xref: /openbmc/linux/kernel/power/swap.c (revision 615c36f5)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/buffer_head.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/pm.h>
27 #include <linux/slab.h>
28 #include <linux/lzo.h>
29 #include <linux/vmalloc.h>
30 #include <linux/cpumask.h>
31 #include <linux/atomic.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 
35 #include "power.h"
36 
37 #define HIBERNATE_SIG	"S1SUSPEND"
38 
39 /*
40  *	The swap map is a data structure used for keeping track of each page
41  *	written to a swap partition.  It consists of many swap_map_page
42  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43  *	These structures are stored on the swap and linked together with the
44  *	help of the .next_swap member.
45  *
46  *	The swap map is created during suspend.  The swap map pages are
47  *	allocated and populated one at a time, so we only need one memory
48  *	page to set up the entire structure.
49  *
50  *	During resume we pick up all swap_map_page structures into a list.
51  */
52 
53 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
54 
55 struct swap_map_page {
56 	sector_t entries[MAP_PAGE_ENTRIES];
57 	sector_t next_swap;
58 };
59 
60 struct swap_map_page_list {
61 	struct swap_map_page *map;
62 	struct swap_map_page_list *next;
63 };
64 
65 /**
66  *	The swap_map_handle structure is used for handling swap in
67  *	a file-alike way
68  */
69 
70 struct swap_map_handle {
71 	struct swap_map_page *cur;
72 	struct swap_map_page_list *maps;
73 	sector_t cur_swap;
74 	sector_t first_sector;
75 	unsigned int k;
76 	unsigned long nr_free_pages, written;
77 	u32 crc32;
78 };
79 
80 struct swsusp_header {
81 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
82 	              sizeof(u32)];
83 	u32	crc32;
84 	sector_t image;
85 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
86 	char	orig_sig[10];
87 	char	sig[10];
88 } __attribute__((packed));
89 
90 static struct swsusp_header *swsusp_header;
91 
92 /**
93  *	The following functions are used for tracing the allocated
94  *	swap pages, so that they can be freed in case of an error.
95  */
96 
97 struct swsusp_extent {
98 	struct rb_node node;
99 	unsigned long start;
100 	unsigned long end;
101 };
102 
103 static struct rb_root swsusp_extents = RB_ROOT;
104 
105 static int swsusp_extents_insert(unsigned long swap_offset)
106 {
107 	struct rb_node **new = &(swsusp_extents.rb_node);
108 	struct rb_node *parent = NULL;
109 	struct swsusp_extent *ext;
110 
111 	/* Figure out where to put the new node */
112 	while (*new) {
113 		ext = container_of(*new, struct swsusp_extent, node);
114 		parent = *new;
115 		if (swap_offset < ext->start) {
116 			/* Try to merge */
117 			if (swap_offset == ext->start - 1) {
118 				ext->start--;
119 				return 0;
120 			}
121 			new = &((*new)->rb_left);
122 		} else if (swap_offset > ext->end) {
123 			/* Try to merge */
124 			if (swap_offset == ext->end + 1) {
125 				ext->end++;
126 				return 0;
127 			}
128 			new = &((*new)->rb_right);
129 		} else {
130 			/* It already is in the tree */
131 			return -EINVAL;
132 		}
133 	}
134 	/* Add the new node and rebalance the tree. */
135 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
136 	if (!ext)
137 		return -ENOMEM;
138 
139 	ext->start = swap_offset;
140 	ext->end = swap_offset;
141 	rb_link_node(&ext->node, parent, new);
142 	rb_insert_color(&ext->node, &swsusp_extents);
143 	return 0;
144 }
145 
146 /**
147  *	alloc_swapdev_block - allocate a swap page and register that it has
148  *	been allocated, so that it can be freed in case of an error.
149  */
150 
151 sector_t alloc_swapdev_block(int swap)
152 {
153 	unsigned long offset;
154 
155 	offset = swp_offset(get_swap_page_of_type(swap));
156 	if (offset) {
157 		if (swsusp_extents_insert(offset))
158 			swap_free(swp_entry(swap, offset));
159 		else
160 			return swapdev_block(swap, offset);
161 	}
162 	return 0;
163 }
164 
165 /**
166  *	free_all_swap_pages - free swap pages allocated for saving image data.
167  *	It also frees the extents used to register which swap entries had been
168  *	allocated.
169  */
170 
171 void free_all_swap_pages(int swap)
172 {
173 	struct rb_node *node;
174 
175 	while ((node = swsusp_extents.rb_node)) {
176 		struct swsusp_extent *ext;
177 		unsigned long offset;
178 
179 		ext = container_of(node, struct swsusp_extent, node);
180 		rb_erase(node, &swsusp_extents);
181 		for (offset = ext->start; offset <= ext->end; offset++)
182 			swap_free(swp_entry(swap, offset));
183 
184 		kfree(ext);
185 	}
186 }
187 
188 int swsusp_swap_in_use(void)
189 {
190 	return (swsusp_extents.rb_node != NULL);
191 }
192 
193 /*
194  * General things
195  */
196 
197 static unsigned short root_swap = 0xffff;
198 struct block_device *hib_resume_bdev;
199 
200 /*
201  * Saving part
202  */
203 
204 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
205 {
206 	int error;
207 
208 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
209 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
210 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
211 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
212 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
213 		swsusp_header->image = handle->first_sector;
214 		swsusp_header->flags = flags;
215 		if (flags & SF_CRC32_MODE)
216 			swsusp_header->crc32 = handle->crc32;
217 		error = hib_bio_write_page(swsusp_resume_block,
218 					swsusp_header, NULL);
219 	} else {
220 		printk(KERN_ERR "PM: Swap header not found!\n");
221 		error = -ENODEV;
222 	}
223 	return error;
224 }
225 
226 /**
227  *	swsusp_swap_check - check if the resume device is a swap device
228  *	and get its index (if so)
229  *
230  *	This is called before saving image
231  */
232 static int swsusp_swap_check(void)
233 {
234 	int res;
235 
236 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
237 			&hib_resume_bdev);
238 	if (res < 0)
239 		return res;
240 
241 	root_swap = res;
242 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
243 	if (res)
244 		return res;
245 
246 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
247 	if (res < 0)
248 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
249 
250 	return res;
251 }
252 
253 /**
254  *	write_page - Write one page to given swap location.
255  *	@buf:		Address we're writing.
256  *	@offset:	Offset of the swap page we're writing to.
257  *	@bio_chain:	Link the next write BIO here
258  */
259 
260 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
261 {
262 	void *src;
263 	int ret;
264 
265 	if (!offset)
266 		return -ENOSPC;
267 
268 	if (bio_chain) {
269 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
270 		if (src) {
271 			copy_page(src, buf);
272 		} else {
273 			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
274 			if (ret)
275 				return ret;
276 			src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
277 			if (src) {
278 				copy_page(src, buf);
279 			} else {
280 				WARN_ON_ONCE(1);
281 				bio_chain = NULL;	/* Go synchronous */
282 				src = buf;
283 			}
284 		}
285 	} else {
286 		src = buf;
287 	}
288 	return hib_bio_write_page(offset, src, bio_chain);
289 }
290 
291 static void release_swap_writer(struct swap_map_handle *handle)
292 {
293 	if (handle->cur)
294 		free_page((unsigned long)handle->cur);
295 	handle->cur = NULL;
296 }
297 
298 static int get_swap_writer(struct swap_map_handle *handle)
299 {
300 	int ret;
301 
302 	ret = swsusp_swap_check();
303 	if (ret) {
304 		if (ret != -ENOSPC)
305 			printk(KERN_ERR "PM: Cannot find swap device, try "
306 					"swapon -a.\n");
307 		return ret;
308 	}
309 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
310 	if (!handle->cur) {
311 		ret = -ENOMEM;
312 		goto err_close;
313 	}
314 	handle->cur_swap = alloc_swapdev_block(root_swap);
315 	if (!handle->cur_swap) {
316 		ret = -ENOSPC;
317 		goto err_rel;
318 	}
319 	handle->k = 0;
320 	handle->nr_free_pages = nr_free_pages() >> 1;
321 	handle->written = 0;
322 	handle->first_sector = handle->cur_swap;
323 	return 0;
324 err_rel:
325 	release_swap_writer(handle);
326 err_close:
327 	swsusp_close(FMODE_WRITE);
328 	return ret;
329 }
330 
331 static int swap_write_page(struct swap_map_handle *handle, void *buf,
332 				struct bio **bio_chain)
333 {
334 	int error = 0;
335 	sector_t offset;
336 
337 	if (!handle->cur)
338 		return -EINVAL;
339 	offset = alloc_swapdev_block(root_swap);
340 	error = write_page(buf, offset, bio_chain);
341 	if (error)
342 		return error;
343 	handle->cur->entries[handle->k++] = offset;
344 	if (handle->k >= MAP_PAGE_ENTRIES) {
345 		offset = alloc_swapdev_block(root_swap);
346 		if (!offset)
347 			return -ENOSPC;
348 		handle->cur->next_swap = offset;
349 		error = write_page(handle->cur, handle->cur_swap, bio_chain);
350 		if (error)
351 			goto out;
352 		clear_page(handle->cur);
353 		handle->cur_swap = offset;
354 		handle->k = 0;
355 	}
356 	if (bio_chain && ++handle->written > handle->nr_free_pages) {
357 		error = hib_wait_on_bio_chain(bio_chain);
358 		if (error)
359 			goto out;
360 		handle->written = 0;
361 	}
362  out:
363 	return error;
364 }
365 
366 static int flush_swap_writer(struct swap_map_handle *handle)
367 {
368 	if (handle->cur && handle->cur_swap)
369 		return write_page(handle->cur, handle->cur_swap, NULL);
370 	else
371 		return -EINVAL;
372 }
373 
374 static int swap_writer_finish(struct swap_map_handle *handle,
375 		unsigned int flags, int error)
376 {
377 	if (!error) {
378 		flush_swap_writer(handle);
379 		printk(KERN_INFO "PM: S");
380 		error = mark_swapfiles(handle, flags);
381 		printk("|\n");
382 	}
383 
384 	if (error)
385 		free_all_swap_pages(root_swap);
386 	release_swap_writer(handle);
387 	swsusp_close(FMODE_WRITE);
388 
389 	return error;
390 }
391 
392 /* We need to remember how much compressed data we need to read. */
393 #define LZO_HEADER	sizeof(size_t)
394 
395 /* Number of pages/bytes we'll compress at one time. */
396 #define LZO_UNC_PAGES	32
397 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
398 
399 /* Number of pages/bytes we need for compressed data (worst case). */
400 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
401 			             LZO_HEADER, PAGE_SIZE)
402 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
403 
404 /* Maximum number of threads for compression/decompression. */
405 #define LZO_THREADS	3
406 
407 /* Maximum number of pages for read buffering. */
408 #define LZO_READ_PAGES	(MAP_PAGE_ENTRIES * 8)
409 
410 
411 /**
412  *	save_image - save the suspend image data
413  */
414 
415 static int save_image(struct swap_map_handle *handle,
416                       struct snapshot_handle *snapshot,
417                       unsigned int nr_to_write)
418 {
419 	unsigned int m;
420 	int ret;
421 	int nr_pages;
422 	int err2;
423 	struct bio *bio;
424 	struct timeval start;
425 	struct timeval stop;
426 
427 	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
428 		nr_to_write);
429 	m = nr_to_write / 100;
430 	if (!m)
431 		m = 1;
432 	nr_pages = 0;
433 	bio = NULL;
434 	do_gettimeofday(&start);
435 	while (1) {
436 		ret = snapshot_read_next(snapshot);
437 		if (ret <= 0)
438 			break;
439 		ret = swap_write_page(handle, data_of(*snapshot), &bio);
440 		if (ret)
441 			break;
442 		if (!(nr_pages % m))
443 			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
444 		nr_pages++;
445 	}
446 	err2 = hib_wait_on_bio_chain(&bio);
447 	do_gettimeofday(&stop);
448 	if (!ret)
449 		ret = err2;
450 	if (!ret)
451 		printk(KERN_CONT "\b\b\b\bdone\n");
452 	else
453 		printk(KERN_CONT "\n");
454 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
455 	return ret;
456 }
457 
458 /**
459  * Structure used for CRC32.
460  */
461 struct crc_data {
462 	struct task_struct *thr;                  /* thread */
463 	atomic_t ready;                           /* ready to start flag */
464 	atomic_t stop;                            /* ready to stop flag */
465 	unsigned run_threads;                     /* nr current threads */
466 	wait_queue_head_t go;                     /* start crc update */
467 	wait_queue_head_t done;                   /* crc update done */
468 	u32 *crc32;                               /* points to handle's crc32 */
469 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
470 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
471 };
472 
473 /**
474  * CRC32 update function that runs in its own thread.
475  */
476 static int crc32_threadfn(void *data)
477 {
478 	struct crc_data *d = data;
479 	unsigned i;
480 
481 	while (1) {
482 		wait_event(d->go, atomic_read(&d->ready) ||
483 		                  kthread_should_stop());
484 		if (kthread_should_stop()) {
485 			d->thr = NULL;
486 			atomic_set(&d->stop, 1);
487 			wake_up(&d->done);
488 			break;
489 		}
490 		atomic_set(&d->ready, 0);
491 
492 		for (i = 0; i < d->run_threads; i++)
493 			*d->crc32 = crc32_le(*d->crc32,
494 			                     d->unc[i], *d->unc_len[i]);
495 		atomic_set(&d->stop, 1);
496 		wake_up(&d->done);
497 	}
498 	return 0;
499 }
500 /**
501  * Structure used for LZO data compression.
502  */
503 struct cmp_data {
504 	struct task_struct *thr;                  /* thread */
505 	atomic_t ready;                           /* ready to start flag */
506 	atomic_t stop;                            /* ready to stop flag */
507 	int ret;                                  /* return code */
508 	wait_queue_head_t go;                     /* start compression */
509 	wait_queue_head_t done;                   /* compression done */
510 	size_t unc_len;                           /* uncompressed length */
511 	size_t cmp_len;                           /* compressed length */
512 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
513 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
514 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
515 };
516 
517 /**
518  * Compression function that runs in its own thread.
519  */
520 static int lzo_compress_threadfn(void *data)
521 {
522 	struct cmp_data *d = data;
523 
524 	while (1) {
525 		wait_event(d->go, atomic_read(&d->ready) ||
526 		                  kthread_should_stop());
527 		if (kthread_should_stop()) {
528 			d->thr = NULL;
529 			d->ret = -1;
530 			atomic_set(&d->stop, 1);
531 			wake_up(&d->done);
532 			break;
533 		}
534 		atomic_set(&d->ready, 0);
535 
536 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
537 		                          d->cmp + LZO_HEADER, &d->cmp_len,
538 		                          d->wrk);
539 		atomic_set(&d->stop, 1);
540 		wake_up(&d->done);
541 	}
542 	return 0;
543 }
544 
545 /**
546  * save_image_lzo - Save the suspend image data compressed with LZO.
547  * @handle: Swap mam handle to use for saving the image.
548  * @snapshot: Image to read data from.
549  * @nr_to_write: Number of pages to save.
550  */
551 static int save_image_lzo(struct swap_map_handle *handle,
552                           struct snapshot_handle *snapshot,
553                           unsigned int nr_to_write)
554 {
555 	unsigned int m;
556 	int ret = 0;
557 	int nr_pages;
558 	int err2;
559 	struct bio *bio;
560 	struct timeval start;
561 	struct timeval stop;
562 	size_t off;
563 	unsigned thr, run_threads, nr_threads;
564 	unsigned char *page = NULL;
565 	struct cmp_data *data = NULL;
566 	struct crc_data *crc = NULL;
567 
568 	/*
569 	 * We'll limit the number of threads for compression to limit memory
570 	 * footprint.
571 	 */
572 	nr_threads = num_online_cpus() - 1;
573 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
574 
575 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
576 	if (!page) {
577 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
578 		ret = -ENOMEM;
579 		goto out_clean;
580 	}
581 
582 	data = vmalloc(sizeof(*data) * nr_threads);
583 	if (!data) {
584 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
585 		ret = -ENOMEM;
586 		goto out_clean;
587 	}
588 	for (thr = 0; thr < nr_threads; thr++)
589 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
590 
591 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
592 	if (!crc) {
593 		printk(KERN_ERR "PM: Failed to allocate crc\n");
594 		ret = -ENOMEM;
595 		goto out_clean;
596 	}
597 	memset(crc, 0, offsetof(struct crc_data, go));
598 
599 	/*
600 	 * Start the compression threads.
601 	 */
602 	for (thr = 0; thr < nr_threads; thr++) {
603 		init_waitqueue_head(&data[thr].go);
604 		init_waitqueue_head(&data[thr].done);
605 
606 		data[thr].thr = kthread_run(lzo_compress_threadfn,
607 		                            &data[thr],
608 		                            "image_compress/%u", thr);
609 		if (IS_ERR(data[thr].thr)) {
610 			data[thr].thr = NULL;
611 			printk(KERN_ERR
612 			       "PM: Cannot start compression threads\n");
613 			ret = -ENOMEM;
614 			goto out_clean;
615 		}
616 	}
617 
618 	/*
619 	 * Adjust number of free pages after all allocations have been done.
620 	 * We don't want to run out of pages when writing.
621 	 */
622 	handle->nr_free_pages = nr_free_pages() >> 1;
623 
624 	/*
625 	 * Start the CRC32 thread.
626 	 */
627 	init_waitqueue_head(&crc->go);
628 	init_waitqueue_head(&crc->done);
629 
630 	handle->crc32 = 0;
631 	crc->crc32 = &handle->crc32;
632 	for (thr = 0; thr < nr_threads; thr++) {
633 		crc->unc[thr] = data[thr].unc;
634 		crc->unc_len[thr] = &data[thr].unc_len;
635 	}
636 
637 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
638 	if (IS_ERR(crc->thr)) {
639 		crc->thr = NULL;
640 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
641 		ret = -ENOMEM;
642 		goto out_clean;
643 	}
644 
645 	printk(KERN_INFO
646 		"PM: Using %u thread(s) for compression.\n"
647 		"PM: Compressing and saving image data (%u pages) ...     ",
648 		nr_threads, nr_to_write);
649 	m = nr_to_write / 100;
650 	if (!m)
651 		m = 1;
652 	nr_pages = 0;
653 	bio = NULL;
654 	do_gettimeofday(&start);
655 	for (;;) {
656 		for (thr = 0; thr < nr_threads; thr++) {
657 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
658 				ret = snapshot_read_next(snapshot);
659 				if (ret < 0)
660 					goto out_finish;
661 
662 				if (!ret)
663 					break;
664 
665 				memcpy(data[thr].unc + off,
666 				       data_of(*snapshot), PAGE_SIZE);
667 
668 				if (!(nr_pages % m))
669 					printk(KERN_CONT "\b\b\b\b%3d%%",
670 				               nr_pages / m);
671 				nr_pages++;
672 			}
673 			if (!off)
674 				break;
675 
676 			data[thr].unc_len = off;
677 
678 			atomic_set(&data[thr].ready, 1);
679 			wake_up(&data[thr].go);
680 		}
681 
682 		if (!thr)
683 			break;
684 
685 		crc->run_threads = thr;
686 		atomic_set(&crc->ready, 1);
687 		wake_up(&crc->go);
688 
689 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
690 			wait_event(data[thr].done,
691 			           atomic_read(&data[thr].stop));
692 			atomic_set(&data[thr].stop, 0);
693 
694 			ret = data[thr].ret;
695 
696 			if (ret < 0) {
697 				printk(KERN_ERR "PM: LZO compression failed\n");
698 				goto out_finish;
699 			}
700 
701 			if (unlikely(!data[thr].cmp_len ||
702 			             data[thr].cmp_len >
703 			             lzo1x_worst_compress(data[thr].unc_len))) {
704 				printk(KERN_ERR
705 				       "PM: Invalid LZO compressed length\n");
706 				ret = -1;
707 				goto out_finish;
708 			}
709 
710 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
711 
712 			/*
713 			 * Given we are writing one page at a time to disk, we
714 			 * copy that much from the buffer, although the last
715 			 * bit will likely be smaller than full page. This is
716 			 * OK - we saved the length of the compressed data, so
717 			 * any garbage at the end will be discarded when we
718 			 * read it.
719 			 */
720 			for (off = 0;
721 			     off < LZO_HEADER + data[thr].cmp_len;
722 			     off += PAGE_SIZE) {
723 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
724 
725 				ret = swap_write_page(handle, page, &bio);
726 				if (ret)
727 					goto out_finish;
728 			}
729 		}
730 
731 		wait_event(crc->done, atomic_read(&crc->stop));
732 		atomic_set(&crc->stop, 0);
733 	}
734 
735 out_finish:
736 	err2 = hib_wait_on_bio_chain(&bio);
737 	do_gettimeofday(&stop);
738 	if (!ret)
739 		ret = err2;
740 	if (!ret) {
741 		printk(KERN_CONT "\b\b\b\bdone\n");
742 	} else {
743 		printk(KERN_CONT "\n");
744 	}
745 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
746 out_clean:
747 	if (crc) {
748 		if (crc->thr)
749 			kthread_stop(crc->thr);
750 		kfree(crc);
751 	}
752 	if (data) {
753 		for (thr = 0; thr < nr_threads; thr++)
754 			if (data[thr].thr)
755 				kthread_stop(data[thr].thr);
756 		vfree(data);
757 	}
758 	if (page) free_page((unsigned long)page);
759 
760 	return ret;
761 }
762 
763 /**
764  *	enough_swap - Make sure we have enough swap to save the image.
765  *
766  *	Returns TRUE or FALSE after checking the total amount of swap
767  *	space avaiable from the resume partition.
768  */
769 
770 static int enough_swap(unsigned int nr_pages, unsigned int flags)
771 {
772 	unsigned int free_swap = count_swap_pages(root_swap, 1);
773 	unsigned int required;
774 
775 	pr_debug("PM: Free swap pages: %u\n", free_swap);
776 
777 	required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
778 		nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
779 	return free_swap > required;
780 }
781 
782 /**
783  *	swsusp_write - Write entire image and metadata.
784  *	@flags: flags to pass to the "boot" kernel in the image header
785  *
786  *	It is important _NOT_ to umount filesystems at this point. We want
787  *	them synced (in case something goes wrong) but we DO not want to mark
788  *	filesystem clean: it is not. (And it does not matter, if we resume
789  *	correctly, we'll mark system clean, anyway.)
790  */
791 
792 int swsusp_write(unsigned int flags)
793 {
794 	struct swap_map_handle handle;
795 	struct snapshot_handle snapshot;
796 	struct swsusp_info *header;
797 	unsigned long pages;
798 	int error;
799 
800 	pages = snapshot_get_image_size();
801 	error = get_swap_writer(&handle);
802 	if (error) {
803 		printk(KERN_ERR "PM: Cannot get swap writer\n");
804 		return error;
805 	}
806 	if (!enough_swap(pages, flags)) {
807 		printk(KERN_ERR "PM: Not enough free swap\n");
808 		error = -ENOSPC;
809 		goto out_finish;
810 	}
811 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
812 	error = snapshot_read_next(&snapshot);
813 	if (error < PAGE_SIZE) {
814 		if (error >= 0)
815 			error = -EFAULT;
816 
817 		goto out_finish;
818 	}
819 	header = (struct swsusp_info *)data_of(snapshot);
820 	error = swap_write_page(&handle, header, NULL);
821 	if (!error) {
822 		error = (flags & SF_NOCOMPRESS_MODE) ?
823 			save_image(&handle, &snapshot, pages - 1) :
824 			save_image_lzo(&handle, &snapshot, pages - 1);
825 	}
826 out_finish:
827 	error = swap_writer_finish(&handle, flags, error);
828 	return error;
829 }
830 
831 /**
832  *	The following functions allow us to read data using a swap map
833  *	in a file-alike way
834  */
835 
836 static void release_swap_reader(struct swap_map_handle *handle)
837 {
838 	struct swap_map_page_list *tmp;
839 
840 	while (handle->maps) {
841 		if (handle->maps->map)
842 			free_page((unsigned long)handle->maps->map);
843 		tmp = handle->maps;
844 		handle->maps = handle->maps->next;
845 		kfree(tmp);
846 	}
847 	handle->cur = NULL;
848 }
849 
850 static int get_swap_reader(struct swap_map_handle *handle,
851 		unsigned int *flags_p)
852 {
853 	int error;
854 	struct swap_map_page_list *tmp, *last;
855 	sector_t offset;
856 
857 	*flags_p = swsusp_header->flags;
858 
859 	if (!swsusp_header->image) /* how can this happen? */
860 		return -EINVAL;
861 
862 	handle->cur = NULL;
863 	last = handle->maps = NULL;
864 	offset = swsusp_header->image;
865 	while (offset) {
866 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
867 		if (!tmp) {
868 			release_swap_reader(handle);
869 			return -ENOMEM;
870 		}
871 		memset(tmp, 0, sizeof(*tmp));
872 		if (!handle->maps)
873 			handle->maps = tmp;
874 		if (last)
875 			last->next = tmp;
876 		last = tmp;
877 
878 		tmp->map = (struct swap_map_page *)
879 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
880 		if (!tmp->map) {
881 			release_swap_reader(handle);
882 			return -ENOMEM;
883 		}
884 
885 		error = hib_bio_read_page(offset, tmp->map, NULL);
886 		if (error) {
887 			release_swap_reader(handle);
888 			return error;
889 		}
890 		offset = tmp->map->next_swap;
891 	}
892 	handle->k = 0;
893 	handle->cur = handle->maps->map;
894 	return 0;
895 }
896 
897 static int swap_read_page(struct swap_map_handle *handle, void *buf,
898 				struct bio **bio_chain)
899 {
900 	sector_t offset;
901 	int error;
902 	struct swap_map_page_list *tmp;
903 
904 	if (!handle->cur)
905 		return -EINVAL;
906 	offset = handle->cur->entries[handle->k];
907 	if (!offset)
908 		return -EFAULT;
909 	error = hib_bio_read_page(offset, buf, bio_chain);
910 	if (error)
911 		return error;
912 	if (++handle->k >= MAP_PAGE_ENTRIES) {
913 		handle->k = 0;
914 		free_page((unsigned long)handle->maps->map);
915 		tmp = handle->maps;
916 		handle->maps = handle->maps->next;
917 		kfree(tmp);
918 		if (!handle->maps)
919 			release_swap_reader(handle);
920 		else
921 			handle->cur = handle->maps->map;
922 	}
923 	return error;
924 }
925 
926 static int swap_reader_finish(struct swap_map_handle *handle)
927 {
928 	release_swap_reader(handle);
929 
930 	return 0;
931 }
932 
933 /**
934  *	load_image - load the image using the swap map handle
935  *	@handle and the snapshot handle @snapshot
936  *	(assume there are @nr_pages pages to load)
937  */
938 
939 static int load_image(struct swap_map_handle *handle,
940                       struct snapshot_handle *snapshot,
941                       unsigned int nr_to_read)
942 {
943 	unsigned int m;
944 	int ret = 0;
945 	struct timeval start;
946 	struct timeval stop;
947 	struct bio *bio;
948 	int err2;
949 	unsigned nr_pages;
950 
951 	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
952 		nr_to_read);
953 	m = nr_to_read / 100;
954 	if (!m)
955 		m = 1;
956 	nr_pages = 0;
957 	bio = NULL;
958 	do_gettimeofday(&start);
959 	for ( ; ; ) {
960 		ret = snapshot_write_next(snapshot);
961 		if (ret <= 0)
962 			break;
963 		ret = swap_read_page(handle, data_of(*snapshot), &bio);
964 		if (ret)
965 			break;
966 		if (snapshot->sync_read)
967 			ret = hib_wait_on_bio_chain(&bio);
968 		if (ret)
969 			break;
970 		if (!(nr_pages % m))
971 			printk("\b\b\b\b%3d%%", nr_pages / m);
972 		nr_pages++;
973 	}
974 	err2 = hib_wait_on_bio_chain(&bio);
975 	do_gettimeofday(&stop);
976 	if (!ret)
977 		ret = err2;
978 	if (!ret) {
979 		printk("\b\b\b\bdone\n");
980 		snapshot_write_finalize(snapshot);
981 		if (!snapshot_image_loaded(snapshot))
982 			ret = -ENODATA;
983 	} else
984 		printk("\n");
985 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
986 	return ret;
987 }
988 
989 /**
990  * Structure used for LZO data decompression.
991  */
992 struct dec_data {
993 	struct task_struct *thr;                  /* thread */
994 	atomic_t ready;                           /* ready to start flag */
995 	atomic_t stop;                            /* ready to stop flag */
996 	int ret;                                  /* return code */
997 	wait_queue_head_t go;                     /* start decompression */
998 	wait_queue_head_t done;                   /* decompression done */
999 	size_t unc_len;                           /* uncompressed length */
1000 	size_t cmp_len;                           /* compressed length */
1001 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1002 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1003 };
1004 
1005 /**
1006  * Deompression function that runs in its own thread.
1007  */
1008 static int lzo_decompress_threadfn(void *data)
1009 {
1010 	struct dec_data *d = data;
1011 
1012 	while (1) {
1013 		wait_event(d->go, atomic_read(&d->ready) ||
1014 		                  kthread_should_stop());
1015 		if (kthread_should_stop()) {
1016 			d->thr = NULL;
1017 			d->ret = -1;
1018 			atomic_set(&d->stop, 1);
1019 			wake_up(&d->done);
1020 			break;
1021 		}
1022 		atomic_set(&d->ready, 0);
1023 
1024 		d->unc_len = LZO_UNC_SIZE;
1025 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1026 		                               d->unc, &d->unc_len);
1027 		atomic_set(&d->stop, 1);
1028 		wake_up(&d->done);
1029 	}
1030 	return 0;
1031 }
1032 
1033 /**
1034  * load_image_lzo - Load compressed image data and decompress them with LZO.
1035  * @handle: Swap map handle to use for loading data.
1036  * @snapshot: Image to copy uncompressed data into.
1037  * @nr_to_read: Number of pages to load.
1038  */
1039 static int load_image_lzo(struct swap_map_handle *handle,
1040                           struct snapshot_handle *snapshot,
1041                           unsigned int nr_to_read)
1042 {
1043 	unsigned int m;
1044 	int ret = 0;
1045 	int eof = 0;
1046 	struct bio *bio;
1047 	struct timeval start;
1048 	struct timeval stop;
1049 	unsigned nr_pages;
1050 	size_t off;
1051 	unsigned i, thr, run_threads, nr_threads;
1052 	unsigned ring = 0, pg = 0, ring_size = 0,
1053 	         have = 0, want, need, asked = 0;
1054 	unsigned long read_pages;
1055 	unsigned char **page = NULL;
1056 	struct dec_data *data = NULL;
1057 	struct crc_data *crc = NULL;
1058 
1059 	/*
1060 	 * We'll limit the number of threads for decompression to limit memory
1061 	 * footprint.
1062 	 */
1063 	nr_threads = num_online_cpus() - 1;
1064 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1065 
1066 	page = vmalloc(sizeof(*page) * LZO_READ_PAGES);
1067 	if (!page) {
1068 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1069 		ret = -ENOMEM;
1070 		goto out_clean;
1071 	}
1072 
1073 	data = vmalloc(sizeof(*data) * nr_threads);
1074 	if (!data) {
1075 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1076 		ret = -ENOMEM;
1077 		goto out_clean;
1078 	}
1079 	for (thr = 0; thr < nr_threads; thr++)
1080 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1081 
1082 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1083 	if (!crc) {
1084 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1085 		ret = -ENOMEM;
1086 		goto out_clean;
1087 	}
1088 	memset(crc, 0, offsetof(struct crc_data, go));
1089 
1090 	/*
1091 	 * Start the decompression threads.
1092 	 */
1093 	for (thr = 0; thr < nr_threads; thr++) {
1094 		init_waitqueue_head(&data[thr].go);
1095 		init_waitqueue_head(&data[thr].done);
1096 
1097 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1098 		                            &data[thr],
1099 		                            "image_decompress/%u", thr);
1100 		if (IS_ERR(data[thr].thr)) {
1101 			data[thr].thr = NULL;
1102 			printk(KERN_ERR
1103 			       "PM: Cannot start decompression threads\n");
1104 			ret = -ENOMEM;
1105 			goto out_clean;
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Start the CRC32 thread.
1111 	 */
1112 	init_waitqueue_head(&crc->go);
1113 	init_waitqueue_head(&crc->done);
1114 
1115 	handle->crc32 = 0;
1116 	crc->crc32 = &handle->crc32;
1117 	for (thr = 0; thr < nr_threads; thr++) {
1118 		crc->unc[thr] = data[thr].unc;
1119 		crc->unc_len[thr] = &data[thr].unc_len;
1120 	}
1121 
1122 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1123 	if (IS_ERR(crc->thr)) {
1124 		crc->thr = NULL;
1125 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1126 		ret = -ENOMEM;
1127 		goto out_clean;
1128 	}
1129 
1130 	/*
1131 	 * Adjust number of pages for read buffering, in case we are short.
1132 	 */
1133 	read_pages = (nr_free_pages() - snapshot_get_image_size()) >> 1;
1134 	read_pages = clamp_val(read_pages, LZO_CMP_PAGES, LZO_READ_PAGES);
1135 
1136 	for (i = 0; i < read_pages; i++) {
1137 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1138 		                                  __GFP_WAIT | __GFP_HIGH :
1139 		                                  __GFP_WAIT);
1140 		if (!page[i]) {
1141 			if (i < LZO_CMP_PAGES) {
1142 				ring_size = i;
1143 				printk(KERN_ERR
1144 				       "PM: Failed to allocate LZO pages\n");
1145 				ret = -ENOMEM;
1146 				goto out_clean;
1147 			} else {
1148 				break;
1149 			}
1150 		}
1151 	}
1152 	want = ring_size = i;
1153 
1154 	printk(KERN_INFO
1155 		"PM: Using %u thread(s) for decompression.\n"
1156 		"PM: Loading and decompressing image data (%u pages) ...     ",
1157 		nr_threads, nr_to_read);
1158 	m = nr_to_read / 100;
1159 	if (!m)
1160 		m = 1;
1161 	nr_pages = 0;
1162 	bio = NULL;
1163 	do_gettimeofday(&start);
1164 
1165 	ret = snapshot_write_next(snapshot);
1166 	if (ret <= 0)
1167 		goto out_finish;
1168 
1169 	for(;;) {
1170 		for (i = 0; !eof && i < want; i++) {
1171 			ret = swap_read_page(handle, page[ring], &bio);
1172 			if (ret) {
1173 				/*
1174 				 * On real read error, finish. On end of data,
1175 				 * set EOF flag and just exit the read loop.
1176 				 */
1177 				if (handle->cur &&
1178 				    handle->cur->entries[handle->k]) {
1179 					goto out_finish;
1180 				} else {
1181 					eof = 1;
1182 					break;
1183 				}
1184 			}
1185 			if (++ring >= ring_size)
1186 				ring = 0;
1187 		}
1188 		asked += i;
1189 		want -= i;
1190 
1191 		/*
1192 		 * We are out of data, wait for some more.
1193 		 */
1194 		if (!have) {
1195 			if (!asked)
1196 				break;
1197 
1198 			ret = hib_wait_on_bio_chain(&bio);
1199 			if (ret)
1200 				goto out_finish;
1201 			have += asked;
1202 			asked = 0;
1203 			if (eof)
1204 				eof = 2;
1205 		}
1206 
1207 		if (crc->run_threads) {
1208 			wait_event(crc->done, atomic_read(&crc->stop));
1209 			atomic_set(&crc->stop, 0);
1210 			crc->run_threads = 0;
1211 		}
1212 
1213 		for (thr = 0; have && thr < nr_threads; thr++) {
1214 			data[thr].cmp_len = *(size_t *)page[pg];
1215 			if (unlikely(!data[thr].cmp_len ||
1216 			             data[thr].cmp_len >
1217 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1218 				printk(KERN_ERR
1219 				       "PM: Invalid LZO compressed length\n");
1220 				ret = -1;
1221 				goto out_finish;
1222 			}
1223 
1224 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1225 			                    PAGE_SIZE);
1226 			if (need > have) {
1227 				if (eof > 1) {
1228 					ret = -1;
1229 					goto out_finish;
1230 				}
1231 				break;
1232 			}
1233 
1234 			for (off = 0;
1235 			     off < LZO_HEADER + data[thr].cmp_len;
1236 			     off += PAGE_SIZE) {
1237 				memcpy(data[thr].cmp + off,
1238 				       page[pg], PAGE_SIZE);
1239 				have--;
1240 				want++;
1241 				if (++pg >= ring_size)
1242 					pg = 0;
1243 			}
1244 
1245 			atomic_set(&data[thr].ready, 1);
1246 			wake_up(&data[thr].go);
1247 		}
1248 
1249 		/*
1250 		 * Wait for more data while we are decompressing.
1251 		 */
1252 		if (have < LZO_CMP_PAGES && asked) {
1253 			ret = hib_wait_on_bio_chain(&bio);
1254 			if (ret)
1255 				goto out_finish;
1256 			have += asked;
1257 			asked = 0;
1258 			if (eof)
1259 				eof = 2;
1260 		}
1261 
1262 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1263 			wait_event(data[thr].done,
1264 			           atomic_read(&data[thr].stop));
1265 			atomic_set(&data[thr].stop, 0);
1266 
1267 			ret = data[thr].ret;
1268 
1269 			if (ret < 0) {
1270 				printk(KERN_ERR
1271 				       "PM: LZO decompression failed\n");
1272 				goto out_finish;
1273 			}
1274 
1275 			if (unlikely(!data[thr].unc_len ||
1276 			             data[thr].unc_len > LZO_UNC_SIZE ||
1277 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1278 				printk(KERN_ERR
1279 				       "PM: Invalid LZO uncompressed length\n");
1280 				ret = -1;
1281 				goto out_finish;
1282 			}
1283 
1284 			for (off = 0;
1285 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1286 				memcpy(data_of(*snapshot),
1287 				       data[thr].unc + off, PAGE_SIZE);
1288 
1289 				if (!(nr_pages % m))
1290 					printk("\b\b\b\b%3d%%", nr_pages / m);
1291 				nr_pages++;
1292 
1293 				ret = snapshot_write_next(snapshot);
1294 				if (ret <= 0) {
1295 					crc->run_threads = thr + 1;
1296 					atomic_set(&crc->ready, 1);
1297 					wake_up(&crc->go);
1298 					goto out_finish;
1299 				}
1300 			}
1301 		}
1302 
1303 		crc->run_threads = thr;
1304 		atomic_set(&crc->ready, 1);
1305 		wake_up(&crc->go);
1306 	}
1307 
1308 out_finish:
1309 	if (crc->run_threads) {
1310 		wait_event(crc->done, atomic_read(&crc->stop));
1311 		atomic_set(&crc->stop, 0);
1312 	}
1313 	do_gettimeofday(&stop);
1314 	if (!ret) {
1315 		printk("\b\b\b\bdone\n");
1316 		snapshot_write_finalize(snapshot);
1317 		if (!snapshot_image_loaded(snapshot))
1318 			ret = -ENODATA;
1319 		if (!ret) {
1320 			if (swsusp_header->flags & SF_CRC32_MODE) {
1321 				if(handle->crc32 != swsusp_header->crc32) {
1322 					printk(KERN_ERR
1323 					       "PM: Invalid image CRC32!\n");
1324 					ret = -ENODATA;
1325 				}
1326 			}
1327 		}
1328 	} else
1329 		printk("\n");
1330 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1331 out_clean:
1332 	for (i = 0; i < ring_size; i++)
1333 		free_page((unsigned long)page[i]);
1334 	if (crc) {
1335 		if (crc->thr)
1336 			kthread_stop(crc->thr);
1337 		kfree(crc);
1338 	}
1339 	if (data) {
1340 		for (thr = 0; thr < nr_threads; thr++)
1341 			if (data[thr].thr)
1342 				kthread_stop(data[thr].thr);
1343 		vfree(data);
1344 	}
1345 	if (page) vfree(page);
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	swsusp_read - read the hibernation image.
1352  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1353  *		  be written into this memory location
1354  */
1355 
1356 int swsusp_read(unsigned int *flags_p)
1357 {
1358 	int error;
1359 	struct swap_map_handle handle;
1360 	struct snapshot_handle snapshot;
1361 	struct swsusp_info *header;
1362 
1363 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1364 	error = snapshot_write_next(&snapshot);
1365 	if (error < PAGE_SIZE)
1366 		return error < 0 ? error : -EFAULT;
1367 	header = (struct swsusp_info *)data_of(snapshot);
1368 	error = get_swap_reader(&handle, flags_p);
1369 	if (error)
1370 		goto end;
1371 	if (!error)
1372 		error = swap_read_page(&handle, header, NULL);
1373 	if (!error) {
1374 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1375 			load_image(&handle, &snapshot, header->pages - 1) :
1376 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1377 	}
1378 	swap_reader_finish(&handle);
1379 end:
1380 	if (!error)
1381 		pr_debug("PM: Image successfully loaded\n");
1382 	else
1383 		pr_debug("PM: Error %d resuming\n", error);
1384 	return error;
1385 }
1386 
1387 /**
1388  *      swsusp_check - Check for swsusp signature in the resume device
1389  */
1390 
1391 int swsusp_check(void)
1392 {
1393 	int error;
1394 
1395 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1396 					    FMODE_READ, NULL);
1397 	if (!IS_ERR(hib_resume_bdev)) {
1398 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1399 		clear_page(swsusp_header);
1400 		error = hib_bio_read_page(swsusp_resume_block,
1401 					swsusp_header, NULL);
1402 		if (error)
1403 			goto put;
1404 
1405 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1406 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1407 			/* Reset swap signature now */
1408 			error = hib_bio_write_page(swsusp_resume_block,
1409 						swsusp_header, NULL);
1410 		} else {
1411 			error = -EINVAL;
1412 		}
1413 
1414 put:
1415 		if (error)
1416 			blkdev_put(hib_resume_bdev, FMODE_READ);
1417 		else
1418 			pr_debug("PM: Image signature found, resuming\n");
1419 	} else {
1420 		error = PTR_ERR(hib_resume_bdev);
1421 	}
1422 
1423 	if (error)
1424 		pr_debug("PM: Image not found (code %d)\n", error);
1425 
1426 	return error;
1427 }
1428 
1429 /**
1430  *	swsusp_close - close swap device.
1431  */
1432 
1433 void swsusp_close(fmode_t mode)
1434 {
1435 	if (IS_ERR(hib_resume_bdev)) {
1436 		pr_debug("PM: Image device not initialised\n");
1437 		return;
1438 	}
1439 
1440 	blkdev_put(hib_resume_bdev, mode);
1441 }
1442 
1443 static int swsusp_header_init(void)
1444 {
1445 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1446 	if (!swsusp_header)
1447 		panic("Could not allocate memory for swsusp_header\n");
1448 	return 0;
1449 }
1450 
1451 core_initcall(swsusp_header_init);
1452