xref: /openbmc/linux/kernel/power/swap.c (revision 6aa7de05)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34 
35 #include "power.h"
36 
37 #define HIBERNATE_SIG	"S1SUSPEND"
38 
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46 
47 /*
48  *	The swap map is a data structure used for keeping track of each page
49  *	written to a swap partition.  It consists of many swap_map_page
50  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *	These structures are stored on the swap and linked together with the
52  *	help of the .next_swap member.
53  *
54  *	The swap map is created during suspend.  The swap map pages are
55  *	allocated and populated one at a time, so we only need one memory
56  *	page to set up the entire structure.
57  *
58  *	During resume we pick up all swap_map_page structures into a list.
59  */
60 
61 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
62 
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68 	return nr_free_pages() - nr_free_highpages();
69 }
70 
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 	return low_free_pages() / 2;
78 }
79 
80 struct swap_map_page {
81 	sector_t entries[MAP_PAGE_ENTRIES];
82 	sector_t next_swap;
83 };
84 
85 struct swap_map_page_list {
86 	struct swap_map_page *map;
87 	struct swap_map_page_list *next;
88 };
89 
90 /**
91  *	The swap_map_handle structure is used for handling swap in
92  *	a file-alike way
93  */
94 
95 struct swap_map_handle {
96 	struct swap_map_page *cur;
97 	struct swap_map_page_list *maps;
98 	sector_t cur_swap;
99 	sector_t first_sector;
100 	unsigned int k;
101 	unsigned long reqd_free_pages;
102 	u32 crc32;
103 };
104 
105 struct swsusp_header {
106 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 	              sizeof(u32)];
108 	u32	crc32;
109 	sector_t image;
110 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
111 	char	orig_sig[10];
112 	char	sig[10];
113 } __packed;
114 
115 static struct swsusp_header *swsusp_header;
116 
117 /**
118  *	The following functions are used for tracing the allocated
119  *	swap pages, so that they can be freed in case of an error.
120  */
121 
122 struct swsusp_extent {
123 	struct rb_node node;
124 	unsigned long start;
125 	unsigned long end;
126 };
127 
128 static struct rb_root swsusp_extents = RB_ROOT;
129 
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132 	struct rb_node **new = &(swsusp_extents.rb_node);
133 	struct rb_node *parent = NULL;
134 	struct swsusp_extent *ext;
135 
136 	/* Figure out where to put the new node */
137 	while (*new) {
138 		ext = rb_entry(*new, struct swsusp_extent, node);
139 		parent = *new;
140 		if (swap_offset < ext->start) {
141 			/* Try to merge */
142 			if (swap_offset == ext->start - 1) {
143 				ext->start--;
144 				return 0;
145 			}
146 			new = &((*new)->rb_left);
147 		} else if (swap_offset > ext->end) {
148 			/* Try to merge */
149 			if (swap_offset == ext->end + 1) {
150 				ext->end++;
151 				return 0;
152 			}
153 			new = &((*new)->rb_right);
154 		} else {
155 			/* It already is in the tree */
156 			return -EINVAL;
157 		}
158 	}
159 	/* Add the new node and rebalance the tree. */
160 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161 	if (!ext)
162 		return -ENOMEM;
163 
164 	ext->start = swap_offset;
165 	ext->end = swap_offset;
166 	rb_link_node(&ext->node, parent, new);
167 	rb_insert_color(&ext->node, &swsusp_extents);
168 	return 0;
169 }
170 
171 /**
172  *	alloc_swapdev_block - allocate a swap page and register that it has
173  *	been allocated, so that it can be freed in case of an error.
174  */
175 
176 sector_t alloc_swapdev_block(int swap)
177 {
178 	unsigned long offset;
179 
180 	offset = swp_offset(get_swap_page_of_type(swap));
181 	if (offset) {
182 		if (swsusp_extents_insert(offset))
183 			swap_free(swp_entry(swap, offset));
184 		else
185 			return swapdev_block(swap, offset);
186 	}
187 	return 0;
188 }
189 
190 /**
191  *	free_all_swap_pages - free swap pages allocated for saving image data.
192  *	It also frees the extents used to register which swap entries had been
193  *	allocated.
194  */
195 
196 void free_all_swap_pages(int swap)
197 {
198 	struct rb_node *node;
199 
200 	while ((node = swsusp_extents.rb_node)) {
201 		struct swsusp_extent *ext;
202 		unsigned long offset;
203 
204 		ext = rb_entry(node, struct swsusp_extent, node);
205 		rb_erase(node, &swsusp_extents);
206 		for (offset = ext->start; offset <= ext->end; offset++)
207 			swap_free(swp_entry(swap, offset));
208 
209 		kfree(ext);
210 	}
211 }
212 
213 int swsusp_swap_in_use(void)
214 {
215 	return (swsusp_extents.rb_node != NULL);
216 }
217 
218 /*
219  * General things
220  */
221 
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224 
225 struct hib_bio_batch {
226 	atomic_t		count;
227 	wait_queue_head_t	wait;
228 	blk_status_t		error;
229 };
230 
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233 	atomic_set(&hb->count, 0);
234 	init_waitqueue_head(&hb->wait);
235 	hb->error = BLK_STS_OK;
236 }
237 
238 static void hib_end_io(struct bio *bio)
239 {
240 	struct hib_bio_batch *hb = bio->bi_private;
241 	struct page *page = bio->bi_io_vec[0].bv_page;
242 
243 	if (bio->bi_status) {
244 		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245 				MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246 				(unsigned long long)bio->bi_iter.bi_sector);
247 	}
248 
249 	if (bio_data_dir(bio) == WRITE)
250 		put_page(page);
251 	else if (clean_pages_on_read)
252 		flush_icache_range((unsigned long)page_address(page),
253 				   (unsigned long)page_address(page) + PAGE_SIZE);
254 
255 	if (bio->bi_status && !hb->error)
256 		hb->error = bio->bi_status;
257 	if (atomic_dec_and_test(&hb->count))
258 		wake_up(&hb->wait);
259 
260 	bio_put(bio);
261 }
262 
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264 		struct hib_bio_batch *hb)
265 {
266 	struct page *page = virt_to_page(addr);
267 	struct bio *bio;
268 	int error = 0;
269 
270 	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
271 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272 	bio_set_dev(bio, hib_resume_bdev);
273 	bio_set_op_attrs(bio, op, op_flags);
274 
275 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276 		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
277 			(unsigned long long)bio->bi_iter.bi_sector);
278 		bio_put(bio);
279 		return -EFAULT;
280 	}
281 
282 	if (hb) {
283 		bio->bi_end_io = hib_end_io;
284 		bio->bi_private = hb;
285 		atomic_inc(&hb->count);
286 		submit_bio(bio);
287 	} else {
288 		error = submit_bio_wait(bio);
289 		bio_put(bio);
290 	}
291 
292 	return error;
293 }
294 
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
298 	return blk_status_to_errno(hb->error);
299 }
300 
301 /*
302  * Saving part
303  */
304 
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307 	int error;
308 
309 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310 		      swsusp_header, NULL);
311 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315 		swsusp_header->image = handle->first_sector;
316 		swsusp_header->flags = flags;
317 		if (flags & SF_CRC32_MODE)
318 			swsusp_header->crc32 = handle->crc32;
319 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320 				      swsusp_resume_block, swsusp_header, NULL);
321 	} else {
322 		printk(KERN_ERR "PM: Swap header not found!\n");
323 		error = -ENODEV;
324 	}
325 	return error;
326 }
327 
328 /**
329  *	swsusp_swap_check - check if the resume device is a swap device
330  *	and get its index (if so)
331  *
332  *	This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336 	int res;
337 
338 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339 			&hib_resume_bdev);
340 	if (res < 0)
341 		return res;
342 
343 	root_swap = res;
344 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345 	if (res)
346 		return res;
347 
348 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349 	if (res < 0)
350 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
351 
352 	/*
353 	 * Update the resume device to the one actually used,
354 	 * so the test_resume mode can use it in case it is
355 	 * invoked from hibernate() to test the snapshot.
356 	 */
357 	swsusp_resume_device = hib_resume_bdev->bd_dev;
358 	return res;
359 }
360 
361 /**
362  *	write_page - Write one page to given swap location.
363  *	@buf:		Address we're writing.
364  *	@offset:	Offset of the swap page we're writing to.
365  *	@hb:		bio completion batch
366  */
367 
368 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
369 {
370 	void *src;
371 	int ret;
372 
373 	if (!offset)
374 		return -ENOSPC;
375 
376 	if (hb) {
377 		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
378 		                              __GFP_NORETRY);
379 		if (src) {
380 			copy_page(src, buf);
381 		} else {
382 			ret = hib_wait_io(hb); /* Free pages */
383 			if (ret)
384 				return ret;
385 			src = (void *)__get_free_page(__GFP_RECLAIM |
386 			                              __GFP_NOWARN |
387 			                              __GFP_NORETRY);
388 			if (src) {
389 				copy_page(src, buf);
390 			} else {
391 				WARN_ON_ONCE(1);
392 				hb = NULL;	/* Go synchronous */
393 				src = buf;
394 			}
395 		}
396 	} else {
397 		src = buf;
398 	}
399 	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
400 }
401 
402 static void release_swap_writer(struct swap_map_handle *handle)
403 {
404 	if (handle->cur)
405 		free_page((unsigned long)handle->cur);
406 	handle->cur = NULL;
407 }
408 
409 static int get_swap_writer(struct swap_map_handle *handle)
410 {
411 	int ret;
412 
413 	ret = swsusp_swap_check();
414 	if (ret) {
415 		if (ret != -ENOSPC)
416 			printk(KERN_ERR "PM: Cannot find swap device, try "
417 					"swapon -a.\n");
418 		return ret;
419 	}
420 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
421 	if (!handle->cur) {
422 		ret = -ENOMEM;
423 		goto err_close;
424 	}
425 	handle->cur_swap = alloc_swapdev_block(root_swap);
426 	if (!handle->cur_swap) {
427 		ret = -ENOSPC;
428 		goto err_rel;
429 	}
430 	handle->k = 0;
431 	handle->reqd_free_pages = reqd_free_pages();
432 	handle->first_sector = handle->cur_swap;
433 	return 0;
434 err_rel:
435 	release_swap_writer(handle);
436 err_close:
437 	swsusp_close(FMODE_WRITE);
438 	return ret;
439 }
440 
441 static int swap_write_page(struct swap_map_handle *handle, void *buf,
442 		struct hib_bio_batch *hb)
443 {
444 	int error = 0;
445 	sector_t offset;
446 
447 	if (!handle->cur)
448 		return -EINVAL;
449 	offset = alloc_swapdev_block(root_swap);
450 	error = write_page(buf, offset, hb);
451 	if (error)
452 		return error;
453 	handle->cur->entries[handle->k++] = offset;
454 	if (handle->k >= MAP_PAGE_ENTRIES) {
455 		offset = alloc_swapdev_block(root_swap);
456 		if (!offset)
457 			return -ENOSPC;
458 		handle->cur->next_swap = offset;
459 		error = write_page(handle->cur, handle->cur_swap, hb);
460 		if (error)
461 			goto out;
462 		clear_page(handle->cur);
463 		handle->cur_swap = offset;
464 		handle->k = 0;
465 
466 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
467 			error = hib_wait_io(hb);
468 			if (error)
469 				goto out;
470 			/*
471 			 * Recalculate the number of required free pages, to
472 			 * make sure we never take more than half.
473 			 */
474 			handle->reqd_free_pages = reqd_free_pages();
475 		}
476 	}
477  out:
478 	return error;
479 }
480 
481 static int flush_swap_writer(struct swap_map_handle *handle)
482 {
483 	if (handle->cur && handle->cur_swap)
484 		return write_page(handle->cur, handle->cur_swap, NULL);
485 	else
486 		return -EINVAL;
487 }
488 
489 static int swap_writer_finish(struct swap_map_handle *handle,
490 		unsigned int flags, int error)
491 {
492 	if (!error) {
493 		flush_swap_writer(handle);
494 		printk(KERN_INFO "PM: S");
495 		error = mark_swapfiles(handle, flags);
496 		printk("|\n");
497 	}
498 
499 	if (error)
500 		free_all_swap_pages(root_swap);
501 	release_swap_writer(handle);
502 	swsusp_close(FMODE_WRITE);
503 
504 	return error;
505 }
506 
507 /* We need to remember how much compressed data we need to read. */
508 #define LZO_HEADER	sizeof(size_t)
509 
510 /* Number of pages/bytes we'll compress at one time. */
511 #define LZO_UNC_PAGES	32
512 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
513 
514 /* Number of pages/bytes we need for compressed data (worst case). */
515 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
516 			             LZO_HEADER, PAGE_SIZE)
517 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
518 
519 /* Maximum number of threads for compression/decompression. */
520 #define LZO_THREADS	3
521 
522 /* Minimum/maximum number of pages for read buffering. */
523 #define LZO_MIN_RD_PAGES	1024
524 #define LZO_MAX_RD_PAGES	8192
525 
526 
527 /**
528  *	save_image - save the suspend image data
529  */
530 
531 static int save_image(struct swap_map_handle *handle,
532                       struct snapshot_handle *snapshot,
533                       unsigned int nr_to_write)
534 {
535 	unsigned int m;
536 	int ret;
537 	int nr_pages;
538 	int err2;
539 	struct hib_bio_batch hb;
540 	ktime_t start;
541 	ktime_t stop;
542 
543 	hib_init_batch(&hb);
544 
545 	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
546 		nr_to_write);
547 	m = nr_to_write / 10;
548 	if (!m)
549 		m = 1;
550 	nr_pages = 0;
551 	start = ktime_get();
552 	while (1) {
553 		ret = snapshot_read_next(snapshot);
554 		if (ret <= 0)
555 			break;
556 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
557 		if (ret)
558 			break;
559 		if (!(nr_pages % m))
560 			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
561 			       nr_pages / m * 10);
562 		nr_pages++;
563 	}
564 	err2 = hib_wait_io(&hb);
565 	stop = ktime_get();
566 	if (!ret)
567 		ret = err2;
568 	if (!ret)
569 		printk(KERN_INFO "PM: Image saving done.\n");
570 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
571 	return ret;
572 }
573 
574 /**
575  * Structure used for CRC32.
576  */
577 struct crc_data {
578 	struct task_struct *thr;                  /* thread */
579 	atomic_t ready;                           /* ready to start flag */
580 	atomic_t stop;                            /* ready to stop flag */
581 	unsigned run_threads;                     /* nr current threads */
582 	wait_queue_head_t go;                     /* start crc update */
583 	wait_queue_head_t done;                   /* crc update done */
584 	u32 *crc32;                               /* points to handle's crc32 */
585 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
586 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
587 };
588 
589 /**
590  * CRC32 update function that runs in its own thread.
591  */
592 static int crc32_threadfn(void *data)
593 {
594 	struct crc_data *d = data;
595 	unsigned i;
596 
597 	while (1) {
598 		wait_event(d->go, atomic_read(&d->ready) ||
599 		                  kthread_should_stop());
600 		if (kthread_should_stop()) {
601 			d->thr = NULL;
602 			atomic_set(&d->stop, 1);
603 			wake_up(&d->done);
604 			break;
605 		}
606 		atomic_set(&d->ready, 0);
607 
608 		for (i = 0; i < d->run_threads; i++)
609 			*d->crc32 = crc32_le(*d->crc32,
610 			                     d->unc[i], *d->unc_len[i]);
611 		atomic_set(&d->stop, 1);
612 		wake_up(&d->done);
613 	}
614 	return 0;
615 }
616 /**
617  * Structure used for LZO data compression.
618  */
619 struct cmp_data {
620 	struct task_struct *thr;                  /* thread */
621 	atomic_t ready;                           /* ready to start flag */
622 	atomic_t stop;                            /* ready to stop flag */
623 	int ret;                                  /* return code */
624 	wait_queue_head_t go;                     /* start compression */
625 	wait_queue_head_t done;                   /* compression done */
626 	size_t unc_len;                           /* uncompressed length */
627 	size_t cmp_len;                           /* compressed length */
628 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
629 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
630 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
631 };
632 
633 /**
634  * Compression function that runs in its own thread.
635  */
636 static int lzo_compress_threadfn(void *data)
637 {
638 	struct cmp_data *d = data;
639 
640 	while (1) {
641 		wait_event(d->go, atomic_read(&d->ready) ||
642 		                  kthread_should_stop());
643 		if (kthread_should_stop()) {
644 			d->thr = NULL;
645 			d->ret = -1;
646 			atomic_set(&d->stop, 1);
647 			wake_up(&d->done);
648 			break;
649 		}
650 		atomic_set(&d->ready, 0);
651 
652 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
653 		                          d->cmp + LZO_HEADER, &d->cmp_len,
654 		                          d->wrk);
655 		atomic_set(&d->stop, 1);
656 		wake_up(&d->done);
657 	}
658 	return 0;
659 }
660 
661 /**
662  * save_image_lzo - Save the suspend image data compressed with LZO.
663  * @handle: Swap map handle to use for saving the image.
664  * @snapshot: Image to read data from.
665  * @nr_to_write: Number of pages to save.
666  */
667 static int save_image_lzo(struct swap_map_handle *handle,
668                           struct snapshot_handle *snapshot,
669                           unsigned int nr_to_write)
670 {
671 	unsigned int m;
672 	int ret = 0;
673 	int nr_pages;
674 	int err2;
675 	struct hib_bio_batch hb;
676 	ktime_t start;
677 	ktime_t stop;
678 	size_t off;
679 	unsigned thr, run_threads, nr_threads;
680 	unsigned char *page = NULL;
681 	struct cmp_data *data = NULL;
682 	struct crc_data *crc = NULL;
683 
684 	hib_init_batch(&hb);
685 
686 	/*
687 	 * We'll limit the number of threads for compression to limit memory
688 	 * footprint.
689 	 */
690 	nr_threads = num_online_cpus() - 1;
691 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
692 
693 	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
694 	if (!page) {
695 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
696 		ret = -ENOMEM;
697 		goto out_clean;
698 	}
699 
700 	data = vmalloc(sizeof(*data) * nr_threads);
701 	if (!data) {
702 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
703 		ret = -ENOMEM;
704 		goto out_clean;
705 	}
706 	for (thr = 0; thr < nr_threads; thr++)
707 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
708 
709 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
710 	if (!crc) {
711 		printk(KERN_ERR "PM: Failed to allocate crc\n");
712 		ret = -ENOMEM;
713 		goto out_clean;
714 	}
715 	memset(crc, 0, offsetof(struct crc_data, go));
716 
717 	/*
718 	 * Start the compression threads.
719 	 */
720 	for (thr = 0; thr < nr_threads; thr++) {
721 		init_waitqueue_head(&data[thr].go);
722 		init_waitqueue_head(&data[thr].done);
723 
724 		data[thr].thr = kthread_run(lzo_compress_threadfn,
725 		                            &data[thr],
726 		                            "image_compress/%u", thr);
727 		if (IS_ERR(data[thr].thr)) {
728 			data[thr].thr = NULL;
729 			printk(KERN_ERR
730 			       "PM: Cannot start compression threads\n");
731 			ret = -ENOMEM;
732 			goto out_clean;
733 		}
734 	}
735 
736 	/*
737 	 * Start the CRC32 thread.
738 	 */
739 	init_waitqueue_head(&crc->go);
740 	init_waitqueue_head(&crc->done);
741 
742 	handle->crc32 = 0;
743 	crc->crc32 = &handle->crc32;
744 	for (thr = 0; thr < nr_threads; thr++) {
745 		crc->unc[thr] = data[thr].unc;
746 		crc->unc_len[thr] = &data[thr].unc_len;
747 	}
748 
749 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
750 	if (IS_ERR(crc->thr)) {
751 		crc->thr = NULL;
752 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
753 		ret = -ENOMEM;
754 		goto out_clean;
755 	}
756 
757 	/*
758 	 * Adjust the number of required free pages after all allocations have
759 	 * been done. We don't want to run out of pages when writing.
760 	 */
761 	handle->reqd_free_pages = reqd_free_pages();
762 
763 	printk(KERN_INFO
764 		"PM: Using %u thread(s) for compression.\n"
765 		"PM: Compressing and saving image data (%u pages)...\n",
766 		nr_threads, nr_to_write);
767 	m = nr_to_write / 10;
768 	if (!m)
769 		m = 1;
770 	nr_pages = 0;
771 	start = ktime_get();
772 	for (;;) {
773 		for (thr = 0; thr < nr_threads; thr++) {
774 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
775 				ret = snapshot_read_next(snapshot);
776 				if (ret < 0)
777 					goto out_finish;
778 
779 				if (!ret)
780 					break;
781 
782 				memcpy(data[thr].unc + off,
783 				       data_of(*snapshot), PAGE_SIZE);
784 
785 				if (!(nr_pages % m))
786 					printk(KERN_INFO
787 					       "PM: Image saving progress: "
788 					       "%3d%%\n",
789 				               nr_pages / m * 10);
790 				nr_pages++;
791 			}
792 			if (!off)
793 				break;
794 
795 			data[thr].unc_len = off;
796 
797 			atomic_set(&data[thr].ready, 1);
798 			wake_up(&data[thr].go);
799 		}
800 
801 		if (!thr)
802 			break;
803 
804 		crc->run_threads = thr;
805 		atomic_set(&crc->ready, 1);
806 		wake_up(&crc->go);
807 
808 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
809 			wait_event(data[thr].done,
810 			           atomic_read(&data[thr].stop));
811 			atomic_set(&data[thr].stop, 0);
812 
813 			ret = data[thr].ret;
814 
815 			if (ret < 0) {
816 				printk(KERN_ERR "PM: LZO compression failed\n");
817 				goto out_finish;
818 			}
819 
820 			if (unlikely(!data[thr].cmp_len ||
821 			             data[thr].cmp_len >
822 			             lzo1x_worst_compress(data[thr].unc_len))) {
823 				printk(KERN_ERR
824 				       "PM: Invalid LZO compressed length\n");
825 				ret = -1;
826 				goto out_finish;
827 			}
828 
829 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
830 
831 			/*
832 			 * Given we are writing one page at a time to disk, we
833 			 * copy that much from the buffer, although the last
834 			 * bit will likely be smaller than full page. This is
835 			 * OK - we saved the length of the compressed data, so
836 			 * any garbage at the end will be discarded when we
837 			 * read it.
838 			 */
839 			for (off = 0;
840 			     off < LZO_HEADER + data[thr].cmp_len;
841 			     off += PAGE_SIZE) {
842 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
843 
844 				ret = swap_write_page(handle, page, &hb);
845 				if (ret)
846 					goto out_finish;
847 			}
848 		}
849 
850 		wait_event(crc->done, atomic_read(&crc->stop));
851 		atomic_set(&crc->stop, 0);
852 	}
853 
854 out_finish:
855 	err2 = hib_wait_io(&hb);
856 	stop = ktime_get();
857 	if (!ret)
858 		ret = err2;
859 	if (!ret)
860 		printk(KERN_INFO "PM: Image saving done.\n");
861 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
862 out_clean:
863 	if (crc) {
864 		if (crc->thr)
865 			kthread_stop(crc->thr);
866 		kfree(crc);
867 	}
868 	if (data) {
869 		for (thr = 0; thr < nr_threads; thr++)
870 			if (data[thr].thr)
871 				kthread_stop(data[thr].thr);
872 		vfree(data);
873 	}
874 	if (page) free_page((unsigned long)page);
875 
876 	return ret;
877 }
878 
879 /**
880  *	enough_swap - Make sure we have enough swap to save the image.
881  *
882  *	Returns TRUE or FALSE after checking the total amount of swap
883  *	space avaiable from the resume partition.
884  */
885 
886 static int enough_swap(unsigned int nr_pages, unsigned int flags)
887 {
888 	unsigned int free_swap = count_swap_pages(root_swap, 1);
889 	unsigned int required;
890 
891 	pr_debug("PM: Free swap pages: %u\n", free_swap);
892 
893 	required = PAGES_FOR_IO + nr_pages;
894 	return free_swap > required;
895 }
896 
897 /**
898  *	swsusp_write - Write entire image and metadata.
899  *	@flags: flags to pass to the "boot" kernel in the image header
900  *
901  *	It is important _NOT_ to umount filesystems at this point. We want
902  *	them synced (in case something goes wrong) but we DO not want to mark
903  *	filesystem clean: it is not. (And it does not matter, if we resume
904  *	correctly, we'll mark system clean, anyway.)
905  */
906 
907 int swsusp_write(unsigned int flags)
908 {
909 	struct swap_map_handle handle;
910 	struct snapshot_handle snapshot;
911 	struct swsusp_info *header;
912 	unsigned long pages;
913 	int error;
914 
915 	pages = snapshot_get_image_size();
916 	error = get_swap_writer(&handle);
917 	if (error) {
918 		printk(KERN_ERR "PM: Cannot get swap writer\n");
919 		return error;
920 	}
921 	if (flags & SF_NOCOMPRESS_MODE) {
922 		if (!enough_swap(pages, flags)) {
923 			printk(KERN_ERR "PM: Not enough free swap\n");
924 			error = -ENOSPC;
925 			goto out_finish;
926 		}
927 	}
928 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
929 	error = snapshot_read_next(&snapshot);
930 	if (error < PAGE_SIZE) {
931 		if (error >= 0)
932 			error = -EFAULT;
933 
934 		goto out_finish;
935 	}
936 	header = (struct swsusp_info *)data_of(snapshot);
937 	error = swap_write_page(&handle, header, NULL);
938 	if (!error) {
939 		error = (flags & SF_NOCOMPRESS_MODE) ?
940 			save_image(&handle, &snapshot, pages - 1) :
941 			save_image_lzo(&handle, &snapshot, pages - 1);
942 	}
943 out_finish:
944 	error = swap_writer_finish(&handle, flags, error);
945 	return error;
946 }
947 
948 /**
949  *	The following functions allow us to read data using a swap map
950  *	in a file-alike way
951  */
952 
953 static void release_swap_reader(struct swap_map_handle *handle)
954 {
955 	struct swap_map_page_list *tmp;
956 
957 	while (handle->maps) {
958 		if (handle->maps->map)
959 			free_page((unsigned long)handle->maps->map);
960 		tmp = handle->maps;
961 		handle->maps = handle->maps->next;
962 		kfree(tmp);
963 	}
964 	handle->cur = NULL;
965 }
966 
967 static int get_swap_reader(struct swap_map_handle *handle,
968 		unsigned int *flags_p)
969 {
970 	int error;
971 	struct swap_map_page_list *tmp, *last;
972 	sector_t offset;
973 
974 	*flags_p = swsusp_header->flags;
975 
976 	if (!swsusp_header->image) /* how can this happen? */
977 		return -EINVAL;
978 
979 	handle->cur = NULL;
980 	last = handle->maps = NULL;
981 	offset = swsusp_header->image;
982 	while (offset) {
983 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
984 		if (!tmp) {
985 			release_swap_reader(handle);
986 			return -ENOMEM;
987 		}
988 		memset(tmp, 0, sizeof(*tmp));
989 		if (!handle->maps)
990 			handle->maps = tmp;
991 		if (last)
992 			last->next = tmp;
993 		last = tmp;
994 
995 		tmp->map = (struct swap_map_page *)
996 			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
997 		if (!tmp->map) {
998 			release_swap_reader(handle);
999 			return -ENOMEM;
1000 		}
1001 
1002 		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1003 		if (error) {
1004 			release_swap_reader(handle);
1005 			return error;
1006 		}
1007 		offset = tmp->map->next_swap;
1008 	}
1009 	handle->k = 0;
1010 	handle->cur = handle->maps->map;
1011 	return 0;
1012 }
1013 
1014 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1015 		struct hib_bio_batch *hb)
1016 {
1017 	sector_t offset;
1018 	int error;
1019 	struct swap_map_page_list *tmp;
1020 
1021 	if (!handle->cur)
1022 		return -EINVAL;
1023 	offset = handle->cur->entries[handle->k];
1024 	if (!offset)
1025 		return -EFAULT;
1026 	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1027 	if (error)
1028 		return error;
1029 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1030 		handle->k = 0;
1031 		free_page((unsigned long)handle->maps->map);
1032 		tmp = handle->maps;
1033 		handle->maps = handle->maps->next;
1034 		kfree(tmp);
1035 		if (!handle->maps)
1036 			release_swap_reader(handle);
1037 		else
1038 			handle->cur = handle->maps->map;
1039 	}
1040 	return error;
1041 }
1042 
1043 static int swap_reader_finish(struct swap_map_handle *handle)
1044 {
1045 	release_swap_reader(handle);
1046 
1047 	return 0;
1048 }
1049 
1050 /**
1051  *	load_image - load the image using the swap map handle
1052  *	@handle and the snapshot handle @snapshot
1053  *	(assume there are @nr_pages pages to load)
1054  */
1055 
1056 static int load_image(struct swap_map_handle *handle,
1057                       struct snapshot_handle *snapshot,
1058                       unsigned int nr_to_read)
1059 {
1060 	unsigned int m;
1061 	int ret = 0;
1062 	ktime_t start;
1063 	ktime_t stop;
1064 	struct hib_bio_batch hb;
1065 	int err2;
1066 	unsigned nr_pages;
1067 
1068 	hib_init_batch(&hb);
1069 
1070 	clean_pages_on_read = true;
1071 	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1072 		nr_to_read);
1073 	m = nr_to_read / 10;
1074 	if (!m)
1075 		m = 1;
1076 	nr_pages = 0;
1077 	start = ktime_get();
1078 	for ( ; ; ) {
1079 		ret = snapshot_write_next(snapshot);
1080 		if (ret <= 0)
1081 			break;
1082 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1083 		if (ret)
1084 			break;
1085 		if (snapshot->sync_read)
1086 			ret = hib_wait_io(&hb);
1087 		if (ret)
1088 			break;
1089 		if (!(nr_pages % m))
1090 			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1091 			       nr_pages / m * 10);
1092 		nr_pages++;
1093 	}
1094 	err2 = hib_wait_io(&hb);
1095 	stop = ktime_get();
1096 	if (!ret)
1097 		ret = err2;
1098 	if (!ret) {
1099 		printk(KERN_INFO "PM: Image loading done.\n");
1100 		snapshot_write_finalize(snapshot);
1101 		if (!snapshot_image_loaded(snapshot))
1102 			ret = -ENODATA;
1103 	}
1104 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1105 	return ret;
1106 }
1107 
1108 /**
1109  * Structure used for LZO data decompression.
1110  */
1111 struct dec_data {
1112 	struct task_struct *thr;                  /* thread */
1113 	atomic_t ready;                           /* ready to start flag */
1114 	atomic_t stop;                            /* ready to stop flag */
1115 	int ret;                                  /* return code */
1116 	wait_queue_head_t go;                     /* start decompression */
1117 	wait_queue_head_t done;                   /* decompression done */
1118 	size_t unc_len;                           /* uncompressed length */
1119 	size_t cmp_len;                           /* compressed length */
1120 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1121 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1122 };
1123 
1124 /**
1125  * Deompression function that runs in its own thread.
1126  */
1127 static int lzo_decompress_threadfn(void *data)
1128 {
1129 	struct dec_data *d = data;
1130 
1131 	while (1) {
1132 		wait_event(d->go, atomic_read(&d->ready) ||
1133 		                  kthread_should_stop());
1134 		if (kthread_should_stop()) {
1135 			d->thr = NULL;
1136 			d->ret = -1;
1137 			atomic_set(&d->stop, 1);
1138 			wake_up(&d->done);
1139 			break;
1140 		}
1141 		atomic_set(&d->ready, 0);
1142 
1143 		d->unc_len = LZO_UNC_SIZE;
1144 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1145 		                               d->unc, &d->unc_len);
1146 		if (clean_pages_on_decompress)
1147 			flush_icache_range((unsigned long)d->unc,
1148 					   (unsigned long)d->unc + d->unc_len);
1149 
1150 		atomic_set(&d->stop, 1);
1151 		wake_up(&d->done);
1152 	}
1153 	return 0;
1154 }
1155 
1156 /**
1157  * load_image_lzo - Load compressed image data and decompress them with LZO.
1158  * @handle: Swap map handle to use for loading data.
1159  * @snapshot: Image to copy uncompressed data into.
1160  * @nr_to_read: Number of pages to load.
1161  */
1162 static int load_image_lzo(struct swap_map_handle *handle,
1163                           struct snapshot_handle *snapshot,
1164                           unsigned int nr_to_read)
1165 {
1166 	unsigned int m;
1167 	int ret = 0;
1168 	int eof = 0;
1169 	struct hib_bio_batch hb;
1170 	ktime_t start;
1171 	ktime_t stop;
1172 	unsigned nr_pages;
1173 	size_t off;
1174 	unsigned i, thr, run_threads, nr_threads;
1175 	unsigned ring = 0, pg = 0, ring_size = 0,
1176 	         have = 0, want, need, asked = 0;
1177 	unsigned long read_pages = 0;
1178 	unsigned char **page = NULL;
1179 	struct dec_data *data = NULL;
1180 	struct crc_data *crc = NULL;
1181 
1182 	hib_init_batch(&hb);
1183 
1184 	/*
1185 	 * We'll limit the number of threads for decompression to limit memory
1186 	 * footprint.
1187 	 */
1188 	nr_threads = num_online_cpus() - 1;
1189 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1190 
1191 	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1192 	if (!page) {
1193 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1194 		ret = -ENOMEM;
1195 		goto out_clean;
1196 	}
1197 
1198 	data = vmalloc(sizeof(*data) * nr_threads);
1199 	if (!data) {
1200 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1201 		ret = -ENOMEM;
1202 		goto out_clean;
1203 	}
1204 	for (thr = 0; thr < nr_threads; thr++)
1205 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1206 
1207 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1208 	if (!crc) {
1209 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1210 		ret = -ENOMEM;
1211 		goto out_clean;
1212 	}
1213 	memset(crc, 0, offsetof(struct crc_data, go));
1214 
1215 	clean_pages_on_decompress = true;
1216 
1217 	/*
1218 	 * Start the decompression threads.
1219 	 */
1220 	for (thr = 0; thr < nr_threads; thr++) {
1221 		init_waitqueue_head(&data[thr].go);
1222 		init_waitqueue_head(&data[thr].done);
1223 
1224 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225 		                            &data[thr],
1226 		                            "image_decompress/%u", thr);
1227 		if (IS_ERR(data[thr].thr)) {
1228 			data[thr].thr = NULL;
1229 			printk(KERN_ERR
1230 			       "PM: Cannot start decompression threads\n");
1231 			ret = -ENOMEM;
1232 			goto out_clean;
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * Start the CRC32 thread.
1238 	 */
1239 	init_waitqueue_head(&crc->go);
1240 	init_waitqueue_head(&crc->done);
1241 
1242 	handle->crc32 = 0;
1243 	crc->crc32 = &handle->crc32;
1244 	for (thr = 0; thr < nr_threads; thr++) {
1245 		crc->unc[thr] = data[thr].unc;
1246 		crc->unc_len[thr] = &data[thr].unc_len;
1247 	}
1248 
1249 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1250 	if (IS_ERR(crc->thr)) {
1251 		crc->thr = NULL;
1252 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1253 		ret = -ENOMEM;
1254 		goto out_clean;
1255 	}
1256 
1257 	/*
1258 	 * Set the number of pages for read buffering.
1259 	 * This is complete guesswork, because we'll only know the real
1260 	 * picture once prepare_image() is called, which is much later on
1261 	 * during the image load phase. We'll assume the worst case and
1262 	 * say that none of the image pages are from high memory.
1263 	 */
1264 	if (low_free_pages() > snapshot_get_image_size())
1265 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1266 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1267 
1268 	for (i = 0; i < read_pages; i++) {
1269 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1270 						  __GFP_RECLAIM | __GFP_HIGH :
1271 						  __GFP_RECLAIM | __GFP_NOWARN |
1272 						  __GFP_NORETRY);
1273 
1274 		if (!page[i]) {
1275 			if (i < LZO_CMP_PAGES) {
1276 				ring_size = i;
1277 				printk(KERN_ERR
1278 				       "PM: Failed to allocate LZO pages\n");
1279 				ret = -ENOMEM;
1280 				goto out_clean;
1281 			} else {
1282 				break;
1283 			}
1284 		}
1285 	}
1286 	want = ring_size = i;
1287 
1288 	printk(KERN_INFO
1289 		"PM: Using %u thread(s) for decompression.\n"
1290 		"PM: Loading and decompressing image data (%u pages)...\n",
1291 		nr_threads, nr_to_read);
1292 	m = nr_to_read / 10;
1293 	if (!m)
1294 		m = 1;
1295 	nr_pages = 0;
1296 	start = ktime_get();
1297 
1298 	ret = snapshot_write_next(snapshot);
1299 	if (ret <= 0)
1300 		goto out_finish;
1301 
1302 	for(;;) {
1303 		for (i = 0; !eof && i < want; i++) {
1304 			ret = swap_read_page(handle, page[ring], &hb);
1305 			if (ret) {
1306 				/*
1307 				 * On real read error, finish. On end of data,
1308 				 * set EOF flag and just exit the read loop.
1309 				 */
1310 				if (handle->cur &&
1311 				    handle->cur->entries[handle->k]) {
1312 					goto out_finish;
1313 				} else {
1314 					eof = 1;
1315 					break;
1316 				}
1317 			}
1318 			if (++ring >= ring_size)
1319 				ring = 0;
1320 		}
1321 		asked += i;
1322 		want -= i;
1323 
1324 		/*
1325 		 * We are out of data, wait for some more.
1326 		 */
1327 		if (!have) {
1328 			if (!asked)
1329 				break;
1330 
1331 			ret = hib_wait_io(&hb);
1332 			if (ret)
1333 				goto out_finish;
1334 			have += asked;
1335 			asked = 0;
1336 			if (eof)
1337 				eof = 2;
1338 		}
1339 
1340 		if (crc->run_threads) {
1341 			wait_event(crc->done, atomic_read(&crc->stop));
1342 			atomic_set(&crc->stop, 0);
1343 			crc->run_threads = 0;
1344 		}
1345 
1346 		for (thr = 0; have && thr < nr_threads; thr++) {
1347 			data[thr].cmp_len = *(size_t *)page[pg];
1348 			if (unlikely(!data[thr].cmp_len ||
1349 			             data[thr].cmp_len >
1350 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1351 				printk(KERN_ERR
1352 				       "PM: Invalid LZO compressed length\n");
1353 				ret = -1;
1354 				goto out_finish;
1355 			}
1356 
1357 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1358 			                    PAGE_SIZE);
1359 			if (need > have) {
1360 				if (eof > 1) {
1361 					ret = -1;
1362 					goto out_finish;
1363 				}
1364 				break;
1365 			}
1366 
1367 			for (off = 0;
1368 			     off < LZO_HEADER + data[thr].cmp_len;
1369 			     off += PAGE_SIZE) {
1370 				memcpy(data[thr].cmp + off,
1371 				       page[pg], PAGE_SIZE);
1372 				have--;
1373 				want++;
1374 				if (++pg >= ring_size)
1375 					pg = 0;
1376 			}
1377 
1378 			atomic_set(&data[thr].ready, 1);
1379 			wake_up(&data[thr].go);
1380 		}
1381 
1382 		/*
1383 		 * Wait for more data while we are decompressing.
1384 		 */
1385 		if (have < LZO_CMP_PAGES && asked) {
1386 			ret = hib_wait_io(&hb);
1387 			if (ret)
1388 				goto out_finish;
1389 			have += asked;
1390 			asked = 0;
1391 			if (eof)
1392 				eof = 2;
1393 		}
1394 
1395 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1396 			wait_event(data[thr].done,
1397 			           atomic_read(&data[thr].stop));
1398 			atomic_set(&data[thr].stop, 0);
1399 
1400 			ret = data[thr].ret;
1401 
1402 			if (ret < 0) {
1403 				printk(KERN_ERR
1404 				       "PM: LZO decompression failed\n");
1405 				goto out_finish;
1406 			}
1407 
1408 			if (unlikely(!data[thr].unc_len ||
1409 			             data[thr].unc_len > LZO_UNC_SIZE ||
1410 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1411 				printk(KERN_ERR
1412 				       "PM: Invalid LZO uncompressed length\n");
1413 				ret = -1;
1414 				goto out_finish;
1415 			}
1416 
1417 			for (off = 0;
1418 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1419 				memcpy(data_of(*snapshot),
1420 				       data[thr].unc + off, PAGE_SIZE);
1421 
1422 				if (!(nr_pages % m))
1423 					printk(KERN_INFO
1424 					       "PM: Image loading progress: "
1425 					       "%3d%%\n",
1426 					       nr_pages / m * 10);
1427 				nr_pages++;
1428 
1429 				ret = snapshot_write_next(snapshot);
1430 				if (ret <= 0) {
1431 					crc->run_threads = thr + 1;
1432 					atomic_set(&crc->ready, 1);
1433 					wake_up(&crc->go);
1434 					goto out_finish;
1435 				}
1436 			}
1437 		}
1438 
1439 		crc->run_threads = thr;
1440 		atomic_set(&crc->ready, 1);
1441 		wake_up(&crc->go);
1442 	}
1443 
1444 out_finish:
1445 	if (crc->run_threads) {
1446 		wait_event(crc->done, atomic_read(&crc->stop));
1447 		atomic_set(&crc->stop, 0);
1448 	}
1449 	stop = ktime_get();
1450 	if (!ret) {
1451 		printk(KERN_INFO "PM: Image loading done.\n");
1452 		snapshot_write_finalize(snapshot);
1453 		if (!snapshot_image_loaded(snapshot))
1454 			ret = -ENODATA;
1455 		if (!ret) {
1456 			if (swsusp_header->flags & SF_CRC32_MODE) {
1457 				if(handle->crc32 != swsusp_header->crc32) {
1458 					printk(KERN_ERR
1459 					       "PM: Invalid image CRC32!\n");
1460 					ret = -ENODATA;
1461 				}
1462 			}
1463 		}
1464 	}
1465 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1466 out_clean:
1467 	for (i = 0; i < ring_size; i++)
1468 		free_page((unsigned long)page[i]);
1469 	if (crc) {
1470 		if (crc->thr)
1471 			kthread_stop(crc->thr);
1472 		kfree(crc);
1473 	}
1474 	if (data) {
1475 		for (thr = 0; thr < nr_threads; thr++)
1476 			if (data[thr].thr)
1477 				kthread_stop(data[thr].thr);
1478 		vfree(data);
1479 	}
1480 	vfree(page);
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	swsusp_read - read the hibernation image.
1487  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1488  *		  be written into this memory location
1489  */
1490 
1491 int swsusp_read(unsigned int *flags_p)
1492 {
1493 	int error;
1494 	struct swap_map_handle handle;
1495 	struct snapshot_handle snapshot;
1496 	struct swsusp_info *header;
1497 
1498 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1499 	error = snapshot_write_next(&snapshot);
1500 	if (error < PAGE_SIZE)
1501 		return error < 0 ? error : -EFAULT;
1502 	header = (struct swsusp_info *)data_of(snapshot);
1503 	error = get_swap_reader(&handle, flags_p);
1504 	if (error)
1505 		goto end;
1506 	if (!error)
1507 		error = swap_read_page(&handle, header, NULL);
1508 	if (!error) {
1509 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1510 			load_image(&handle, &snapshot, header->pages - 1) :
1511 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1512 	}
1513 	swap_reader_finish(&handle);
1514 end:
1515 	if (!error)
1516 		pr_debug("PM: Image successfully loaded\n");
1517 	else
1518 		pr_debug("PM: Error %d resuming\n", error);
1519 	return error;
1520 }
1521 
1522 /**
1523  *      swsusp_check - Check for swsusp signature in the resume device
1524  */
1525 
1526 int swsusp_check(void)
1527 {
1528 	int error;
1529 
1530 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1531 					    FMODE_READ, NULL);
1532 	if (!IS_ERR(hib_resume_bdev)) {
1533 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1534 		clear_page(swsusp_header);
1535 		error = hib_submit_io(REQ_OP_READ, 0,
1536 					swsusp_resume_block,
1537 					swsusp_header, NULL);
1538 		if (error)
1539 			goto put;
1540 
1541 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1542 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1543 			/* Reset swap signature now */
1544 			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1545 						swsusp_resume_block,
1546 						swsusp_header, NULL);
1547 		} else {
1548 			error = -EINVAL;
1549 		}
1550 
1551 put:
1552 		if (error)
1553 			blkdev_put(hib_resume_bdev, FMODE_READ);
1554 		else
1555 			pr_debug("PM: Image signature found, resuming\n");
1556 	} else {
1557 		error = PTR_ERR(hib_resume_bdev);
1558 	}
1559 
1560 	if (error)
1561 		pr_debug("PM: Image not found (code %d)\n", error);
1562 
1563 	return error;
1564 }
1565 
1566 /**
1567  *	swsusp_close - close swap device.
1568  */
1569 
1570 void swsusp_close(fmode_t mode)
1571 {
1572 	if (IS_ERR(hib_resume_bdev)) {
1573 		pr_debug("PM: Image device not initialised\n");
1574 		return;
1575 	}
1576 
1577 	blkdev_put(hib_resume_bdev, mode);
1578 }
1579 
1580 /**
1581  *      swsusp_unmark - Unmark swsusp signature in the resume device
1582  */
1583 
1584 #ifdef CONFIG_SUSPEND
1585 int swsusp_unmark(void)
1586 {
1587 	int error;
1588 
1589 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1590 		      swsusp_header, NULL);
1591 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1592 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1593 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1594 					swsusp_resume_block,
1595 					swsusp_header, NULL);
1596 	} else {
1597 		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1598 		error = -ENODEV;
1599 	}
1600 
1601 	/*
1602 	 * We just returned from suspend, we don't need the image any more.
1603 	 */
1604 	free_all_swap_pages(root_swap);
1605 
1606 	return error;
1607 }
1608 #endif
1609 
1610 static int swsusp_header_init(void)
1611 {
1612 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1613 	if (!swsusp_header)
1614 		panic("Could not allocate memory for swsusp_header\n");
1615 	return 0;
1616 }
1617 
1618 core_initcall(swsusp_header_init);
1619