xref: /openbmc/linux/kernel/power/swap.c (revision d0e22329)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #define pr_fmt(fmt) "PM: " fmt
16 
17 #include <linux/module.h>
18 #include <linux/file.h>
19 #include <linux/delay.h>
20 #include <linux/bitops.h>
21 #include <linux/genhd.h>
22 #include <linux/device.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/pm.h>
28 #include <linux/slab.h>
29 #include <linux/lzo.h>
30 #include <linux/vmalloc.h>
31 #include <linux/cpumask.h>
32 #include <linux/atomic.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/ktime.h>
36 
37 #include "power.h"
38 
39 #define HIBERNATE_SIG	"S1SUSPEND"
40 
41 /*
42  * When reading an {un,}compressed image, we may restore pages in place,
43  * in which case some architectures need these pages cleaning before they
44  * can be executed. We don't know which pages these may be, so clean the lot.
45  */
46 static bool clean_pages_on_read;
47 static bool clean_pages_on_decompress;
48 
49 /*
50  *	The swap map is a data structure used for keeping track of each page
51  *	written to a swap partition.  It consists of many swap_map_page
52  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53  *	These structures are stored on the swap and linked together with the
54  *	help of the .next_swap member.
55  *
56  *	The swap map is created during suspend.  The swap map pages are
57  *	allocated and populated one at a time, so we only need one memory
58  *	page to set up the entire structure.
59  *
60  *	During resume we pick up all swap_map_page structures into a list.
61  */
62 
63 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
64 
65 /*
66  * Number of free pages that are not high.
67  */
68 static inline unsigned long low_free_pages(void)
69 {
70 	return nr_free_pages() - nr_free_highpages();
71 }
72 
73 /*
74  * Number of pages required to be kept free while writing the image. Always
75  * half of all available low pages before the writing starts.
76  */
77 static inline unsigned long reqd_free_pages(void)
78 {
79 	return low_free_pages() / 2;
80 }
81 
82 struct swap_map_page {
83 	sector_t entries[MAP_PAGE_ENTRIES];
84 	sector_t next_swap;
85 };
86 
87 struct swap_map_page_list {
88 	struct swap_map_page *map;
89 	struct swap_map_page_list *next;
90 };
91 
92 /**
93  *	The swap_map_handle structure is used for handling swap in
94  *	a file-alike way
95  */
96 
97 struct swap_map_handle {
98 	struct swap_map_page *cur;
99 	struct swap_map_page_list *maps;
100 	sector_t cur_swap;
101 	sector_t first_sector;
102 	unsigned int k;
103 	unsigned long reqd_free_pages;
104 	u32 crc32;
105 };
106 
107 struct swsusp_header {
108 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
109 	              sizeof(u32)];
110 	u32	crc32;
111 	sector_t image;
112 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
113 	char	orig_sig[10];
114 	char	sig[10];
115 } __packed;
116 
117 static struct swsusp_header *swsusp_header;
118 
119 /**
120  *	The following functions are used for tracing the allocated
121  *	swap pages, so that they can be freed in case of an error.
122  */
123 
124 struct swsusp_extent {
125 	struct rb_node node;
126 	unsigned long start;
127 	unsigned long end;
128 };
129 
130 static struct rb_root swsusp_extents = RB_ROOT;
131 
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 	struct rb_node **new = &(swsusp_extents.rb_node);
135 	struct rb_node *parent = NULL;
136 	struct swsusp_extent *ext;
137 
138 	/* Figure out where to put the new node */
139 	while (*new) {
140 		ext = rb_entry(*new, struct swsusp_extent, node);
141 		parent = *new;
142 		if (swap_offset < ext->start) {
143 			/* Try to merge */
144 			if (swap_offset == ext->start - 1) {
145 				ext->start--;
146 				return 0;
147 			}
148 			new = &((*new)->rb_left);
149 		} else if (swap_offset > ext->end) {
150 			/* Try to merge */
151 			if (swap_offset == ext->end + 1) {
152 				ext->end++;
153 				return 0;
154 			}
155 			new = &((*new)->rb_right);
156 		} else {
157 			/* It already is in the tree */
158 			return -EINVAL;
159 		}
160 	}
161 	/* Add the new node and rebalance the tree. */
162 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 	if (!ext)
164 		return -ENOMEM;
165 
166 	ext->start = swap_offset;
167 	ext->end = swap_offset;
168 	rb_link_node(&ext->node, parent, new);
169 	rb_insert_color(&ext->node, &swsusp_extents);
170 	return 0;
171 }
172 
173 /**
174  *	alloc_swapdev_block - allocate a swap page and register that it has
175  *	been allocated, so that it can be freed in case of an error.
176  */
177 
178 sector_t alloc_swapdev_block(int swap)
179 {
180 	unsigned long offset;
181 
182 	offset = swp_offset(get_swap_page_of_type(swap));
183 	if (offset) {
184 		if (swsusp_extents_insert(offset))
185 			swap_free(swp_entry(swap, offset));
186 		else
187 			return swapdev_block(swap, offset);
188 	}
189 	return 0;
190 }
191 
192 /**
193  *	free_all_swap_pages - free swap pages allocated for saving image data.
194  *	It also frees the extents used to register which swap entries had been
195  *	allocated.
196  */
197 
198 void free_all_swap_pages(int swap)
199 {
200 	struct rb_node *node;
201 
202 	while ((node = swsusp_extents.rb_node)) {
203 		struct swsusp_extent *ext;
204 		unsigned long offset;
205 
206 		ext = rb_entry(node, struct swsusp_extent, node);
207 		rb_erase(node, &swsusp_extents);
208 		for (offset = ext->start; offset <= ext->end; offset++)
209 			swap_free(swp_entry(swap, offset));
210 
211 		kfree(ext);
212 	}
213 }
214 
215 int swsusp_swap_in_use(void)
216 {
217 	return (swsusp_extents.rb_node != NULL);
218 }
219 
220 /*
221  * General things
222  */
223 
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226 
227 struct hib_bio_batch {
228 	atomic_t		count;
229 	wait_queue_head_t	wait;
230 	blk_status_t		error;
231 };
232 
233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235 	atomic_set(&hb->count, 0);
236 	init_waitqueue_head(&hb->wait);
237 	hb->error = BLK_STS_OK;
238 }
239 
240 static void hib_end_io(struct bio *bio)
241 {
242 	struct hib_bio_batch *hb = bio->bi_private;
243 	struct page *page = bio_first_page_all(bio);
244 
245 	if (bio->bi_status) {
246 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
247 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
248 			 (unsigned long long)bio->bi_iter.bi_sector);
249 	}
250 
251 	if (bio_data_dir(bio) == WRITE)
252 		put_page(page);
253 	else if (clean_pages_on_read)
254 		flush_icache_range((unsigned long)page_address(page),
255 				   (unsigned long)page_address(page) + PAGE_SIZE);
256 
257 	if (bio->bi_status && !hb->error)
258 		hb->error = bio->bi_status;
259 	if (atomic_dec_and_test(&hb->count))
260 		wake_up(&hb->wait);
261 
262 	bio_put(bio);
263 }
264 
265 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
266 		struct hib_bio_batch *hb)
267 {
268 	struct page *page = virt_to_page(addr);
269 	struct bio *bio;
270 	int error = 0;
271 
272 	bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
273 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
274 	bio_set_dev(bio, hib_resume_bdev);
275 	bio_set_op_attrs(bio, op, op_flags);
276 
277 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
278 		pr_err("Adding page to bio failed at %llu\n",
279 		       (unsigned long long)bio->bi_iter.bi_sector);
280 		bio_put(bio);
281 		return -EFAULT;
282 	}
283 
284 	if (hb) {
285 		bio->bi_end_io = hib_end_io;
286 		bio->bi_private = hb;
287 		atomic_inc(&hb->count);
288 		submit_bio(bio);
289 	} else {
290 		error = submit_bio_wait(bio);
291 		bio_put(bio);
292 	}
293 
294 	return error;
295 }
296 
297 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
298 {
299 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
300 	return blk_status_to_errno(hb->error);
301 }
302 
303 /*
304  * Saving part
305  */
306 
307 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
308 {
309 	int error;
310 
311 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
312 		      swsusp_header, NULL);
313 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
314 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
315 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
316 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
317 		swsusp_header->image = handle->first_sector;
318 		swsusp_header->flags = flags;
319 		if (flags & SF_CRC32_MODE)
320 			swsusp_header->crc32 = handle->crc32;
321 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
322 				      swsusp_resume_block, swsusp_header, NULL);
323 	} else {
324 		pr_err("Swap header not found!\n");
325 		error = -ENODEV;
326 	}
327 	return error;
328 }
329 
330 /**
331  *	swsusp_swap_check - check if the resume device is a swap device
332  *	and get its index (if so)
333  *
334  *	This is called before saving image
335  */
336 static int swsusp_swap_check(void)
337 {
338 	int res;
339 
340 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
341 			&hib_resume_bdev);
342 	if (res < 0)
343 		return res;
344 
345 	root_swap = res;
346 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
347 	if (res)
348 		return res;
349 
350 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
351 	if (res < 0)
352 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
353 
354 	/*
355 	 * Update the resume device to the one actually used,
356 	 * so the test_resume mode can use it in case it is
357 	 * invoked from hibernate() to test the snapshot.
358 	 */
359 	swsusp_resume_device = hib_resume_bdev->bd_dev;
360 	return res;
361 }
362 
363 /**
364  *	write_page - Write one page to given swap location.
365  *	@buf:		Address we're writing.
366  *	@offset:	Offset of the swap page we're writing to.
367  *	@hb:		bio completion batch
368  */
369 
370 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
371 {
372 	void *src;
373 	int ret;
374 
375 	if (!offset)
376 		return -ENOSPC;
377 
378 	if (hb) {
379 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
380 		                              __GFP_NORETRY);
381 		if (src) {
382 			copy_page(src, buf);
383 		} else {
384 			ret = hib_wait_io(hb); /* Free pages */
385 			if (ret)
386 				return ret;
387 			src = (void *)__get_free_page(GFP_NOIO |
388 			                              __GFP_NOWARN |
389 			                              __GFP_NORETRY);
390 			if (src) {
391 				copy_page(src, buf);
392 			} else {
393 				WARN_ON_ONCE(1);
394 				hb = NULL;	/* Go synchronous */
395 				src = buf;
396 			}
397 		}
398 	} else {
399 		src = buf;
400 	}
401 	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
402 }
403 
404 static void release_swap_writer(struct swap_map_handle *handle)
405 {
406 	if (handle->cur)
407 		free_page((unsigned long)handle->cur);
408 	handle->cur = NULL;
409 }
410 
411 static int get_swap_writer(struct swap_map_handle *handle)
412 {
413 	int ret;
414 
415 	ret = swsusp_swap_check();
416 	if (ret) {
417 		if (ret != -ENOSPC)
418 			pr_err("Cannot find swap device, try swapon -a\n");
419 		return ret;
420 	}
421 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
422 	if (!handle->cur) {
423 		ret = -ENOMEM;
424 		goto err_close;
425 	}
426 	handle->cur_swap = alloc_swapdev_block(root_swap);
427 	if (!handle->cur_swap) {
428 		ret = -ENOSPC;
429 		goto err_rel;
430 	}
431 	handle->k = 0;
432 	handle->reqd_free_pages = reqd_free_pages();
433 	handle->first_sector = handle->cur_swap;
434 	return 0;
435 err_rel:
436 	release_swap_writer(handle);
437 err_close:
438 	swsusp_close(FMODE_WRITE);
439 	return ret;
440 }
441 
442 static int swap_write_page(struct swap_map_handle *handle, void *buf,
443 		struct hib_bio_batch *hb)
444 {
445 	int error = 0;
446 	sector_t offset;
447 
448 	if (!handle->cur)
449 		return -EINVAL;
450 	offset = alloc_swapdev_block(root_swap);
451 	error = write_page(buf, offset, hb);
452 	if (error)
453 		return error;
454 	handle->cur->entries[handle->k++] = offset;
455 	if (handle->k >= MAP_PAGE_ENTRIES) {
456 		offset = alloc_swapdev_block(root_swap);
457 		if (!offset)
458 			return -ENOSPC;
459 		handle->cur->next_swap = offset;
460 		error = write_page(handle->cur, handle->cur_swap, hb);
461 		if (error)
462 			goto out;
463 		clear_page(handle->cur);
464 		handle->cur_swap = offset;
465 		handle->k = 0;
466 
467 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
468 			error = hib_wait_io(hb);
469 			if (error)
470 				goto out;
471 			/*
472 			 * Recalculate the number of required free pages, to
473 			 * make sure we never take more than half.
474 			 */
475 			handle->reqd_free_pages = reqd_free_pages();
476 		}
477 	}
478  out:
479 	return error;
480 }
481 
482 static int flush_swap_writer(struct swap_map_handle *handle)
483 {
484 	if (handle->cur && handle->cur_swap)
485 		return write_page(handle->cur, handle->cur_swap, NULL);
486 	else
487 		return -EINVAL;
488 }
489 
490 static int swap_writer_finish(struct swap_map_handle *handle,
491 		unsigned int flags, int error)
492 {
493 	if (!error) {
494 		flush_swap_writer(handle);
495 		pr_info("S");
496 		error = mark_swapfiles(handle, flags);
497 		pr_cont("|\n");
498 	}
499 
500 	if (error)
501 		free_all_swap_pages(root_swap);
502 	release_swap_writer(handle);
503 	swsusp_close(FMODE_WRITE);
504 
505 	return error;
506 }
507 
508 /* We need to remember how much compressed data we need to read. */
509 #define LZO_HEADER	sizeof(size_t)
510 
511 /* Number of pages/bytes we'll compress at one time. */
512 #define LZO_UNC_PAGES	32
513 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
514 
515 /* Number of pages/bytes we need for compressed data (worst case). */
516 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
517 			             LZO_HEADER, PAGE_SIZE)
518 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
519 
520 /* Maximum number of threads for compression/decompression. */
521 #define LZO_THREADS	3
522 
523 /* Minimum/maximum number of pages for read buffering. */
524 #define LZO_MIN_RD_PAGES	1024
525 #define LZO_MAX_RD_PAGES	8192
526 
527 
528 /**
529  *	save_image - save the suspend image data
530  */
531 
532 static int save_image(struct swap_map_handle *handle,
533                       struct snapshot_handle *snapshot,
534                       unsigned int nr_to_write)
535 {
536 	unsigned int m;
537 	int ret;
538 	int nr_pages;
539 	int err2;
540 	struct hib_bio_batch hb;
541 	ktime_t start;
542 	ktime_t stop;
543 
544 	hib_init_batch(&hb);
545 
546 	pr_info("Saving image data pages (%u pages)...\n",
547 		nr_to_write);
548 	m = nr_to_write / 10;
549 	if (!m)
550 		m = 1;
551 	nr_pages = 0;
552 	start = ktime_get();
553 	while (1) {
554 		ret = snapshot_read_next(snapshot);
555 		if (ret <= 0)
556 			break;
557 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
558 		if (ret)
559 			break;
560 		if (!(nr_pages % m))
561 			pr_info("Image saving progress: %3d%%\n",
562 				nr_pages / m * 10);
563 		nr_pages++;
564 	}
565 	err2 = hib_wait_io(&hb);
566 	stop = ktime_get();
567 	if (!ret)
568 		ret = err2;
569 	if (!ret)
570 		pr_info("Image saving done\n");
571 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
572 	return ret;
573 }
574 
575 /**
576  * Structure used for CRC32.
577  */
578 struct crc_data {
579 	struct task_struct *thr;                  /* thread */
580 	atomic_t ready;                           /* ready to start flag */
581 	atomic_t stop;                            /* ready to stop flag */
582 	unsigned run_threads;                     /* nr current threads */
583 	wait_queue_head_t go;                     /* start crc update */
584 	wait_queue_head_t done;                   /* crc update done */
585 	u32 *crc32;                               /* points to handle's crc32 */
586 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
587 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
588 };
589 
590 /**
591  * CRC32 update function that runs in its own thread.
592  */
593 static int crc32_threadfn(void *data)
594 {
595 	struct crc_data *d = data;
596 	unsigned i;
597 
598 	while (1) {
599 		wait_event(d->go, atomic_read(&d->ready) ||
600 		                  kthread_should_stop());
601 		if (kthread_should_stop()) {
602 			d->thr = NULL;
603 			atomic_set(&d->stop, 1);
604 			wake_up(&d->done);
605 			break;
606 		}
607 		atomic_set(&d->ready, 0);
608 
609 		for (i = 0; i < d->run_threads; i++)
610 			*d->crc32 = crc32_le(*d->crc32,
611 			                     d->unc[i], *d->unc_len[i]);
612 		atomic_set(&d->stop, 1);
613 		wake_up(&d->done);
614 	}
615 	return 0;
616 }
617 /**
618  * Structure used for LZO data compression.
619  */
620 struct cmp_data {
621 	struct task_struct *thr;                  /* thread */
622 	atomic_t ready;                           /* ready to start flag */
623 	atomic_t stop;                            /* ready to stop flag */
624 	int ret;                                  /* return code */
625 	wait_queue_head_t go;                     /* start compression */
626 	wait_queue_head_t done;                   /* compression done */
627 	size_t unc_len;                           /* uncompressed length */
628 	size_t cmp_len;                           /* compressed length */
629 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
630 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
631 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
632 };
633 
634 /**
635  * Compression function that runs in its own thread.
636  */
637 static int lzo_compress_threadfn(void *data)
638 {
639 	struct cmp_data *d = data;
640 
641 	while (1) {
642 		wait_event(d->go, atomic_read(&d->ready) ||
643 		                  kthread_should_stop());
644 		if (kthread_should_stop()) {
645 			d->thr = NULL;
646 			d->ret = -1;
647 			atomic_set(&d->stop, 1);
648 			wake_up(&d->done);
649 			break;
650 		}
651 		atomic_set(&d->ready, 0);
652 
653 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
654 		                          d->cmp + LZO_HEADER, &d->cmp_len,
655 		                          d->wrk);
656 		atomic_set(&d->stop, 1);
657 		wake_up(&d->done);
658 	}
659 	return 0;
660 }
661 
662 /**
663  * save_image_lzo - Save the suspend image data compressed with LZO.
664  * @handle: Swap map handle to use for saving the image.
665  * @snapshot: Image to read data from.
666  * @nr_to_write: Number of pages to save.
667  */
668 static int save_image_lzo(struct swap_map_handle *handle,
669                           struct snapshot_handle *snapshot,
670                           unsigned int nr_to_write)
671 {
672 	unsigned int m;
673 	int ret = 0;
674 	int nr_pages;
675 	int err2;
676 	struct hib_bio_batch hb;
677 	ktime_t start;
678 	ktime_t stop;
679 	size_t off;
680 	unsigned thr, run_threads, nr_threads;
681 	unsigned char *page = NULL;
682 	struct cmp_data *data = NULL;
683 	struct crc_data *crc = NULL;
684 
685 	hib_init_batch(&hb);
686 
687 	/*
688 	 * We'll limit the number of threads for compression to limit memory
689 	 * footprint.
690 	 */
691 	nr_threads = num_online_cpus() - 1;
692 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
693 
694 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
695 	if (!page) {
696 		pr_err("Failed to allocate LZO page\n");
697 		ret = -ENOMEM;
698 		goto out_clean;
699 	}
700 
701 	data = vmalloc(array_size(nr_threads, sizeof(*data)));
702 	if (!data) {
703 		pr_err("Failed to allocate LZO data\n");
704 		ret = -ENOMEM;
705 		goto out_clean;
706 	}
707 	for (thr = 0; thr < nr_threads; thr++)
708 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
709 
710 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
711 	if (!crc) {
712 		pr_err("Failed to allocate crc\n");
713 		ret = -ENOMEM;
714 		goto out_clean;
715 	}
716 	memset(crc, 0, offsetof(struct crc_data, go));
717 
718 	/*
719 	 * Start the compression threads.
720 	 */
721 	for (thr = 0; thr < nr_threads; thr++) {
722 		init_waitqueue_head(&data[thr].go);
723 		init_waitqueue_head(&data[thr].done);
724 
725 		data[thr].thr = kthread_run(lzo_compress_threadfn,
726 		                            &data[thr],
727 		                            "image_compress/%u", thr);
728 		if (IS_ERR(data[thr].thr)) {
729 			data[thr].thr = NULL;
730 			pr_err("Cannot start compression threads\n");
731 			ret = -ENOMEM;
732 			goto out_clean;
733 		}
734 	}
735 
736 	/*
737 	 * Start the CRC32 thread.
738 	 */
739 	init_waitqueue_head(&crc->go);
740 	init_waitqueue_head(&crc->done);
741 
742 	handle->crc32 = 0;
743 	crc->crc32 = &handle->crc32;
744 	for (thr = 0; thr < nr_threads; thr++) {
745 		crc->unc[thr] = data[thr].unc;
746 		crc->unc_len[thr] = &data[thr].unc_len;
747 	}
748 
749 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 	if (IS_ERR(crc->thr)) {
751 		crc->thr = NULL;
752 		pr_err("Cannot start CRC32 thread\n");
753 		ret = -ENOMEM;
754 		goto out_clean;
755 	}
756 
757 	/*
758 	 * Adjust the number of required free pages after all allocations have
759 	 * been done. We don't want to run out of pages when writing.
760 	 */
761 	handle->reqd_free_pages = reqd_free_pages();
762 
763 	pr_info("Using %u thread(s) for compression\n", nr_threads);
764 	pr_info("Compressing and saving image data (%u pages)...\n",
765 		nr_to_write);
766 	m = nr_to_write / 10;
767 	if (!m)
768 		m = 1;
769 	nr_pages = 0;
770 	start = ktime_get();
771 	for (;;) {
772 		for (thr = 0; thr < nr_threads; thr++) {
773 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
774 				ret = snapshot_read_next(snapshot);
775 				if (ret < 0)
776 					goto out_finish;
777 
778 				if (!ret)
779 					break;
780 
781 				memcpy(data[thr].unc + off,
782 				       data_of(*snapshot), PAGE_SIZE);
783 
784 				if (!(nr_pages % m))
785 					pr_info("Image saving progress: %3d%%\n",
786 						nr_pages / m * 10);
787 				nr_pages++;
788 			}
789 			if (!off)
790 				break;
791 
792 			data[thr].unc_len = off;
793 
794 			atomic_set(&data[thr].ready, 1);
795 			wake_up(&data[thr].go);
796 		}
797 
798 		if (!thr)
799 			break;
800 
801 		crc->run_threads = thr;
802 		atomic_set(&crc->ready, 1);
803 		wake_up(&crc->go);
804 
805 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
806 			wait_event(data[thr].done,
807 			           atomic_read(&data[thr].stop));
808 			atomic_set(&data[thr].stop, 0);
809 
810 			ret = data[thr].ret;
811 
812 			if (ret < 0) {
813 				pr_err("LZO compression failed\n");
814 				goto out_finish;
815 			}
816 
817 			if (unlikely(!data[thr].cmp_len ||
818 			             data[thr].cmp_len >
819 			             lzo1x_worst_compress(data[thr].unc_len))) {
820 				pr_err("Invalid LZO compressed length\n");
821 				ret = -1;
822 				goto out_finish;
823 			}
824 
825 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
826 
827 			/*
828 			 * Given we are writing one page at a time to disk, we
829 			 * copy that much from the buffer, although the last
830 			 * bit will likely be smaller than full page. This is
831 			 * OK - we saved the length of the compressed data, so
832 			 * any garbage at the end will be discarded when we
833 			 * read it.
834 			 */
835 			for (off = 0;
836 			     off < LZO_HEADER + data[thr].cmp_len;
837 			     off += PAGE_SIZE) {
838 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
839 
840 				ret = swap_write_page(handle, page, &hb);
841 				if (ret)
842 					goto out_finish;
843 			}
844 		}
845 
846 		wait_event(crc->done, atomic_read(&crc->stop));
847 		atomic_set(&crc->stop, 0);
848 	}
849 
850 out_finish:
851 	err2 = hib_wait_io(&hb);
852 	stop = ktime_get();
853 	if (!ret)
854 		ret = err2;
855 	if (!ret)
856 		pr_info("Image saving done\n");
857 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
858 out_clean:
859 	if (crc) {
860 		if (crc->thr)
861 			kthread_stop(crc->thr);
862 		kfree(crc);
863 	}
864 	if (data) {
865 		for (thr = 0; thr < nr_threads; thr++)
866 			if (data[thr].thr)
867 				kthread_stop(data[thr].thr);
868 		vfree(data);
869 	}
870 	if (page) free_page((unsigned long)page);
871 
872 	return ret;
873 }
874 
875 /**
876  *	enough_swap - Make sure we have enough swap to save the image.
877  *
878  *	Returns TRUE or FALSE after checking the total amount of swap
879  *	space avaiable from the resume partition.
880  */
881 
882 static int enough_swap(unsigned int nr_pages)
883 {
884 	unsigned int free_swap = count_swap_pages(root_swap, 1);
885 	unsigned int required;
886 
887 	pr_debug("Free swap pages: %u\n", free_swap);
888 
889 	required = PAGES_FOR_IO + nr_pages;
890 	return free_swap > required;
891 }
892 
893 /**
894  *	swsusp_write - Write entire image and metadata.
895  *	@flags: flags to pass to the "boot" kernel in the image header
896  *
897  *	It is important _NOT_ to umount filesystems at this point. We want
898  *	them synced (in case something goes wrong) but we DO not want to mark
899  *	filesystem clean: it is not. (And it does not matter, if we resume
900  *	correctly, we'll mark system clean, anyway.)
901  */
902 
903 int swsusp_write(unsigned int flags)
904 {
905 	struct swap_map_handle handle;
906 	struct snapshot_handle snapshot;
907 	struct swsusp_info *header;
908 	unsigned long pages;
909 	int error;
910 
911 	pages = snapshot_get_image_size();
912 	error = get_swap_writer(&handle);
913 	if (error) {
914 		pr_err("Cannot get swap writer\n");
915 		return error;
916 	}
917 	if (flags & SF_NOCOMPRESS_MODE) {
918 		if (!enough_swap(pages)) {
919 			pr_err("Not enough free swap\n");
920 			error = -ENOSPC;
921 			goto out_finish;
922 		}
923 	}
924 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
925 	error = snapshot_read_next(&snapshot);
926 	if (error < (int)PAGE_SIZE) {
927 		if (error >= 0)
928 			error = -EFAULT;
929 
930 		goto out_finish;
931 	}
932 	header = (struct swsusp_info *)data_of(snapshot);
933 	error = swap_write_page(&handle, header, NULL);
934 	if (!error) {
935 		error = (flags & SF_NOCOMPRESS_MODE) ?
936 			save_image(&handle, &snapshot, pages - 1) :
937 			save_image_lzo(&handle, &snapshot, pages - 1);
938 	}
939 out_finish:
940 	error = swap_writer_finish(&handle, flags, error);
941 	return error;
942 }
943 
944 /**
945  *	The following functions allow us to read data using a swap map
946  *	in a file-alike way
947  */
948 
949 static void release_swap_reader(struct swap_map_handle *handle)
950 {
951 	struct swap_map_page_list *tmp;
952 
953 	while (handle->maps) {
954 		if (handle->maps->map)
955 			free_page((unsigned long)handle->maps->map);
956 		tmp = handle->maps;
957 		handle->maps = handle->maps->next;
958 		kfree(tmp);
959 	}
960 	handle->cur = NULL;
961 }
962 
963 static int get_swap_reader(struct swap_map_handle *handle,
964 		unsigned int *flags_p)
965 {
966 	int error;
967 	struct swap_map_page_list *tmp, *last;
968 	sector_t offset;
969 
970 	*flags_p = swsusp_header->flags;
971 
972 	if (!swsusp_header->image) /* how can this happen? */
973 		return -EINVAL;
974 
975 	handle->cur = NULL;
976 	last = handle->maps = NULL;
977 	offset = swsusp_header->image;
978 	while (offset) {
979 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
980 		if (!tmp) {
981 			release_swap_reader(handle);
982 			return -ENOMEM;
983 		}
984 		memset(tmp, 0, sizeof(*tmp));
985 		if (!handle->maps)
986 			handle->maps = tmp;
987 		if (last)
988 			last->next = tmp;
989 		last = tmp;
990 
991 		tmp->map = (struct swap_map_page *)
992 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
993 		if (!tmp->map) {
994 			release_swap_reader(handle);
995 			return -ENOMEM;
996 		}
997 
998 		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
999 		if (error) {
1000 			release_swap_reader(handle);
1001 			return error;
1002 		}
1003 		offset = tmp->map->next_swap;
1004 	}
1005 	handle->k = 0;
1006 	handle->cur = handle->maps->map;
1007 	return 0;
1008 }
1009 
1010 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1011 		struct hib_bio_batch *hb)
1012 {
1013 	sector_t offset;
1014 	int error;
1015 	struct swap_map_page_list *tmp;
1016 
1017 	if (!handle->cur)
1018 		return -EINVAL;
1019 	offset = handle->cur->entries[handle->k];
1020 	if (!offset)
1021 		return -EFAULT;
1022 	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1023 	if (error)
1024 		return error;
1025 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1026 		handle->k = 0;
1027 		free_page((unsigned long)handle->maps->map);
1028 		tmp = handle->maps;
1029 		handle->maps = handle->maps->next;
1030 		kfree(tmp);
1031 		if (!handle->maps)
1032 			release_swap_reader(handle);
1033 		else
1034 			handle->cur = handle->maps->map;
1035 	}
1036 	return error;
1037 }
1038 
1039 static int swap_reader_finish(struct swap_map_handle *handle)
1040 {
1041 	release_swap_reader(handle);
1042 
1043 	return 0;
1044 }
1045 
1046 /**
1047  *	load_image - load the image using the swap map handle
1048  *	@handle and the snapshot handle @snapshot
1049  *	(assume there are @nr_pages pages to load)
1050  */
1051 
1052 static int load_image(struct swap_map_handle *handle,
1053                       struct snapshot_handle *snapshot,
1054                       unsigned int nr_to_read)
1055 {
1056 	unsigned int m;
1057 	int ret = 0;
1058 	ktime_t start;
1059 	ktime_t stop;
1060 	struct hib_bio_batch hb;
1061 	int err2;
1062 	unsigned nr_pages;
1063 
1064 	hib_init_batch(&hb);
1065 
1066 	clean_pages_on_read = true;
1067 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1068 	m = nr_to_read / 10;
1069 	if (!m)
1070 		m = 1;
1071 	nr_pages = 0;
1072 	start = ktime_get();
1073 	for ( ; ; ) {
1074 		ret = snapshot_write_next(snapshot);
1075 		if (ret <= 0)
1076 			break;
1077 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1078 		if (ret)
1079 			break;
1080 		if (snapshot->sync_read)
1081 			ret = hib_wait_io(&hb);
1082 		if (ret)
1083 			break;
1084 		if (!(nr_pages % m))
1085 			pr_info("Image loading progress: %3d%%\n",
1086 				nr_pages / m * 10);
1087 		nr_pages++;
1088 	}
1089 	err2 = hib_wait_io(&hb);
1090 	stop = ktime_get();
1091 	if (!ret)
1092 		ret = err2;
1093 	if (!ret) {
1094 		pr_info("Image loading done\n");
1095 		snapshot_write_finalize(snapshot);
1096 		if (!snapshot_image_loaded(snapshot))
1097 			ret = -ENODATA;
1098 	}
1099 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1100 	return ret;
1101 }
1102 
1103 /**
1104  * Structure used for LZO data decompression.
1105  */
1106 struct dec_data {
1107 	struct task_struct *thr;                  /* thread */
1108 	atomic_t ready;                           /* ready to start flag */
1109 	atomic_t stop;                            /* ready to stop flag */
1110 	int ret;                                  /* return code */
1111 	wait_queue_head_t go;                     /* start decompression */
1112 	wait_queue_head_t done;                   /* decompression done */
1113 	size_t unc_len;                           /* uncompressed length */
1114 	size_t cmp_len;                           /* compressed length */
1115 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1116 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1117 };
1118 
1119 /**
1120  * Deompression function that runs in its own thread.
1121  */
1122 static int lzo_decompress_threadfn(void *data)
1123 {
1124 	struct dec_data *d = data;
1125 
1126 	while (1) {
1127 		wait_event(d->go, atomic_read(&d->ready) ||
1128 		                  kthread_should_stop());
1129 		if (kthread_should_stop()) {
1130 			d->thr = NULL;
1131 			d->ret = -1;
1132 			atomic_set(&d->stop, 1);
1133 			wake_up(&d->done);
1134 			break;
1135 		}
1136 		atomic_set(&d->ready, 0);
1137 
1138 		d->unc_len = LZO_UNC_SIZE;
1139 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1140 		                               d->unc, &d->unc_len);
1141 		if (clean_pages_on_decompress)
1142 			flush_icache_range((unsigned long)d->unc,
1143 					   (unsigned long)d->unc + d->unc_len);
1144 
1145 		atomic_set(&d->stop, 1);
1146 		wake_up(&d->done);
1147 	}
1148 	return 0;
1149 }
1150 
1151 /**
1152  * load_image_lzo - Load compressed image data and decompress them with LZO.
1153  * @handle: Swap map handle to use for loading data.
1154  * @snapshot: Image to copy uncompressed data into.
1155  * @nr_to_read: Number of pages to load.
1156  */
1157 static int load_image_lzo(struct swap_map_handle *handle,
1158                           struct snapshot_handle *snapshot,
1159                           unsigned int nr_to_read)
1160 {
1161 	unsigned int m;
1162 	int ret = 0;
1163 	int eof = 0;
1164 	struct hib_bio_batch hb;
1165 	ktime_t start;
1166 	ktime_t stop;
1167 	unsigned nr_pages;
1168 	size_t off;
1169 	unsigned i, thr, run_threads, nr_threads;
1170 	unsigned ring = 0, pg = 0, ring_size = 0,
1171 	         have = 0, want, need, asked = 0;
1172 	unsigned long read_pages = 0;
1173 	unsigned char **page = NULL;
1174 	struct dec_data *data = NULL;
1175 	struct crc_data *crc = NULL;
1176 
1177 	hib_init_batch(&hb);
1178 
1179 	/*
1180 	 * We'll limit the number of threads for decompression to limit memory
1181 	 * footprint.
1182 	 */
1183 	nr_threads = num_online_cpus() - 1;
1184 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1185 
1186 	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1187 	if (!page) {
1188 		pr_err("Failed to allocate LZO page\n");
1189 		ret = -ENOMEM;
1190 		goto out_clean;
1191 	}
1192 
1193 	data = vmalloc(array_size(nr_threads, sizeof(*data)));
1194 	if (!data) {
1195 		pr_err("Failed to allocate LZO data\n");
1196 		ret = -ENOMEM;
1197 		goto out_clean;
1198 	}
1199 	for (thr = 0; thr < nr_threads; thr++)
1200 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1201 
1202 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1203 	if (!crc) {
1204 		pr_err("Failed to allocate crc\n");
1205 		ret = -ENOMEM;
1206 		goto out_clean;
1207 	}
1208 	memset(crc, 0, offsetof(struct crc_data, go));
1209 
1210 	clean_pages_on_decompress = true;
1211 
1212 	/*
1213 	 * Start the decompression threads.
1214 	 */
1215 	for (thr = 0; thr < nr_threads; thr++) {
1216 		init_waitqueue_head(&data[thr].go);
1217 		init_waitqueue_head(&data[thr].done);
1218 
1219 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1220 		                            &data[thr],
1221 		                            "image_decompress/%u", thr);
1222 		if (IS_ERR(data[thr].thr)) {
1223 			data[thr].thr = NULL;
1224 			pr_err("Cannot start decompression threads\n");
1225 			ret = -ENOMEM;
1226 			goto out_clean;
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Start the CRC32 thread.
1232 	 */
1233 	init_waitqueue_head(&crc->go);
1234 	init_waitqueue_head(&crc->done);
1235 
1236 	handle->crc32 = 0;
1237 	crc->crc32 = &handle->crc32;
1238 	for (thr = 0; thr < nr_threads; thr++) {
1239 		crc->unc[thr] = data[thr].unc;
1240 		crc->unc_len[thr] = &data[thr].unc_len;
1241 	}
1242 
1243 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244 	if (IS_ERR(crc->thr)) {
1245 		crc->thr = NULL;
1246 		pr_err("Cannot start CRC32 thread\n");
1247 		ret = -ENOMEM;
1248 		goto out_clean;
1249 	}
1250 
1251 	/*
1252 	 * Set the number of pages for read buffering.
1253 	 * This is complete guesswork, because we'll only know the real
1254 	 * picture once prepare_image() is called, which is much later on
1255 	 * during the image load phase. We'll assume the worst case and
1256 	 * say that none of the image pages are from high memory.
1257 	 */
1258 	if (low_free_pages() > snapshot_get_image_size())
1259 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261 
1262 	for (i = 0; i < read_pages; i++) {
1263 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264 						  GFP_NOIO | __GFP_HIGH :
1265 						  GFP_NOIO | __GFP_NOWARN |
1266 						  __GFP_NORETRY);
1267 
1268 		if (!page[i]) {
1269 			if (i < LZO_CMP_PAGES) {
1270 				ring_size = i;
1271 				pr_err("Failed to allocate LZO pages\n");
1272 				ret = -ENOMEM;
1273 				goto out_clean;
1274 			} else {
1275 				break;
1276 			}
1277 		}
1278 	}
1279 	want = ring_size = i;
1280 
1281 	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1282 	pr_info("Loading and decompressing image data (%u pages)...\n",
1283 		nr_to_read);
1284 	m = nr_to_read / 10;
1285 	if (!m)
1286 		m = 1;
1287 	nr_pages = 0;
1288 	start = ktime_get();
1289 
1290 	ret = snapshot_write_next(snapshot);
1291 	if (ret <= 0)
1292 		goto out_finish;
1293 
1294 	for(;;) {
1295 		for (i = 0; !eof && i < want; i++) {
1296 			ret = swap_read_page(handle, page[ring], &hb);
1297 			if (ret) {
1298 				/*
1299 				 * On real read error, finish. On end of data,
1300 				 * set EOF flag and just exit the read loop.
1301 				 */
1302 				if (handle->cur &&
1303 				    handle->cur->entries[handle->k]) {
1304 					goto out_finish;
1305 				} else {
1306 					eof = 1;
1307 					break;
1308 				}
1309 			}
1310 			if (++ring >= ring_size)
1311 				ring = 0;
1312 		}
1313 		asked += i;
1314 		want -= i;
1315 
1316 		/*
1317 		 * We are out of data, wait for some more.
1318 		 */
1319 		if (!have) {
1320 			if (!asked)
1321 				break;
1322 
1323 			ret = hib_wait_io(&hb);
1324 			if (ret)
1325 				goto out_finish;
1326 			have += asked;
1327 			asked = 0;
1328 			if (eof)
1329 				eof = 2;
1330 		}
1331 
1332 		if (crc->run_threads) {
1333 			wait_event(crc->done, atomic_read(&crc->stop));
1334 			atomic_set(&crc->stop, 0);
1335 			crc->run_threads = 0;
1336 		}
1337 
1338 		for (thr = 0; have && thr < nr_threads; thr++) {
1339 			data[thr].cmp_len = *(size_t *)page[pg];
1340 			if (unlikely(!data[thr].cmp_len ||
1341 			             data[thr].cmp_len >
1342 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1343 				pr_err("Invalid LZO compressed length\n");
1344 				ret = -1;
1345 				goto out_finish;
1346 			}
1347 
1348 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1349 			                    PAGE_SIZE);
1350 			if (need > have) {
1351 				if (eof > 1) {
1352 					ret = -1;
1353 					goto out_finish;
1354 				}
1355 				break;
1356 			}
1357 
1358 			for (off = 0;
1359 			     off < LZO_HEADER + data[thr].cmp_len;
1360 			     off += PAGE_SIZE) {
1361 				memcpy(data[thr].cmp + off,
1362 				       page[pg], PAGE_SIZE);
1363 				have--;
1364 				want++;
1365 				if (++pg >= ring_size)
1366 					pg = 0;
1367 			}
1368 
1369 			atomic_set(&data[thr].ready, 1);
1370 			wake_up(&data[thr].go);
1371 		}
1372 
1373 		/*
1374 		 * Wait for more data while we are decompressing.
1375 		 */
1376 		if (have < LZO_CMP_PAGES && asked) {
1377 			ret = hib_wait_io(&hb);
1378 			if (ret)
1379 				goto out_finish;
1380 			have += asked;
1381 			asked = 0;
1382 			if (eof)
1383 				eof = 2;
1384 		}
1385 
1386 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1387 			wait_event(data[thr].done,
1388 			           atomic_read(&data[thr].stop));
1389 			atomic_set(&data[thr].stop, 0);
1390 
1391 			ret = data[thr].ret;
1392 
1393 			if (ret < 0) {
1394 				pr_err("LZO decompression failed\n");
1395 				goto out_finish;
1396 			}
1397 
1398 			if (unlikely(!data[thr].unc_len ||
1399 			             data[thr].unc_len > LZO_UNC_SIZE ||
1400 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1401 				pr_err("Invalid LZO uncompressed length\n");
1402 				ret = -1;
1403 				goto out_finish;
1404 			}
1405 
1406 			for (off = 0;
1407 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1408 				memcpy(data_of(*snapshot),
1409 				       data[thr].unc + off, PAGE_SIZE);
1410 
1411 				if (!(nr_pages % m))
1412 					pr_info("Image loading progress: %3d%%\n",
1413 						nr_pages / m * 10);
1414 				nr_pages++;
1415 
1416 				ret = snapshot_write_next(snapshot);
1417 				if (ret <= 0) {
1418 					crc->run_threads = thr + 1;
1419 					atomic_set(&crc->ready, 1);
1420 					wake_up(&crc->go);
1421 					goto out_finish;
1422 				}
1423 			}
1424 		}
1425 
1426 		crc->run_threads = thr;
1427 		atomic_set(&crc->ready, 1);
1428 		wake_up(&crc->go);
1429 	}
1430 
1431 out_finish:
1432 	if (crc->run_threads) {
1433 		wait_event(crc->done, atomic_read(&crc->stop));
1434 		atomic_set(&crc->stop, 0);
1435 	}
1436 	stop = ktime_get();
1437 	if (!ret) {
1438 		pr_info("Image loading done\n");
1439 		snapshot_write_finalize(snapshot);
1440 		if (!snapshot_image_loaded(snapshot))
1441 			ret = -ENODATA;
1442 		if (!ret) {
1443 			if (swsusp_header->flags & SF_CRC32_MODE) {
1444 				if(handle->crc32 != swsusp_header->crc32) {
1445 					pr_err("Invalid image CRC32!\n");
1446 					ret = -ENODATA;
1447 				}
1448 			}
1449 		}
1450 	}
1451 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1452 out_clean:
1453 	for (i = 0; i < ring_size; i++)
1454 		free_page((unsigned long)page[i]);
1455 	if (crc) {
1456 		if (crc->thr)
1457 			kthread_stop(crc->thr);
1458 		kfree(crc);
1459 	}
1460 	if (data) {
1461 		for (thr = 0; thr < nr_threads; thr++)
1462 			if (data[thr].thr)
1463 				kthread_stop(data[thr].thr);
1464 		vfree(data);
1465 	}
1466 	vfree(page);
1467 
1468 	return ret;
1469 }
1470 
1471 /**
1472  *	swsusp_read - read the hibernation image.
1473  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1474  *		  be written into this memory location
1475  */
1476 
1477 int swsusp_read(unsigned int *flags_p)
1478 {
1479 	int error;
1480 	struct swap_map_handle handle;
1481 	struct snapshot_handle snapshot;
1482 	struct swsusp_info *header;
1483 
1484 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1485 	error = snapshot_write_next(&snapshot);
1486 	if (error < (int)PAGE_SIZE)
1487 		return error < 0 ? error : -EFAULT;
1488 	header = (struct swsusp_info *)data_of(snapshot);
1489 	error = get_swap_reader(&handle, flags_p);
1490 	if (error)
1491 		goto end;
1492 	if (!error)
1493 		error = swap_read_page(&handle, header, NULL);
1494 	if (!error) {
1495 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1496 			load_image(&handle, &snapshot, header->pages - 1) :
1497 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1498 	}
1499 	swap_reader_finish(&handle);
1500 end:
1501 	if (!error)
1502 		pr_debug("Image successfully loaded\n");
1503 	else
1504 		pr_debug("Error %d resuming\n", error);
1505 	return error;
1506 }
1507 
1508 /**
1509  *      swsusp_check - Check for swsusp signature in the resume device
1510  */
1511 
1512 int swsusp_check(void)
1513 {
1514 	int error;
1515 
1516 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1517 					    FMODE_READ, NULL);
1518 	if (!IS_ERR(hib_resume_bdev)) {
1519 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1520 		clear_page(swsusp_header);
1521 		error = hib_submit_io(REQ_OP_READ, 0,
1522 					swsusp_resume_block,
1523 					swsusp_header, NULL);
1524 		if (error)
1525 			goto put;
1526 
1527 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1528 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1529 			/* Reset swap signature now */
1530 			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1531 						swsusp_resume_block,
1532 						swsusp_header, NULL);
1533 		} else {
1534 			error = -EINVAL;
1535 		}
1536 
1537 put:
1538 		if (error)
1539 			blkdev_put(hib_resume_bdev, FMODE_READ);
1540 		else
1541 			pr_debug("Image signature found, resuming\n");
1542 	} else {
1543 		error = PTR_ERR(hib_resume_bdev);
1544 	}
1545 
1546 	if (error)
1547 		pr_debug("Image not found (code %d)\n", error);
1548 
1549 	return error;
1550 }
1551 
1552 /**
1553  *	swsusp_close - close swap device.
1554  */
1555 
1556 void swsusp_close(fmode_t mode)
1557 {
1558 	if (IS_ERR(hib_resume_bdev)) {
1559 		pr_debug("Image device not initialised\n");
1560 		return;
1561 	}
1562 
1563 	blkdev_put(hib_resume_bdev, mode);
1564 }
1565 
1566 /**
1567  *      swsusp_unmark - Unmark swsusp signature in the resume device
1568  */
1569 
1570 #ifdef CONFIG_SUSPEND
1571 int swsusp_unmark(void)
1572 {
1573 	int error;
1574 
1575 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1576 		      swsusp_header, NULL);
1577 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1578 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1579 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1580 					swsusp_resume_block,
1581 					swsusp_header, NULL);
1582 	} else {
1583 		pr_err("Cannot find swsusp signature!\n");
1584 		error = -ENODEV;
1585 	}
1586 
1587 	/*
1588 	 * We just returned from suspend, we don't need the image any more.
1589 	 */
1590 	free_all_swap_pages(root_swap);
1591 
1592 	return error;
1593 }
1594 #endif
1595 
1596 static int swsusp_header_init(void)
1597 {
1598 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1599 	if (!swsusp_header)
1600 		panic("Could not allocate memory for swsusp_header\n");
1601 	return 0;
1602 }
1603 
1604 core_initcall(swsusp_header_init);
1605