1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/device.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/pm.h> 25 #include <linux/slab.h> 26 #include <linux/lzo.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page 51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 52 * These structures are stored on the swap and linked together with the 53 * help of the .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are 56 * allocated and populated one at a time, so we only need one memory 57 * page to set up the entire structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 63 64 /* 65 * Number of free pages that are not high. 66 */ 67 static inline unsigned long low_free_pages(void) 68 { 69 return nr_free_pages() - nr_free_highpages(); 70 } 71 72 /* 73 * Number of pages required to be kept free while writing the image. Always 74 * half of all available low pages before the writing starts. 75 */ 76 static inline unsigned long reqd_free_pages(void) 77 { 78 return low_free_pages() / 2; 79 } 80 81 struct swap_map_page { 82 sector_t entries[MAP_PAGE_ENTRIES]; 83 sector_t next_swap; 84 }; 85 86 struct swap_map_page_list { 87 struct swap_map_page *map; 88 struct swap_map_page_list *next; 89 }; 90 91 /* 92 * The swap_map_handle structure is used for handling swap in 93 * a file-alike way 94 */ 95 96 struct swap_map_handle { 97 struct swap_map_page *cur; 98 struct swap_map_page_list *maps; 99 sector_t cur_swap; 100 sector_t first_sector; 101 unsigned int k; 102 unsigned long reqd_free_pages; 103 u32 crc32; 104 }; 105 106 struct swsusp_header { 107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 108 sizeof(u32) - sizeof(u32)]; 109 u32 hw_sig; 110 u32 crc32; 111 sector_t image; 112 unsigned int flags; /* Flags to pass to the "boot" kernel */ 113 char orig_sig[10]; 114 char sig[10]; 115 } __packed; 116 117 static struct swsusp_header *swsusp_header; 118 119 /* 120 * The following functions are used for tracing the allocated 121 * swap pages, so that they can be freed in case of an error. 122 */ 123 124 struct swsusp_extent { 125 struct rb_node node; 126 unsigned long start; 127 unsigned long end; 128 }; 129 130 static struct rb_root swsusp_extents = RB_ROOT; 131 132 static int swsusp_extents_insert(unsigned long swap_offset) 133 { 134 struct rb_node **new = &(swsusp_extents.rb_node); 135 struct rb_node *parent = NULL; 136 struct swsusp_extent *ext; 137 138 /* Figure out where to put the new node */ 139 while (*new) { 140 ext = rb_entry(*new, struct swsusp_extent, node); 141 parent = *new; 142 if (swap_offset < ext->start) { 143 /* Try to merge */ 144 if (swap_offset == ext->start - 1) { 145 ext->start--; 146 return 0; 147 } 148 new = &((*new)->rb_left); 149 } else if (swap_offset > ext->end) { 150 /* Try to merge */ 151 if (swap_offset == ext->end + 1) { 152 ext->end++; 153 return 0; 154 } 155 new = &((*new)->rb_right); 156 } else { 157 /* It already is in the tree */ 158 return -EINVAL; 159 } 160 } 161 /* Add the new node and rebalance the tree. */ 162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 163 if (!ext) 164 return -ENOMEM; 165 166 ext->start = swap_offset; 167 ext->end = swap_offset; 168 rb_link_node(&ext->node, parent, new); 169 rb_insert_color(&ext->node, &swsusp_extents); 170 return 0; 171 } 172 173 /* 174 * alloc_swapdev_block - allocate a swap page and register that it has 175 * been allocated, so that it can be freed in case of an error. 176 */ 177 178 sector_t alloc_swapdev_block(int swap) 179 { 180 unsigned long offset; 181 182 offset = swp_offset(get_swap_page_of_type(swap)); 183 if (offset) { 184 if (swsusp_extents_insert(offset)) 185 swap_free(swp_entry(swap, offset)); 186 else 187 return swapdev_block(swap, offset); 188 } 189 return 0; 190 } 191 192 /* 193 * free_all_swap_pages - free swap pages allocated for saving image data. 194 * It also frees the extents used to register which swap entries had been 195 * allocated. 196 */ 197 198 void free_all_swap_pages(int swap) 199 { 200 struct rb_node *node; 201 202 while ((node = swsusp_extents.rb_node)) { 203 struct swsusp_extent *ext; 204 unsigned long offset; 205 206 ext = rb_entry(node, struct swsusp_extent, node); 207 rb_erase(node, &swsusp_extents); 208 for (offset = ext->start; offset <= ext->end; offset++) 209 swap_free(swp_entry(swap, offset)); 210 211 kfree(ext); 212 } 213 } 214 215 int swsusp_swap_in_use(void) 216 { 217 return (swsusp_extents.rb_node != NULL); 218 } 219 220 /* 221 * General things 222 */ 223 224 static unsigned short root_swap = 0xffff; 225 static struct block_device *hib_resume_bdev; 226 227 struct hib_bio_batch { 228 atomic_t count; 229 wait_queue_head_t wait; 230 blk_status_t error; 231 struct blk_plug plug; 232 }; 233 234 static void hib_init_batch(struct hib_bio_batch *hb) 235 { 236 atomic_set(&hb->count, 0); 237 init_waitqueue_head(&hb->wait); 238 hb->error = BLK_STS_OK; 239 blk_start_plug(&hb->plug); 240 } 241 242 static void hib_finish_batch(struct hib_bio_batch *hb) 243 { 244 blk_finish_plug(&hb->plug); 245 } 246 247 static void hib_end_io(struct bio *bio) 248 { 249 struct hib_bio_batch *hb = bio->bi_private; 250 struct page *page = bio_first_page_all(bio); 251 252 if (bio->bi_status) { 253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 255 (unsigned long long)bio->bi_iter.bi_sector); 256 } 257 258 if (bio_data_dir(bio) == WRITE) 259 put_page(page); 260 else if (clean_pages_on_read) 261 flush_icache_range((unsigned long)page_address(page), 262 (unsigned long)page_address(page) + PAGE_SIZE); 263 264 if (bio->bi_status && !hb->error) 265 hb->error = bio->bi_status; 266 if (atomic_dec_and_test(&hb->count)) 267 wake_up(&hb->wait); 268 269 bio_put(bio); 270 } 271 272 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr, 273 struct hib_bio_batch *hb) 274 { 275 struct page *page = virt_to_page(addr); 276 struct bio *bio; 277 int error = 0; 278 279 bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH); 280 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 281 282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 283 pr_err("Adding page to bio failed at %llu\n", 284 (unsigned long long)bio->bi_iter.bi_sector); 285 bio_put(bio); 286 return -EFAULT; 287 } 288 289 if (hb) { 290 bio->bi_end_io = hib_end_io; 291 bio->bi_private = hb; 292 atomic_inc(&hb->count); 293 submit_bio(bio); 294 } else { 295 error = submit_bio_wait(bio); 296 bio_put(bio); 297 } 298 299 return error; 300 } 301 302 static int hib_wait_io(struct hib_bio_batch *hb) 303 { 304 /* 305 * We are relying on the behavior of blk_plug that a thread with 306 * a plug will flush the plug list before sleeping. 307 */ 308 wait_event(hb->wait, atomic_read(&hb->count) == 0); 309 return blk_status_to_errno(hb->error); 310 } 311 312 /* 313 * Saving part 314 */ 315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 316 { 317 int error; 318 319 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL); 320 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 321 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 322 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 323 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 324 swsusp_header->image = handle->first_sector; 325 if (swsusp_hardware_signature) { 326 swsusp_header->hw_sig = swsusp_hardware_signature; 327 flags |= SF_HW_SIG; 328 } 329 swsusp_header->flags = flags; 330 if (flags & SF_CRC32_MODE) 331 swsusp_header->crc32 = handle->crc32; 332 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 333 swsusp_resume_block, swsusp_header, NULL); 334 } else { 335 pr_err("Swap header not found!\n"); 336 error = -ENODEV; 337 } 338 return error; 339 } 340 341 /** 342 * swsusp_swap_check - check if the resume device is a swap device 343 * and get its index (if so) 344 * 345 * This is called before saving image 346 */ 347 static int swsusp_swap_check(void) 348 { 349 int res; 350 351 if (swsusp_resume_device) 352 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 353 else 354 res = find_first_swap(&swsusp_resume_device); 355 if (res < 0) 356 return res; 357 root_swap = res; 358 359 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 360 BLK_OPEN_WRITE, NULL, NULL); 361 if (IS_ERR(hib_resume_bdev)) 362 return PTR_ERR(hib_resume_bdev); 363 364 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 365 if (res < 0) 366 blkdev_put(hib_resume_bdev, NULL); 367 368 return res; 369 } 370 371 /** 372 * write_page - Write one page to given swap location. 373 * @buf: Address we're writing. 374 * @offset: Offset of the swap page we're writing to. 375 * @hb: bio completion batch 376 */ 377 378 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 379 { 380 void *src; 381 int ret; 382 383 if (!offset) 384 return -ENOSPC; 385 386 if (hb) { 387 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 388 __GFP_NORETRY); 389 if (src) { 390 copy_page(src, buf); 391 } else { 392 ret = hib_wait_io(hb); /* Free pages */ 393 if (ret) 394 return ret; 395 src = (void *)__get_free_page(GFP_NOIO | 396 __GFP_NOWARN | 397 __GFP_NORETRY); 398 if (src) { 399 copy_page(src, buf); 400 } else { 401 WARN_ON_ONCE(1); 402 hb = NULL; /* Go synchronous */ 403 src = buf; 404 } 405 } 406 } else { 407 src = buf; 408 } 409 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 410 } 411 412 static void release_swap_writer(struct swap_map_handle *handle) 413 { 414 if (handle->cur) 415 free_page((unsigned long)handle->cur); 416 handle->cur = NULL; 417 } 418 419 static int get_swap_writer(struct swap_map_handle *handle) 420 { 421 int ret; 422 423 ret = swsusp_swap_check(); 424 if (ret) { 425 if (ret != -ENOSPC) 426 pr_err("Cannot find swap device, try swapon -a\n"); 427 return ret; 428 } 429 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 430 if (!handle->cur) { 431 ret = -ENOMEM; 432 goto err_close; 433 } 434 handle->cur_swap = alloc_swapdev_block(root_swap); 435 if (!handle->cur_swap) { 436 ret = -ENOSPC; 437 goto err_rel; 438 } 439 handle->k = 0; 440 handle->reqd_free_pages = reqd_free_pages(); 441 handle->first_sector = handle->cur_swap; 442 return 0; 443 err_rel: 444 release_swap_writer(handle); 445 err_close: 446 swsusp_close(false); 447 return ret; 448 } 449 450 static int swap_write_page(struct swap_map_handle *handle, void *buf, 451 struct hib_bio_batch *hb) 452 { 453 int error = 0; 454 sector_t offset; 455 456 if (!handle->cur) 457 return -EINVAL; 458 offset = alloc_swapdev_block(root_swap); 459 error = write_page(buf, offset, hb); 460 if (error) 461 return error; 462 handle->cur->entries[handle->k++] = offset; 463 if (handle->k >= MAP_PAGE_ENTRIES) { 464 offset = alloc_swapdev_block(root_swap); 465 if (!offset) 466 return -ENOSPC; 467 handle->cur->next_swap = offset; 468 error = write_page(handle->cur, handle->cur_swap, hb); 469 if (error) 470 goto out; 471 clear_page(handle->cur); 472 handle->cur_swap = offset; 473 handle->k = 0; 474 475 if (hb && low_free_pages() <= handle->reqd_free_pages) { 476 error = hib_wait_io(hb); 477 if (error) 478 goto out; 479 /* 480 * Recalculate the number of required free pages, to 481 * make sure we never take more than half. 482 */ 483 handle->reqd_free_pages = reqd_free_pages(); 484 } 485 } 486 out: 487 return error; 488 } 489 490 static int flush_swap_writer(struct swap_map_handle *handle) 491 { 492 if (handle->cur && handle->cur_swap) 493 return write_page(handle->cur, handle->cur_swap, NULL); 494 else 495 return -EINVAL; 496 } 497 498 static int swap_writer_finish(struct swap_map_handle *handle, 499 unsigned int flags, int error) 500 { 501 if (!error) { 502 pr_info("S"); 503 error = mark_swapfiles(handle, flags); 504 pr_cont("|\n"); 505 flush_swap_writer(handle); 506 } 507 508 if (error) 509 free_all_swap_pages(root_swap); 510 release_swap_writer(handle); 511 swsusp_close(false); 512 513 return error; 514 } 515 516 /* We need to remember how much compressed data we need to read. */ 517 #define LZO_HEADER sizeof(size_t) 518 519 /* Number of pages/bytes we'll compress at one time. */ 520 #define LZO_UNC_PAGES 32 521 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 522 523 /* Number of pages/bytes we need for compressed data (worst case). */ 524 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 525 LZO_HEADER, PAGE_SIZE) 526 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 527 528 /* Maximum number of threads for compression/decompression. */ 529 #define LZO_THREADS 3 530 531 /* Minimum/maximum number of pages for read buffering. */ 532 #define LZO_MIN_RD_PAGES 1024 533 #define LZO_MAX_RD_PAGES 8192 534 535 536 /** 537 * save_image - save the suspend image data 538 */ 539 540 static int save_image(struct swap_map_handle *handle, 541 struct snapshot_handle *snapshot, 542 unsigned int nr_to_write) 543 { 544 unsigned int m; 545 int ret; 546 int nr_pages; 547 int err2; 548 struct hib_bio_batch hb; 549 ktime_t start; 550 ktime_t stop; 551 552 hib_init_batch(&hb); 553 554 pr_info("Saving image data pages (%u pages)...\n", 555 nr_to_write); 556 m = nr_to_write / 10; 557 if (!m) 558 m = 1; 559 nr_pages = 0; 560 start = ktime_get(); 561 while (1) { 562 ret = snapshot_read_next(snapshot); 563 if (ret <= 0) 564 break; 565 ret = swap_write_page(handle, data_of(*snapshot), &hb); 566 if (ret) 567 break; 568 if (!(nr_pages % m)) 569 pr_info("Image saving progress: %3d%%\n", 570 nr_pages / m * 10); 571 nr_pages++; 572 } 573 err2 = hib_wait_io(&hb); 574 hib_finish_batch(&hb); 575 stop = ktime_get(); 576 if (!ret) 577 ret = err2; 578 if (!ret) 579 pr_info("Image saving done\n"); 580 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 581 return ret; 582 } 583 584 /* 585 * Structure used for CRC32. 586 */ 587 struct crc_data { 588 struct task_struct *thr; /* thread */ 589 atomic_t ready; /* ready to start flag */ 590 atomic_t stop; /* ready to stop flag */ 591 unsigned run_threads; /* nr current threads */ 592 wait_queue_head_t go; /* start crc update */ 593 wait_queue_head_t done; /* crc update done */ 594 u32 *crc32; /* points to handle's crc32 */ 595 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 596 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 597 }; 598 599 /* 600 * CRC32 update function that runs in its own thread. 601 */ 602 static int crc32_threadfn(void *data) 603 { 604 struct crc_data *d = data; 605 unsigned i; 606 607 while (1) { 608 wait_event(d->go, atomic_read_acquire(&d->ready) || 609 kthread_should_stop()); 610 if (kthread_should_stop()) { 611 d->thr = NULL; 612 atomic_set_release(&d->stop, 1); 613 wake_up(&d->done); 614 break; 615 } 616 atomic_set(&d->ready, 0); 617 618 for (i = 0; i < d->run_threads; i++) 619 *d->crc32 = crc32_le(*d->crc32, 620 d->unc[i], *d->unc_len[i]); 621 atomic_set_release(&d->stop, 1); 622 wake_up(&d->done); 623 } 624 return 0; 625 } 626 /* 627 * Structure used for LZO data compression. 628 */ 629 struct cmp_data { 630 struct task_struct *thr; /* thread */ 631 atomic_t ready; /* ready to start flag */ 632 atomic_t stop; /* ready to stop flag */ 633 int ret; /* return code */ 634 wait_queue_head_t go; /* start compression */ 635 wait_queue_head_t done; /* compression done */ 636 size_t unc_len; /* uncompressed length */ 637 size_t cmp_len; /* compressed length */ 638 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 639 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 640 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 641 }; 642 643 /* 644 * Compression function that runs in its own thread. 645 */ 646 static int lzo_compress_threadfn(void *data) 647 { 648 struct cmp_data *d = data; 649 650 while (1) { 651 wait_event(d->go, atomic_read_acquire(&d->ready) || 652 kthread_should_stop()); 653 if (kthread_should_stop()) { 654 d->thr = NULL; 655 d->ret = -1; 656 atomic_set_release(&d->stop, 1); 657 wake_up(&d->done); 658 break; 659 } 660 atomic_set(&d->ready, 0); 661 662 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 663 d->cmp + LZO_HEADER, &d->cmp_len, 664 d->wrk); 665 atomic_set_release(&d->stop, 1); 666 wake_up(&d->done); 667 } 668 return 0; 669 } 670 671 /** 672 * save_image_lzo - Save the suspend image data compressed with LZO. 673 * @handle: Swap map handle to use for saving the image. 674 * @snapshot: Image to read data from. 675 * @nr_to_write: Number of pages to save. 676 */ 677 static int save_image_lzo(struct swap_map_handle *handle, 678 struct snapshot_handle *snapshot, 679 unsigned int nr_to_write) 680 { 681 unsigned int m; 682 int ret = 0; 683 int nr_pages; 684 int err2; 685 struct hib_bio_batch hb; 686 ktime_t start; 687 ktime_t stop; 688 size_t off; 689 unsigned thr, run_threads, nr_threads; 690 unsigned char *page = NULL; 691 struct cmp_data *data = NULL; 692 struct crc_data *crc = NULL; 693 694 hib_init_batch(&hb); 695 696 /* 697 * We'll limit the number of threads for compression to limit memory 698 * footprint. 699 */ 700 nr_threads = num_online_cpus() - 1; 701 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 702 703 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 704 if (!page) { 705 pr_err("Failed to allocate LZO page\n"); 706 ret = -ENOMEM; 707 goto out_clean; 708 } 709 710 data = vzalloc(array_size(nr_threads, sizeof(*data))); 711 if (!data) { 712 pr_err("Failed to allocate LZO data\n"); 713 ret = -ENOMEM; 714 goto out_clean; 715 } 716 717 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 718 if (!crc) { 719 pr_err("Failed to allocate crc\n"); 720 ret = -ENOMEM; 721 goto out_clean; 722 } 723 724 /* 725 * Start the compression threads. 726 */ 727 for (thr = 0; thr < nr_threads; thr++) { 728 init_waitqueue_head(&data[thr].go); 729 init_waitqueue_head(&data[thr].done); 730 731 data[thr].thr = kthread_run(lzo_compress_threadfn, 732 &data[thr], 733 "image_compress/%u", thr); 734 if (IS_ERR(data[thr].thr)) { 735 data[thr].thr = NULL; 736 pr_err("Cannot start compression threads\n"); 737 ret = -ENOMEM; 738 goto out_clean; 739 } 740 } 741 742 /* 743 * Start the CRC32 thread. 744 */ 745 init_waitqueue_head(&crc->go); 746 init_waitqueue_head(&crc->done); 747 748 handle->crc32 = 0; 749 crc->crc32 = &handle->crc32; 750 for (thr = 0; thr < nr_threads; thr++) { 751 crc->unc[thr] = data[thr].unc; 752 crc->unc_len[thr] = &data[thr].unc_len; 753 } 754 755 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 756 if (IS_ERR(crc->thr)) { 757 crc->thr = NULL; 758 pr_err("Cannot start CRC32 thread\n"); 759 ret = -ENOMEM; 760 goto out_clean; 761 } 762 763 /* 764 * Adjust the number of required free pages after all allocations have 765 * been done. We don't want to run out of pages when writing. 766 */ 767 handle->reqd_free_pages = reqd_free_pages(); 768 769 pr_info("Using %u thread(s) for compression\n", nr_threads); 770 pr_info("Compressing and saving image data (%u pages)...\n", 771 nr_to_write); 772 m = nr_to_write / 10; 773 if (!m) 774 m = 1; 775 nr_pages = 0; 776 start = ktime_get(); 777 for (;;) { 778 for (thr = 0; thr < nr_threads; thr++) { 779 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 780 ret = snapshot_read_next(snapshot); 781 if (ret < 0) 782 goto out_finish; 783 784 if (!ret) 785 break; 786 787 memcpy(data[thr].unc + off, 788 data_of(*snapshot), PAGE_SIZE); 789 790 if (!(nr_pages % m)) 791 pr_info("Image saving progress: %3d%%\n", 792 nr_pages / m * 10); 793 nr_pages++; 794 } 795 if (!off) 796 break; 797 798 data[thr].unc_len = off; 799 800 atomic_set_release(&data[thr].ready, 1); 801 wake_up(&data[thr].go); 802 } 803 804 if (!thr) 805 break; 806 807 crc->run_threads = thr; 808 atomic_set_release(&crc->ready, 1); 809 wake_up(&crc->go); 810 811 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 812 wait_event(data[thr].done, 813 atomic_read_acquire(&data[thr].stop)); 814 atomic_set(&data[thr].stop, 0); 815 816 ret = data[thr].ret; 817 818 if (ret < 0) { 819 pr_err("LZO compression failed\n"); 820 goto out_finish; 821 } 822 823 if (unlikely(!data[thr].cmp_len || 824 data[thr].cmp_len > 825 lzo1x_worst_compress(data[thr].unc_len))) { 826 pr_err("Invalid LZO compressed length\n"); 827 ret = -1; 828 goto out_finish; 829 } 830 831 *(size_t *)data[thr].cmp = data[thr].cmp_len; 832 833 /* 834 * Given we are writing one page at a time to disk, we 835 * copy that much from the buffer, although the last 836 * bit will likely be smaller than full page. This is 837 * OK - we saved the length of the compressed data, so 838 * any garbage at the end will be discarded when we 839 * read it. 840 */ 841 for (off = 0; 842 off < LZO_HEADER + data[thr].cmp_len; 843 off += PAGE_SIZE) { 844 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 845 846 ret = swap_write_page(handle, page, &hb); 847 if (ret) 848 goto out_finish; 849 } 850 } 851 852 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 853 atomic_set(&crc->stop, 0); 854 } 855 856 out_finish: 857 err2 = hib_wait_io(&hb); 858 stop = ktime_get(); 859 if (!ret) 860 ret = err2; 861 if (!ret) 862 pr_info("Image saving done\n"); 863 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 864 out_clean: 865 hib_finish_batch(&hb); 866 if (crc) { 867 if (crc->thr) 868 kthread_stop(crc->thr); 869 kfree(crc); 870 } 871 if (data) { 872 for (thr = 0; thr < nr_threads; thr++) 873 if (data[thr].thr) 874 kthread_stop(data[thr].thr); 875 vfree(data); 876 } 877 if (page) free_page((unsigned long)page); 878 879 return ret; 880 } 881 882 /** 883 * enough_swap - Make sure we have enough swap to save the image. 884 * 885 * Returns TRUE or FALSE after checking the total amount of swap 886 * space available from the resume partition. 887 */ 888 889 static int enough_swap(unsigned int nr_pages) 890 { 891 unsigned int free_swap = count_swap_pages(root_swap, 1); 892 unsigned int required; 893 894 pr_debug("Free swap pages: %u\n", free_swap); 895 896 required = PAGES_FOR_IO + nr_pages; 897 return free_swap > required; 898 } 899 900 /** 901 * swsusp_write - Write entire image and metadata. 902 * @flags: flags to pass to the "boot" kernel in the image header 903 * 904 * It is important _NOT_ to umount filesystems at this point. We want 905 * them synced (in case something goes wrong) but we DO not want to mark 906 * filesystem clean: it is not. (And it does not matter, if we resume 907 * correctly, we'll mark system clean, anyway.) 908 */ 909 910 int swsusp_write(unsigned int flags) 911 { 912 struct swap_map_handle handle; 913 struct snapshot_handle snapshot; 914 struct swsusp_info *header; 915 unsigned long pages; 916 int error; 917 918 pages = snapshot_get_image_size(); 919 error = get_swap_writer(&handle); 920 if (error) { 921 pr_err("Cannot get swap writer\n"); 922 return error; 923 } 924 if (flags & SF_NOCOMPRESS_MODE) { 925 if (!enough_swap(pages)) { 926 pr_err("Not enough free swap\n"); 927 error = -ENOSPC; 928 goto out_finish; 929 } 930 } 931 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 932 error = snapshot_read_next(&snapshot); 933 if (error < (int)PAGE_SIZE) { 934 if (error >= 0) 935 error = -EFAULT; 936 937 goto out_finish; 938 } 939 header = (struct swsusp_info *)data_of(snapshot); 940 error = swap_write_page(&handle, header, NULL); 941 if (!error) { 942 error = (flags & SF_NOCOMPRESS_MODE) ? 943 save_image(&handle, &snapshot, pages - 1) : 944 save_image_lzo(&handle, &snapshot, pages - 1); 945 } 946 out_finish: 947 error = swap_writer_finish(&handle, flags, error); 948 return error; 949 } 950 951 /* 952 * The following functions allow us to read data using a swap map 953 * in a file-like way. 954 */ 955 956 static void release_swap_reader(struct swap_map_handle *handle) 957 { 958 struct swap_map_page_list *tmp; 959 960 while (handle->maps) { 961 if (handle->maps->map) 962 free_page((unsigned long)handle->maps->map); 963 tmp = handle->maps; 964 handle->maps = handle->maps->next; 965 kfree(tmp); 966 } 967 handle->cur = NULL; 968 } 969 970 static int get_swap_reader(struct swap_map_handle *handle, 971 unsigned int *flags_p) 972 { 973 int error; 974 struct swap_map_page_list *tmp, *last; 975 sector_t offset; 976 977 *flags_p = swsusp_header->flags; 978 979 if (!swsusp_header->image) /* how can this happen? */ 980 return -EINVAL; 981 982 handle->cur = NULL; 983 last = handle->maps = NULL; 984 offset = swsusp_header->image; 985 while (offset) { 986 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 987 if (!tmp) { 988 release_swap_reader(handle); 989 return -ENOMEM; 990 } 991 if (!handle->maps) 992 handle->maps = tmp; 993 if (last) 994 last->next = tmp; 995 last = tmp; 996 997 tmp->map = (struct swap_map_page *) 998 __get_free_page(GFP_NOIO | __GFP_HIGH); 999 if (!tmp->map) { 1000 release_swap_reader(handle); 1001 return -ENOMEM; 1002 } 1003 1004 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL); 1005 if (error) { 1006 release_swap_reader(handle); 1007 return error; 1008 } 1009 offset = tmp->map->next_swap; 1010 } 1011 handle->k = 0; 1012 handle->cur = handle->maps->map; 1013 return 0; 1014 } 1015 1016 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1017 struct hib_bio_batch *hb) 1018 { 1019 sector_t offset; 1020 int error; 1021 struct swap_map_page_list *tmp; 1022 1023 if (!handle->cur) 1024 return -EINVAL; 1025 offset = handle->cur->entries[handle->k]; 1026 if (!offset) 1027 return -EFAULT; 1028 error = hib_submit_io(REQ_OP_READ, offset, buf, hb); 1029 if (error) 1030 return error; 1031 if (++handle->k >= MAP_PAGE_ENTRIES) { 1032 handle->k = 0; 1033 free_page((unsigned long)handle->maps->map); 1034 tmp = handle->maps; 1035 handle->maps = handle->maps->next; 1036 kfree(tmp); 1037 if (!handle->maps) 1038 release_swap_reader(handle); 1039 else 1040 handle->cur = handle->maps->map; 1041 } 1042 return error; 1043 } 1044 1045 static int swap_reader_finish(struct swap_map_handle *handle) 1046 { 1047 release_swap_reader(handle); 1048 1049 return 0; 1050 } 1051 1052 /** 1053 * load_image - load the image using the swap map handle 1054 * @handle and the snapshot handle @snapshot 1055 * (assume there are @nr_pages pages to load) 1056 */ 1057 1058 static int load_image(struct swap_map_handle *handle, 1059 struct snapshot_handle *snapshot, 1060 unsigned int nr_to_read) 1061 { 1062 unsigned int m; 1063 int ret = 0; 1064 ktime_t start; 1065 ktime_t stop; 1066 struct hib_bio_batch hb; 1067 int err2; 1068 unsigned nr_pages; 1069 1070 hib_init_batch(&hb); 1071 1072 clean_pages_on_read = true; 1073 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1074 m = nr_to_read / 10; 1075 if (!m) 1076 m = 1; 1077 nr_pages = 0; 1078 start = ktime_get(); 1079 for ( ; ; ) { 1080 ret = snapshot_write_next(snapshot); 1081 if (ret <= 0) 1082 break; 1083 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1084 if (ret) 1085 break; 1086 if (snapshot->sync_read) 1087 ret = hib_wait_io(&hb); 1088 if (ret) 1089 break; 1090 if (!(nr_pages % m)) 1091 pr_info("Image loading progress: %3d%%\n", 1092 nr_pages / m * 10); 1093 nr_pages++; 1094 } 1095 err2 = hib_wait_io(&hb); 1096 hib_finish_batch(&hb); 1097 stop = ktime_get(); 1098 if (!ret) 1099 ret = err2; 1100 if (!ret) { 1101 pr_info("Image loading done\n"); 1102 snapshot_write_finalize(snapshot); 1103 if (!snapshot_image_loaded(snapshot)) 1104 ret = -ENODATA; 1105 } 1106 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1107 return ret; 1108 } 1109 1110 /* 1111 * Structure used for LZO data decompression. 1112 */ 1113 struct dec_data { 1114 struct task_struct *thr; /* thread */ 1115 atomic_t ready; /* ready to start flag */ 1116 atomic_t stop; /* ready to stop flag */ 1117 int ret; /* return code */ 1118 wait_queue_head_t go; /* start decompression */ 1119 wait_queue_head_t done; /* decompression done */ 1120 size_t unc_len; /* uncompressed length */ 1121 size_t cmp_len; /* compressed length */ 1122 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1123 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1124 }; 1125 1126 /* 1127 * Decompression function that runs in its own thread. 1128 */ 1129 static int lzo_decompress_threadfn(void *data) 1130 { 1131 struct dec_data *d = data; 1132 1133 while (1) { 1134 wait_event(d->go, atomic_read_acquire(&d->ready) || 1135 kthread_should_stop()); 1136 if (kthread_should_stop()) { 1137 d->thr = NULL; 1138 d->ret = -1; 1139 atomic_set_release(&d->stop, 1); 1140 wake_up(&d->done); 1141 break; 1142 } 1143 atomic_set(&d->ready, 0); 1144 1145 d->unc_len = LZO_UNC_SIZE; 1146 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1147 d->unc, &d->unc_len); 1148 if (clean_pages_on_decompress) 1149 flush_icache_range((unsigned long)d->unc, 1150 (unsigned long)d->unc + d->unc_len); 1151 1152 atomic_set_release(&d->stop, 1); 1153 wake_up(&d->done); 1154 } 1155 return 0; 1156 } 1157 1158 /** 1159 * load_image_lzo - Load compressed image data and decompress them with LZO. 1160 * @handle: Swap map handle to use for loading data. 1161 * @snapshot: Image to copy uncompressed data into. 1162 * @nr_to_read: Number of pages to load. 1163 */ 1164 static int load_image_lzo(struct swap_map_handle *handle, 1165 struct snapshot_handle *snapshot, 1166 unsigned int nr_to_read) 1167 { 1168 unsigned int m; 1169 int ret = 0; 1170 int eof = 0; 1171 struct hib_bio_batch hb; 1172 ktime_t start; 1173 ktime_t stop; 1174 unsigned nr_pages; 1175 size_t off; 1176 unsigned i, thr, run_threads, nr_threads; 1177 unsigned ring = 0, pg = 0, ring_size = 0, 1178 have = 0, want, need, asked = 0; 1179 unsigned long read_pages = 0; 1180 unsigned char **page = NULL; 1181 struct dec_data *data = NULL; 1182 struct crc_data *crc = NULL; 1183 1184 hib_init_batch(&hb); 1185 1186 /* 1187 * We'll limit the number of threads for decompression to limit memory 1188 * footprint. 1189 */ 1190 nr_threads = num_online_cpus() - 1; 1191 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1192 1193 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1194 if (!page) { 1195 pr_err("Failed to allocate LZO page\n"); 1196 ret = -ENOMEM; 1197 goto out_clean; 1198 } 1199 1200 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1201 if (!data) { 1202 pr_err("Failed to allocate LZO data\n"); 1203 ret = -ENOMEM; 1204 goto out_clean; 1205 } 1206 1207 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1208 if (!crc) { 1209 pr_err("Failed to allocate crc\n"); 1210 ret = -ENOMEM; 1211 goto out_clean; 1212 } 1213 1214 clean_pages_on_decompress = true; 1215 1216 /* 1217 * Start the decompression threads. 1218 */ 1219 for (thr = 0; thr < nr_threads; thr++) { 1220 init_waitqueue_head(&data[thr].go); 1221 init_waitqueue_head(&data[thr].done); 1222 1223 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1224 &data[thr], 1225 "image_decompress/%u", thr); 1226 if (IS_ERR(data[thr].thr)) { 1227 data[thr].thr = NULL; 1228 pr_err("Cannot start decompression threads\n"); 1229 ret = -ENOMEM; 1230 goto out_clean; 1231 } 1232 } 1233 1234 /* 1235 * Start the CRC32 thread. 1236 */ 1237 init_waitqueue_head(&crc->go); 1238 init_waitqueue_head(&crc->done); 1239 1240 handle->crc32 = 0; 1241 crc->crc32 = &handle->crc32; 1242 for (thr = 0; thr < nr_threads; thr++) { 1243 crc->unc[thr] = data[thr].unc; 1244 crc->unc_len[thr] = &data[thr].unc_len; 1245 } 1246 1247 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1248 if (IS_ERR(crc->thr)) { 1249 crc->thr = NULL; 1250 pr_err("Cannot start CRC32 thread\n"); 1251 ret = -ENOMEM; 1252 goto out_clean; 1253 } 1254 1255 /* 1256 * Set the number of pages for read buffering. 1257 * This is complete guesswork, because we'll only know the real 1258 * picture once prepare_image() is called, which is much later on 1259 * during the image load phase. We'll assume the worst case and 1260 * say that none of the image pages are from high memory. 1261 */ 1262 if (low_free_pages() > snapshot_get_image_size()) 1263 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1264 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1265 1266 for (i = 0; i < read_pages; i++) { 1267 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1268 GFP_NOIO | __GFP_HIGH : 1269 GFP_NOIO | __GFP_NOWARN | 1270 __GFP_NORETRY); 1271 1272 if (!page[i]) { 1273 if (i < LZO_CMP_PAGES) { 1274 ring_size = i; 1275 pr_err("Failed to allocate LZO pages\n"); 1276 ret = -ENOMEM; 1277 goto out_clean; 1278 } else { 1279 break; 1280 } 1281 } 1282 } 1283 want = ring_size = i; 1284 1285 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1286 pr_info("Loading and decompressing image data (%u pages)...\n", 1287 nr_to_read); 1288 m = nr_to_read / 10; 1289 if (!m) 1290 m = 1; 1291 nr_pages = 0; 1292 start = ktime_get(); 1293 1294 ret = snapshot_write_next(snapshot); 1295 if (ret <= 0) 1296 goto out_finish; 1297 1298 for(;;) { 1299 for (i = 0; !eof && i < want; i++) { 1300 ret = swap_read_page(handle, page[ring], &hb); 1301 if (ret) { 1302 /* 1303 * On real read error, finish. On end of data, 1304 * set EOF flag and just exit the read loop. 1305 */ 1306 if (handle->cur && 1307 handle->cur->entries[handle->k]) { 1308 goto out_finish; 1309 } else { 1310 eof = 1; 1311 break; 1312 } 1313 } 1314 if (++ring >= ring_size) 1315 ring = 0; 1316 } 1317 asked += i; 1318 want -= i; 1319 1320 /* 1321 * We are out of data, wait for some more. 1322 */ 1323 if (!have) { 1324 if (!asked) 1325 break; 1326 1327 ret = hib_wait_io(&hb); 1328 if (ret) 1329 goto out_finish; 1330 have += asked; 1331 asked = 0; 1332 if (eof) 1333 eof = 2; 1334 } 1335 1336 if (crc->run_threads) { 1337 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1338 atomic_set(&crc->stop, 0); 1339 crc->run_threads = 0; 1340 } 1341 1342 for (thr = 0; have && thr < nr_threads; thr++) { 1343 data[thr].cmp_len = *(size_t *)page[pg]; 1344 if (unlikely(!data[thr].cmp_len || 1345 data[thr].cmp_len > 1346 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1347 pr_err("Invalid LZO compressed length\n"); 1348 ret = -1; 1349 goto out_finish; 1350 } 1351 1352 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1353 PAGE_SIZE); 1354 if (need > have) { 1355 if (eof > 1) { 1356 ret = -1; 1357 goto out_finish; 1358 } 1359 break; 1360 } 1361 1362 for (off = 0; 1363 off < LZO_HEADER + data[thr].cmp_len; 1364 off += PAGE_SIZE) { 1365 memcpy(data[thr].cmp + off, 1366 page[pg], PAGE_SIZE); 1367 have--; 1368 want++; 1369 if (++pg >= ring_size) 1370 pg = 0; 1371 } 1372 1373 atomic_set_release(&data[thr].ready, 1); 1374 wake_up(&data[thr].go); 1375 } 1376 1377 /* 1378 * Wait for more data while we are decompressing. 1379 */ 1380 if (have < LZO_CMP_PAGES && asked) { 1381 ret = hib_wait_io(&hb); 1382 if (ret) 1383 goto out_finish; 1384 have += asked; 1385 asked = 0; 1386 if (eof) 1387 eof = 2; 1388 } 1389 1390 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1391 wait_event(data[thr].done, 1392 atomic_read_acquire(&data[thr].stop)); 1393 atomic_set(&data[thr].stop, 0); 1394 1395 ret = data[thr].ret; 1396 1397 if (ret < 0) { 1398 pr_err("LZO decompression failed\n"); 1399 goto out_finish; 1400 } 1401 1402 if (unlikely(!data[thr].unc_len || 1403 data[thr].unc_len > LZO_UNC_SIZE || 1404 data[thr].unc_len & (PAGE_SIZE - 1))) { 1405 pr_err("Invalid LZO uncompressed length\n"); 1406 ret = -1; 1407 goto out_finish; 1408 } 1409 1410 for (off = 0; 1411 off < data[thr].unc_len; off += PAGE_SIZE) { 1412 memcpy(data_of(*snapshot), 1413 data[thr].unc + off, PAGE_SIZE); 1414 1415 if (!(nr_pages % m)) 1416 pr_info("Image loading progress: %3d%%\n", 1417 nr_pages / m * 10); 1418 nr_pages++; 1419 1420 ret = snapshot_write_next(snapshot); 1421 if (ret <= 0) { 1422 crc->run_threads = thr + 1; 1423 atomic_set_release(&crc->ready, 1); 1424 wake_up(&crc->go); 1425 goto out_finish; 1426 } 1427 } 1428 } 1429 1430 crc->run_threads = thr; 1431 atomic_set_release(&crc->ready, 1); 1432 wake_up(&crc->go); 1433 } 1434 1435 out_finish: 1436 if (crc->run_threads) { 1437 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1438 atomic_set(&crc->stop, 0); 1439 } 1440 stop = ktime_get(); 1441 if (!ret) { 1442 pr_info("Image loading done\n"); 1443 snapshot_write_finalize(snapshot); 1444 if (!snapshot_image_loaded(snapshot)) 1445 ret = -ENODATA; 1446 if (!ret) { 1447 if (swsusp_header->flags & SF_CRC32_MODE) { 1448 if(handle->crc32 != swsusp_header->crc32) { 1449 pr_err("Invalid image CRC32!\n"); 1450 ret = -ENODATA; 1451 } 1452 } 1453 } 1454 } 1455 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1456 out_clean: 1457 hib_finish_batch(&hb); 1458 for (i = 0; i < ring_size; i++) 1459 free_page((unsigned long)page[i]); 1460 if (crc) { 1461 if (crc->thr) 1462 kthread_stop(crc->thr); 1463 kfree(crc); 1464 } 1465 if (data) { 1466 for (thr = 0; thr < nr_threads; thr++) 1467 if (data[thr].thr) 1468 kthread_stop(data[thr].thr); 1469 vfree(data); 1470 } 1471 vfree(page); 1472 1473 return ret; 1474 } 1475 1476 /** 1477 * swsusp_read - read the hibernation image. 1478 * @flags_p: flags passed by the "frozen" kernel in the image header should 1479 * be written into this memory location 1480 */ 1481 1482 int swsusp_read(unsigned int *flags_p) 1483 { 1484 int error; 1485 struct swap_map_handle handle; 1486 struct snapshot_handle snapshot; 1487 struct swsusp_info *header; 1488 1489 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1490 error = snapshot_write_next(&snapshot); 1491 if (error < (int)PAGE_SIZE) 1492 return error < 0 ? error : -EFAULT; 1493 header = (struct swsusp_info *)data_of(snapshot); 1494 error = get_swap_reader(&handle, flags_p); 1495 if (error) 1496 goto end; 1497 if (!error) 1498 error = swap_read_page(&handle, header, NULL); 1499 if (!error) { 1500 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1501 load_image(&handle, &snapshot, header->pages - 1) : 1502 load_image_lzo(&handle, &snapshot, header->pages - 1); 1503 } 1504 swap_reader_finish(&handle); 1505 end: 1506 if (!error) 1507 pr_debug("Image successfully loaded\n"); 1508 else 1509 pr_debug("Error %d resuming\n", error); 1510 return error; 1511 } 1512 1513 static void *swsusp_holder; 1514 1515 /** 1516 * swsusp_check - Check for swsusp signature in the resume device 1517 * @exclusive: Open the resume device exclusively. 1518 */ 1519 1520 int swsusp_check(bool exclusive) 1521 { 1522 void *holder = exclusive ? &swsusp_holder : NULL; 1523 int error; 1524 1525 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, BLK_OPEN_READ, 1526 holder, NULL); 1527 if (!IS_ERR(hib_resume_bdev)) { 1528 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1529 clear_page(swsusp_header); 1530 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1531 swsusp_header, NULL); 1532 if (error) 1533 goto put; 1534 1535 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1536 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1537 /* Reset swap signature now */ 1538 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1539 swsusp_resume_block, 1540 swsusp_header, NULL); 1541 } else { 1542 error = -EINVAL; 1543 } 1544 if (!error && swsusp_header->flags & SF_HW_SIG && 1545 swsusp_header->hw_sig != swsusp_hardware_signature) { 1546 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1547 swsusp_header->hw_sig, swsusp_hardware_signature); 1548 error = -EINVAL; 1549 } 1550 1551 put: 1552 if (error) 1553 blkdev_put(hib_resume_bdev, holder); 1554 else 1555 pr_debug("Image signature found, resuming\n"); 1556 } else { 1557 error = PTR_ERR(hib_resume_bdev); 1558 } 1559 1560 if (error) 1561 pr_debug("Image not found (code %d)\n", error); 1562 1563 return error; 1564 } 1565 1566 /** 1567 * swsusp_close - close swap device. 1568 * @exclusive: Close the resume device which is exclusively opened. 1569 */ 1570 1571 void swsusp_close(bool exclusive) 1572 { 1573 if (IS_ERR(hib_resume_bdev)) { 1574 pr_debug("Image device not initialised\n"); 1575 return; 1576 } 1577 1578 blkdev_put(hib_resume_bdev, exclusive ? &swsusp_holder : NULL); 1579 } 1580 1581 /** 1582 * swsusp_unmark - Unmark swsusp signature in the resume device 1583 */ 1584 1585 #ifdef CONFIG_SUSPEND 1586 int swsusp_unmark(void) 1587 { 1588 int error; 1589 1590 hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1591 swsusp_header, NULL); 1592 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1593 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1594 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1595 swsusp_resume_block, 1596 swsusp_header, NULL); 1597 } else { 1598 pr_err("Cannot find swsusp signature!\n"); 1599 error = -ENODEV; 1600 } 1601 1602 /* 1603 * We just returned from suspend, we don't need the image any more. 1604 */ 1605 free_all_swap_pages(root_swap); 1606 1607 return error; 1608 } 1609 #endif 1610 1611 static int __init swsusp_header_init(void) 1612 { 1613 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1614 if (!swsusp_header) 1615 panic("Could not allocate memory for swsusp_header\n"); 1616 return 0; 1617 } 1618 1619 core_initcall(swsusp_header_init); 1620