xref: /openbmc/linux/kernel/power/swap.c (revision b98b3581)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 /*
39  *	The swap map is a data structure used for keeping track of each page
40  *	written to a swap partition.  It consists of many swap_map_page
41  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42  *	These structures are stored on the swap and linked together with the
43  *	help of the .next_swap member.
44  *
45  *	The swap map is created during suspend.  The swap map pages are
46  *	allocated and populated one at a time, so we only need one memory
47  *	page to set up the entire structure.
48  *
49  *	During resume we pick up all swap_map_page structures into a list.
50  */
51 
52 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
53 
54 /*
55  * Number of free pages that are not high.
56  */
57 static inline unsigned long low_free_pages(void)
58 {
59 	return nr_free_pages() - nr_free_highpages();
60 }
61 
62 /*
63  * Number of pages required to be kept free while writing the image. Always
64  * half of all available low pages before the writing starts.
65  */
66 static inline unsigned long reqd_free_pages(void)
67 {
68 	return low_free_pages() / 2;
69 }
70 
71 struct swap_map_page {
72 	sector_t entries[MAP_PAGE_ENTRIES];
73 	sector_t next_swap;
74 };
75 
76 struct swap_map_page_list {
77 	struct swap_map_page *map;
78 	struct swap_map_page_list *next;
79 };
80 
81 /**
82  *	The swap_map_handle structure is used for handling swap in
83  *	a file-alike way
84  */
85 
86 struct swap_map_handle {
87 	struct swap_map_page *cur;
88 	struct swap_map_page_list *maps;
89 	sector_t cur_swap;
90 	sector_t first_sector;
91 	unsigned int k;
92 	unsigned long reqd_free_pages;
93 	u32 crc32;
94 };
95 
96 struct swsusp_header {
97 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
98 	              sizeof(u32)];
99 	u32	crc32;
100 	sector_t image;
101 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
102 	char	orig_sig[10];
103 	char	sig[10];
104 } __attribute__((packed));
105 
106 static struct swsusp_header *swsusp_header;
107 
108 /**
109  *	The following functions are used for tracing the allocated
110  *	swap pages, so that they can be freed in case of an error.
111  */
112 
113 struct swsusp_extent {
114 	struct rb_node node;
115 	unsigned long start;
116 	unsigned long end;
117 };
118 
119 static struct rb_root swsusp_extents = RB_ROOT;
120 
121 static int swsusp_extents_insert(unsigned long swap_offset)
122 {
123 	struct rb_node **new = &(swsusp_extents.rb_node);
124 	struct rb_node *parent = NULL;
125 	struct swsusp_extent *ext;
126 
127 	/* Figure out where to put the new node */
128 	while (*new) {
129 		ext = container_of(*new, struct swsusp_extent, node);
130 		parent = *new;
131 		if (swap_offset < ext->start) {
132 			/* Try to merge */
133 			if (swap_offset == ext->start - 1) {
134 				ext->start--;
135 				return 0;
136 			}
137 			new = &((*new)->rb_left);
138 		} else if (swap_offset > ext->end) {
139 			/* Try to merge */
140 			if (swap_offset == ext->end + 1) {
141 				ext->end++;
142 				return 0;
143 			}
144 			new = &((*new)->rb_right);
145 		} else {
146 			/* It already is in the tree */
147 			return -EINVAL;
148 		}
149 	}
150 	/* Add the new node and rebalance the tree. */
151 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
152 	if (!ext)
153 		return -ENOMEM;
154 
155 	ext->start = swap_offset;
156 	ext->end = swap_offset;
157 	rb_link_node(&ext->node, parent, new);
158 	rb_insert_color(&ext->node, &swsusp_extents);
159 	return 0;
160 }
161 
162 /**
163  *	alloc_swapdev_block - allocate a swap page and register that it has
164  *	been allocated, so that it can be freed in case of an error.
165  */
166 
167 sector_t alloc_swapdev_block(int swap)
168 {
169 	unsigned long offset;
170 
171 	offset = swp_offset(get_swap_page_of_type(swap));
172 	if (offset) {
173 		if (swsusp_extents_insert(offset))
174 			swap_free(swp_entry(swap, offset));
175 		else
176 			return swapdev_block(swap, offset);
177 	}
178 	return 0;
179 }
180 
181 /**
182  *	free_all_swap_pages - free swap pages allocated for saving image data.
183  *	It also frees the extents used to register which swap entries had been
184  *	allocated.
185  */
186 
187 void free_all_swap_pages(int swap)
188 {
189 	struct rb_node *node;
190 
191 	while ((node = swsusp_extents.rb_node)) {
192 		struct swsusp_extent *ext;
193 		unsigned long offset;
194 
195 		ext = container_of(node, struct swsusp_extent, node);
196 		rb_erase(node, &swsusp_extents);
197 		for (offset = ext->start; offset <= ext->end; offset++)
198 			swap_free(swp_entry(swap, offset));
199 
200 		kfree(ext);
201 	}
202 }
203 
204 int swsusp_swap_in_use(void)
205 {
206 	return (swsusp_extents.rb_node != NULL);
207 }
208 
209 /*
210  * General things
211  */
212 
213 static unsigned short root_swap = 0xffff;
214 struct block_device *hib_resume_bdev;
215 
216 /*
217  * Saving part
218  */
219 
220 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
221 {
222 	int error;
223 
224 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
225 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
226 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
227 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
228 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
229 		swsusp_header->image = handle->first_sector;
230 		swsusp_header->flags = flags;
231 		if (flags & SF_CRC32_MODE)
232 			swsusp_header->crc32 = handle->crc32;
233 		error = hib_bio_write_page(swsusp_resume_block,
234 					swsusp_header, NULL);
235 	} else {
236 		printk(KERN_ERR "PM: Swap header not found!\n");
237 		error = -ENODEV;
238 	}
239 	return error;
240 }
241 
242 /**
243  *	swsusp_swap_check - check if the resume device is a swap device
244  *	and get its index (if so)
245  *
246  *	This is called before saving image
247  */
248 static int swsusp_swap_check(void)
249 {
250 	int res;
251 
252 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
253 			&hib_resume_bdev);
254 	if (res < 0)
255 		return res;
256 
257 	root_swap = res;
258 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
259 	if (res)
260 		return res;
261 
262 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
263 	if (res < 0)
264 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
265 
266 	return res;
267 }
268 
269 /**
270  *	write_page - Write one page to given swap location.
271  *	@buf:		Address we're writing.
272  *	@offset:	Offset of the swap page we're writing to.
273  *	@bio_chain:	Link the next write BIO here
274  */
275 
276 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
277 {
278 	void *src;
279 	int ret;
280 
281 	if (!offset)
282 		return -ENOSPC;
283 
284 	if (bio_chain) {
285 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
286 		if (src) {
287 			copy_page(src, buf);
288 		} else {
289 			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
290 			if (ret)
291 				return ret;
292 			src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
293 			if (src) {
294 				copy_page(src, buf);
295 			} else {
296 				WARN_ON_ONCE(1);
297 				bio_chain = NULL;	/* Go synchronous */
298 				src = buf;
299 			}
300 		}
301 	} else {
302 		src = buf;
303 	}
304 	return hib_bio_write_page(offset, src, bio_chain);
305 }
306 
307 static void release_swap_writer(struct swap_map_handle *handle)
308 {
309 	if (handle->cur)
310 		free_page((unsigned long)handle->cur);
311 	handle->cur = NULL;
312 }
313 
314 static int get_swap_writer(struct swap_map_handle *handle)
315 {
316 	int ret;
317 
318 	ret = swsusp_swap_check();
319 	if (ret) {
320 		if (ret != -ENOSPC)
321 			printk(KERN_ERR "PM: Cannot find swap device, try "
322 					"swapon -a.\n");
323 		return ret;
324 	}
325 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
326 	if (!handle->cur) {
327 		ret = -ENOMEM;
328 		goto err_close;
329 	}
330 	handle->cur_swap = alloc_swapdev_block(root_swap);
331 	if (!handle->cur_swap) {
332 		ret = -ENOSPC;
333 		goto err_rel;
334 	}
335 	handle->k = 0;
336 	handle->reqd_free_pages = reqd_free_pages();
337 	handle->first_sector = handle->cur_swap;
338 	return 0;
339 err_rel:
340 	release_swap_writer(handle);
341 err_close:
342 	swsusp_close(FMODE_WRITE);
343 	return ret;
344 }
345 
346 static int swap_write_page(struct swap_map_handle *handle, void *buf,
347 				struct bio **bio_chain)
348 {
349 	int error = 0;
350 	sector_t offset;
351 
352 	if (!handle->cur)
353 		return -EINVAL;
354 	offset = alloc_swapdev_block(root_swap);
355 	error = write_page(buf, offset, bio_chain);
356 	if (error)
357 		return error;
358 	handle->cur->entries[handle->k++] = offset;
359 	if (handle->k >= MAP_PAGE_ENTRIES) {
360 		offset = alloc_swapdev_block(root_swap);
361 		if (!offset)
362 			return -ENOSPC;
363 		handle->cur->next_swap = offset;
364 		error = write_page(handle->cur, handle->cur_swap, bio_chain);
365 		if (error)
366 			goto out;
367 		clear_page(handle->cur);
368 		handle->cur_swap = offset;
369 		handle->k = 0;
370 	}
371 	if (bio_chain && low_free_pages() <= handle->reqd_free_pages) {
372 		error = hib_wait_on_bio_chain(bio_chain);
373 		if (error)
374 			goto out;
375 		handle->reqd_free_pages = reqd_free_pages();
376 	}
377  out:
378 	return error;
379 }
380 
381 static int flush_swap_writer(struct swap_map_handle *handle)
382 {
383 	if (handle->cur && handle->cur_swap)
384 		return write_page(handle->cur, handle->cur_swap, NULL);
385 	else
386 		return -EINVAL;
387 }
388 
389 static int swap_writer_finish(struct swap_map_handle *handle,
390 		unsigned int flags, int error)
391 {
392 	if (!error) {
393 		flush_swap_writer(handle);
394 		printk(KERN_INFO "PM: S");
395 		error = mark_swapfiles(handle, flags);
396 		printk("|\n");
397 	}
398 
399 	if (error)
400 		free_all_swap_pages(root_swap);
401 	release_swap_writer(handle);
402 	swsusp_close(FMODE_WRITE);
403 
404 	return error;
405 }
406 
407 /* We need to remember how much compressed data we need to read. */
408 #define LZO_HEADER	sizeof(size_t)
409 
410 /* Number of pages/bytes we'll compress at one time. */
411 #define LZO_UNC_PAGES	32
412 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
413 
414 /* Number of pages/bytes we need for compressed data (worst case). */
415 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
416 			             LZO_HEADER, PAGE_SIZE)
417 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
418 
419 /* Maximum number of threads for compression/decompression. */
420 #define LZO_THREADS	3
421 
422 /* Maximum number of pages for read buffering. */
423 #define LZO_READ_PAGES	(MAP_PAGE_ENTRIES * 8)
424 
425 
426 /**
427  *	save_image - save the suspend image data
428  */
429 
430 static int save_image(struct swap_map_handle *handle,
431                       struct snapshot_handle *snapshot,
432                       unsigned int nr_to_write)
433 {
434 	unsigned int m;
435 	int ret;
436 	int nr_pages;
437 	int err2;
438 	struct bio *bio;
439 	struct timeval start;
440 	struct timeval stop;
441 
442 	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
443 		nr_to_write);
444 	m = nr_to_write / 100;
445 	if (!m)
446 		m = 1;
447 	nr_pages = 0;
448 	bio = NULL;
449 	do_gettimeofday(&start);
450 	while (1) {
451 		ret = snapshot_read_next(snapshot);
452 		if (ret <= 0)
453 			break;
454 		ret = swap_write_page(handle, data_of(*snapshot), &bio);
455 		if (ret)
456 			break;
457 		if (!(nr_pages % m))
458 			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
459 		nr_pages++;
460 	}
461 	err2 = hib_wait_on_bio_chain(&bio);
462 	do_gettimeofday(&stop);
463 	if (!ret)
464 		ret = err2;
465 	if (!ret)
466 		printk(KERN_CONT "\b\b\b\bdone\n");
467 	else
468 		printk(KERN_CONT "\n");
469 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
470 	return ret;
471 }
472 
473 /**
474  * Structure used for CRC32.
475  */
476 struct crc_data {
477 	struct task_struct *thr;                  /* thread */
478 	atomic_t ready;                           /* ready to start flag */
479 	atomic_t stop;                            /* ready to stop flag */
480 	unsigned run_threads;                     /* nr current threads */
481 	wait_queue_head_t go;                     /* start crc update */
482 	wait_queue_head_t done;                   /* crc update done */
483 	u32 *crc32;                               /* points to handle's crc32 */
484 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
485 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
486 };
487 
488 /**
489  * CRC32 update function that runs in its own thread.
490  */
491 static int crc32_threadfn(void *data)
492 {
493 	struct crc_data *d = data;
494 	unsigned i;
495 
496 	while (1) {
497 		wait_event(d->go, atomic_read(&d->ready) ||
498 		                  kthread_should_stop());
499 		if (kthread_should_stop()) {
500 			d->thr = NULL;
501 			atomic_set(&d->stop, 1);
502 			wake_up(&d->done);
503 			break;
504 		}
505 		atomic_set(&d->ready, 0);
506 
507 		for (i = 0; i < d->run_threads; i++)
508 			*d->crc32 = crc32_le(*d->crc32,
509 			                     d->unc[i], *d->unc_len[i]);
510 		atomic_set(&d->stop, 1);
511 		wake_up(&d->done);
512 	}
513 	return 0;
514 }
515 /**
516  * Structure used for LZO data compression.
517  */
518 struct cmp_data {
519 	struct task_struct *thr;                  /* thread */
520 	atomic_t ready;                           /* ready to start flag */
521 	atomic_t stop;                            /* ready to stop flag */
522 	int ret;                                  /* return code */
523 	wait_queue_head_t go;                     /* start compression */
524 	wait_queue_head_t done;                   /* compression done */
525 	size_t unc_len;                           /* uncompressed length */
526 	size_t cmp_len;                           /* compressed length */
527 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
528 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
529 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
530 };
531 
532 /**
533  * Compression function that runs in its own thread.
534  */
535 static int lzo_compress_threadfn(void *data)
536 {
537 	struct cmp_data *d = data;
538 
539 	while (1) {
540 		wait_event(d->go, atomic_read(&d->ready) ||
541 		                  kthread_should_stop());
542 		if (kthread_should_stop()) {
543 			d->thr = NULL;
544 			d->ret = -1;
545 			atomic_set(&d->stop, 1);
546 			wake_up(&d->done);
547 			break;
548 		}
549 		atomic_set(&d->ready, 0);
550 
551 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
552 		                          d->cmp + LZO_HEADER, &d->cmp_len,
553 		                          d->wrk);
554 		atomic_set(&d->stop, 1);
555 		wake_up(&d->done);
556 	}
557 	return 0;
558 }
559 
560 /**
561  * save_image_lzo - Save the suspend image data compressed with LZO.
562  * @handle: Swap mam handle to use for saving the image.
563  * @snapshot: Image to read data from.
564  * @nr_to_write: Number of pages to save.
565  */
566 static int save_image_lzo(struct swap_map_handle *handle,
567                           struct snapshot_handle *snapshot,
568                           unsigned int nr_to_write)
569 {
570 	unsigned int m;
571 	int ret = 0;
572 	int nr_pages;
573 	int err2;
574 	struct bio *bio;
575 	struct timeval start;
576 	struct timeval stop;
577 	size_t off;
578 	unsigned thr, run_threads, nr_threads;
579 	unsigned char *page = NULL;
580 	struct cmp_data *data = NULL;
581 	struct crc_data *crc = NULL;
582 
583 	/*
584 	 * We'll limit the number of threads for compression to limit memory
585 	 * footprint.
586 	 */
587 	nr_threads = num_online_cpus() - 1;
588 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
589 
590 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
591 	if (!page) {
592 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
593 		ret = -ENOMEM;
594 		goto out_clean;
595 	}
596 
597 	data = vmalloc(sizeof(*data) * nr_threads);
598 	if (!data) {
599 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
600 		ret = -ENOMEM;
601 		goto out_clean;
602 	}
603 	for (thr = 0; thr < nr_threads; thr++)
604 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
605 
606 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
607 	if (!crc) {
608 		printk(KERN_ERR "PM: Failed to allocate crc\n");
609 		ret = -ENOMEM;
610 		goto out_clean;
611 	}
612 	memset(crc, 0, offsetof(struct crc_data, go));
613 
614 	/*
615 	 * Start the compression threads.
616 	 */
617 	for (thr = 0; thr < nr_threads; thr++) {
618 		init_waitqueue_head(&data[thr].go);
619 		init_waitqueue_head(&data[thr].done);
620 
621 		data[thr].thr = kthread_run(lzo_compress_threadfn,
622 		                            &data[thr],
623 		                            "image_compress/%u", thr);
624 		if (IS_ERR(data[thr].thr)) {
625 			data[thr].thr = NULL;
626 			printk(KERN_ERR
627 			       "PM: Cannot start compression threads\n");
628 			ret = -ENOMEM;
629 			goto out_clean;
630 		}
631 	}
632 
633 	/*
634 	 * Adjust number of free pages after all allocations have been done.
635 	 * We don't want to run out of pages when writing.
636 	 */
637 	handle->reqd_free_pages = reqd_free_pages();
638 
639 	/*
640 	 * Start the CRC32 thread.
641 	 */
642 	init_waitqueue_head(&crc->go);
643 	init_waitqueue_head(&crc->done);
644 
645 	handle->crc32 = 0;
646 	crc->crc32 = &handle->crc32;
647 	for (thr = 0; thr < nr_threads; thr++) {
648 		crc->unc[thr] = data[thr].unc;
649 		crc->unc_len[thr] = &data[thr].unc_len;
650 	}
651 
652 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
653 	if (IS_ERR(crc->thr)) {
654 		crc->thr = NULL;
655 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
656 		ret = -ENOMEM;
657 		goto out_clean;
658 	}
659 
660 	printk(KERN_INFO
661 		"PM: Using %u thread(s) for compression.\n"
662 		"PM: Compressing and saving image data (%u pages) ...     ",
663 		nr_threads, nr_to_write);
664 	m = nr_to_write / 100;
665 	if (!m)
666 		m = 1;
667 	nr_pages = 0;
668 	bio = NULL;
669 	do_gettimeofday(&start);
670 	for (;;) {
671 		for (thr = 0; thr < nr_threads; thr++) {
672 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
673 				ret = snapshot_read_next(snapshot);
674 				if (ret < 0)
675 					goto out_finish;
676 
677 				if (!ret)
678 					break;
679 
680 				memcpy(data[thr].unc + off,
681 				       data_of(*snapshot), PAGE_SIZE);
682 
683 				if (!(nr_pages % m))
684 					printk(KERN_CONT "\b\b\b\b%3d%%",
685 				               nr_pages / m);
686 				nr_pages++;
687 			}
688 			if (!off)
689 				break;
690 
691 			data[thr].unc_len = off;
692 
693 			atomic_set(&data[thr].ready, 1);
694 			wake_up(&data[thr].go);
695 		}
696 
697 		if (!thr)
698 			break;
699 
700 		crc->run_threads = thr;
701 		atomic_set(&crc->ready, 1);
702 		wake_up(&crc->go);
703 
704 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
705 			wait_event(data[thr].done,
706 			           atomic_read(&data[thr].stop));
707 			atomic_set(&data[thr].stop, 0);
708 
709 			ret = data[thr].ret;
710 
711 			if (ret < 0) {
712 				printk(KERN_ERR "PM: LZO compression failed\n");
713 				goto out_finish;
714 			}
715 
716 			if (unlikely(!data[thr].cmp_len ||
717 			             data[thr].cmp_len >
718 			             lzo1x_worst_compress(data[thr].unc_len))) {
719 				printk(KERN_ERR
720 				       "PM: Invalid LZO compressed length\n");
721 				ret = -1;
722 				goto out_finish;
723 			}
724 
725 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
726 
727 			/*
728 			 * Given we are writing one page at a time to disk, we
729 			 * copy that much from the buffer, although the last
730 			 * bit will likely be smaller than full page. This is
731 			 * OK - we saved the length of the compressed data, so
732 			 * any garbage at the end will be discarded when we
733 			 * read it.
734 			 */
735 			for (off = 0;
736 			     off < LZO_HEADER + data[thr].cmp_len;
737 			     off += PAGE_SIZE) {
738 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
739 
740 				ret = swap_write_page(handle, page, &bio);
741 				if (ret)
742 					goto out_finish;
743 			}
744 		}
745 
746 		wait_event(crc->done, atomic_read(&crc->stop));
747 		atomic_set(&crc->stop, 0);
748 	}
749 
750 out_finish:
751 	err2 = hib_wait_on_bio_chain(&bio);
752 	do_gettimeofday(&stop);
753 	if (!ret)
754 		ret = err2;
755 	if (!ret) {
756 		printk(KERN_CONT "\b\b\b\bdone\n");
757 	} else {
758 		printk(KERN_CONT "\n");
759 	}
760 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
761 out_clean:
762 	if (crc) {
763 		if (crc->thr)
764 			kthread_stop(crc->thr);
765 		kfree(crc);
766 	}
767 	if (data) {
768 		for (thr = 0; thr < nr_threads; thr++)
769 			if (data[thr].thr)
770 				kthread_stop(data[thr].thr);
771 		vfree(data);
772 	}
773 	if (page) free_page((unsigned long)page);
774 
775 	return ret;
776 }
777 
778 /**
779  *	enough_swap - Make sure we have enough swap to save the image.
780  *
781  *	Returns TRUE or FALSE after checking the total amount of swap
782  *	space avaiable from the resume partition.
783  */
784 
785 static int enough_swap(unsigned int nr_pages, unsigned int flags)
786 {
787 	unsigned int free_swap = count_swap_pages(root_swap, 1);
788 	unsigned int required;
789 
790 	pr_debug("PM: Free swap pages: %u\n", free_swap);
791 
792 	required = PAGES_FOR_IO + nr_pages;
793 	return free_swap > required;
794 }
795 
796 /**
797  *	swsusp_write - Write entire image and metadata.
798  *	@flags: flags to pass to the "boot" kernel in the image header
799  *
800  *	It is important _NOT_ to umount filesystems at this point. We want
801  *	them synced (in case something goes wrong) but we DO not want to mark
802  *	filesystem clean: it is not. (And it does not matter, if we resume
803  *	correctly, we'll mark system clean, anyway.)
804  */
805 
806 int swsusp_write(unsigned int flags)
807 {
808 	struct swap_map_handle handle;
809 	struct snapshot_handle snapshot;
810 	struct swsusp_info *header;
811 	unsigned long pages;
812 	int error;
813 
814 	pages = snapshot_get_image_size();
815 	error = get_swap_writer(&handle);
816 	if (error) {
817 		printk(KERN_ERR "PM: Cannot get swap writer\n");
818 		return error;
819 	}
820 	if (flags & SF_NOCOMPRESS_MODE) {
821 		if (!enough_swap(pages, flags)) {
822 			printk(KERN_ERR "PM: Not enough free swap\n");
823 			error = -ENOSPC;
824 			goto out_finish;
825 		}
826 	}
827 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
828 	error = snapshot_read_next(&snapshot);
829 	if (error < PAGE_SIZE) {
830 		if (error >= 0)
831 			error = -EFAULT;
832 
833 		goto out_finish;
834 	}
835 	header = (struct swsusp_info *)data_of(snapshot);
836 	error = swap_write_page(&handle, header, NULL);
837 	if (!error) {
838 		error = (flags & SF_NOCOMPRESS_MODE) ?
839 			save_image(&handle, &snapshot, pages - 1) :
840 			save_image_lzo(&handle, &snapshot, pages - 1);
841 	}
842 out_finish:
843 	error = swap_writer_finish(&handle, flags, error);
844 	return error;
845 }
846 
847 /**
848  *	The following functions allow us to read data using a swap map
849  *	in a file-alike way
850  */
851 
852 static void release_swap_reader(struct swap_map_handle *handle)
853 {
854 	struct swap_map_page_list *tmp;
855 
856 	while (handle->maps) {
857 		if (handle->maps->map)
858 			free_page((unsigned long)handle->maps->map);
859 		tmp = handle->maps;
860 		handle->maps = handle->maps->next;
861 		kfree(tmp);
862 	}
863 	handle->cur = NULL;
864 }
865 
866 static int get_swap_reader(struct swap_map_handle *handle,
867 		unsigned int *flags_p)
868 {
869 	int error;
870 	struct swap_map_page_list *tmp, *last;
871 	sector_t offset;
872 
873 	*flags_p = swsusp_header->flags;
874 
875 	if (!swsusp_header->image) /* how can this happen? */
876 		return -EINVAL;
877 
878 	handle->cur = NULL;
879 	last = handle->maps = NULL;
880 	offset = swsusp_header->image;
881 	while (offset) {
882 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
883 		if (!tmp) {
884 			release_swap_reader(handle);
885 			return -ENOMEM;
886 		}
887 		memset(tmp, 0, sizeof(*tmp));
888 		if (!handle->maps)
889 			handle->maps = tmp;
890 		if (last)
891 			last->next = tmp;
892 		last = tmp;
893 
894 		tmp->map = (struct swap_map_page *)
895 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
896 		if (!tmp->map) {
897 			release_swap_reader(handle);
898 			return -ENOMEM;
899 		}
900 
901 		error = hib_bio_read_page(offset, tmp->map, NULL);
902 		if (error) {
903 			release_swap_reader(handle);
904 			return error;
905 		}
906 		offset = tmp->map->next_swap;
907 	}
908 	handle->k = 0;
909 	handle->cur = handle->maps->map;
910 	return 0;
911 }
912 
913 static int swap_read_page(struct swap_map_handle *handle, void *buf,
914 				struct bio **bio_chain)
915 {
916 	sector_t offset;
917 	int error;
918 	struct swap_map_page_list *tmp;
919 
920 	if (!handle->cur)
921 		return -EINVAL;
922 	offset = handle->cur->entries[handle->k];
923 	if (!offset)
924 		return -EFAULT;
925 	error = hib_bio_read_page(offset, buf, bio_chain);
926 	if (error)
927 		return error;
928 	if (++handle->k >= MAP_PAGE_ENTRIES) {
929 		handle->k = 0;
930 		free_page((unsigned long)handle->maps->map);
931 		tmp = handle->maps;
932 		handle->maps = handle->maps->next;
933 		kfree(tmp);
934 		if (!handle->maps)
935 			release_swap_reader(handle);
936 		else
937 			handle->cur = handle->maps->map;
938 	}
939 	return error;
940 }
941 
942 static int swap_reader_finish(struct swap_map_handle *handle)
943 {
944 	release_swap_reader(handle);
945 
946 	return 0;
947 }
948 
949 /**
950  *	load_image - load the image using the swap map handle
951  *	@handle and the snapshot handle @snapshot
952  *	(assume there are @nr_pages pages to load)
953  */
954 
955 static int load_image(struct swap_map_handle *handle,
956                       struct snapshot_handle *snapshot,
957                       unsigned int nr_to_read)
958 {
959 	unsigned int m;
960 	int ret = 0;
961 	struct timeval start;
962 	struct timeval stop;
963 	struct bio *bio;
964 	int err2;
965 	unsigned nr_pages;
966 
967 	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
968 		nr_to_read);
969 	m = nr_to_read / 100;
970 	if (!m)
971 		m = 1;
972 	nr_pages = 0;
973 	bio = NULL;
974 	do_gettimeofday(&start);
975 	for ( ; ; ) {
976 		ret = snapshot_write_next(snapshot);
977 		if (ret <= 0)
978 			break;
979 		ret = swap_read_page(handle, data_of(*snapshot), &bio);
980 		if (ret)
981 			break;
982 		if (snapshot->sync_read)
983 			ret = hib_wait_on_bio_chain(&bio);
984 		if (ret)
985 			break;
986 		if (!(nr_pages % m))
987 			printk("\b\b\b\b%3d%%", nr_pages / m);
988 		nr_pages++;
989 	}
990 	err2 = hib_wait_on_bio_chain(&bio);
991 	do_gettimeofday(&stop);
992 	if (!ret)
993 		ret = err2;
994 	if (!ret) {
995 		printk("\b\b\b\bdone\n");
996 		snapshot_write_finalize(snapshot);
997 		if (!snapshot_image_loaded(snapshot))
998 			ret = -ENODATA;
999 	} else
1000 		printk("\n");
1001 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1002 	return ret;
1003 }
1004 
1005 /**
1006  * Structure used for LZO data decompression.
1007  */
1008 struct dec_data {
1009 	struct task_struct *thr;                  /* thread */
1010 	atomic_t ready;                           /* ready to start flag */
1011 	atomic_t stop;                            /* ready to stop flag */
1012 	int ret;                                  /* return code */
1013 	wait_queue_head_t go;                     /* start decompression */
1014 	wait_queue_head_t done;                   /* decompression done */
1015 	size_t unc_len;                           /* uncompressed length */
1016 	size_t cmp_len;                           /* compressed length */
1017 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1018 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1019 };
1020 
1021 /**
1022  * Deompression function that runs in its own thread.
1023  */
1024 static int lzo_decompress_threadfn(void *data)
1025 {
1026 	struct dec_data *d = data;
1027 
1028 	while (1) {
1029 		wait_event(d->go, atomic_read(&d->ready) ||
1030 		                  kthread_should_stop());
1031 		if (kthread_should_stop()) {
1032 			d->thr = NULL;
1033 			d->ret = -1;
1034 			atomic_set(&d->stop, 1);
1035 			wake_up(&d->done);
1036 			break;
1037 		}
1038 		atomic_set(&d->ready, 0);
1039 
1040 		d->unc_len = LZO_UNC_SIZE;
1041 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1042 		                               d->unc, &d->unc_len);
1043 		atomic_set(&d->stop, 1);
1044 		wake_up(&d->done);
1045 	}
1046 	return 0;
1047 }
1048 
1049 /**
1050  * load_image_lzo - Load compressed image data and decompress them with LZO.
1051  * @handle: Swap map handle to use for loading data.
1052  * @snapshot: Image to copy uncompressed data into.
1053  * @nr_to_read: Number of pages to load.
1054  */
1055 static int load_image_lzo(struct swap_map_handle *handle,
1056                           struct snapshot_handle *snapshot,
1057                           unsigned int nr_to_read)
1058 {
1059 	unsigned int m;
1060 	int ret = 0;
1061 	int eof = 0;
1062 	struct bio *bio;
1063 	struct timeval start;
1064 	struct timeval stop;
1065 	unsigned nr_pages;
1066 	size_t off;
1067 	unsigned i, thr, run_threads, nr_threads;
1068 	unsigned ring = 0, pg = 0, ring_size = 0,
1069 	         have = 0, want, need, asked = 0;
1070 	unsigned long read_pages;
1071 	unsigned char **page = NULL;
1072 	struct dec_data *data = NULL;
1073 	struct crc_data *crc = NULL;
1074 
1075 	/*
1076 	 * We'll limit the number of threads for decompression to limit memory
1077 	 * footprint.
1078 	 */
1079 	nr_threads = num_online_cpus() - 1;
1080 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1081 
1082 	page = vmalloc(sizeof(*page) * LZO_READ_PAGES);
1083 	if (!page) {
1084 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1085 		ret = -ENOMEM;
1086 		goto out_clean;
1087 	}
1088 
1089 	data = vmalloc(sizeof(*data) * nr_threads);
1090 	if (!data) {
1091 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1092 		ret = -ENOMEM;
1093 		goto out_clean;
1094 	}
1095 	for (thr = 0; thr < nr_threads; thr++)
1096 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1097 
1098 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1099 	if (!crc) {
1100 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1101 		ret = -ENOMEM;
1102 		goto out_clean;
1103 	}
1104 	memset(crc, 0, offsetof(struct crc_data, go));
1105 
1106 	/*
1107 	 * Start the decompression threads.
1108 	 */
1109 	for (thr = 0; thr < nr_threads; thr++) {
1110 		init_waitqueue_head(&data[thr].go);
1111 		init_waitqueue_head(&data[thr].done);
1112 
1113 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1114 		                            &data[thr],
1115 		                            "image_decompress/%u", thr);
1116 		if (IS_ERR(data[thr].thr)) {
1117 			data[thr].thr = NULL;
1118 			printk(KERN_ERR
1119 			       "PM: Cannot start decompression threads\n");
1120 			ret = -ENOMEM;
1121 			goto out_clean;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Start the CRC32 thread.
1127 	 */
1128 	init_waitqueue_head(&crc->go);
1129 	init_waitqueue_head(&crc->done);
1130 
1131 	handle->crc32 = 0;
1132 	crc->crc32 = &handle->crc32;
1133 	for (thr = 0; thr < nr_threads; thr++) {
1134 		crc->unc[thr] = data[thr].unc;
1135 		crc->unc_len[thr] = &data[thr].unc_len;
1136 	}
1137 
1138 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1139 	if (IS_ERR(crc->thr)) {
1140 		crc->thr = NULL;
1141 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1142 		ret = -ENOMEM;
1143 		goto out_clean;
1144 	}
1145 
1146 	/*
1147 	 * Adjust number of pages for read buffering, in case we are short.
1148 	 */
1149 	read_pages = (nr_free_pages() - snapshot_get_image_size()) >> 1;
1150 	read_pages = clamp_val(read_pages, LZO_CMP_PAGES, LZO_READ_PAGES);
1151 
1152 	for (i = 0; i < read_pages; i++) {
1153 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1154 		                                  __GFP_WAIT | __GFP_HIGH :
1155 		                                  __GFP_WAIT);
1156 		if (!page[i]) {
1157 			if (i < LZO_CMP_PAGES) {
1158 				ring_size = i;
1159 				printk(KERN_ERR
1160 				       "PM: Failed to allocate LZO pages\n");
1161 				ret = -ENOMEM;
1162 				goto out_clean;
1163 			} else {
1164 				break;
1165 			}
1166 		}
1167 	}
1168 	want = ring_size = i;
1169 
1170 	printk(KERN_INFO
1171 		"PM: Using %u thread(s) for decompression.\n"
1172 		"PM: Loading and decompressing image data (%u pages) ...     ",
1173 		nr_threads, nr_to_read);
1174 	m = nr_to_read / 100;
1175 	if (!m)
1176 		m = 1;
1177 	nr_pages = 0;
1178 	bio = NULL;
1179 	do_gettimeofday(&start);
1180 
1181 	ret = snapshot_write_next(snapshot);
1182 	if (ret <= 0)
1183 		goto out_finish;
1184 
1185 	for(;;) {
1186 		for (i = 0; !eof && i < want; i++) {
1187 			ret = swap_read_page(handle, page[ring], &bio);
1188 			if (ret) {
1189 				/*
1190 				 * On real read error, finish. On end of data,
1191 				 * set EOF flag and just exit the read loop.
1192 				 */
1193 				if (handle->cur &&
1194 				    handle->cur->entries[handle->k]) {
1195 					goto out_finish;
1196 				} else {
1197 					eof = 1;
1198 					break;
1199 				}
1200 			}
1201 			if (++ring >= ring_size)
1202 				ring = 0;
1203 		}
1204 		asked += i;
1205 		want -= i;
1206 
1207 		/*
1208 		 * We are out of data, wait for some more.
1209 		 */
1210 		if (!have) {
1211 			if (!asked)
1212 				break;
1213 
1214 			ret = hib_wait_on_bio_chain(&bio);
1215 			if (ret)
1216 				goto out_finish;
1217 			have += asked;
1218 			asked = 0;
1219 			if (eof)
1220 				eof = 2;
1221 		}
1222 
1223 		if (crc->run_threads) {
1224 			wait_event(crc->done, atomic_read(&crc->stop));
1225 			atomic_set(&crc->stop, 0);
1226 			crc->run_threads = 0;
1227 		}
1228 
1229 		for (thr = 0; have && thr < nr_threads; thr++) {
1230 			data[thr].cmp_len = *(size_t *)page[pg];
1231 			if (unlikely(!data[thr].cmp_len ||
1232 			             data[thr].cmp_len >
1233 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1234 				printk(KERN_ERR
1235 				       "PM: Invalid LZO compressed length\n");
1236 				ret = -1;
1237 				goto out_finish;
1238 			}
1239 
1240 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1241 			                    PAGE_SIZE);
1242 			if (need > have) {
1243 				if (eof > 1) {
1244 					ret = -1;
1245 					goto out_finish;
1246 				}
1247 				break;
1248 			}
1249 
1250 			for (off = 0;
1251 			     off < LZO_HEADER + data[thr].cmp_len;
1252 			     off += PAGE_SIZE) {
1253 				memcpy(data[thr].cmp + off,
1254 				       page[pg], PAGE_SIZE);
1255 				have--;
1256 				want++;
1257 				if (++pg >= ring_size)
1258 					pg = 0;
1259 			}
1260 
1261 			atomic_set(&data[thr].ready, 1);
1262 			wake_up(&data[thr].go);
1263 		}
1264 
1265 		/*
1266 		 * Wait for more data while we are decompressing.
1267 		 */
1268 		if (have < LZO_CMP_PAGES && asked) {
1269 			ret = hib_wait_on_bio_chain(&bio);
1270 			if (ret)
1271 				goto out_finish;
1272 			have += asked;
1273 			asked = 0;
1274 			if (eof)
1275 				eof = 2;
1276 		}
1277 
1278 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1279 			wait_event(data[thr].done,
1280 			           atomic_read(&data[thr].stop));
1281 			atomic_set(&data[thr].stop, 0);
1282 
1283 			ret = data[thr].ret;
1284 
1285 			if (ret < 0) {
1286 				printk(KERN_ERR
1287 				       "PM: LZO decompression failed\n");
1288 				goto out_finish;
1289 			}
1290 
1291 			if (unlikely(!data[thr].unc_len ||
1292 			             data[thr].unc_len > LZO_UNC_SIZE ||
1293 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1294 				printk(KERN_ERR
1295 				       "PM: Invalid LZO uncompressed length\n");
1296 				ret = -1;
1297 				goto out_finish;
1298 			}
1299 
1300 			for (off = 0;
1301 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1302 				memcpy(data_of(*snapshot),
1303 				       data[thr].unc + off, PAGE_SIZE);
1304 
1305 				if (!(nr_pages % m))
1306 					printk("\b\b\b\b%3d%%", nr_pages / m);
1307 				nr_pages++;
1308 
1309 				ret = snapshot_write_next(snapshot);
1310 				if (ret <= 0) {
1311 					crc->run_threads = thr + 1;
1312 					atomic_set(&crc->ready, 1);
1313 					wake_up(&crc->go);
1314 					goto out_finish;
1315 				}
1316 			}
1317 		}
1318 
1319 		crc->run_threads = thr;
1320 		atomic_set(&crc->ready, 1);
1321 		wake_up(&crc->go);
1322 	}
1323 
1324 out_finish:
1325 	if (crc->run_threads) {
1326 		wait_event(crc->done, atomic_read(&crc->stop));
1327 		atomic_set(&crc->stop, 0);
1328 	}
1329 	do_gettimeofday(&stop);
1330 	if (!ret) {
1331 		printk("\b\b\b\bdone\n");
1332 		snapshot_write_finalize(snapshot);
1333 		if (!snapshot_image_loaded(snapshot))
1334 			ret = -ENODATA;
1335 		if (!ret) {
1336 			if (swsusp_header->flags & SF_CRC32_MODE) {
1337 				if(handle->crc32 != swsusp_header->crc32) {
1338 					printk(KERN_ERR
1339 					       "PM: Invalid image CRC32!\n");
1340 					ret = -ENODATA;
1341 				}
1342 			}
1343 		}
1344 	} else
1345 		printk("\n");
1346 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1347 out_clean:
1348 	for (i = 0; i < ring_size; i++)
1349 		free_page((unsigned long)page[i]);
1350 	if (crc) {
1351 		if (crc->thr)
1352 			kthread_stop(crc->thr);
1353 		kfree(crc);
1354 	}
1355 	if (data) {
1356 		for (thr = 0; thr < nr_threads; thr++)
1357 			if (data[thr].thr)
1358 				kthread_stop(data[thr].thr);
1359 		vfree(data);
1360 	}
1361 	if (page) vfree(page);
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  *	swsusp_read - read the hibernation image.
1368  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1369  *		  be written into this memory location
1370  */
1371 
1372 int swsusp_read(unsigned int *flags_p)
1373 {
1374 	int error;
1375 	struct swap_map_handle handle;
1376 	struct snapshot_handle snapshot;
1377 	struct swsusp_info *header;
1378 
1379 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1380 	error = snapshot_write_next(&snapshot);
1381 	if (error < PAGE_SIZE)
1382 		return error < 0 ? error : -EFAULT;
1383 	header = (struct swsusp_info *)data_of(snapshot);
1384 	error = get_swap_reader(&handle, flags_p);
1385 	if (error)
1386 		goto end;
1387 	if (!error)
1388 		error = swap_read_page(&handle, header, NULL);
1389 	if (!error) {
1390 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1391 			load_image(&handle, &snapshot, header->pages - 1) :
1392 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1393 	}
1394 	swap_reader_finish(&handle);
1395 end:
1396 	if (!error)
1397 		pr_debug("PM: Image successfully loaded\n");
1398 	else
1399 		pr_debug("PM: Error %d resuming\n", error);
1400 	return error;
1401 }
1402 
1403 /**
1404  *      swsusp_check - Check for swsusp signature in the resume device
1405  */
1406 
1407 int swsusp_check(void)
1408 {
1409 	int error;
1410 
1411 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1412 					    FMODE_READ, NULL);
1413 	if (!IS_ERR(hib_resume_bdev)) {
1414 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1415 		clear_page(swsusp_header);
1416 		error = hib_bio_read_page(swsusp_resume_block,
1417 					swsusp_header, NULL);
1418 		if (error)
1419 			goto put;
1420 
1421 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1422 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1423 			/* Reset swap signature now */
1424 			error = hib_bio_write_page(swsusp_resume_block,
1425 						swsusp_header, NULL);
1426 		} else {
1427 			error = -EINVAL;
1428 		}
1429 
1430 put:
1431 		if (error)
1432 			blkdev_put(hib_resume_bdev, FMODE_READ);
1433 		else
1434 			pr_debug("PM: Image signature found, resuming\n");
1435 	} else {
1436 		error = PTR_ERR(hib_resume_bdev);
1437 	}
1438 
1439 	if (error)
1440 		pr_debug("PM: Image not found (code %d)\n", error);
1441 
1442 	return error;
1443 }
1444 
1445 /**
1446  *	swsusp_close - close swap device.
1447  */
1448 
1449 void swsusp_close(fmode_t mode)
1450 {
1451 	if (IS_ERR(hib_resume_bdev)) {
1452 		pr_debug("PM: Image device not initialised\n");
1453 		return;
1454 	}
1455 
1456 	blkdev_put(hib_resume_bdev, mode);
1457 }
1458 
1459 static int swsusp_header_init(void)
1460 {
1461 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1462 	if (!swsusp_header)
1463 		panic("Could not allocate memory for swsusp_header\n");
1464 	return 0;
1465 }
1466 
1467 core_initcall(swsusp_header_init);
1468