xref: /openbmc/linux/kernel/power/swap.c (revision 425595a7)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34 
35 #include "power.h"
36 
37 #define HIBERNATE_SIG	"S1SUSPEND"
38 
39 /*
40  *	The swap map is a data structure used for keeping track of each page
41  *	written to a swap partition.  It consists of many swap_map_page
42  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
43  *	These structures are stored on the swap and linked together with the
44  *	help of the .next_swap member.
45  *
46  *	The swap map is created during suspend.  The swap map pages are
47  *	allocated and populated one at a time, so we only need one memory
48  *	page to set up the entire structure.
49  *
50  *	During resume we pick up all swap_map_page structures into a list.
51  */
52 
53 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
54 
55 /*
56  * Number of free pages that are not high.
57  */
58 static inline unsigned long low_free_pages(void)
59 {
60 	return nr_free_pages() - nr_free_highpages();
61 }
62 
63 /*
64  * Number of pages required to be kept free while writing the image. Always
65  * half of all available low pages before the writing starts.
66  */
67 static inline unsigned long reqd_free_pages(void)
68 {
69 	return low_free_pages() / 2;
70 }
71 
72 struct swap_map_page {
73 	sector_t entries[MAP_PAGE_ENTRIES];
74 	sector_t next_swap;
75 };
76 
77 struct swap_map_page_list {
78 	struct swap_map_page *map;
79 	struct swap_map_page_list *next;
80 };
81 
82 /**
83  *	The swap_map_handle structure is used for handling swap in
84  *	a file-alike way
85  */
86 
87 struct swap_map_handle {
88 	struct swap_map_page *cur;
89 	struct swap_map_page_list *maps;
90 	sector_t cur_swap;
91 	sector_t first_sector;
92 	unsigned int k;
93 	unsigned long reqd_free_pages;
94 	u32 crc32;
95 };
96 
97 struct swsusp_header {
98 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
99 	              sizeof(u32)];
100 	u32	crc32;
101 	sector_t image;
102 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
103 	char	orig_sig[10];
104 	char	sig[10];
105 } __packed;
106 
107 static struct swsusp_header *swsusp_header;
108 
109 /**
110  *	The following functions are used for tracing the allocated
111  *	swap pages, so that they can be freed in case of an error.
112  */
113 
114 struct swsusp_extent {
115 	struct rb_node node;
116 	unsigned long start;
117 	unsigned long end;
118 };
119 
120 static struct rb_root swsusp_extents = RB_ROOT;
121 
122 static int swsusp_extents_insert(unsigned long swap_offset)
123 {
124 	struct rb_node **new = &(swsusp_extents.rb_node);
125 	struct rb_node *parent = NULL;
126 	struct swsusp_extent *ext;
127 
128 	/* Figure out where to put the new node */
129 	while (*new) {
130 		ext = rb_entry(*new, struct swsusp_extent, node);
131 		parent = *new;
132 		if (swap_offset < ext->start) {
133 			/* Try to merge */
134 			if (swap_offset == ext->start - 1) {
135 				ext->start--;
136 				return 0;
137 			}
138 			new = &((*new)->rb_left);
139 		} else if (swap_offset > ext->end) {
140 			/* Try to merge */
141 			if (swap_offset == ext->end + 1) {
142 				ext->end++;
143 				return 0;
144 			}
145 			new = &((*new)->rb_right);
146 		} else {
147 			/* It already is in the tree */
148 			return -EINVAL;
149 		}
150 	}
151 	/* Add the new node and rebalance the tree. */
152 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
153 	if (!ext)
154 		return -ENOMEM;
155 
156 	ext->start = swap_offset;
157 	ext->end = swap_offset;
158 	rb_link_node(&ext->node, parent, new);
159 	rb_insert_color(&ext->node, &swsusp_extents);
160 	return 0;
161 }
162 
163 /**
164  *	alloc_swapdev_block - allocate a swap page and register that it has
165  *	been allocated, so that it can be freed in case of an error.
166  */
167 
168 sector_t alloc_swapdev_block(int swap)
169 {
170 	unsigned long offset;
171 
172 	offset = swp_offset(get_swap_page_of_type(swap));
173 	if (offset) {
174 		if (swsusp_extents_insert(offset))
175 			swap_free(swp_entry(swap, offset));
176 		else
177 			return swapdev_block(swap, offset);
178 	}
179 	return 0;
180 }
181 
182 /**
183  *	free_all_swap_pages - free swap pages allocated for saving image data.
184  *	It also frees the extents used to register which swap entries had been
185  *	allocated.
186  */
187 
188 void free_all_swap_pages(int swap)
189 {
190 	struct rb_node *node;
191 
192 	while ((node = swsusp_extents.rb_node)) {
193 		struct swsusp_extent *ext;
194 		unsigned long offset;
195 
196 		ext = container_of(node, struct swsusp_extent, node);
197 		rb_erase(node, &swsusp_extents);
198 		for (offset = ext->start; offset <= ext->end; offset++)
199 			swap_free(swp_entry(swap, offset));
200 
201 		kfree(ext);
202 	}
203 }
204 
205 int swsusp_swap_in_use(void)
206 {
207 	return (swsusp_extents.rb_node != NULL);
208 }
209 
210 /*
211  * General things
212  */
213 
214 static unsigned short root_swap = 0xffff;
215 static struct block_device *hib_resume_bdev;
216 
217 struct hib_bio_batch {
218 	atomic_t		count;
219 	wait_queue_head_t	wait;
220 	int			error;
221 };
222 
223 static void hib_init_batch(struct hib_bio_batch *hb)
224 {
225 	atomic_set(&hb->count, 0);
226 	init_waitqueue_head(&hb->wait);
227 	hb->error = 0;
228 }
229 
230 static void hib_end_io(struct bio *bio)
231 {
232 	struct hib_bio_batch *hb = bio->bi_private;
233 	struct page *page = bio->bi_io_vec[0].bv_page;
234 
235 	if (bio->bi_error) {
236 		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
237 				imajor(bio->bi_bdev->bd_inode),
238 				iminor(bio->bi_bdev->bd_inode),
239 				(unsigned long long)bio->bi_iter.bi_sector);
240 	}
241 
242 	if (bio_data_dir(bio) == WRITE)
243 		put_page(page);
244 
245 	if (bio->bi_error && !hb->error)
246 		hb->error = bio->bi_error;
247 	if (atomic_dec_and_test(&hb->count))
248 		wake_up(&hb->wait);
249 
250 	bio_put(bio);
251 }
252 
253 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
254 		struct hib_bio_batch *hb)
255 {
256 	struct page *page = virt_to_page(addr);
257 	struct bio *bio;
258 	int error = 0;
259 
260 	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
261 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
262 	bio->bi_bdev = hib_resume_bdev;
263 
264 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
265 		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
266 			(unsigned long long)bio->bi_iter.bi_sector);
267 		bio_put(bio);
268 		return -EFAULT;
269 	}
270 
271 	if (hb) {
272 		bio->bi_end_io = hib_end_io;
273 		bio->bi_private = hb;
274 		atomic_inc(&hb->count);
275 		submit_bio(rw, bio);
276 	} else {
277 		error = submit_bio_wait(rw, bio);
278 		bio_put(bio);
279 	}
280 
281 	return error;
282 }
283 
284 static int hib_wait_io(struct hib_bio_batch *hb)
285 {
286 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
287 	return hb->error;
288 }
289 
290 /*
291  * Saving part
292  */
293 
294 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
295 {
296 	int error;
297 
298 	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
299 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
300 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
301 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
302 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
303 		swsusp_header->image = handle->first_sector;
304 		swsusp_header->flags = flags;
305 		if (flags & SF_CRC32_MODE)
306 			swsusp_header->crc32 = handle->crc32;
307 		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
308 					swsusp_header, NULL);
309 	} else {
310 		printk(KERN_ERR "PM: Swap header not found!\n");
311 		error = -ENODEV;
312 	}
313 	return error;
314 }
315 
316 /**
317  *	swsusp_swap_check - check if the resume device is a swap device
318  *	and get its index (if so)
319  *
320  *	This is called before saving image
321  */
322 static int swsusp_swap_check(void)
323 {
324 	int res;
325 
326 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
327 			&hib_resume_bdev);
328 	if (res < 0)
329 		return res;
330 
331 	root_swap = res;
332 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
333 	if (res)
334 		return res;
335 
336 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
337 	if (res < 0)
338 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
339 
340 	return res;
341 }
342 
343 /**
344  *	write_page - Write one page to given swap location.
345  *	@buf:		Address we're writing.
346  *	@offset:	Offset of the swap page we're writing to.
347  *	@hb:		bio completion batch
348  */
349 
350 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
351 {
352 	void *src;
353 	int ret;
354 
355 	if (!offset)
356 		return -ENOSPC;
357 
358 	if (hb) {
359 		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
360 		                              __GFP_NORETRY);
361 		if (src) {
362 			copy_page(src, buf);
363 		} else {
364 			ret = hib_wait_io(hb); /* Free pages */
365 			if (ret)
366 				return ret;
367 			src = (void *)__get_free_page(__GFP_RECLAIM |
368 			                              __GFP_NOWARN |
369 			                              __GFP_NORETRY);
370 			if (src) {
371 				copy_page(src, buf);
372 			} else {
373 				WARN_ON_ONCE(1);
374 				hb = NULL;	/* Go synchronous */
375 				src = buf;
376 			}
377 		}
378 	} else {
379 		src = buf;
380 	}
381 	return hib_submit_io(WRITE_SYNC, offset, src, hb);
382 }
383 
384 static void release_swap_writer(struct swap_map_handle *handle)
385 {
386 	if (handle->cur)
387 		free_page((unsigned long)handle->cur);
388 	handle->cur = NULL;
389 }
390 
391 static int get_swap_writer(struct swap_map_handle *handle)
392 {
393 	int ret;
394 
395 	ret = swsusp_swap_check();
396 	if (ret) {
397 		if (ret != -ENOSPC)
398 			printk(KERN_ERR "PM: Cannot find swap device, try "
399 					"swapon -a.\n");
400 		return ret;
401 	}
402 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
403 	if (!handle->cur) {
404 		ret = -ENOMEM;
405 		goto err_close;
406 	}
407 	handle->cur_swap = alloc_swapdev_block(root_swap);
408 	if (!handle->cur_swap) {
409 		ret = -ENOSPC;
410 		goto err_rel;
411 	}
412 	handle->k = 0;
413 	handle->reqd_free_pages = reqd_free_pages();
414 	handle->first_sector = handle->cur_swap;
415 	return 0;
416 err_rel:
417 	release_swap_writer(handle);
418 err_close:
419 	swsusp_close(FMODE_WRITE);
420 	return ret;
421 }
422 
423 static int swap_write_page(struct swap_map_handle *handle, void *buf,
424 		struct hib_bio_batch *hb)
425 {
426 	int error = 0;
427 	sector_t offset;
428 
429 	if (!handle->cur)
430 		return -EINVAL;
431 	offset = alloc_swapdev_block(root_swap);
432 	error = write_page(buf, offset, hb);
433 	if (error)
434 		return error;
435 	handle->cur->entries[handle->k++] = offset;
436 	if (handle->k >= MAP_PAGE_ENTRIES) {
437 		offset = alloc_swapdev_block(root_swap);
438 		if (!offset)
439 			return -ENOSPC;
440 		handle->cur->next_swap = offset;
441 		error = write_page(handle->cur, handle->cur_swap, hb);
442 		if (error)
443 			goto out;
444 		clear_page(handle->cur);
445 		handle->cur_swap = offset;
446 		handle->k = 0;
447 
448 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
449 			error = hib_wait_io(hb);
450 			if (error)
451 				goto out;
452 			/*
453 			 * Recalculate the number of required free pages, to
454 			 * make sure we never take more than half.
455 			 */
456 			handle->reqd_free_pages = reqd_free_pages();
457 		}
458 	}
459  out:
460 	return error;
461 }
462 
463 static int flush_swap_writer(struct swap_map_handle *handle)
464 {
465 	if (handle->cur && handle->cur_swap)
466 		return write_page(handle->cur, handle->cur_swap, NULL);
467 	else
468 		return -EINVAL;
469 }
470 
471 static int swap_writer_finish(struct swap_map_handle *handle,
472 		unsigned int flags, int error)
473 {
474 	if (!error) {
475 		flush_swap_writer(handle);
476 		printk(KERN_INFO "PM: S");
477 		error = mark_swapfiles(handle, flags);
478 		printk("|\n");
479 	}
480 
481 	if (error)
482 		free_all_swap_pages(root_swap);
483 	release_swap_writer(handle);
484 	swsusp_close(FMODE_WRITE);
485 
486 	return error;
487 }
488 
489 /* We need to remember how much compressed data we need to read. */
490 #define LZO_HEADER	sizeof(size_t)
491 
492 /* Number of pages/bytes we'll compress at one time. */
493 #define LZO_UNC_PAGES	32
494 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
495 
496 /* Number of pages/bytes we need for compressed data (worst case). */
497 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
498 			             LZO_HEADER, PAGE_SIZE)
499 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
500 
501 /* Maximum number of threads for compression/decompression. */
502 #define LZO_THREADS	3
503 
504 /* Minimum/maximum number of pages for read buffering. */
505 #define LZO_MIN_RD_PAGES	1024
506 #define LZO_MAX_RD_PAGES	8192
507 
508 
509 /**
510  *	save_image - save the suspend image data
511  */
512 
513 static int save_image(struct swap_map_handle *handle,
514                       struct snapshot_handle *snapshot,
515                       unsigned int nr_to_write)
516 {
517 	unsigned int m;
518 	int ret;
519 	int nr_pages;
520 	int err2;
521 	struct hib_bio_batch hb;
522 	ktime_t start;
523 	ktime_t stop;
524 
525 	hib_init_batch(&hb);
526 
527 	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
528 		nr_to_write);
529 	m = nr_to_write / 10;
530 	if (!m)
531 		m = 1;
532 	nr_pages = 0;
533 	start = ktime_get();
534 	while (1) {
535 		ret = snapshot_read_next(snapshot);
536 		if (ret <= 0)
537 			break;
538 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
539 		if (ret)
540 			break;
541 		if (!(nr_pages % m))
542 			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
543 			       nr_pages / m * 10);
544 		nr_pages++;
545 	}
546 	err2 = hib_wait_io(&hb);
547 	stop = ktime_get();
548 	if (!ret)
549 		ret = err2;
550 	if (!ret)
551 		printk(KERN_INFO "PM: Image saving done.\n");
552 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
553 	return ret;
554 }
555 
556 /**
557  * Structure used for CRC32.
558  */
559 struct crc_data {
560 	struct task_struct *thr;                  /* thread */
561 	atomic_t ready;                           /* ready to start flag */
562 	atomic_t stop;                            /* ready to stop flag */
563 	unsigned run_threads;                     /* nr current threads */
564 	wait_queue_head_t go;                     /* start crc update */
565 	wait_queue_head_t done;                   /* crc update done */
566 	u32 *crc32;                               /* points to handle's crc32 */
567 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
568 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
569 };
570 
571 /**
572  * CRC32 update function that runs in its own thread.
573  */
574 static int crc32_threadfn(void *data)
575 {
576 	struct crc_data *d = data;
577 	unsigned i;
578 
579 	while (1) {
580 		wait_event(d->go, atomic_read(&d->ready) ||
581 		                  kthread_should_stop());
582 		if (kthread_should_stop()) {
583 			d->thr = NULL;
584 			atomic_set(&d->stop, 1);
585 			wake_up(&d->done);
586 			break;
587 		}
588 		atomic_set(&d->ready, 0);
589 
590 		for (i = 0; i < d->run_threads; i++)
591 			*d->crc32 = crc32_le(*d->crc32,
592 			                     d->unc[i], *d->unc_len[i]);
593 		atomic_set(&d->stop, 1);
594 		wake_up(&d->done);
595 	}
596 	return 0;
597 }
598 /**
599  * Structure used for LZO data compression.
600  */
601 struct cmp_data {
602 	struct task_struct *thr;                  /* thread */
603 	atomic_t ready;                           /* ready to start flag */
604 	atomic_t stop;                            /* ready to stop flag */
605 	int ret;                                  /* return code */
606 	wait_queue_head_t go;                     /* start compression */
607 	wait_queue_head_t done;                   /* compression done */
608 	size_t unc_len;                           /* uncompressed length */
609 	size_t cmp_len;                           /* compressed length */
610 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
611 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
612 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
613 };
614 
615 /**
616  * Compression function that runs in its own thread.
617  */
618 static int lzo_compress_threadfn(void *data)
619 {
620 	struct cmp_data *d = data;
621 
622 	while (1) {
623 		wait_event(d->go, atomic_read(&d->ready) ||
624 		                  kthread_should_stop());
625 		if (kthread_should_stop()) {
626 			d->thr = NULL;
627 			d->ret = -1;
628 			atomic_set(&d->stop, 1);
629 			wake_up(&d->done);
630 			break;
631 		}
632 		atomic_set(&d->ready, 0);
633 
634 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
635 		                          d->cmp + LZO_HEADER, &d->cmp_len,
636 		                          d->wrk);
637 		atomic_set(&d->stop, 1);
638 		wake_up(&d->done);
639 	}
640 	return 0;
641 }
642 
643 /**
644  * save_image_lzo - Save the suspend image data compressed with LZO.
645  * @handle: Swap map handle to use for saving the image.
646  * @snapshot: Image to read data from.
647  * @nr_to_write: Number of pages to save.
648  */
649 static int save_image_lzo(struct swap_map_handle *handle,
650                           struct snapshot_handle *snapshot,
651                           unsigned int nr_to_write)
652 {
653 	unsigned int m;
654 	int ret = 0;
655 	int nr_pages;
656 	int err2;
657 	struct hib_bio_batch hb;
658 	ktime_t start;
659 	ktime_t stop;
660 	size_t off;
661 	unsigned thr, run_threads, nr_threads;
662 	unsigned char *page = NULL;
663 	struct cmp_data *data = NULL;
664 	struct crc_data *crc = NULL;
665 
666 	hib_init_batch(&hb);
667 
668 	/*
669 	 * We'll limit the number of threads for compression to limit memory
670 	 * footprint.
671 	 */
672 	nr_threads = num_online_cpus() - 1;
673 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
674 
675 	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
676 	if (!page) {
677 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
678 		ret = -ENOMEM;
679 		goto out_clean;
680 	}
681 
682 	data = vmalloc(sizeof(*data) * nr_threads);
683 	if (!data) {
684 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
685 		ret = -ENOMEM;
686 		goto out_clean;
687 	}
688 	for (thr = 0; thr < nr_threads; thr++)
689 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
690 
691 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
692 	if (!crc) {
693 		printk(KERN_ERR "PM: Failed to allocate crc\n");
694 		ret = -ENOMEM;
695 		goto out_clean;
696 	}
697 	memset(crc, 0, offsetof(struct crc_data, go));
698 
699 	/*
700 	 * Start the compression threads.
701 	 */
702 	for (thr = 0; thr < nr_threads; thr++) {
703 		init_waitqueue_head(&data[thr].go);
704 		init_waitqueue_head(&data[thr].done);
705 
706 		data[thr].thr = kthread_run(lzo_compress_threadfn,
707 		                            &data[thr],
708 		                            "image_compress/%u", thr);
709 		if (IS_ERR(data[thr].thr)) {
710 			data[thr].thr = NULL;
711 			printk(KERN_ERR
712 			       "PM: Cannot start compression threads\n");
713 			ret = -ENOMEM;
714 			goto out_clean;
715 		}
716 	}
717 
718 	/*
719 	 * Start the CRC32 thread.
720 	 */
721 	init_waitqueue_head(&crc->go);
722 	init_waitqueue_head(&crc->done);
723 
724 	handle->crc32 = 0;
725 	crc->crc32 = &handle->crc32;
726 	for (thr = 0; thr < nr_threads; thr++) {
727 		crc->unc[thr] = data[thr].unc;
728 		crc->unc_len[thr] = &data[thr].unc_len;
729 	}
730 
731 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
732 	if (IS_ERR(crc->thr)) {
733 		crc->thr = NULL;
734 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
735 		ret = -ENOMEM;
736 		goto out_clean;
737 	}
738 
739 	/*
740 	 * Adjust the number of required free pages after all allocations have
741 	 * been done. We don't want to run out of pages when writing.
742 	 */
743 	handle->reqd_free_pages = reqd_free_pages();
744 
745 	printk(KERN_INFO
746 		"PM: Using %u thread(s) for compression.\n"
747 		"PM: Compressing and saving image data (%u pages)...\n",
748 		nr_threads, nr_to_write);
749 	m = nr_to_write / 10;
750 	if (!m)
751 		m = 1;
752 	nr_pages = 0;
753 	start = ktime_get();
754 	for (;;) {
755 		for (thr = 0; thr < nr_threads; thr++) {
756 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
757 				ret = snapshot_read_next(snapshot);
758 				if (ret < 0)
759 					goto out_finish;
760 
761 				if (!ret)
762 					break;
763 
764 				memcpy(data[thr].unc + off,
765 				       data_of(*snapshot), PAGE_SIZE);
766 
767 				if (!(nr_pages % m))
768 					printk(KERN_INFO
769 					       "PM: Image saving progress: "
770 					       "%3d%%\n",
771 				               nr_pages / m * 10);
772 				nr_pages++;
773 			}
774 			if (!off)
775 				break;
776 
777 			data[thr].unc_len = off;
778 
779 			atomic_set(&data[thr].ready, 1);
780 			wake_up(&data[thr].go);
781 		}
782 
783 		if (!thr)
784 			break;
785 
786 		crc->run_threads = thr;
787 		atomic_set(&crc->ready, 1);
788 		wake_up(&crc->go);
789 
790 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
791 			wait_event(data[thr].done,
792 			           atomic_read(&data[thr].stop));
793 			atomic_set(&data[thr].stop, 0);
794 
795 			ret = data[thr].ret;
796 
797 			if (ret < 0) {
798 				printk(KERN_ERR "PM: LZO compression failed\n");
799 				goto out_finish;
800 			}
801 
802 			if (unlikely(!data[thr].cmp_len ||
803 			             data[thr].cmp_len >
804 			             lzo1x_worst_compress(data[thr].unc_len))) {
805 				printk(KERN_ERR
806 				       "PM: Invalid LZO compressed length\n");
807 				ret = -1;
808 				goto out_finish;
809 			}
810 
811 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
812 
813 			/*
814 			 * Given we are writing one page at a time to disk, we
815 			 * copy that much from the buffer, although the last
816 			 * bit will likely be smaller than full page. This is
817 			 * OK - we saved the length of the compressed data, so
818 			 * any garbage at the end will be discarded when we
819 			 * read it.
820 			 */
821 			for (off = 0;
822 			     off < LZO_HEADER + data[thr].cmp_len;
823 			     off += PAGE_SIZE) {
824 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
825 
826 				ret = swap_write_page(handle, page, &hb);
827 				if (ret)
828 					goto out_finish;
829 			}
830 		}
831 
832 		wait_event(crc->done, atomic_read(&crc->stop));
833 		atomic_set(&crc->stop, 0);
834 	}
835 
836 out_finish:
837 	err2 = hib_wait_io(&hb);
838 	stop = ktime_get();
839 	if (!ret)
840 		ret = err2;
841 	if (!ret)
842 		printk(KERN_INFO "PM: Image saving done.\n");
843 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
844 out_clean:
845 	if (crc) {
846 		if (crc->thr)
847 			kthread_stop(crc->thr);
848 		kfree(crc);
849 	}
850 	if (data) {
851 		for (thr = 0; thr < nr_threads; thr++)
852 			if (data[thr].thr)
853 				kthread_stop(data[thr].thr);
854 		vfree(data);
855 	}
856 	if (page) free_page((unsigned long)page);
857 
858 	return ret;
859 }
860 
861 /**
862  *	enough_swap - Make sure we have enough swap to save the image.
863  *
864  *	Returns TRUE or FALSE after checking the total amount of swap
865  *	space avaiable from the resume partition.
866  */
867 
868 static int enough_swap(unsigned int nr_pages, unsigned int flags)
869 {
870 	unsigned int free_swap = count_swap_pages(root_swap, 1);
871 	unsigned int required;
872 
873 	pr_debug("PM: Free swap pages: %u\n", free_swap);
874 
875 	required = PAGES_FOR_IO + nr_pages;
876 	return free_swap > required;
877 }
878 
879 /**
880  *	swsusp_write - Write entire image and metadata.
881  *	@flags: flags to pass to the "boot" kernel in the image header
882  *
883  *	It is important _NOT_ to umount filesystems at this point. We want
884  *	them synced (in case something goes wrong) but we DO not want to mark
885  *	filesystem clean: it is not. (And it does not matter, if we resume
886  *	correctly, we'll mark system clean, anyway.)
887  */
888 
889 int swsusp_write(unsigned int flags)
890 {
891 	struct swap_map_handle handle;
892 	struct snapshot_handle snapshot;
893 	struct swsusp_info *header;
894 	unsigned long pages;
895 	int error;
896 
897 	pages = snapshot_get_image_size();
898 	error = get_swap_writer(&handle);
899 	if (error) {
900 		printk(KERN_ERR "PM: Cannot get swap writer\n");
901 		return error;
902 	}
903 	if (flags & SF_NOCOMPRESS_MODE) {
904 		if (!enough_swap(pages, flags)) {
905 			printk(KERN_ERR "PM: Not enough free swap\n");
906 			error = -ENOSPC;
907 			goto out_finish;
908 		}
909 	}
910 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
911 	error = snapshot_read_next(&snapshot);
912 	if (error < PAGE_SIZE) {
913 		if (error >= 0)
914 			error = -EFAULT;
915 
916 		goto out_finish;
917 	}
918 	header = (struct swsusp_info *)data_of(snapshot);
919 	error = swap_write_page(&handle, header, NULL);
920 	if (!error) {
921 		error = (flags & SF_NOCOMPRESS_MODE) ?
922 			save_image(&handle, &snapshot, pages - 1) :
923 			save_image_lzo(&handle, &snapshot, pages - 1);
924 	}
925 out_finish:
926 	error = swap_writer_finish(&handle, flags, error);
927 	return error;
928 }
929 
930 /**
931  *	The following functions allow us to read data using a swap map
932  *	in a file-alike way
933  */
934 
935 static void release_swap_reader(struct swap_map_handle *handle)
936 {
937 	struct swap_map_page_list *tmp;
938 
939 	while (handle->maps) {
940 		if (handle->maps->map)
941 			free_page((unsigned long)handle->maps->map);
942 		tmp = handle->maps;
943 		handle->maps = handle->maps->next;
944 		kfree(tmp);
945 	}
946 	handle->cur = NULL;
947 }
948 
949 static int get_swap_reader(struct swap_map_handle *handle,
950 		unsigned int *flags_p)
951 {
952 	int error;
953 	struct swap_map_page_list *tmp, *last;
954 	sector_t offset;
955 
956 	*flags_p = swsusp_header->flags;
957 
958 	if (!swsusp_header->image) /* how can this happen? */
959 		return -EINVAL;
960 
961 	handle->cur = NULL;
962 	last = handle->maps = NULL;
963 	offset = swsusp_header->image;
964 	while (offset) {
965 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
966 		if (!tmp) {
967 			release_swap_reader(handle);
968 			return -ENOMEM;
969 		}
970 		memset(tmp, 0, sizeof(*tmp));
971 		if (!handle->maps)
972 			handle->maps = tmp;
973 		if (last)
974 			last->next = tmp;
975 		last = tmp;
976 
977 		tmp->map = (struct swap_map_page *)
978 			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
979 		if (!tmp->map) {
980 			release_swap_reader(handle);
981 			return -ENOMEM;
982 		}
983 
984 		error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
985 		if (error) {
986 			release_swap_reader(handle);
987 			return error;
988 		}
989 		offset = tmp->map->next_swap;
990 	}
991 	handle->k = 0;
992 	handle->cur = handle->maps->map;
993 	return 0;
994 }
995 
996 static int swap_read_page(struct swap_map_handle *handle, void *buf,
997 		struct hib_bio_batch *hb)
998 {
999 	sector_t offset;
1000 	int error;
1001 	struct swap_map_page_list *tmp;
1002 
1003 	if (!handle->cur)
1004 		return -EINVAL;
1005 	offset = handle->cur->entries[handle->k];
1006 	if (!offset)
1007 		return -EFAULT;
1008 	error = hib_submit_io(READ_SYNC, offset, buf, hb);
1009 	if (error)
1010 		return error;
1011 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1012 		handle->k = 0;
1013 		free_page((unsigned long)handle->maps->map);
1014 		tmp = handle->maps;
1015 		handle->maps = handle->maps->next;
1016 		kfree(tmp);
1017 		if (!handle->maps)
1018 			release_swap_reader(handle);
1019 		else
1020 			handle->cur = handle->maps->map;
1021 	}
1022 	return error;
1023 }
1024 
1025 static int swap_reader_finish(struct swap_map_handle *handle)
1026 {
1027 	release_swap_reader(handle);
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  *	load_image - load the image using the swap map handle
1034  *	@handle and the snapshot handle @snapshot
1035  *	(assume there are @nr_pages pages to load)
1036  */
1037 
1038 static int load_image(struct swap_map_handle *handle,
1039                       struct snapshot_handle *snapshot,
1040                       unsigned int nr_to_read)
1041 {
1042 	unsigned int m;
1043 	int ret = 0;
1044 	ktime_t start;
1045 	ktime_t stop;
1046 	struct hib_bio_batch hb;
1047 	int err2;
1048 	unsigned nr_pages;
1049 
1050 	hib_init_batch(&hb);
1051 
1052 	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1053 		nr_to_read);
1054 	m = nr_to_read / 10;
1055 	if (!m)
1056 		m = 1;
1057 	nr_pages = 0;
1058 	start = ktime_get();
1059 	for ( ; ; ) {
1060 		ret = snapshot_write_next(snapshot);
1061 		if (ret <= 0)
1062 			break;
1063 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1064 		if (ret)
1065 			break;
1066 		if (snapshot->sync_read)
1067 			ret = hib_wait_io(&hb);
1068 		if (ret)
1069 			break;
1070 		if (!(nr_pages % m))
1071 			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1072 			       nr_pages / m * 10);
1073 		nr_pages++;
1074 	}
1075 	err2 = hib_wait_io(&hb);
1076 	stop = ktime_get();
1077 	if (!ret)
1078 		ret = err2;
1079 	if (!ret) {
1080 		printk(KERN_INFO "PM: Image loading done.\n");
1081 		snapshot_write_finalize(snapshot);
1082 		if (!snapshot_image_loaded(snapshot))
1083 			ret = -ENODATA;
1084 	}
1085 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1086 	return ret;
1087 }
1088 
1089 /**
1090  * Structure used for LZO data decompression.
1091  */
1092 struct dec_data {
1093 	struct task_struct *thr;                  /* thread */
1094 	atomic_t ready;                           /* ready to start flag */
1095 	atomic_t stop;                            /* ready to stop flag */
1096 	int ret;                                  /* return code */
1097 	wait_queue_head_t go;                     /* start decompression */
1098 	wait_queue_head_t done;                   /* decompression done */
1099 	size_t unc_len;                           /* uncompressed length */
1100 	size_t cmp_len;                           /* compressed length */
1101 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1102 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1103 };
1104 
1105 /**
1106  * Deompression function that runs in its own thread.
1107  */
1108 static int lzo_decompress_threadfn(void *data)
1109 {
1110 	struct dec_data *d = data;
1111 
1112 	while (1) {
1113 		wait_event(d->go, atomic_read(&d->ready) ||
1114 		                  kthread_should_stop());
1115 		if (kthread_should_stop()) {
1116 			d->thr = NULL;
1117 			d->ret = -1;
1118 			atomic_set(&d->stop, 1);
1119 			wake_up(&d->done);
1120 			break;
1121 		}
1122 		atomic_set(&d->ready, 0);
1123 
1124 		d->unc_len = LZO_UNC_SIZE;
1125 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1126 		                               d->unc, &d->unc_len);
1127 		atomic_set(&d->stop, 1);
1128 		wake_up(&d->done);
1129 	}
1130 	return 0;
1131 }
1132 
1133 /**
1134  * load_image_lzo - Load compressed image data and decompress them with LZO.
1135  * @handle: Swap map handle to use for loading data.
1136  * @snapshot: Image to copy uncompressed data into.
1137  * @nr_to_read: Number of pages to load.
1138  */
1139 static int load_image_lzo(struct swap_map_handle *handle,
1140                           struct snapshot_handle *snapshot,
1141                           unsigned int nr_to_read)
1142 {
1143 	unsigned int m;
1144 	int ret = 0;
1145 	int eof = 0;
1146 	struct hib_bio_batch hb;
1147 	ktime_t start;
1148 	ktime_t stop;
1149 	unsigned nr_pages;
1150 	size_t off;
1151 	unsigned i, thr, run_threads, nr_threads;
1152 	unsigned ring = 0, pg = 0, ring_size = 0,
1153 	         have = 0, want, need, asked = 0;
1154 	unsigned long read_pages = 0;
1155 	unsigned char **page = NULL;
1156 	struct dec_data *data = NULL;
1157 	struct crc_data *crc = NULL;
1158 
1159 	hib_init_batch(&hb);
1160 
1161 	/*
1162 	 * We'll limit the number of threads for decompression to limit memory
1163 	 * footprint.
1164 	 */
1165 	nr_threads = num_online_cpus() - 1;
1166 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1167 
1168 	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1169 	if (!page) {
1170 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1171 		ret = -ENOMEM;
1172 		goto out_clean;
1173 	}
1174 
1175 	data = vmalloc(sizeof(*data) * nr_threads);
1176 	if (!data) {
1177 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1178 		ret = -ENOMEM;
1179 		goto out_clean;
1180 	}
1181 	for (thr = 0; thr < nr_threads; thr++)
1182 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1183 
1184 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1185 	if (!crc) {
1186 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1187 		ret = -ENOMEM;
1188 		goto out_clean;
1189 	}
1190 	memset(crc, 0, offsetof(struct crc_data, go));
1191 
1192 	/*
1193 	 * Start the decompression threads.
1194 	 */
1195 	for (thr = 0; thr < nr_threads; thr++) {
1196 		init_waitqueue_head(&data[thr].go);
1197 		init_waitqueue_head(&data[thr].done);
1198 
1199 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1200 		                            &data[thr],
1201 		                            "image_decompress/%u", thr);
1202 		if (IS_ERR(data[thr].thr)) {
1203 			data[thr].thr = NULL;
1204 			printk(KERN_ERR
1205 			       "PM: Cannot start decompression threads\n");
1206 			ret = -ENOMEM;
1207 			goto out_clean;
1208 		}
1209 	}
1210 
1211 	/*
1212 	 * Start the CRC32 thread.
1213 	 */
1214 	init_waitqueue_head(&crc->go);
1215 	init_waitqueue_head(&crc->done);
1216 
1217 	handle->crc32 = 0;
1218 	crc->crc32 = &handle->crc32;
1219 	for (thr = 0; thr < nr_threads; thr++) {
1220 		crc->unc[thr] = data[thr].unc;
1221 		crc->unc_len[thr] = &data[thr].unc_len;
1222 	}
1223 
1224 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1225 	if (IS_ERR(crc->thr)) {
1226 		crc->thr = NULL;
1227 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1228 		ret = -ENOMEM;
1229 		goto out_clean;
1230 	}
1231 
1232 	/*
1233 	 * Set the number of pages for read buffering.
1234 	 * This is complete guesswork, because we'll only know the real
1235 	 * picture once prepare_image() is called, which is much later on
1236 	 * during the image load phase. We'll assume the worst case and
1237 	 * say that none of the image pages are from high memory.
1238 	 */
1239 	if (low_free_pages() > snapshot_get_image_size())
1240 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1241 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1242 
1243 	for (i = 0; i < read_pages; i++) {
1244 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1245 						  __GFP_RECLAIM | __GFP_HIGH :
1246 						  __GFP_RECLAIM | __GFP_NOWARN |
1247 						  __GFP_NORETRY);
1248 
1249 		if (!page[i]) {
1250 			if (i < LZO_CMP_PAGES) {
1251 				ring_size = i;
1252 				printk(KERN_ERR
1253 				       "PM: Failed to allocate LZO pages\n");
1254 				ret = -ENOMEM;
1255 				goto out_clean;
1256 			} else {
1257 				break;
1258 			}
1259 		}
1260 	}
1261 	want = ring_size = i;
1262 
1263 	printk(KERN_INFO
1264 		"PM: Using %u thread(s) for decompression.\n"
1265 		"PM: Loading and decompressing image data (%u pages)...\n",
1266 		nr_threads, nr_to_read);
1267 	m = nr_to_read / 10;
1268 	if (!m)
1269 		m = 1;
1270 	nr_pages = 0;
1271 	start = ktime_get();
1272 
1273 	ret = snapshot_write_next(snapshot);
1274 	if (ret <= 0)
1275 		goto out_finish;
1276 
1277 	for(;;) {
1278 		for (i = 0; !eof && i < want; i++) {
1279 			ret = swap_read_page(handle, page[ring], &hb);
1280 			if (ret) {
1281 				/*
1282 				 * On real read error, finish. On end of data,
1283 				 * set EOF flag and just exit the read loop.
1284 				 */
1285 				if (handle->cur &&
1286 				    handle->cur->entries[handle->k]) {
1287 					goto out_finish;
1288 				} else {
1289 					eof = 1;
1290 					break;
1291 				}
1292 			}
1293 			if (++ring >= ring_size)
1294 				ring = 0;
1295 		}
1296 		asked += i;
1297 		want -= i;
1298 
1299 		/*
1300 		 * We are out of data, wait for some more.
1301 		 */
1302 		if (!have) {
1303 			if (!asked)
1304 				break;
1305 
1306 			ret = hib_wait_io(&hb);
1307 			if (ret)
1308 				goto out_finish;
1309 			have += asked;
1310 			asked = 0;
1311 			if (eof)
1312 				eof = 2;
1313 		}
1314 
1315 		if (crc->run_threads) {
1316 			wait_event(crc->done, atomic_read(&crc->stop));
1317 			atomic_set(&crc->stop, 0);
1318 			crc->run_threads = 0;
1319 		}
1320 
1321 		for (thr = 0; have && thr < nr_threads; thr++) {
1322 			data[thr].cmp_len = *(size_t *)page[pg];
1323 			if (unlikely(!data[thr].cmp_len ||
1324 			             data[thr].cmp_len >
1325 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1326 				printk(KERN_ERR
1327 				       "PM: Invalid LZO compressed length\n");
1328 				ret = -1;
1329 				goto out_finish;
1330 			}
1331 
1332 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1333 			                    PAGE_SIZE);
1334 			if (need > have) {
1335 				if (eof > 1) {
1336 					ret = -1;
1337 					goto out_finish;
1338 				}
1339 				break;
1340 			}
1341 
1342 			for (off = 0;
1343 			     off < LZO_HEADER + data[thr].cmp_len;
1344 			     off += PAGE_SIZE) {
1345 				memcpy(data[thr].cmp + off,
1346 				       page[pg], PAGE_SIZE);
1347 				have--;
1348 				want++;
1349 				if (++pg >= ring_size)
1350 					pg = 0;
1351 			}
1352 
1353 			atomic_set(&data[thr].ready, 1);
1354 			wake_up(&data[thr].go);
1355 		}
1356 
1357 		/*
1358 		 * Wait for more data while we are decompressing.
1359 		 */
1360 		if (have < LZO_CMP_PAGES && asked) {
1361 			ret = hib_wait_io(&hb);
1362 			if (ret)
1363 				goto out_finish;
1364 			have += asked;
1365 			asked = 0;
1366 			if (eof)
1367 				eof = 2;
1368 		}
1369 
1370 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1371 			wait_event(data[thr].done,
1372 			           atomic_read(&data[thr].stop));
1373 			atomic_set(&data[thr].stop, 0);
1374 
1375 			ret = data[thr].ret;
1376 
1377 			if (ret < 0) {
1378 				printk(KERN_ERR
1379 				       "PM: LZO decompression failed\n");
1380 				goto out_finish;
1381 			}
1382 
1383 			if (unlikely(!data[thr].unc_len ||
1384 			             data[thr].unc_len > LZO_UNC_SIZE ||
1385 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1386 				printk(KERN_ERR
1387 				       "PM: Invalid LZO uncompressed length\n");
1388 				ret = -1;
1389 				goto out_finish;
1390 			}
1391 
1392 			for (off = 0;
1393 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1394 				memcpy(data_of(*snapshot),
1395 				       data[thr].unc + off, PAGE_SIZE);
1396 
1397 				if (!(nr_pages % m))
1398 					printk(KERN_INFO
1399 					       "PM: Image loading progress: "
1400 					       "%3d%%\n",
1401 					       nr_pages / m * 10);
1402 				nr_pages++;
1403 
1404 				ret = snapshot_write_next(snapshot);
1405 				if (ret <= 0) {
1406 					crc->run_threads = thr + 1;
1407 					atomic_set(&crc->ready, 1);
1408 					wake_up(&crc->go);
1409 					goto out_finish;
1410 				}
1411 			}
1412 		}
1413 
1414 		crc->run_threads = thr;
1415 		atomic_set(&crc->ready, 1);
1416 		wake_up(&crc->go);
1417 	}
1418 
1419 out_finish:
1420 	if (crc->run_threads) {
1421 		wait_event(crc->done, atomic_read(&crc->stop));
1422 		atomic_set(&crc->stop, 0);
1423 	}
1424 	stop = ktime_get();
1425 	if (!ret) {
1426 		printk(KERN_INFO "PM: Image loading done.\n");
1427 		snapshot_write_finalize(snapshot);
1428 		if (!snapshot_image_loaded(snapshot))
1429 			ret = -ENODATA;
1430 		if (!ret) {
1431 			if (swsusp_header->flags & SF_CRC32_MODE) {
1432 				if(handle->crc32 != swsusp_header->crc32) {
1433 					printk(KERN_ERR
1434 					       "PM: Invalid image CRC32!\n");
1435 					ret = -ENODATA;
1436 				}
1437 			}
1438 		}
1439 	}
1440 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1441 out_clean:
1442 	for (i = 0; i < ring_size; i++)
1443 		free_page((unsigned long)page[i]);
1444 	if (crc) {
1445 		if (crc->thr)
1446 			kthread_stop(crc->thr);
1447 		kfree(crc);
1448 	}
1449 	if (data) {
1450 		for (thr = 0; thr < nr_threads; thr++)
1451 			if (data[thr].thr)
1452 				kthread_stop(data[thr].thr);
1453 		vfree(data);
1454 	}
1455 	vfree(page);
1456 
1457 	return ret;
1458 }
1459 
1460 /**
1461  *	swsusp_read - read the hibernation image.
1462  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1463  *		  be written into this memory location
1464  */
1465 
1466 int swsusp_read(unsigned int *flags_p)
1467 {
1468 	int error;
1469 	struct swap_map_handle handle;
1470 	struct snapshot_handle snapshot;
1471 	struct swsusp_info *header;
1472 
1473 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1474 	error = snapshot_write_next(&snapshot);
1475 	if (error < PAGE_SIZE)
1476 		return error < 0 ? error : -EFAULT;
1477 	header = (struct swsusp_info *)data_of(snapshot);
1478 	error = get_swap_reader(&handle, flags_p);
1479 	if (error)
1480 		goto end;
1481 	if (!error)
1482 		error = swap_read_page(&handle, header, NULL);
1483 	if (!error) {
1484 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1485 			load_image(&handle, &snapshot, header->pages - 1) :
1486 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1487 	}
1488 	swap_reader_finish(&handle);
1489 end:
1490 	if (!error)
1491 		pr_debug("PM: Image successfully loaded\n");
1492 	else
1493 		pr_debug("PM: Error %d resuming\n", error);
1494 	return error;
1495 }
1496 
1497 /**
1498  *      swsusp_check - Check for swsusp signature in the resume device
1499  */
1500 
1501 int swsusp_check(void)
1502 {
1503 	int error;
1504 
1505 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1506 					    FMODE_READ, NULL);
1507 	if (!IS_ERR(hib_resume_bdev)) {
1508 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1509 		clear_page(swsusp_header);
1510 		error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1511 					swsusp_header, NULL);
1512 		if (error)
1513 			goto put;
1514 
1515 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1516 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1517 			/* Reset swap signature now */
1518 			error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1519 						swsusp_header, NULL);
1520 		} else {
1521 			error = -EINVAL;
1522 		}
1523 
1524 put:
1525 		if (error)
1526 			blkdev_put(hib_resume_bdev, FMODE_READ);
1527 		else
1528 			pr_debug("PM: Image signature found, resuming\n");
1529 	} else {
1530 		error = PTR_ERR(hib_resume_bdev);
1531 	}
1532 
1533 	if (error)
1534 		pr_debug("PM: Image not found (code %d)\n", error);
1535 
1536 	return error;
1537 }
1538 
1539 /**
1540  *	swsusp_close - close swap device.
1541  */
1542 
1543 void swsusp_close(fmode_t mode)
1544 {
1545 	if (IS_ERR(hib_resume_bdev)) {
1546 		pr_debug("PM: Image device not initialised\n");
1547 		return;
1548 	}
1549 
1550 	blkdev_put(hib_resume_bdev, mode);
1551 }
1552 
1553 /**
1554  *      swsusp_unmark - Unmark swsusp signature in the resume device
1555  */
1556 
1557 #ifdef CONFIG_SUSPEND
1558 int swsusp_unmark(void)
1559 {
1560 	int error;
1561 
1562 	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1563 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1564 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1565 		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1566 					swsusp_header, NULL);
1567 	} else {
1568 		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1569 		error = -ENODEV;
1570 	}
1571 
1572 	/*
1573 	 * We just returned from suspend, we don't need the image any more.
1574 	 */
1575 	free_all_swap_pages(root_swap);
1576 
1577 	return error;
1578 }
1579 #endif
1580 
1581 static int swsusp_header_init(void)
1582 {
1583 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1584 	if (!swsusp_header)
1585 		panic("Could not allocate memory for swsusp_header\n");
1586 	return 0;
1587 }
1588 
1589 core_initcall(swsusp_header_init);
1590