoles.
3804 */
3805 console_lock();
3806
3807 cookie = console_srcu_read_lock();
3808 for_each_console_srcu(c) {
3809 if (con && con != c)
3810 continue;
3811 /*
3812 * If consoles are not usable, it cannot be expected
3813 * that they make forward progress, so only increment
3814 * @diff for usable consoles.
3815 */
3816 if (!console_is_usable(c))
3817 continue;
3818 printk_seq = c->seq;
3819 if (printk_seq < seq)
3820 diff += seq - printk_seq;
3821 }
3822 console_srcu_read_unlock(cookie);
3823
3824 if (diff != last_diff && reset_on_progress)
3825 remaining = timeout_ms;
3826
3827 console_unlock();
3828
3829 /* Note: @diff is 0 if there are no usable consoles. */
3830 if (diff == 0 || remaining == 0)
3831 break;
3832
3833 if (remaining < 0) {
3834 /* no timeout limit */
3835 msleep(100);
3836 } else if (remaining < 100) {
3837 msleep(remaining);
3838 remaining = 0;
3839 } else {
3840 msleep(100);
3841 remaining -= 100;
3842 }
3843
3844 last_diff = diff;
3845 }
3846
3847 return (diff == 0);
3848 }
3849
3850 /**
3851 * pr_flush() - Wait for printing threads to catch up.
3852 *
3853 * @timeout_ms: The maximum time (in ms) to wait.
3854 * @reset_on_progress: Reset the timeout if forward progress is seen.
3855 *
3856 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3857 * represents infinite waiting.
3858 *
3859 * If @reset_on_progress is true, the timeout will be reset whenever any
3860 * printer has been seen to make some forward progress.
3861 *
3862 * Context: Process context. May sleep while acquiring console lock.
3863 * Return: true if all usable printers are caught up.
3864 */
pr_flush(int timeout_ms,bool reset_on_progress)3865 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3866 {
3867 return __pr_flush(NULL, timeout_ms, reset_on_progress);
3868 }
3869
3870 /*
3871 * Delayed printk version, for scheduler-internal messages:
3872 */
3873 #define PRINTK_PENDING_WAKEUP 0x01
3874 #define PRINTK_PENDING_OUTPUT 0x02
3875
3876 static DEFINE_PER_CPU(int, printk_pending);
3877
wake_up_klogd_work_func(struct irq_work * irq_work)3878 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3879 {
3880 int pending = this_cpu_xchg(printk_pending, 0);
3881
3882 if (pending & PRINTK_PENDING_OUTPUT) {
3883 /* If trylock fails, someone else is doing the printing */
3884 if (console_trylock())
3885 console_unlock();
3886 }
3887
3888 if (pending & PRINTK_PENDING_WAKEUP)
3889 wake_up_interruptible(&log_wait);
3890 }
3891
3892 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3893 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3894
__wake_up_klogd(int val)3895 static void __wake_up_klogd(int val)
3896 {
3897 if (!printk_percpu_data_ready())
3898 return;
3899
3900 preempt_disable();
3901 /*
3902 * Guarantee any new records can be seen by tasks preparing to wait
3903 * before this context checks if the wait queue is empty.
3904 *
3905 * The full memory barrier within wq_has_sleeper() pairs with the full
3906 * memory barrier within set_current_state() of
3907 * prepare_to_wait_event(), which is called after ___wait_event() adds
3908 * the waiter but before it has checked the wait condition.
3909 *
3910 * This pairs with devkmsg_read:A and syslog_print:A.
3911 */
3912 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3913 (val & PRINTK_PENDING_OUTPUT)) {
3914 this_cpu_or(printk_pending, val);
3915 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3916 }
3917 preempt_enable();
3918 }
3919
3920 /**
3921 * wake_up_klogd - Wake kernel logging daemon
3922 *
3923 * Use this function when new records have been added to the ringbuffer
3924 * and the console printing of those records has already occurred or is
3925 * known to be handled by some other context. This function will only
3926 * wake the logging daemon.
3927 *
3928 * Context: Any context.
3929 */
wake_up_klogd(void)3930 void wake_up_klogd(void)
3931 {
3932 __wake_up_klogd(PRINTK_PENDING_WAKEUP);
3933 }
3934
3935 /**
3936 * defer_console_output - Wake kernel logging daemon and trigger
3937 * console printing in a deferred context
3938 *
3939 * Use this function when new records have been added to the ringbuffer,
3940 * this context is responsible for console printing those records, but
3941 * the current context is not allowed to perform the console printing.
3942 * Trigger an irq_work context to perform the console printing. This
3943 * function also wakes the logging daemon.
3944 *
3945 * Context: Any context.
3946 */
defer_console_output(void)3947 void defer_console_output(void)
3948 {
3949 /*
3950 * New messages may have been added directly to the ringbuffer
3951 * using vprintk_store(), so wake any waiters as well.
3952 */
3953 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3954 }
3955
printk_trigger_flush(void)3956 void printk_trigger_flush(void)
3957 {
3958 defer_console_output();
3959 }
3960
vprintk_deferred(const char * fmt,va_list args)3961 int vprintk_deferred(const char *fmt, va_list args)
3962 {
3963 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3964 }
3965
_printk_deferred(const char * fmt,...)3966 int _printk_deferred(const char *fmt, ...)
3967 {
3968 va_list args;
3969 int r;
3970
3971 va_start(args, fmt);
3972 r = vprintk_deferred(fmt, args);
3973 va_end(args);
3974
3975 return r;
3976 }
3977
3978 /*
3979 * printk rate limiting, lifted from the networking subsystem.
3980 *
3981 * This enforces a rate limit: not more than 10 kernel messages
3982 * every 5s to make a denial-of-service attack impossible.
3983 */
3984 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3985
__printk_ratelimit(const char * func)3986 int __printk_ratelimit(const char *func)
3987 {
3988 return ___ratelimit(&printk_ratelimit_state, func);
3989 }
3990 EXPORT_SYMBOL(__printk_ratelimit);
3991
3992 /**
3993 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3994 * @caller_jiffies: pointer to caller's state
3995 * @interval_msecs: minimum interval between prints
3996 *
3997 * printk_timed_ratelimit() returns true if more than @interval_msecs
3998 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3999 * returned true.
4000 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)4001 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4002 unsigned int interval_msecs)
4003 {
4004 unsigned long elapsed = jiffies - *caller_jiffies;
4005
4006 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4007 return false;
4008
4009 *caller_jiffies = jiffies;
4010 return true;
4011 }
4012 EXPORT_SYMBOL(printk_timed_ratelimit);
4013
4014 static DEFINE_SPINLOCK(dump_list_lock);
4015 static LIST_HEAD(dump_list);
4016
4017 /**
4018 * kmsg_dump_register - register a kernel log dumper.
4019 * @dumper: pointer to the kmsg_dumper structure
4020 *
4021 * Adds a kernel log dumper to the system. The dump callback in the
4022 * structure will be called when the kernel oopses or panics and must be
4023 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4024 */
kmsg_dump_register(struct kmsg_dumper * dumper)4025 int kmsg_dump_register(struct kmsg_dumper *dumper)
4026 {
4027 unsigned long flags;
4028 int err = -EBUSY;
4029
4030 /* The dump callback needs to be set */
4031 if (!dumper->dump)
4032 return -EINVAL;
4033
4034 spin_lock_irqsave(&dump_list_lock, flags);
4035 /* Don't allow registering multiple times */
4036 if (!dumper->registered) {
4037 dumper->registered = 1;
4038 list_add_tail_rcu(&dumper->list, &dump_list);
4039 err = 0;
4040 }
4041 spin_unlock_irqrestore(&dump_list_lock, flags);
4042
4043 return err;
4044 }
4045 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4046
4047 /**
4048 * kmsg_dump_unregister - unregister a kmsg dumper.
4049 * @dumper: pointer to the kmsg_dumper structure
4050 *
4051 * Removes a dump device from the system. Returns zero on success and
4052 * %-EINVAL otherwise.
4053 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)4054 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4055 {
4056 unsigned long flags;
4057 int err = -EINVAL;
4058
4059 spin_lock_irqsave(&dump_list_lock, flags);
4060 if (dumper->registered) {
4061 dumper->registered = 0;
4062 list_del_rcu(&dumper->list);
4063 err = 0;
4064 }
4065 spin_unlock_irqrestore(&dump_list_lock, flags);
4066 synchronize_rcu();
4067
4068 return err;
4069 }
4070 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4071
4072 static bool always_kmsg_dump;
4073 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4074
kmsg_dump_reason_str(enum kmsg_dump_reason reason)4075 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4076 {
4077 switch (reason) {
4078 case KMSG_DUMP_PANIC:
4079 return "Panic";
4080 case KMSG_DUMP_OOPS:
4081 return "Oops";
4082 case KMSG_DUMP_EMERG:
4083 return "Emergency";
4084 case KMSG_DUMP_SHUTDOWN:
4085 return "Shutdown";
4086 default:
4087 return "Unknown";
4088 }
4089 }
4090 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4091
4092 /**
4093 * kmsg_dump - dump kernel log to kernel message dumpers.
4094 * @reason: the reason (oops, panic etc) for dumping
4095 *
4096 * Call each of the registered dumper's dump() callback, which can
4097 * retrieve the kmsg records with kmsg_dump_get_line() or
4098 * kmsg_dump_get_buffer().
4099 */
kmsg_dump(enum kmsg_dump_reason reason)4100 void kmsg_dump(enum kmsg_dump_reason reason)
4101 {
4102 struct kmsg_dumper *dumper;
4103
4104 rcu_read_lock();
4105 list_for_each_entry_rcu(dumper, &dump_list, list) {
4106 enum kmsg_dump_reason max_reason = dumper->max_reason;
4107
4108 /*
4109 * If client has not provided a specific max_reason, default
4110 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4111 */
4112 if (max_reason == KMSG_DUMP_UNDEF) {
4113 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4114 KMSG_DUMP_OOPS;
4115 }
4116 if (reason > max_reason)
4117 continue;
4118
4119 /* invoke dumper which will iterate over records */
4120 dumper->dump(dumper, reason);
4121 }
4122 rcu_read_unlock();
4123 }
4124
4125 /**
4126 * kmsg_dump_get_line - retrieve one kmsg log line
4127 * @iter: kmsg dump iterator
4128 * @syslog: include the "<4>" prefixes
4129 * @line: buffer to copy the line to
4130 * @size: maximum size of the buffer
4131 * @len: length of line placed into buffer
4132 *
4133 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4134 * record, and copy one record into the provided buffer.
4135 *
4136 * Consecutive calls will return the next available record moving
4137 * towards the end of the buffer with the youngest messages.
4138 *
4139 * A return value of FALSE indicates that there are no more records to
4140 * read.
4141 */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)4142 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4143 char *line, size_t size, size_t *len)
4144 {
4145 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4146 struct printk_info info;
4147 unsigned int line_count;
4148 struct printk_record r;
4149 size_t l = 0;
4150 bool ret = false;
4151
4152 if (iter->cur_seq < min_seq)
4153 iter->cur_seq = min_seq;
4154
4155 prb_rec_init_rd(&r, &info, line, size);
4156
4157 /* Read text or count text lines? */
4158 if (line) {
4159 if (!prb_read_valid(prb, iter->cur_seq, &r))
4160 goto out;
4161 l = record_print_text(&r, syslog, printk_time);
4162 } else {
4163 if (!prb_read_valid_info(prb, iter->cur_seq,
4164 &info, &line_count)) {
4165 goto out;
4166 }
4167 l = get_record_print_text_size(&info, line_count, syslog,
4168 printk_time);
4169
4170 }
4171
4172 iter->cur_seq = r.info->seq + 1;
4173 ret = true;
4174 out:
4175 if (len)
4176 *len = l;
4177 return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4180
4181 /**
4182 * kmsg_dump_get_buffer - copy kmsg log lines
4183 * @iter: kmsg dump iterator
4184 * @syslog: include the "<4>" prefixes
4185 * @buf: buffer to copy the line to
4186 * @size: maximum size of the buffer
4187 * @len_out: length of line placed into buffer
4188 *
4189 * Start at the end of the kmsg buffer and fill the provided buffer
4190 * with as many of the *youngest* kmsg records that fit into it.
4191 * If the buffer is large enough, all available kmsg records will be
4192 * copied with a single call.
4193 *
4194 * Consecutive calls will fill the buffer with the next block of
4195 * available older records, not including the earlier retrieved ones.
4196 *
4197 * A return value of FALSE indicates that there are no more records to
4198 * read.
4199 */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)4200 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4201 char *buf, size_t size, size_t *len_out)
4202 {
4203 u64 min_seq = latched_seq_read_nolock(&clear_seq);
4204 struct printk_info info;
4205 struct printk_record r;
4206 u64 seq;
4207 u64 next_seq;
4208 size_t len = 0;
4209 bool ret = false;
4210 bool time = printk_time;
4211
4212 if (!buf || !size)
4213 goto out;
4214
4215 if (iter->cur_seq < min_seq)
4216 iter->cur_seq = min_seq;
4217
4218 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4219 if (info.seq != iter->cur_seq) {
4220 /* messages are gone, move to first available one */
4221 iter->cur_seq = info.seq;
4222 }
4223 }
4224
4225 /* last entry */
4226 if (iter->cur_seq >= iter->next_seq)
4227 goto out;
4228
4229 /*
4230 * Find first record that fits, including all following records,
4231 * into the user-provided buffer for this dump. Pass in size-1
4232 * because this function (by way of record_print_text()) will
4233 * not write more than size-1 bytes of text into @buf.
4234 */
4235 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4236 size - 1, syslog, time);
4237
4238 /*
4239 * Next kmsg_dump_get_buffer() invocation will dump block of
4240 * older records stored right before this one.
4241 */
4242 next_seq = seq;
4243
4244 prb_rec_init_rd(&r, &info, buf, size);
4245
4246 len = 0;
4247 prb_for_each_record(seq, prb, seq, &r) {
4248 if (r.info->seq >= iter->next_seq)
4249 break;
4250
4251 len += record_print_text(&r, syslog, time);
4252
4253 /* Adjust record to store to remaining buffer space. */
4254 prb_rec_init_rd(&r, &info, buf + len, size - len);
4255 }
4256
4257 iter->next_seq = next_seq;
4258 ret = true;
4259 out:
4260 if (len_out)
4261 *len_out = len;
4262 return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4265
4266 /**
4267 * kmsg_dump_rewind - reset the iterator
4268 * @iter: kmsg dump iterator
4269 *
4270 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4271 * kmsg_dump_get_buffer() can be called again and used multiple
4272 * times within the same dumper.dump() callback.
4273 */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)4274 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4275 {
4276 iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4277 iter->next_seq = prb_next_seq(prb);
4278 }
4279 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4280
4281 #endif
4282
4283 #ifdef CONFIG_SMP
4284 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4285 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4286
4287 /**
4288 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4289 * spinning lock is not owned by any CPU.
4290 *
4291 * Context: Any context.
4292 */
__printk_cpu_sync_wait(void)4293 void __printk_cpu_sync_wait(void)
4294 {
4295 do {
4296 cpu_relax();
4297 } while (atomic_read(&printk_cpu_sync_owner) != -1);
4298 }
4299 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4300
4301 /**
4302 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4303 * spinning lock.
4304 *
4305 * If no processor has the lock, the calling processor takes the lock and
4306 * becomes the owner. If the calling processor is already the owner of the
4307 * lock, this function succeeds immediately.
4308 *
4309 * Context: Any context. Expects interrupts to be disabled.
4310 * Return: 1 on success, otherwise 0.
4311 */
__printk_cpu_sync_try_get(void)4312 int __printk_cpu_sync_try_get(void)
4313 {
4314 int cpu;
4315 int old;
4316
4317 cpu = smp_processor_id();
4318
4319 /*
4320 * Guarantee loads and stores from this CPU when it is the lock owner
4321 * are _not_ visible to the previous lock owner. This pairs with
4322 * __printk_cpu_sync_put:B.
4323 *
4324 * Memory barrier involvement:
4325 *
4326 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4327 * then __printk_cpu_sync_put:A can never read from
4328 * __printk_cpu_sync_try_get:B.
4329 *
4330 * Relies on:
4331 *
4332 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4333 * of the previous CPU
4334 * matching
4335 * ACQUIRE from __printk_cpu_sync_try_get:A to
4336 * __printk_cpu_sync_try_get:B of this CPU
4337 */
4338 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4339 cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4340 if (old == -1) {
4341 /*
4342 * This CPU is now the owner and begins loading/storing
4343 * data: LMM(__printk_cpu_sync_try_get:B)
4344 */
4345 return 1;
4346
4347 } else if (old == cpu) {
4348 /* This CPU is already the owner. */
4349 atomic_inc(&printk_cpu_sync_nested);
4350 return 1;
4351 }
4352
4353 return 0;
4354 }
4355 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4356
4357 /**
4358 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4359 *
4360 * The calling processor must be the owner of the lock.
4361 *
4362 * Context: Any context. Expects interrupts to be disabled.
4363 */
__printk_cpu_sync_put(void)4364 void __printk_cpu_sync_put(void)
4365 {
4366 if (atomic_read(&printk_cpu_sync_nested)) {
4367 atomic_dec(&printk_cpu_sync_nested);
4368 return;
4369 }
4370
4371 /*
4372 * This CPU is finished loading/storing data:
4373 * LMM(__printk_cpu_sync_put:A)
4374 */
4375
4376 /*
4377 * Guarantee loads and stores from this CPU when it was the
4378 * lock owner are visible to the next lock owner. This pairs
4379 * with __printk_cpu_sync_try_get:A.
4380 *
4381 * Memory barrier involvement:
4382 *
4383 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4384 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4385 *
4386 * Relies on:
4387 *
4388 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4389 * of this CPU
4390 * matching
4391 * ACQUIRE from __printk_cpu_sync_try_get:A to
4392 * __printk_cpu_sync_try_get:B of the next CPU
4393 */
4394 atomic_set_release(&printk_cpu_sync_owner,
4395 -1); /* LMM(__printk_cpu_sync_put:B) */
4396 }
4397 EXPORT_SYMBOL(__printk_cpu_sync_put);
4398 #endif /* CONFIG_SMP */
4399