xref: /openbmc/linux/kernel/power/swap.c (revision d3597236)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34 
35 #include "power.h"
36 
37 #define HIBERNATE_SIG	"S1SUSPEND"
38 
39 /*
40  *	The swap map is a data structure used for keeping track of each page
41  *	written to a swap partition.  It consists of many swap_map_page
42  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43  *	These structures are stored on the swap and linked together with the
44  *	help of the .next_swap member.
45  *
46  *	The swap map is created during suspend.  The swap map pages are
47  *	allocated and populated one at a time, so we only need one memory
48  *	page to set up the entire structure.
49  *
50  *	During resume we pick up all swap_map_page structures into a list.
51  */
52 
53 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
54 
55 /*
56  * Number of free pages that are not high.
57  */
58 static inline unsigned long low_free_pages(void)
59 {
60 	return nr_free_pages() - nr_free_highpages();
61 }
62 
63 /*
64  * Number of pages required to be kept free while writing the image. Always
65  * half of all available low pages before the writing starts.
66  */
67 static inline unsigned long reqd_free_pages(void)
68 {
69 	return low_free_pages() / 2;
70 }
71 
72 struct swap_map_page {
73 	sector_t entries[MAP_PAGE_ENTRIES];
74 	sector_t next_swap;
75 };
76 
77 struct swap_map_page_list {
78 	struct swap_map_page *map;
79 	struct swap_map_page_list *next;
80 };
81 
82 /**
83  *	The swap_map_handle structure is used for handling swap in
84  *	a file-alike way
85  */
86 
87 struct swap_map_handle {
88 	struct swap_map_page *cur;
89 	struct swap_map_page_list *maps;
90 	sector_t cur_swap;
91 	sector_t first_sector;
92 	unsigned int k;
93 	unsigned long reqd_free_pages;
94 	u32 crc32;
95 };
96 
97 struct swsusp_header {
98 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 	              sizeof(u32)];
100 	u32	crc32;
101 	sector_t image;
102 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
103 	char	orig_sig[10];
104 	char	sig[10];
105 } __packed;
106 
107 static struct swsusp_header *swsusp_header;
108 
109 /**
110  *	The following functions are used for tracing the allocated
111  *	swap pages, so that they can be freed in case of an error.
112  */
113 
114 struct swsusp_extent {
115 	struct rb_node node;
116 	unsigned long start;
117 	unsigned long end;
118 };
119 
120 static struct rb_root swsusp_extents = RB_ROOT;
121 
122 static int swsusp_extents_insert(unsigned long swap_offset)
123 {
124 	struct rb_node **new = &(swsusp_extents.rb_node);
125 	struct rb_node *parent = NULL;
126 	struct swsusp_extent *ext;
127 
128 	/* Figure out where to put the new node */
129 	while (*new) {
130 		ext = rb_entry(*new, struct swsusp_extent, node);
131 		parent = *new;
132 		if (swap_offset < ext->start) {
133 			/* Try to merge */
134 			if (swap_offset == ext->start - 1) {
135 				ext->start--;
136 				return 0;
137 			}
138 			new = &((*new)->rb_left);
139 		} else if (swap_offset > ext->end) {
140 			/* Try to merge */
141 			if (swap_offset == ext->end + 1) {
142 				ext->end++;
143 				return 0;
144 			}
145 			new = &((*new)->rb_right);
146 		} else {
147 			/* It already is in the tree */
148 			return -EINVAL;
149 		}
150 	}
151 	/* Add the new node and rebalance the tree. */
152 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 	if (!ext)
154 		return -ENOMEM;
155 
156 	ext->start = swap_offset;
157 	ext->end = swap_offset;
158 	rb_link_node(&ext->node, parent, new);
159 	rb_insert_color(&ext->node, &swsusp_extents);
160 	return 0;
161 }
162 
163 /**
164  *	alloc_swapdev_block - allocate a swap page and register that it has
165  *	been allocated, so that it can be freed in case of an error.
166  */
167 
168 sector_t alloc_swapdev_block(int swap)
169 {
170 	unsigned long offset;
171 
172 	offset = swp_offset(get_swap_page_of_type(swap));
173 	if (offset) {
174 		if (swsusp_extents_insert(offset))
175 			swap_free(swp_entry(swap, offset));
176 		else
177 			return swapdev_block(swap, offset);
178 	}
179 	return 0;
180 }
181 
182 /**
183  *	free_all_swap_pages - free swap pages allocated for saving image data.
184  *	It also frees the extents used to register which swap entries had been
185  *	allocated.
186  */
187 
188 void free_all_swap_pages(int swap)
189 {
190 	struct rb_node *node;
191 
192 	while ((node = swsusp_extents.rb_node)) {
193 		struct swsusp_extent *ext;
194 		unsigned long offset;
195 
196 		ext = container_of(node, struct swsusp_extent, node);
197 		rb_erase(node, &swsusp_extents);
198 		for (offset = ext->start; offset <= ext->end; offset++)
199 			swap_free(swp_entry(swap, offset));
200 
201 		kfree(ext);
202 	}
203 }
204 
205 int swsusp_swap_in_use(void)
206 {
207 	return (swsusp_extents.rb_node != NULL);
208 }
209 
210 /*
211  * General things
212  */
213 
214 static unsigned short root_swap = 0xffff;
215 static struct block_device *hib_resume_bdev;
216 
217 struct hib_bio_batch {
218 	atomic_t		count;
219 	wait_queue_head_t	wait;
220 	int			error;
221 };
222 
223 static void hib_init_batch(struct hib_bio_batch *hb)
224 {
225 	atomic_set(&hb->count, 0);
226 	init_waitqueue_head(&hb->wait);
227 	hb->error = 0;
228 }
229 
230 static void hib_end_io(struct bio *bio, int error)
231 {
232 	struct hib_bio_batch *hb = bio->bi_private;
233 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
234 	struct page *page = bio->bi_io_vec[0].bv_page;
235 
236 	if (!uptodate || error) {
237 		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
238 				imajor(bio->bi_bdev->bd_inode),
239 				iminor(bio->bi_bdev->bd_inode),
240 				(unsigned long long)bio->bi_iter.bi_sector);
241 
242 		if (!error)
243 			error = -EIO;
244 	}
245 
246 	if (bio_data_dir(bio) == WRITE)
247 		put_page(page);
248 
249 	if (error && !hb->error)
250 		hb->error = error;
251 	if (atomic_dec_and_test(&hb->count))
252 		wake_up(&hb->wait);
253 
254 	bio_put(bio);
255 }
256 
257 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
258 		struct hib_bio_batch *hb)
259 {
260 	struct page *page = virt_to_page(addr);
261 	struct bio *bio;
262 	int error = 0;
263 
264 	bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1);
265 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
266 	bio->bi_bdev = hib_resume_bdev;
267 
268 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
269 		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
270 			(unsigned long long)bio->bi_iter.bi_sector);
271 		bio_put(bio);
272 		return -EFAULT;
273 	}
274 
275 	if (hb) {
276 		bio->bi_end_io = hib_end_io;
277 		bio->bi_private = hb;
278 		atomic_inc(&hb->count);
279 		submit_bio(rw, bio);
280 	} else {
281 		error = submit_bio_wait(rw, bio);
282 		bio_put(bio);
283 	}
284 
285 	return error;
286 }
287 
288 static int hib_wait_io(struct hib_bio_batch *hb)
289 {
290 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
291 	return hb->error;
292 }
293 
294 /*
295  * Saving part
296  */
297 
298 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
299 {
300 	int error;
301 
302 	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
303 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
304 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
305 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
306 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
307 		swsusp_header->image = handle->first_sector;
308 		swsusp_header->flags = flags;
309 		if (flags & SF_CRC32_MODE)
310 			swsusp_header->crc32 = handle->crc32;
311 		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
312 					swsusp_header, NULL);
313 	} else {
314 		printk(KERN_ERR "PM: Swap header not found!\n");
315 		error = -ENODEV;
316 	}
317 	return error;
318 }
319 
320 /**
321  *	swsusp_swap_check - check if the resume device is a swap device
322  *	and get its index (if so)
323  *
324  *	This is called before saving image
325  */
326 static int swsusp_swap_check(void)
327 {
328 	int res;
329 
330 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
331 			&hib_resume_bdev);
332 	if (res < 0)
333 		return res;
334 
335 	root_swap = res;
336 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
337 	if (res)
338 		return res;
339 
340 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
341 	if (res < 0)
342 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
343 
344 	return res;
345 }
346 
347 /**
348  *	write_page - Write one page to given swap location.
349  *	@buf:		Address we're writing.
350  *	@offset:	Offset of the swap page we're writing to.
351  *	@hb:		bio completion batch
352  */
353 
354 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
355 {
356 	void *src;
357 	int ret;
358 
359 	if (!offset)
360 		return -ENOSPC;
361 
362 	if (hb) {
363 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN |
364 		                              __GFP_NORETRY);
365 		if (src) {
366 			copy_page(src, buf);
367 		} else {
368 			ret = hib_wait_io(hb); /* Free pages */
369 			if (ret)
370 				return ret;
371 			src = (void *)__get_free_page(__GFP_WAIT |
372 			                              __GFP_NOWARN |
373 			                              __GFP_NORETRY);
374 			if (src) {
375 				copy_page(src, buf);
376 			} else {
377 				WARN_ON_ONCE(1);
378 				hb = NULL;	/* Go synchronous */
379 				src = buf;
380 			}
381 		}
382 	} else {
383 		src = buf;
384 	}
385 	return hib_submit_io(WRITE_SYNC, offset, src, hb);
386 }
387 
388 static void release_swap_writer(struct swap_map_handle *handle)
389 {
390 	if (handle->cur)
391 		free_page((unsigned long)handle->cur);
392 	handle->cur = NULL;
393 }
394 
395 static int get_swap_writer(struct swap_map_handle *handle)
396 {
397 	int ret;
398 
399 	ret = swsusp_swap_check();
400 	if (ret) {
401 		if (ret != -ENOSPC)
402 			printk(KERN_ERR "PM: Cannot find swap device, try "
403 					"swapon -a.\n");
404 		return ret;
405 	}
406 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
407 	if (!handle->cur) {
408 		ret = -ENOMEM;
409 		goto err_close;
410 	}
411 	handle->cur_swap = alloc_swapdev_block(root_swap);
412 	if (!handle->cur_swap) {
413 		ret = -ENOSPC;
414 		goto err_rel;
415 	}
416 	handle->k = 0;
417 	handle->reqd_free_pages = reqd_free_pages();
418 	handle->first_sector = handle->cur_swap;
419 	return 0;
420 err_rel:
421 	release_swap_writer(handle);
422 err_close:
423 	swsusp_close(FMODE_WRITE);
424 	return ret;
425 }
426 
427 static int swap_write_page(struct swap_map_handle *handle, void *buf,
428 		struct hib_bio_batch *hb)
429 {
430 	int error = 0;
431 	sector_t offset;
432 
433 	if (!handle->cur)
434 		return -EINVAL;
435 	offset = alloc_swapdev_block(root_swap);
436 	error = write_page(buf, offset, hb);
437 	if (error)
438 		return error;
439 	handle->cur->entries[handle->k++] = offset;
440 	if (handle->k >= MAP_PAGE_ENTRIES) {
441 		offset = alloc_swapdev_block(root_swap);
442 		if (!offset)
443 			return -ENOSPC;
444 		handle->cur->next_swap = offset;
445 		error = write_page(handle->cur, handle->cur_swap, hb);
446 		if (error)
447 			goto out;
448 		clear_page(handle->cur);
449 		handle->cur_swap = offset;
450 		handle->k = 0;
451 
452 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
453 			error = hib_wait_io(hb);
454 			if (error)
455 				goto out;
456 			/*
457 			 * Recalculate the number of required free pages, to
458 			 * make sure we never take more than half.
459 			 */
460 			handle->reqd_free_pages = reqd_free_pages();
461 		}
462 	}
463  out:
464 	return error;
465 }
466 
467 static int flush_swap_writer(struct swap_map_handle *handle)
468 {
469 	if (handle->cur && handle->cur_swap)
470 		return write_page(handle->cur, handle->cur_swap, NULL);
471 	else
472 		return -EINVAL;
473 }
474 
475 static int swap_writer_finish(struct swap_map_handle *handle,
476 		unsigned int flags, int error)
477 {
478 	if (!error) {
479 		flush_swap_writer(handle);
480 		printk(KERN_INFO "PM: S");
481 		error = mark_swapfiles(handle, flags);
482 		printk("|\n");
483 	}
484 
485 	if (error)
486 		free_all_swap_pages(root_swap);
487 	release_swap_writer(handle);
488 	swsusp_close(FMODE_WRITE);
489 
490 	return error;
491 }
492 
493 /* We need to remember how much compressed data we need to read. */
494 #define LZO_HEADER	sizeof(size_t)
495 
496 /* Number of pages/bytes we'll compress at one time. */
497 #define LZO_UNC_PAGES	32
498 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
499 
500 /* Number of pages/bytes we need for compressed data (worst case). */
501 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
502 			             LZO_HEADER, PAGE_SIZE)
503 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
504 
505 /* Maximum number of threads for compression/decompression. */
506 #define LZO_THREADS	3
507 
508 /* Minimum/maximum number of pages for read buffering. */
509 #define LZO_MIN_RD_PAGES	1024
510 #define LZO_MAX_RD_PAGES	8192
511 
512 
513 /**
514  *	save_image - save the suspend image data
515  */
516 
517 static int save_image(struct swap_map_handle *handle,
518                       struct snapshot_handle *snapshot,
519                       unsigned int nr_to_write)
520 {
521 	unsigned int m;
522 	int ret;
523 	int nr_pages;
524 	int err2;
525 	struct hib_bio_batch hb;
526 	ktime_t start;
527 	ktime_t stop;
528 
529 	hib_init_batch(&hb);
530 
531 	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
532 		nr_to_write);
533 	m = nr_to_write / 10;
534 	if (!m)
535 		m = 1;
536 	nr_pages = 0;
537 	start = ktime_get();
538 	while (1) {
539 		ret = snapshot_read_next(snapshot);
540 		if (ret <= 0)
541 			break;
542 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
543 		if (ret)
544 			break;
545 		if (!(nr_pages % m))
546 			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
547 			       nr_pages / m * 10);
548 		nr_pages++;
549 	}
550 	err2 = hib_wait_io(&hb);
551 	stop = ktime_get();
552 	if (!ret)
553 		ret = err2;
554 	if (!ret)
555 		printk(KERN_INFO "PM: Image saving done.\n");
556 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
557 	return ret;
558 }
559 
560 /**
561  * Structure used for CRC32.
562  */
563 struct crc_data {
564 	struct task_struct *thr;                  /* thread */
565 	atomic_t ready;                           /* ready to start flag */
566 	atomic_t stop;                            /* ready to stop flag */
567 	unsigned run_threads;                     /* nr current threads */
568 	wait_queue_head_t go;                     /* start crc update */
569 	wait_queue_head_t done;                   /* crc update done */
570 	u32 *crc32;                               /* points to handle's crc32 */
571 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
572 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
573 };
574 
575 /**
576  * CRC32 update function that runs in its own thread.
577  */
578 static int crc32_threadfn(void *data)
579 {
580 	struct crc_data *d = data;
581 	unsigned i;
582 
583 	while (1) {
584 		wait_event(d->go, atomic_read(&d->ready) ||
585 		                  kthread_should_stop());
586 		if (kthread_should_stop()) {
587 			d->thr = NULL;
588 			atomic_set(&d->stop, 1);
589 			wake_up(&d->done);
590 			break;
591 		}
592 		atomic_set(&d->ready, 0);
593 
594 		for (i = 0; i < d->run_threads; i++)
595 			*d->crc32 = crc32_le(*d->crc32,
596 			                     d->unc[i], *d->unc_len[i]);
597 		atomic_set(&d->stop, 1);
598 		wake_up(&d->done);
599 	}
600 	return 0;
601 }
602 /**
603  * Structure used for LZO data compression.
604  */
605 struct cmp_data {
606 	struct task_struct *thr;                  /* thread */
607 	atomic_t ready;                           /* ready to start flag */
608 	atomic_t stop;                            /* ready to stop flag */
609 	int ret;                                  /* return code */
610 	wait_queue_head_t go;                     /* start compression */
611 	wait_queue_head_t done;                   /* compression done */
612 	size_t unc_len;                           /* uncompressed length */
613 	size_t cmp_len;                           /* compressed length */
614 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
615 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
616 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
617 };
618 
619 /**
620  * Compression function that runs in its own thread.
621  */
622 static int lzo_compress_threadfn(void *data)
623 {
624 	struct cmp_data *d = data;
625 
626 	while (1) {
627 		wait_event(d->go, atomic_read(&d->ready) ||
628 		                  kthread_should_stop());
629 		if (kthread_should_stop()) {
630 			d->thr = NULL;
631 			d->ret = -1;
632 			atomic_set(&d->stop, 1);
633 			wake_up(&d->done);
634 			break;
635 		}
636 		atomic_set(&d->ready, 0);
637 
638 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
639 		                          d->cmp + LZO_HEADER, &d->cmp_len,
640 		                          d->wrk);
641 		atomic_set(&d->stop, 1);
642 		wake_up(&d->done);
643 	}
644 	return 0;
645 }
646 
647 /**
648  * save_image_lzo - Save the suspend image data compressed with LZO.
649  * @handle: Swap map handle to use for saving the image.
650  * @snapshot: Image to read data from.
651  * @nr_to_write: Number of pages to save.
652  */
653 static int save_image_lzo(struct swap_map_handle *handle,
654                           struct snapshot_handle *snapshot,
655                           unsigned int nr_to_write)
656 {
657 	unsigned int m;
658 	int ret = 0;
659 	int nr_pages;
660 	int err2;
661 	struct hib_bio_batch hb;
662 	ktime_t start;
663 	ktime_t stop;
664 	size_t off;
665 	unsigned thr, run_threads, nr_threads;
666 	unsigned char *page = NULL;
667 	struct cmp_data *data = NULL;
668 	struct crc_data *crc = NULL;
669 
670 	hib_init_batch(&hb);
671 
672 	/*
673 	 * We'll limit the number of threads for compression to limit memory
674 	 * footprint.
675 	 */
676 	nr_threads = num_online_cpus() - 1;
677 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
678 
679 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
680 	if (!page) {
681 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
682 		ret = -ENOMEM;
683 		goto out_clean;
684 	}
685 
686 	data = vmalloc(sizeof(*data) * nr_threads);
687 	if (!data) {
688 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
689 		ret = -ENOMEM;
690 		goto out_clean;
691 	}
692 	for (thr = 0; thr < nr_threads; thr++)
693 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
694 
695 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
696 	if (!crc) {
697 		printk(KERN_ERR "PM: Failed to allocate crc\n");
698 		ret = -ENOMEM;
699 		goto out_clean;
700 	}
701 	memset(crc, 0, offsetof(struct crc_data, go));
702 
703 	/*
704 	 * Start the compression threads.
705 	 */
706 	for (thr = 0; thr < nr_threads; thr++) {
707 		init_waitqueue_head(&data[thr].go);
708 		init_waitqueue_head(&data[thr].done);
709 
710 		data[thr].thr = kthread_run(lzo_compress_threadfn,
711 		                            &data[thr],
712 		                            "image_compress/%u", thr);
713 		if (IS_ERR(data[thr].thr)) {
714 			data[thr].thr = NULL;
715 			printk(KERN_ERR
716 			       "PM: Cannot start compression threads\n");
717 			ret = -ENOMEM;
718 			goto out_clean;
719 		}
720 	}
721 
722 	/*
723 	 * Start the CRC32 thread.
724 	 */
725 	init_waitqueue_head(&crc->go);
726 	init_waitqueue_head(&crc->done);
727 
728 	handle->crc32 = 0;
729 	crc->crc32 = &handle->crc32;
730 	for (thr = 0; thr < nr_threads; thr++) {
731 		crc->unc[thr] = data[thr].unc;
732 		crc->unc_len[thr] = &data[thr].unc_len;
733 	}
734 
735 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
736 	if (IS_ERR(crc->thr)) {
737 		crc->thr = NULL;
738 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
739 		ret = -ENOMEM;
740 		goto out_clean;
741 	}
742 
743 	/*
744 	 * Adjust the number of required free pages after all allocations have
745 	 * been done. We don't want to run out of pages when writing.
746 	 */
747 	handle->reqd_free_pages = reqd_free_pages();
748 
749 	printk(KERN_INFO
750 		"PM: Using %u thread(s) for compression.\n"
751 		"PM: Compressing and saving image data (%u pages)...\n",
752 		nr_threads, nr_to_write);
753 	m = nr_to_write / 10;
754 	if (!m)
755 		m = 1;
756 	nr_pages = 0;
757 	start = ktime_get();
758 	for (;;) {
759 		for (thr = 0; thr < nr_threads; thr++) {
760 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
761 				ret = snapshot_read_next(snapshot);
762 				if (ret < 0)
763 					goto out_finish;
764 
765 				if (!ret)
766 					break;
767 
768 				memcpy(data[thr].unc + off,
769 				       data_of(*snapshot), PAGE_SIZE);
770 
771 				if (!(nr_pages % m))
772 					printk(KERN_INFO
773 					       "PM: Image saving progress: "
774 					       "%3d%%\n",
775 				               nr_pages / m * 10);
776 				nr_pages++;
777 			}
778 			if (!off)
779 				break;
780 
781 			data[thr].unc_len = off;
782 
783 			atomic_set(&data[thr].ready, 1);
784 			wake_up(&data[thr].go);
785 		}
786 
787 		if (!thr)
788 			break;
789 
790 		crc->run_threads = thr;
791 		atomic_set(&crc->ready, 1);
792 		wake_up(&crc->go);
793 
794 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
795 			wait_event(data[thr].done,
796 			           atomic_read(&data[thr].stop));
797 			atomic_set(&data[thr].stop, 0);
798 
799 			ret = data[thr].ret;
800 
801 			if (ret < 0) {
802 				printk(KERN_ERR "PM: LZO compression failed\n");
803 				goto out_finish;
804 			}
805 
806 			if (unlikely(!data[thr].cmp_len ||
807 			             data[thr].cmp_len >
808 			             lzo1x_worst_compress(data[thr].unc_len))) {
809 				printk(KERN_ERR
810 				       "PM: Invalid LZO compressed length\n");
811 				ret = -1;
812 				goto out_finish;
813 			}
814 
815 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
816 
817 			/*
818 			 * Given we are writing one page at a time to disk, we
819 			 * copy that much from the buffer, although the last
820 			 * bit will likely be smaller than full page. This is
821 			 * OK - we saved the length of the compressed data, so
822 			 * any garbage at the end will be discarded when we
823 			 * read it.
824 			 */
825 			for (off = 0;
826 			     off < LZO_HEADER + data[thr].cmp_len;
827 			     off += PAGE_SIZE) {
828 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
829 
830 				ret = swap_write_page(handle, page, &hb);
831 				if (ret)
832 					goto out_finish;
833 			}
834 		}
835 
836 		wait_event(crc->done, atomic_read(&crc->stop));
837 		atomic_set(&crc->stop, 0);
838 	}
839 
840 out_finish:
841 	err2 = hib_wait_io(&hb);
842 	stop = ktime_get();
843 	if (!ret)
844 		ret = err2;
845 	if (!ret)
846 		printk(KERN_INFO "PM: Image saving done.\n");
847 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
848 out_clean:
849 	if (crc) {
850 		if (crc->thr)
851 			kthread_stop(crc->thr);
852 		kfree(crc);
853 	}
854 	if (data) {
855 		for (thr = 0; thr < nr_threads; thr++)
856 			if (data[thr].thr)
857 				kthread_stop(data[thr].thr);
858 		vfree(data);
859 	}
860 	if (page) free_page((unsigned long)page);
861 
862 	return ret;
863 }
864 
865 /**
866  *	enough_swap - Make sure we have enough swap to save the image.
867  *
868  *	Returns TRUE or FALSE after checking the total amount of swap
869  *	space avaiable from the resume partition.
870  */
871 
872 static int enough_swap(unsigned int nr_pages, unsigned int flags)
873 {
874 	unsigned int free_swap = count_swap_pages(root_swap, 1);
875 	unsigned int required;
876 
877 	pr_debug("PM: Free swap pages: %u\n", free_swap);
878 
879 	required = PAGES_FOR_IO + nr_pages;
880 	return free_swap > required;
881 }
882 
883 /**
884  *	swsusp_write - Write entire image and metadata.
885  *	@flags: flags to pass to the "boot" kernel in the image header
886  *
887  *	It is important _NOT_ to umount filesystems at this point. We want
888  *	them synced (in case something goes wrong) but we DO not want to mark
889  *	filesystem clean: it is not. (And it does not matter, if we resume
890  *	correctly, we'll mark system clean, anyway.)
891  */
892 
893 int swsusp_write(unsigned int flags)
894 {
895 	struct swap_map_handle handle;
896 	struct snapshot_handle snapshot;
897 	struct swsusp_info *header;
898 	unsigned long pages;
899 	int error;
900 
901 	pages = snapshot_get_image_size();
902 	error = get_swap_writer(&handle);
903 	if (error) {
904 		printk(KERN_ERR "PM: Cannot get swap writer\n");
905 		return error;
906 	}
907 	if (flags & SF_NOCOMPRESS_MODE) {
908 		if (!enough_swap(pages, flags)) {
909 			printk(KERN_ERR "PM: Not enough free swap\n");
910 			error = -ENOSPC;
911 			goto out_finish;
912 		}
913 	}
914 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
915 	error = snapshot_read_next(&snapshot);
916 	if (error < PAGE_SIZE) {
917 		if (error >= 0)
918 			error = -EFAULT;
919 
920 		goto out_finish;
921 	}
922 	header = (struct swsusp_info *)data_of(snapshot);
923 	error = swap_write_page(&handle, header, NULL);
924 	if (!error) {
925 		error = (flags & SF_NOCOMPRESS_MODE) ?
926 			save_image(&handle, &snapshot, pages - 1) :
927 			save_image_lzo(&handle, &snapshot, pages - 1);
928 	}
929 out_finish:
930 	error = swap_writer_finish(&handle, flags, error);
931 	return error;
932 }
933 
934 /**
935  *	The following functions allow us to read data using a swap map
936  *	in a file-alike way
937  */
938 
939 static void release_swap_reader(struct swap_map_handle *handle)
940 {
941 	struct swap_map_page_list *tmp;
942 
943 	while (handle->maps) {
944 		if (handle->maps->map)
945 			free_page((unsigned long)handle->maps->map);
946 		tmp = handle->maps;
947 		handle->maps = handle->maps->next;
948 		kfree(tmp);
949 	}
950 	handle->cur = NULL;
951 }
952 
953 static int get_swap_reader(struct swap_map_handle *handle,
954 		unsigned int *flags_p)
955 {
956 	int error;
957 	struct swap_map_page_list *tmp, *last;
958 	sector_t offset;
959 
960 	*flags_p = swsusp_header->flags;
961 
962 	if (!swsusp_header->image) /* how can this happen? */
963 		return -EINVAL;
964 
965 	handle->cur = NULL;
966 	last = handle->maps = NULL;
967 	offset = swsusp_header->image;
968 	while (offset) {
969 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
970 		if (!tmp) {
971 			release_swap_reader(handle);
972 			return -ENOMEM;
973 		}
974 		memset(tmp, 0, sizeof(*tmp));
975 		if (!handle->maps)
976 			handle->maps = tmp;
977 		if (last)
978 			last->next = tmp;
979 		last = tmp;
980 
981 		tmp->map = (struct swap_map_page *)
982 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
983 		if (!tmp->map) {
984 			release_swap_reader(handle);
985 			return -ENOMEM;
986 		}
987 
988 		error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
989 		if (error) {
990 			release_swap_reader(handle);
991 			return error;
992 		}
993 		offset = tmp->map->next_swap;
994 	}
995 	handle->k = 0;
996 	handle->cur = handle->maps->map;
997 	return 0;
998 }
999 
1000 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1001 		struct hib_bio_batch *hb)
1002 {
1003 	sector_t offset;
1004 	int error;
1005 	struct swap_map_page_list *tmp;
1006 
1007 	if (!handle->cur)
1008 		return -EINVAL;
1009 	offset = handle->cur->entries[handle->k];
1010 	if (!offset)
1011 		return -EFAULT;
1012 	error = hib_submit_io(READ_SYNC, offset, buf, hb);
1013 	if (error)
1014 		return error;
1015 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1016 		handle->k = 0;
1017 		free_page((unsigned long)handle->maps->map);
1018 		tmp = handle->maps;
1019 		handle->maps = handle->maps->next;
1020 		kfree(tmp);
1021 		if (!handle->maps)
1022 			release_swap_reader(handle);
1023 		else
1024 			handle->cur = handle->maps->map;
1025 	}
1026 	return error;
1027 }
1028 
1029 static int swap_reader_finish(struct swap_map_handle *handle)
1030 {
1031 	release_swap_reader(handle);
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  *	load_image - load the image using the swap map handle
1038  *	@handle and the snapshot handle @snapshot
1039  *	(assume there are @nr_pages pages to load)
1040  */
1041 
1042 static int load_image(struct swap_map_handle *handle,
1043                       struct snapshot_handle *snapshot,
1044                       unsigned int nr_to_read)
1045 {
1046 	unsigned int m;
1047 	int ret = 0;
1048 	ktime_t start;
1049 	ktime_t stop;
1050 	struct hib_bio_batch hb;
1051 	int err2;
1052 	unsigned nr_pages;
1053 
1054 	hib_init_batch(&hb);
1055 
1056 	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1057 		nr_to_read);
1058 	m = nr_to_read / 10;
1059 	if (!m)
1060 		m = 1;
1061 	nr_pages = 0;
1062 	start = ktime_get();
1063 	for ( ; ; ) {
1064 		ret = snapshot_write_next(snapshot);
1065 		if (ret <= 0)
1066 			break;
1067 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1068 		if (ret)
1069 			break;
1070 		if (snapshot->sync_read)
1071 			ret = hib_wait_io(&hb);
1072 		if (ret)
1073 			break;
1074 		if (!(nr_pages % m))
1075 			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1076 			       nr_pages / m * 10);
1077 		nr_pages++;
1078 	}
1079 	err2 = hib_wait_io(&hb);
1080 	stop = ktime_get();
1081 	if (!ret)
1082 		ret = err2;
1083 	if (!ret) {
1084 		printk(KERN_INFO "PM: Image loading done.\n");
1085 		snapshot_write_finalize(snapshot);
1086 		if (!snapshot_image_loaded(snapshot))
1087 			ret = -ENODATA;
1088 	}
1089 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1090 	return ret;
1091 }
1092 
1093 /**
1094  * Structure used for LZO data decompression.
1095  */
1096 struct dec_data {
1097 	struct task_struct *thr;                  /* thread */
1098 	atomic_t ready;                           /* ready to start flag */
1099 	atomic_t stop;                            /* ready to stop flag */
1100 	int ret;                                  /* return code */
1101 	wait_queue_head_t go;                     /* start decompression */
1102 	wait_queue_head_t done;                   /* decompression done */
1103 	size_t unc_len;                           /* uncompressed length */
1104 	size_t cmp_len;                           /* compressed length */
1105 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1106 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1107 };
1108 
1109 /**
1110  * Deompression function that runs in its own thread.
1111  */
1112 static int lzo_decompress_threadfn(void *data)
1113 {
1114 	struct dec_data *d = data;
1115 
1116 	while (1) {
1117 		wait_event(d->go, atomic_read(&d->ready) ||
1118 		                  kthread_should_stop());
1119 		if (kthread_should_stop()) {
1120 			d->thr = NULL;
1121 			d->ret = -1;
1122 			atomic_set(&d->stop, 1);
1123 			wake_up(&d->done);
1124 			break;
1125 		}
1126 		atomic_set(&d->ready, 0);
1127 
1128 		d->unc_len = LZO_UNC_SIZE;
1129 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1130 		                               d->unc, &d->unc_len);
1131 		atomic_set(&d->stop, 1);
1132 		wake_up(&d->done);
1133 	}
1134 	return 0;
1135 }
1136 
1137 /**
1138  * load_image_lzo - Load compressed image data and decompress them with LZO.
1139  * @handle: Swap map handle to use for loading data.
1140  * @snapshot: Image to copy uncompressed data into.
1141  * @nr_to_read: Number of pages to load.
1142  */
1143 static int load_image_lzo(struct swap_map_handle *handle,
1144                           struct snapshot_handle *snapshot,
1145                           unsigned int nr_to_read)
1146 {
1147 	unsigned int m;
1148 	int ret = 0;
1149 	int eof = 0;
1150 	struct hib_bio_batch hb;
1151 	ktime_t start;
1152 	ktime_t stop;
1153 	unsigned nr_pages;
1154 	size_t off;
1155 	unsigned i, thr, run_threads, nr_threads;
1156 	unsigned ring = 0, pg = 0, ring_size = 0,
1157 	         have = 0, want, need, asked = 0;
1158 	unsigned long read_pages = 0;
1159 	unsigned char **page = NULL;
1160 	struct dec_data *data = NULL;
1161 	struct crc_data *crc = NULL;
1162 
1163 	hib_init_batch(&hb);
1164 
1165 	/*
1166 	 * We'll limit the number of threads for decompression to limit memory
1167 	 * footprint.
1168 	 */
1169 	nr_threads = num_online_cpus() - 1;
1170 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1171 
1172 	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1173 	if (!page) {
1174 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1175 		ret = -ENOMEM;
1176 		goto out_clean;
1177 	}
1178 
1179 	data = vmalloc(sizeof(*data) * nr_threads);
1180 	if (!data) {
1181 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1182 		ret = -ENOMEM;
1183 		goto out_clean;
1184 	}
1185 	for (thr = 0; thr < nr_threads; thr++)
1186 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1187 
1188 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1189 	if (!crc) {
1190 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1191 		ret = -ENOMEM;
1192 		goto out_clean;
1193 	}
1194 	memset(crc, 0, offsetof(struct crc_data, go));
1195 
1196 	/*
1197 	 * Start the decompression threads.
1198 	 */
1199 	for (thr = 0; thr < nr_threads; thr++) {
1200 		init_waitqueue_head(&data[thr].go);
1201 		init_waitqueue_head(&data[thr].done);
1202 
1203 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1204 		                            &data[thr],
1205 		                            "image_decompress/%u", thr);
1206 		if (IS_ERR(data[thr].thr)) {
1207 			data[thr].thr = NULL;
1208 			printk(KERN_ERR
1209 			       "PM: Cannot start decompression threads\n");
1210 			ret = -ENOMEM;
1211 			goto out_clean;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Start the CRC32 thread.
1217 	 */
1218 	init_waitqueue_head(&crc->go);
1219 	init_waitqueue_head(&crc->done);
1220 
1221 	handle->crc32 = 0;
1222 	crc->crc32 = &handle->crc32;
1223 	for (thr = 0; thr < nr_threads; thr++) {
1224 		crc->unc[thr] = data[thr].unc;
1225 		crc->unc_len[thr] = &data[thr].unc_len;
1226 	}
1227 
1228 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1229 	if (IS_ERR(crc->thr)) {
1230 		crc->thr = NULL;
1231 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1232 		ret = -ENOMEM;
1233 		goto out_clean;
1234 	}
1235 
1236 	/*
1237 	 * Set the number of pages for read buffering.
1238 	 * This is complete guesswork, because we'll only know the real
1239 	 * picture once prepare_image() is called, which is much later on
1240 	 * during the image load phase. We'll assume the worst case and
1241 	 * say that none of the image pages are from high memory.
1242 	 */
1243 	if (low_free_pages() > snapshot_get_image_size())
1244 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1245 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1246 
1247 	for (i = 0; i < read_pages; i++) {
1248 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1249 		                                  __GFP_WAIT | __GFP_HIGH :
1250 		                                  __GFP_WAIT | __GFP_NOWARN |
1251 		                                  __GFP_NORETRY);
1252 
1253 		if (!page[i]) {
1254 			if (i < LZO_CMP_PAGES) {
1255 				ring_size = i;
1256 				printk(KERN_ERR
1257 				       "PM: Failed to allocate LZO pages\n");
1258 				ret = -ENOMEM;
1259 				goto out_clean;
1260 			} else {
1261 				break;
1262 			}
1263 		}
1264 	}
1265 	want = ring_size = i;
1266 
1267 	printk(KERN_INFO
1268 		"PM: Using %u thread(s) for decompression.\n"
1269 		"PM: Loading and decompressing image data (%u pages)...\n",
1270 		nr_threads, nr_to_read);
1271 	m = nr_to_read / 10;
1272 	if (!m)
1273 		m = 1;
1274 	nr_pages = 0;
1275 	start = ktime_get();
1276 
1277 	ret = snapshot_write_next(snapshot);
1278 	if (ret <= 0)
1279 		goto out_finish;
1280 
1281 	for(;;) {
1282 		for (i = 0; !eof && i < want; i++) {
1283 			ret = swap_read_page(handle, page[ring], &hb);
1284 			if (ret) {
1285 				/*
1286 				 * On real read error, finish. On end of data,
1287 				 * set EOF flag and just exit the read loop.
1288 				 */
1289 				if (handle->cur &&
1290 				    handle->cur->entries[handle->k]) {
1291 					goto out_finish;
1292 				} else {
1293 					eof = 1;
1294 					break;
1295 				}
1296 			}
1297 			if (++ring >= ring_size)
1298 				ring = 0;
1299 		}
1300 		asked += i;
1301 		want -= i;
1302 
1303 		/*
1304 		 * We are out of data, wait for some more.
1305 		 */
1306 		if (!have) {
1307 			if (!asked)
1308 				break;
1309 
1310 			ret = hib_wait_io(&hb);
1311 			if (ret)
1312 				goto out_finish;
1313 			have += asked;
1314 			asked = 0;
1315 			if (eof)
1316 				eof = 2;
1317 		}
1318 
1319 		if (crc->run_threads) {
1320 			wait_event(crc->done, atomic_read(&crc->stop));
1321 			atomic_set(&crc->stop, 0);
1322 			crc->run_threads = 0;
1323 		}
1324 
1325 		for (thr = 0; have && thr < nr_threads; thr++) {
1326 			data[thr].cmp_len = *(size_t *)page[pg];
1327 			if (unlikely(!data[thr].cmp_len ||
1328 			             data[thr].cmp_len >
1329 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1330 				printk(KERN_ERR
1331 				       "PM: Invalid LZO compressed length\n");
1332 				ret = -1;
1333 				goto out_finish;
1334 			}
1335 
1336 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1337 			                    PAGE_SIZE);
1338 			if (need > have) {
1339 				if (eof > 1) {
1340 					ret = -1;
1341 					goto out_finish;
1342 				}
1343 				break;
1344 			}
1345 
1346 			for (off = 0;
1347 			     off < LZO_HEADER + data[thr].cmp_len;
1348 			     off += PAGE_SIZE) {
1349 				memcpy(data[thr].cmp + off,
1350 				       page[pg], PAGE_SIZE);
1351 				have--;
1352 				want++;
1353 				if (++pg >= ring_size)
1354 					pg = 0;
1355 			}
1356 
1357 			atomic_set(&data[thr].ready, 1);
1358 			wake_up(&data[thr].go);
1359 		}
1360 
1361 		/*
1362 		 * Wait for more data while we are decompressing.
1363 		 */
1364 		if (have < LZO_CMP_PAGES && asked) {
1365 			ret = hib_wait_io(&hb);
1366 			if (ret)
1367 				goto out_finish;
1368 			have += asked;
1369 			asked = 0;
1370 			if (eof)
1371 				eof = 2;
1372 		}
1373 
1374 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1375 			wait_event(data[thr].done,
1376 			           atomic_read(&data[thr].stop));
1377 			atomic_set(&data[thr].stop, 0);
1378 
1379 			ret = data[thr].ret;
1380 
1381 			if (ret < 0) {
1382 				printk(KERN_ERR
1383 				       "PM: LZO decompression failed\n");
1384 				goto out_finish;
1385 			}
1386 
1387 			if (unlikely(!data[thr].unc_len ||
1388 			             data[thr].unc_len > LZO_UNC_SIZE ||
1389 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1390 				printk(KERN_ERR
1391 				       "PM: Invalid LZO uncompressed length\n");
1392 				ret = -1;
1393 				goto out_finish;
1394 			}
1395 
1396 			for (off = 0;
1397 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1398 				memcpy(data_of(*snapshot),
1399 				       data[thr].unc + off, PAGE_SIZE);
1400 
1401 				if (!(nr_pages % m))
1402 					printk(KERN_INFO
1403 					       "PM: Image loading progress: "
1404 					       "%3d%%\n",
1405 					       nr_pages / m * 10);
1406 				nr_pages++;
1407 
1408 				ret = snapshot_write_next(snapshot);
1409 				if (ret <= 0) {
1410 					crc->run_threads = thr + 1;
1411 					atomic_set(&crc->ready, 1);
1412 					wake_up(&crc->go);
1413 					goto out_finish;
1414 				}
1415 			}
1416 		}
1417 
1418 		crc->run_threads = thr;
1419 		atomic_set(&crc->ready, 1);
1420 		wake_up(&crc->go);
1421 	}
1422 
1423 out_finish:
1424 	if (crc->run_threads) {
1425 		wait_event(crc->done, atomic_read(&crc->stop));
1426 		atomic_set(&crc->stop, 0);
1427 	}
1428 	stop = ktime_get();
1429 	if (!ret) {
1430 		printk(KERN_INFO "PM: Image loading done.\n");
1431 		snapshot_write_finalize(snapshot);
1432 		if (!snapshot_image_loaded(snapshot))
1433 			ret = -ENODATA;
1434 		if (!ret) {
1435 			if (swsusp_header->flags & SF_CRC32_MODE) {
1436 				if(handle->crc32 != swsusp_header->crc32) {
1437 					printk(KERN_ERR
1438 					       "PM: Invalid image CRC32!\n");
1439 					ret = -ENODATA;
1440 				}
1441 			}
1442 		}
1443 	}
1444 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1445 out_clean:
1446 	for (i = 0; i < ring_size; i++)
1447 		free_page((unsigned long)page[i]);
1448 	if (crc) {
1449 		if (crc->thr)
1450 			kthread_stop(crc->thr);
1451 		kfree(crc);
1452 	}
1453 	if (data) {
1454 		for (thr = 0; thr < nr_threads; thr++)
1455 			if (data[thr].thr)
1456 				kthread_stop(data[thr].thr);
1457 		vfree(data);
1458 	}
1459 	vfree(page);
1460 
1461 	return ret;
1462 }
1463 
1464 /**
1465  *	swsusp_read - read the hibernation image.
1466  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1467  *		  be written into this memory location
1468  */
1469 
1470 int swsusp_read(unsigned int *flags_p)
1471 {
1472 	int error;
1473 	struct swap_map_handle handle;
1474 	struct snapshot_handle snapshot;
1475 	struct swsusp_info *header;
1476 
1477 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1478 	error = snapshot_write_next(&snapshot);
1479 	if (error < PAGE_SIZE)
1480 		return error < 0 ? error : -EFAULT;
1481 	header = (struct swsusp_info *)data_of(snapshot);
1482 	error = get_swap_reader(&handle, flags_p);
1483 	if (error)
1484 		goto end;
1485 	if (!error)
1486 		error = swap_read_page(&handle, header, NULL);
1487 	if (!error) {
1488 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1489 			load_image(&handle, &snapshot, header->pages - 1) :
1490 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1491 	}
1492 	swap_reader_finish(&handle);
1493 end:
1494 	if (!error)
1495 		pr_debug("PM: Image successfully loaded\n");
1496 	else
1497 		pr_debug("PM: Error %d resuming\n", error);
1498 	return error;
1499 }
1500 
1501 /**
1502  *      swsusp_check - Check for swsusp signature in the resume device
1503  */
1504 
1505 int swsusp_check(void)
1506 {
1507 	int error;
1508 
1509 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1510 					    FMODE_READ, NULL);
1511 	if (!IS_ERR(hib_resume_bdev)) {
1512 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1513 		clear_page(swsusp_header);
1514 		error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1515 					swsusp_header, NULL);
1516 		if (error)
1517 			goto put;
1518 
1519 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1520 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1521 			/* Reset swap signature now */
1522 			error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1523 						swsusp_header, NULL);
1524 		} else {
1525 			error = -EINVAL;
1526 		}
1527 
1528 put:
1529 		if (error)
1530 			blkdev_put(hib_resume_bdev, FMODE_READ);
1531 		else
1532 			pr_debug("PM: Image signature found, resuming\n");
1533 	} else {
1534 		error = PTR_ERR(hib_resume_bdev);
1535 	}
1536 
1537 	if (error)
1538 		pr_debug("PM: Image not found (code %d)\n", error);
1539 
1540 	return error;
1541 }
1542 
1543 /**
1544  *	swsusp_close - close swap device.
1545  */
1546 
1547 void swsusp_close(fmode_t mode)
1548 {
1549 	if (IS_ERR(hib_resume_bdev)) {
1550 		pr_debug("PM: Image device not initialised\n");
1551 		return;
1552 	}
1553 
1554 	blkdev_put(hib_resume_bdev, mode);
1555 }
1556 
1557 /**
1558  *      swsusp_unmark - Unmark swsusp signature in the resume device
1559  */
1560 
1561 #ifdef CONFIG_SUSPEND
1562 int swsusp_unmark(void)
1563 {
1564 	int error;
1565 
1566 	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1567 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1568 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1569 		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1570 					swsusp_header, NULL);
1571 	} else {
1572 		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1573 		error = -ENODEV;
1574 	}
1575 
1576 	/*
1577 	 * We just returned from suspend, we don't need the image any more.
1578 	 */
1579 	free_all_swap_pages(root_swap);
1580 
1581 	return error;
1582 }
1583 #endif
1584 
1585 static int swsusp_header_init(void)
1586 {
1587 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1588 	if (!swsusp_header)
1589 		panic("Could not allocate memory for swsusp_header\n");
1590 	return 0;
1591 }
1592 
1593 core_initcall(swsusp_header_init);
1594