1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/genhd.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/lzo.h> 28 #include <linux/vmalloc.h> 29 #include <linux/cpumask.h> 30 #include <linux/atomic.h> 31 #include <linux/kthread.h> 32 #include <linux/crc32.h> 33 #include <linux/ktime.h> 34 35 #include "power.h" 36 37 #define HIBERNATE_SIG "S1SUSPEND" 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /** 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32)]; 108 u32 crc32; 109 sector_t image; 110 unsigned int flags; /* Flags to pass to the "boot" kernel */ 111 char orig_sig[10]; 112 char sig[10]; 113 } __packed; 114 115 static struct swsusp_header *swsusp_header; 116 117 /** 118 * The following functions are used for tracing the allocated 119 * swap pages, so that they can be freed in case of an error. 120 */ 121 122 struct swsusp_extent { 123 struct rb_node node; 124 unsigned long start; 125 unsigned long end; 126 }; 127 128 static struct rb_root swsusp_extents = RB_ROOT; 129 130 static int swsusp_extents_insert(unsigned long swap_offset) 131 { 132 struct rb_node **new = &(swsusp_extents.rb_node); 133 struct rb_node *parent = NULL; 134 struct swsusp_extent *ext; 135 136 /* Figure out where to put the new node */ 137 while (*new) { 138 ext = rb_entry(*new, struct swsusp_extent, node); 139 parent = *new; 140 if (swap_offset < ext->start) { 141 /* Try to merge */ 142 if (swap_offset == ext->start - 1) { 143 ext->start--; 144 return 0; 145 } 146 new = &((*new)->rb_left); 147 } else if (swap_offset > ext->end) { 148 /* Try to merge */ 149 if (swap_offset == ext->end + 1) { 150 ext->end++; 151 return 0; 152 } 153 new = &((*new)->rb_right); 154 } else { 155 /* It already is in the tree */ 156 return -EINVAL; 157 } 158 } 159 /* Add the new node and rebalance the tree. */ 160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 161 if (!ext) 162 return -ENOMEM; 163 164 ext->start = swap_offset; 165 ext->end = swap_offset; 166 rb_link_node(&ext->node, parent, new); 167 rb_insert_color(&ext->node, &swsusp_extents); 168 return 0; 169 } 170 171 /** 172 * alloc_swapdev_block - allocate a swap page and register that it has 173 * been allocated, so that it can be freed in case of an error. 174 */ 175 176 sector_t alloc_swapdev_block(int swap) 177 { 178 unsigned long offset; 179 180 offset = swp_offset(get_swap_page_of_type(swap)); 181 if (offset) { 182 if (swsusp_extents_insert(offset)) 183 swap_free(swp_entry(swap, offset)); 184 else 185 return swapdev_block(swap, offset); 186 } 187 return 0; 188 } 189 190 /** 191 * free_all_swap_pages - free swap pages allocated for saving image data. 192 * It also frees the extents used to register which swap entries had been 193 * allocated. 194 */ 195 196 void free_all_swap_pages(int swap) 197 { 198 struct rb_node *node; 199 200 while ((node = swsusp_extents.rb_node)) { 201 struct swsusp_extent *ext; 202 unsigned long offset; 203 204 ext = rb_entry(node, struct swsusp_extent, node); 205 rb_erase(node, &swsusp_extents); 206 for (offset = ext->start; offset <= ext->end; offset++) 207 swap_free(swp_entry(swap, offset)); 208 209 kfree(ext); 210 } 211 } 212 213 int swsusp_swap_in_use(void) 214 { 215 return (swsusp_extents.rb_node != NULL); 216 } 217 218 /* 219 * General things 220 */ 221 222 static unsigned short root_swap = 0xffff; 223 static struct block_device *hib_resume_bdev; 224 225 struct hib_bio_batch { 226 atomic_t count; 227 wait_queue_head_t wait; 228 blk_status_t error; 229 }; 230 231 static void hib_init_batch(struct hib_bio_batch *hb) 232 { 233 atomic_set(&hb->count, 0); 234 init_waitqueue_head(&hb->wait); 235 hb->error = BLK_STS_OK; 236 } 237 238 static void hib_end_io(struct bio *bio) 239 { 240 struct hib_bio_batch *hb = bio->bi_private; 241 struct page *page = bio_first_page_all(bio); 242 243 if (bio->bi_status) { 244 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 245 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 246 (unsigned long long)bio->bi_iter.bi_sector); 247 } 248 249 if (bio_data_dir(bio) == WRITE) 250 put_page(page); 251 else if (clean_pages_on_read) 252 flush_icache_range((unsigned long)page_address(page), 253 (unsigned long)page_address(page) + PAGE_SIZE); 254 255 if (bio->bi_status && !hb->error) 256 hb->error = bio->bi_status; 257 if (atomic_dec_and_test(&hb->count)) 258 wake_up(&hb->wait); 259 260 bio_put(bio); 261 } 262 263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr, 264 struct hib_bio_batch *hb) 265 { 266 struct page *page = virt_to_page(addr); 267 struct bio *bio; 268 int error = 0; 269 270 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1); 271 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 272 bio_set_dev(bio, hib_resume_bdev); 273 bio_set_op_attrs(bio, op, op_flags); 274 275 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 276 pr_err("Adding page to bio failed at %llu\n", 277 (unsigned long long)bio->bi_iter.bi_sector); 278 bio_put(bio); 279 return -EFAULT; 280 } 281 282 if (hb) { 283 bio->bi_end_io = hib_end_io; 284 bio->bi_private = hb; 285 atomic_inc(&hb->count); 286 submit_bio(bio); 287 } else { 288 error = submit_bio_wait(bio); 289 bio_put(bio); 290 } 291 292 return error; 293 } 294 295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb) 296 { 297 wait_event(hb->wait, atomic_read(&hb->count) == 0); 298 return blk_status_to_errno(hb->error); 299 } 300 301 /* 302 * Saving part 303 */ 304 305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 306 { 307 int error; 308 309 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 310 swsusp_header, NULL); 311 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 312 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 313 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 314 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 315 swsusp_header->image = handle->first_sector; 316 swsusp_header->flags = flags; 317 if (flags & SF_CRC32_MODE) 318 swsusp_header->crc32 = handle->crc32; 319 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 320 swsusp_resume_block, swsusp_header, NULL); 321 } else { 322 pr_err("Swap header not found!\n"); 323 error = -ENODEV; 324 } 325 return error; 326 } 327 328 /** 329 * swsusp_swap_check - check if the resume device is a swap device 330 * and get its index (if so) 331 * 332 * This is called before saving image 333 */ 334 static int swsusp_swap_check(void) 335 { 336 int res; 337 338 res = swap_type_of(swsusp_resume_device, swsusp_resume_block, 339 &hib_resume_bdev); 340 if (res < 0) 341 return res; 342 343 root_swap = res; 344 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL); 345 if (res) 346 return res; 347 348 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 349 if (res < 0) 350 blkdev_put(hib_resume_bdev, FMODE_WRITE); 351 352 /* 353 * Update the resume device to the one actually used, 354 * so the test_resume mode can use it in case it is 355 * invoked from hibernate() to test the snapshot. 356 */ 357 swsusp_resume_device = hib_resume_bdev->bd_dev; 358 return res; 359 } 360 361 /** 362 * write_page - Write one page to given swap location. 363 * @buf: Address we're writing. 364 * @offset: Offset of the swap page we're writing to. 365 * @hb: bio completion batch 366 */ 367 368 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 369 { 370 void *src; 371 int ret; 372 373 if (!offset) 374 return -ENOSPC; 375 376 if (hb) { 377 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 378 __GFP_NORETRY); 379 if (src) { 380 copy_page(src, buf); 381 } else { 382 ret = hib_wait_io(hb); /* Free pages */ 383 if (ret) 384 return ret; 385 src = (void *)__get_free_page(GFP_NOIO | 386 __GFP_NOWARN | 387 __GFP_NORETRY); 388 if (src) { 389 copy_page(src, buf); 390 } else { 391 WARN_ON_ONCE(1); 392 hb = NULL; /* Go synchronous */ 393 src = buf; 394 } 395 } 396 } else { 397 src = buf; 398 } 399 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb); 400 } 401 402 static void release_swap_writer(struct swap_map_handle *handle) 403 { 404 if (handle->cur) 405 free_page((unsigned long)handle->cur); 406 handle->cur = NULL; 407 } 408 409 static int get_swap_writer(struct swap_map_handle *handle) 410 { 411 int ret; 412 413 ret = swsusp_swap_check(); 414 if (ret) { 415 if (ret != -ENOSPC) 416 pr_err("Cannot find swap device, try swapon -a\n"); 417 return ret; 418 } 419 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 420 if (!handle->cur) { 421 ret = -ENOMEM; 422 goto err_close; 423 } 424 handle->cur_swap = alloc_swapdev_block(root_swap); 425 if (!handle->cur_swap) { 426 ret = -ENOSPC; 427 goto err_rel; 428 } 429 handle->k = 0; 430 handle->reqd_free_pages = reqd_free_pages(); 431 handle->first_sector = handle->cur_swap; 432 return 0; 433 err_rel: 434 release_swap_writer(handle); 435 err_close: 436 swsusp_close(FMODE_WRITE); 437 return ret; 438 } 439 440 static int swap_write_page(struct swap_map_handle *handle, void *buf, 441 struct hib_bio_batch *hb) 442 { 443 int error = 0; 444 sector_t offset; 445 446 if (!handle->cur) 447 return -EINVAL; 448 offset = alloc_swapdev_block(root_swap); 449 error = write_page(buf, offset, hb); 450 if (error) 451 return error; 452 handle->cur->entries[handle->k++] = offset; 453 if (handle->k >= MAP_PAGE_ENTRIES) { 454 offset = alloc_swapdev_block(root_swap); 455 if (!offset) 456 return -ENOSPC; 457 handle->cur->next_swap = offset; 458 error = write_page(handle->cur, handle->cur_swap, hb); 459 if (error) 460 goto out; 461 clear_page(handle->cur); 462 handle->cur_swap = offset; 463 handle->k = 0; 464 465 if (hb && low_free_pages() <= handle->reqd_free_pages) { 466 error = hib_wait_io(hb); 467 if (error) 468 goto out; 469 /* 470 * Recalculate the number of required free pages, to 471 * make sure we never take more than half. 472 */ 473 handle->reqd_free_pages = reqd_free_pages(); 474 } 475 } 476 out: 477 return error; 478 } 479 480 static int flush_swap_writer(struct swap_map_handle *handle) 481 { 482 if (handle->cur && handle->cur_swap) 483 return write_page(handle->cur, handle->cur_swap, NULL); 484 else 485 return -EINVAL; 486 } 487 488 static int swap_writer_finish(struct swap_map_handle *handle, 489 unsigned int flags, int error) 490 { 491 if (!error) { 492 flush_swap_writer(handle); 493 pr_info("S"); 494 error = mark_swapfiles(handle, flags); 495 pr_cont("|\n"); 496 } 497 498 if (error) 499 free_all_swap_pages(root_swap); 500 release_swap_writer(handle); 501 swsusp_close(FMODE_WRITE); 502 503 return error; 504 } 505 506 /* We need to remember how much compressed data we need to read. */ 507 #define LZO_HEADER sizeof(size_t) 508 509 /* Number of pages/bytes we'll compress at one time. */ 510 #define LZO_UNC_PAGES 32 511 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 512 513 /* Number of pages/bytes we need for compressed data (worst case). */ 514 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 515 LZO_HEADER, PAGE_SIZE) 516 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 517 518 /* Maximum number of threads for compression/decompression. */ 519 #define LZO_THREADS 3 520 521 /* Minimum/maximum number of pages for read buffering. */ 522 #define LZO_MIN_RD_PAGES 1024 523 #define LZO_MAX_RD_PAGES 8192 524 525 526 /** 527 * save_image - save the suspend image data 528 */ 529 530 static int save_image(struct swap_map_handle *handle, 531 struct snapshot_handle *snapshot, 532 unsigned int nr_to_write) 533 { 534 unsigned int m; 535 int ret; 536 int nr_pages; 537 int err2; 538 struct hib_bio_batch hb; 539 ktime_t start; 540 ktime_t stop; 541 542 hib_init_batch(&hb); 543 544 pr_info("Saving image data pages (%u pages)...\n", 545 nr_to_write); 546 m = nr_to_write / 10; 547 if (!m) 548 m = 1; 549 nr_pages = 0; 550 start = ktime_get(); 551 while (1) { 552 ret = snapshot_read_next(snapshot); 553 if (ret <= 0) 554 break; 555 ret = swap_write_page(handle, data_of(*snapshot), &hb); 556 if (ret) 557 break; 558 if (!(nr_pages % m)) 559 pr_info("Image saving progress: %3d%%\n", 560 nr_pages / m * 10); 561 nr_pages++; 562 } 563 err2 = hib_wait_io(&hb); 564 stop = ktime_get(); 565 if (!ret) 566 ret = err2; 567 if (!ret) 568 pr_info("Image saving done\n"); 569 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 570 return ret; 571 } 572 573 /** 574 * Structure used for CRC32. 575 */ 576 struct crc_data { 577 struct task_struct *thr; /* thread */ 578 atomic_t ready; /* ready to start flag */ 579 atomic_t stop; /* ready to stop flag */ 580 unsigned run_threads; /* nr current threads */ 581 wait_queue_head_t go; /* start crc update */ 582 wait_queue_head_t done; /* crc update done */ 583 u32 *crc32; /* points to handle's crc32 */ 584 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 585 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 586 }; 587 588 /** 589 * CRC32 update function that runs in its own thread. 590 */ 591 static int crc32_threadfn(void *data) 592 { 593 struct crc_data *d = data; 594 unsigned i; 595 596 while (1) { 597 wait_event(d->go, atomic_read(&d->ready) || 598 kthread_should_stop()); 599 if (kthread_should_stop()) { 600 d->thr = NULL; 601 atomic_set(&d->stop, 1); 602 wake_up(&d->done); 603 break; 604 } 605 atomic_set(&d->ready, 0); 606 607 for (i = 0; i < d->run_threads; i++) 608 *d->crc32 = crc32_le(*d->crc32, 609 d->unc[i], *d->unc_len[i]); 610 atomic_set(&d->stop, 1); 611 wake_up(&d->done); 612 } 613 return 0; 614 } 615 /** 616 * Structure used for LZO data compression. 617 */ 618 struct cmp_data { 619 struct task_struct *thr; /* thread */ 620 atomic_t ready; /* ready to start flag */ 621 atomic_t stop; /* ready to stop flag */ 622 int ret; /* return code */ 623 wait_queue_head_t go; /* start compression */ 624 wait_queue_head_t done; /* compression done */ 625 size_t unc_len; /* uncompressed length */ 626 size_t cmp_len; /* compressed length */ 627 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 628 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 629 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 630 }; 631 632 /** 633 * Compression function that runs in its own thread. 634 */ 635 static int lzo_compress_threadfn(void *data) 636 { 637 struct cmp_data *d = data; 638 639 while (1) { 640 wait_event(d->go, atomic_read(&d->ready) || 641 kthread_should_stop()); 642 if (kthread_should_stop()) { 643 d->thr = NULL; 644 d->ret = -1; 645 atomic_set(&d->stop, 1); 646 wake_up(&d->done); 647 break; 648 } 649 atomic_set(&d->ready, 0); 650 651 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 652 d->cmp + LZO_HEADER, &d->cmp_len, 653 d->wrk); 654 atomic_set(&d->stop, 1); 655 wake_up(&d->done); 656 } 657 return 0; 658 } 659 660 /** 661 * save_image_lzo - Save the suspend image data compressed with LZO. 662 * @handle: Swap map handle to use for saving the image. 663 * @snapshot: Image to read data from. 664 * @nr_to_write: Number of pages to save. 665 */ 666 static int save_image_lzo(struct swap_map_handle *handle, 667 struct snapshot_handle *snapshot, 668 unsigned int nr_to_write) 669 { 670 unsigned int m; 671 int ret = 0; 672 int nr_pages; 673 int err2; 674 struct hib_bio_batch hb; 675 ktime_t start; 676 ktime_t stop; 677 size_t off; 678 unsigned thr, run_threads, nr_threads; 679 unsigned char *page = NULL; 680 struct cmp_data *data = NULL; 681 struct crc_data *crc = NULL; 682 683 hib_init_batch(&hb); 684 685 /* 686 * We'll limit the number of threads for compression to limit memory 687 * footprint. 688 */ 689 nr_threads = num_online_cpus() - 1; 690 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 691 692 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 693 if (!page) { 694 pr_err("Failed to allocate LZO page\n"); 695 ret = -ENOMEM; 696 goto out_clean; 697 } 698 699 data = vmalloc(array_size(nr_threads, sizeof(*data))); 700 if (!data) { 701 pr_err("Failed to allocate LZO data\n"); 702 ret = -ENOMEM; 703 goto out_clean; 704 } 705 for (thr = 0; thr < nr_threads; thr++) 706 memset(&data[thr], 0, offsetof(struct cmp_data, go)); 707 708 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 709 if (!crc) { 710 pr_err("Failed to allocate crc\n"); 711 ret = -ENOMEM; 712 goto out_clean; 713 } 714 memset(crc, 0, offsetof(struct crc_data, go)); 715 716 /* 717 * Start the compression threads. 718 */ 719 for (thr = 0; thr < nr_threads; thr++) { 720 init_waitqueue_head(&data[thr].go); 721 init_waitqueue_head(&data[thr].done); 722 723 data[thr].thr = kthread_run(lzo_compress_threadfn, 724 &data[thr], 725 "image_compress/%u", thr); 726 if (IS_ERR(data[thr].thr)) { 727 data[thr].thr = NULL; 728 pr_err("Cannot start compression threads\n"); 729 ret = -ENOMEM; 730 goto out_clean; 731 } 732 } 733 734 /* 735 * Start the CRC32 thread. 736 */ 737 init_waitqueue_head(&crc->go); 738 init_waitqueue_head(&crc->done); 739 740 handle->crc32 = 0; 741 crc->crc32 = &handle->crc32; 742 for (thr = 0; thr < nr_threads; thr++) { 743 crc->unc[thr] = data[thr].unc; 744 crc->unc_len[thr] = &data[thr].unc_len; 745 } 746 747 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 748 if (IS_ERR(crc->thr)) { 749 crc->thr = NULL; 750 pr_err("Cannot start CRC32 thread\n"); 751 ret = -ENOMEM; 752 goto out_clean; 753 } 754 755 /* 756 * Adjust the number of required free pages after all allocations have 757 * been done. We don't want to run out of pages when writing. 758 */ 759 handle->reqd_free_pages = reqd_free_pages(); 760 761 pr_info("Using %u thread(s) for compression\n", nr_threads); 762 pr_info("Compressing and saving image data (%u pages)...\n", 763 nr_to_write); 764 m = nr_to_write / 10; 765 if (!m) 766 m = 1; 767 nr_pages = 0; 768 start = ktime_get(); 769 for (;;) { 770 for (thr = 0; thr < nr_threads; thr++) { 771 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 772 ret = snapshot_read_next(snapshot); 773 if (ret < 0) 774 goto out_finish; 775 776 if (!ret) 777 break; 778 779 memcpy(data[thr].unc + off, 780 data_of(*snapshot), PAGE_SIZE); 781 782 if (!(nr_pages % m)) 783 pr_info("Image saving progress: %3d%%\n", 784 nr_pages / m * 10); 785 nr_pages++; 786 } 787 if (!off) 788 break; 789 790 data[thr].unc_len = off; 791 792 atomic_set(&data[thr].ready, 1); 793 wake_up(&data[thr].go); 794 } 795 796 if (!thr) 797 break; 798 799 crc->run_threads = thr; 800 atomic_set(&crc->ready, 1); 801 wake_up(&crc->go); 802 803 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 804 wait_event(data[thr].done, 805 atomic_read(&data[thr].stop)); 806 atomic_set(&data[thr].stop, 0); 807 808 ret = data[thr].ret; 809 810 if (ret < 0) { 811 pr_err("LZO compression failed\n"); 812 goto out_finish; 813 } 814 815 if (unlikely(!data[thr].cmp_len || 816 data[thr].cmp_len > 817 lzo1x_worst_compress(data[thr].unc_len))) { 818 pr_err("Invalid LZO compressed length\n"); 819 ret = -1; 820 goto out_finish; 821 } 822 823 *(size_t *)data[thr].cmp = data[thr].cmp_len; 824 825 /* 826 * Given we are writing one page at a time to disk, we 827 * copy that much from the buffer, although the last 828 * bit will likely be smaller than full page. This is 829 * OK - we saved the length of the compressed data, so 830 * any garbage at the end will be discarded when we 831 * read it. 832 */ 833 for (off = 0; 834 off < LZO_HEADER + data[thr].cmp_len; 835 off += PAGE_SIZE) { 836 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 837 838 ret = swap_write_page(handle, page, &hb); 839 if (ret) 840 goto out_finish; 841 } 842 } 843 844 wait_event(crc->done, atomic_read(&crc->stop)); 845 atomic_set(&crc->stop, 0); 846 } 847 848 out_finish: 849 err2 = hib_wait_io(&hb); 850 stop = ktime_get(); 851 if (!ret) 852 ret = err2; 853 if (!ret) 854 pr_info("Image saving done\n"); 855 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 856 out_clean: 857 if (crc) { 858 if (crc->thr) 859 kthread_stop(crc->thr); 860 kfree(crc); 861 } 862 if (data) { 863 for (thr = 0; thr < nr_threads; thr++) 864 if (data[thr].thr) 865 kthread_stop(data[thr].thr); 866 vfree(data); 867 } 868 if (page) free_page((unsigned long)page); 869 870 return ret; 871 } 872 873 /** 874 * enough_swap - Make sure we have enough swap to save the image. 875 * 876 * Returns TRUE or FALSE after checking the total amount of swap 877 * space avaiable from the resume partition. 878 */ 879 880 static int enough_swap(unsigned int nr_pages) 881 { 882 unsigned int free_swap = count_swap_pages(root_swap, 1); 883 unsigned int required; 884 885 pr_debug("Free swap pages: %u\n", free_swap); 886 887 required = PAGES_FOR_IO + nr_pages; 888 return free_swap > required; 889 } 890 891 /** 892 * swsusp_write - Write entire image and metadata. 893 * @flags: flags to pass to the "boot" kernel in the image header 894 * 895 * It is important _NOT_ to umount filesystems at this point. We want 896 * them synced (in case something goes wrong) but we DO not want to mark 897 * filesystem clean: it is not. (And it does not matter, if we resume 898 * correctly, we'll mark system clean, anyway.) 899 */ 900 901 int swsusp_write(unsigned int flags) 902 { 903 struct swap_map_handle handle; 904 struct snapshot_handle snapshot; 905 struct swsusp_info *header; 906 unsigned long pages; 907 int error; 908 909 pages = snapshot_get_image_size(); 910 error = get_swap_writer(&handle); 911 if (error) { 912 pr_err("Cannot get swap writer\n"); 913 return error; 914 } 915 if (flags & SF_NOCOMPRESS_MODE) { 916 if (!enough_swap(pages)) { 917 pr_err("Not enough free swap\n"); 918 error = -ENOSPC; 919 goto out_finish; 920 } 921 } 922 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 923 error = snapshot_read_next(&snapshot); 924 if (error < (int)PAGE_SIZE) { 925 if (error >= 0) 926 error = -EFAULT; 927 928 goto out_finish; 929 } 930 header = (struct swsusp_info *)data_of(snapshot); 931 error = swap_write_page(&handle, header, NULL); 932 if (!error) { 933 error = (flags & SF_NOCOMPRESS_MODE) ? 934 save_image(&handle, &snapshot, pages - 1) : 935 save_image_lzo(&handle, &snapshot, pages - 1); 936 } 937 out_finish: 938 error = swap_writer_finish(&handle, flags, error); 939 return error; 940 } 941 942 /** 943 * The following functions allow us to read data using a swap map 944 * in a file-alike way 945 */ 946 947 static void release_swap_reader(struct swap_map_handle *handle) 948 { 949 struct swap_map_page_list *tmp; 950 951 while (handle->maps) { 952 if (handle->maps->map) 953 free_page((unsigned long)handle->maps->map); 954 tmp = handle->maps; 955 handle->maps = handle->maps->next; 956 kfree(tmp); 957 } 958 handle->cur = NULL; 959 } 960 961 static int get_swap_reader(struct swap_map_handle *handle, 962 unsigned int *flags_p) 963 { 964 int error; 965 struct swap_map_page_list *tmp, *last; 966 sector_t offset; 967 968 *flags_p = swsusp_header->flags; 969 970 if (!swsusp_header->image) /* how can this happen? */ 971 return -EINVAL; 972 973 handle->cur = NULL; 974 last = handle->maps = NULL; 975 offset = swsusp_header->image; 976 while (offset) { 977 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 978 if (!tmp) { 979 release_swap_reader(handle); 980 return -ENOMEM; 981 } 982 if (!handle->maps) 983 handle->maps = tmp; 984 if (last) 985 last->next = tmp; 986 last = tmp; 987 988 tmp->map = (struct swap_map_page *) 989 __get_free_page(GFP_NOIO | __GFP_HIGH); 990 if (!tmp->map) { 991 release_swap_reader(handle); 992 return -ENOMEM; 993 } 994 995 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL); 996 if (error) { 997 release_swap_reader(handle); 998 return error; 999 } 1000 offset = tmp->map->next_swap; 1001 } 1002 handle->k = 0; 1003 handle->cur = handle->maps->map; 1004 return 0; 1005 } 1006 1007 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1008 struct hib_bio_batch *hb) 1009 { 1010 sector_t offset; 1011 int error; 1012 struct swap_map_page_list *tmp; 1013 1014 if (!handle->cur) 1015 return -EINVAL; 1016 offset = handle->cur->entries[handle->k]; 1017 if (!offset) 1018 return -EFAULT; 1019 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb); 1020 if (error) 1021 return error; 1022 if (++handle->k >= MAP_PAGE_ENTRIES) { 1023 handle->k = 0; 1024 free_page((unsigned long)handle->maps->map); 1025 tmp = handle->maps; 1026 handle->maps = handle->maps->next; 1027 kfree(tmp); 1028 if (!handle->maps) 1029 release_swap_reader(handle); 1030 else 1031 handle->cur = handle->maps->map; 1032 } 1033 return error; 1034 } 1035 1036 static int swap_reader_finish(struct swap_map_handle *handle) 1037 { 1038 release_swap_reader(handle); 1039 1040 return 0; 1041 } 1042 1043 /** 1044 * load_image - load the image using the swap map handle 1045 * @handle and the snapshot handle @snapshot 1046 * (assume there are @nr_pages pages to load) 1047 */ 1048 1049 static int load_image(struct swap_map_handle *handle, 1050 struct snapshot_handle *snapshot, 1051 unsigned int nr_to_read) 1052 { 1053 unsigned int m; 1054 int ret = 0; 1055 ktime_t start; 1056 ktime_t stop; 1057 struct hib_bio_batch hb; 1058 int err2; 1059 unsigned nr_pages; 1060 1061 hib_init_batch(&hb); 1062 1063 clean_pages_on_read = true; 1064 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1065 m = nr_to_read / 10; 1066 if (!m) 1067 m = 1; 1068 nr_pages = 0; 1069 start = ktime_get(); 1070 for ( ; ; ) { 1071 ret = snapshot_write_next(snapshot); 1072 if (ret <= 0) 1073 break; 1074 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1075 if (ret) 1076 break; 1077 if (snapshot->sync_read) 1078 ret = hib_wait_io(&hb); 1079 if (ret) 1080 break; 1081 if (!(nr_pages % m)) 1082 pr_info("Image loading progress: %3d%%\n", 1083 nr_pages / m * 10); 1084 nr_pages++; 1085 } 1086 err2 = hib_wait_io(&hb); 1087 stop = ktime_get(); 1088 if (!ret) 1089 ret = err2; 1090 if (!ret) { 1091 pr_info("Image loading done\n"); 1092 snapshot_write_finalize(snapshot); 1093 if (!snapshot_image_loaded(snapshot)) 1094 ret = -ENODATA; 1095 } 1096 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1097 return ret; 1098 } 1099 1100 /** 1101 * Structure used for LZO data decompression. 1102 */ 1103 struct dec_data { 1104 struct task_struct *thr; /* thread */ 1105 atomic_t ready; /* ready to start flag */ 1106 atomic_t stop; /* ready to stop flag */ 1107 int ret; /* return code */ 1108 wait_queue_head_t go; /* start decompression */ 1109 wait_queue_head_t done; /* decompression done */ 1110 size_t unc_len; /* uncompressed length */ 1111 size_t cmp_len; /* compressed length */ 1112 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1113 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1114 }; 1115 1116 /** 1117 * Deompression function that runs in its own thread. 1118 */ 1119 static int lzo_decompress_threadfn(void *data) 1120 { 1121 struct dec_data *d = data; 1122 1123 while (1) { 1124 wait_event(d->go, atomic_read(&d->ready) || 1125 kthread_should_stop()); 1126 if (kthread_should_stop()) { 1127 d->thr = NULL; 1128 d->ret = -1; 1129 atomic_set(&d->stop, 1); 1130 wake_up(&d->done); 1131 break; 1132 } 1133 atomic_set(&d->ready, 0); 1134 1135 d->unc_len = LZO_UNC_SIZE; 1136 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1137 d->unc, &d->unc_len); 1138 if (clean_pages_on_decompress) 1139 flush_icache_range((unsigned long)d->unc, 1140 (unsigned long)d->unc + d->unc_len); 1141 1142 atomic_set(&d->stop, 1); 1143 wake_up(&d->done); 1144 } 1145 return 0; 1146 } 1147 1148 /** 1149 * load_image_lzo - Load compressed image data and decompress them with LZO. 1150 * @handle: Swap map handle to use for loading data. 1151 * @snapshot: Image to copy uncompressed data into. 1152 * @nr_to_read: Number of pages to load. 1153 */ 1154 static int load_image_lzo(struct swap_map_handle *handle, 1155 struct snapshot_handle *snapshot, 1156 unsigned int nr_to_read) 1157 { 1158 unsigned int m; 1159 int ret = 0; 1160 int eof = 0; 1161 struct hib_bio_batch hb; 1162 ktime_t start; 1163 ktime_t stop; 1164 unsigned nr_pages; 1165 size_t off; 1166 unsigned i, thr, run_threads, nr_threads; 1167 unsigned ring = 0, pg = 0, ring_size = 0, 1168 have = 0, want, need, asked = 0; 1169 unsigned long read_pages = 0; 1170 unsigned char **page = NULL; 1171 struct dec_data *data = NULL; 1172 struct crc_data *crc = NULL; 1173 1174 hib_init_batch(&hb); 1175 1176 /* 1177 * We'll limit the number of threads for decompression to limit memory 1178 * footprint. 1179 */ 1180 nr_threads = num_online_cpus() - 1; 1181 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1182 1183 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1184 if (!page) { 1185 pr_err("Failed to allocate LZO page\n"); 1186 ret = -ENOMEM; 1187 goto out_clean; 1188 } 1189 1190 data = vmalloc(array_size(nr_threads, sizeof(*data))); 1191 if (!data) { 1192 pr_err("Failed to allocate LZO data\n"); 1193 ret = -ENOMEM; 1194 goto out_clean; 1195 } 1196 for (thr = 0; thr < nr_threads; thr++) 1197 memset(&data[thr], 0, offsetof(struct dec_data, go)); 1198 1199 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 1200 if (!crc) { 1201 pr_err("Failed to allocate crc\n"); 1202 ret = -ENOMEM; 1203 goto out_clean; 1204 } 1205 memset(crc, 0, offsetof(struct crc_data, go)); 1206 1207 clean_pages_on_decompress = true; 1208 1209 /* 1210 * Start the decompression threads. 1211 */ 1212 for (thr = 0; thr < nr_threads; thr++) { 1213 init_waitqueue_head(&data[thr].go); 1214 init_waitqueue_head(&data[thr].done); 1215 1216 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1217 &data[thr], 1218 "image_decompress/%u", thr); 1219 if (IS_ERR(data[thr].thr)) { 1220 data[thr].thr = NULL; 1221 pr_err("Cannot start decompression threads\n"); 1222 ret = -ENOMEM; 1223 goto out_clean; 1224 } 1225 } 1226 1227 /* 1228 * Start the CRC32 thread. 1229 */ 1230 init_waitqueue_head(&crc->go); 1231 init_waitqueue_head(&crc->done); 1232 1233 handle->crc32 = 0; 1234 crc->crc32 = &handle->crc32; 1235 for (thr = 0; thr < nr_threads; thr++) { 1236 crc->unc[thr] = data[thr].unc; 1237 crc->unc_len[thr] = &data[thr].unc_len; 1238 } 1239 1240 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1241 if (IS_ERR(crc->thr)) { 1242 crc->thr = NULL; 1243 pr_err("Cannot start CRC32 thread\n"); 1244 ret = -ENOMEM; 1245 goto out_clean; 1246 } 1247 1248 /* 1249 * Set the number of pages for read buffering. 1250 * This is complete guesswork, because we'll only know the real 1251 * picture once prepare_image() is called, which is much later on 1252 * during the image load phase. We'll assume the worst case and 1253 * say that none of the image pages are from high memory. 1254 */ 1255 if (low_free_pages() > snapshot_get_image_size()) 1256 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1257 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1258 1259 for (i = 0; i < read_pages; i++) { 1260 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1261 GFP_NOIO | __GFP_HIGH : 1262 GFP_NOIO | __GFP_NOWARN | 1263 __GFP_NORETRY); 1264 1265 if (!page[i]) { 1266 if (i < LZO_CMP_PAGES) { 1267 ring_size = i; 1268 pr_err("Failed to allocate LZO pages\n"); 1269 ret = -ENOMEM; 1270 goto out_clean; 1271 } else { 1272 break; 1273 } 1274 } 1275 } 1276 want = ring_size = i; 1277 1278 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1279 pr_info("Loading and decompressing image data (%u pages)...\n", 1280 nr_to_read); 1281 m = nr_to_read / 10; 1282 if (!m) 1283 m = 1; 1284 nr_pages = 0; 1285 start = ktime_get(); 1286 1287 ret = snapshot_write_next(snapshot); 1288 if (ret <= 0) 1289 goto out_finish; 1290 1291 for(;;) { 1292 for (i = 0; !eof && i < want; i++) { 1293 ret = swap_read_page(handle, page[ring], &hb); 1294 if (ret) { 1295 /* 1296 * On real read error, finish. On end of data, 1297 * set EOF flag and just exit the read loop. 1298 */ 1299 if (handle->cur && 1300 handle->cur->entries[handle->k]) { 1301 goto out_finish; 1302 } else { 1303 eof = 1; 1304 break; 1305 } 1306 } 1307 if (++ring >= ring_size) 1308 ring = 0; 1309 } 1310 asked += i; 1311 want -= i; 1312 1313 /* 1314 * We are out of data, wait for some more. 1315 */ 1316 if (!have) { 1317 if (!asked) 1318 break; 1319 1320 ret = hib_wait_io(&hb); 1321 if (ret) 1322 goto out_finish; 1323 have += asked; 1324 asked = 0; 1325 if (eof) 1326 eof = 2; 1327 } 1328 1329 if (crc->run_threads) { 1330 wait_event(crc->done, atomic_read(&crc->stop)); 1331 atomic_set(&crc->stop, 0); 1332 crc->run_threads = 0; 1333 } 1334 1335 for (thr = 0; have && thr < nr_threads; thr++) { 1336 data[thr].cmp_len = *(size_t *)page[pg]; 1337 if (unlikely(!data[thr].cmp_len || 1338 data[thr].cmp_len > 1339 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1340 pr_err("Invalid LZO compressed length\n"); 1341 ret = -1; 1342 goto out_finish; 1343 } 1344 1345 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1346 PAGE_SIZE); 1347 if (need > have) { 1348 if (eof > 1) { 1349 ret = -1; 1350 goto out_finish; 1351 } 1352 break; 1353 } 1354 1355 for (off = 0; 1356 off < LZO_HEADER + data[thr].cmp_len; 1357 off += PAGE_SIZE) { 1358 memcpy(data[thr].cmp + off, 1359 page[pg], PAGE_SIZE); 1360 have--; 1361 want++; 1362 if (++pg >= ring_size) 1363 pg = 0; 1364 } 1365 1366 atomic_set(&data[thr].ready, 1); 1367 wake_up(&data[thr].go); 1368 } 1369 1370 /* 1371 * Wait for more data while we are decompressing. 1372 */ 1373 if (have < LZO_CMP_PAGES && asked) { 1374 ret = hib_wait_io(&hb); 1375 if (ret) 1376 goto out_finish; 1377 have += asked; 1378 asked = 0; 1379 if (eof) 1380 eof = 2; 1381 } 1382 1383 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1384 wait_event(data[thr].done, 1385 atomic_read(&data[thr].stop)); 1386 atomic_set(&data[thr].stop, 0); 1387 1388 ret = data[thr].ret; 1389 1390 if (ret < 0) { 1391 pr_err("LZO decompression failed\n"); 1392 goto out_finish; 1393 } 1394 1395 if (unlikely(!data[thr].unc_len || 1396 data[thr].unc_len > LZO_UNC_SIZE || 1397 data[thr].unc_len & (PAGE_SIZE - 1))) { 1398 pr_err("Invalid LZO uncompressed length\n"); 1399 ret = -1; 1400 goto out_finish; 1401 } 1402 1403 for (off = 0; 1404 off < data[thr].unc_len; off += PAGE_SIZE) { 1405 memcpy(data_of(*snapshot), 1406 data[thr].unc + off, PAGE_SIZE); 1407 1408 if (!(nr_pages % m)) 1409 pr_info("Image loading progress: %3d%%\n", 1410 nr_pages / m * 10); 1411 nr_pages++; 1412 1413 ret = snapshot_write_next(snapshot); 1414 if (ret <= 0) { 1415 crc->run_threads = thr + 1; 1416 atomic_set(&crc->ready, 1); 1417 wake_up(&crc->go); 1418 goto out_finish; 1419 } 1420 } 1421 } 1422 1423 crc->run_threads = thr; 1424 atomic_set(&crc->ready, 1); 1425 wake_up(&crc->go); 1426 } 1427 1428 out_finish: 1429 if (crc->run_threads) { 1430 wait_event(crc->done, atomic_read(&crc->stop)); 1431 atomic_set(&crc->stop, 0); 1432 } 1433 stop = ktime_get(); 1434 if (!ret) { 1435 pr_info("Image loading done\n"); 1436 snapshot_write_finalize(snapshot); 1437 if (!snapshot_image_loaded(snapshot)) 1438 ret = -ENODATA; 1439 if (!ret) { 1440 if (swsusp_header->flags & SF_CRC32_MODE) { 1441 if(handle->crc32 != swsusp_header->crc32) { 1442 pr_err("Invalid image CRC32!\n"); 1443 ret = -ENODATA; 1444 } 1445 } 1446 } 1447 } 1448 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1449 out_clean: 1450 for (i = 0; i < ring_size; i++) 1451 free_page((unsigned long)page[i]); 1452 if (crc) { 1453 if (crc->thr) 1454 kthread_stop(crc->thr); 1455 kfree(crc); 1456 } 1457 if (data) { 1458 for (thr = 0; thr < nr_threads; thr++) 1459 if (data[thr].thr) 1460 kthread_stop(data[thr].thr); 1461 vfree(data); 1462 } 1463 vfree(page); 1464 1465 return ret; 1466 } 1467 1468 /** 1469 * swsusp_read - read the hibernation image. 1470 * @flags_p: flags passed by the "frozen" kernel in the image header should 1471 * be written into this memory location 1472 */ 1473 1474 int swsusp_read(unsigned int *flags_p) 1475 { 1476 int error; 1477 struct swap_map_handle handle; 1478 struct snapshot_handle snapshot; 1479 struct swsusp_info *header; 1480 1481 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1482 error = snapshot_write_next(&snapshot); 1483 if (error < (int)PAGE_SIZE) 1484 return error < 0 ? error : -EFAULT; 1485 header = (struct swsusp_info *)data_of(snapshot); 1486 error = get_swap_reader(&handle, flags_p); 1487 if (error) 1488 goto end; 1489 if (!error) 1490 error = swap_read_page(&handle, header, NULL); 1491 if (!error) { 1492 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1493 load_image(&handle, &snapshot, header->pages - 1) : 1494 load_image_lzo(&handle, &snapshot, header->pages - 1); 1495 } 1496 swap_reader_finish(&handle); 1497 end: 1498 if (!error) 1499 pr_debug("Image successfully loaded\n"); 1500 else 1501 pr_debug("Error %d resuming\n", error); 1502 return error; 1503 } 1504 1505 /** 1506 * swsusp_check - Check for swsusp signature in the resume device 1507 */ 1508 1509 int swsusp_check(void) 1510 { 1511 int error; 1512 1513 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1514 FMODE_READ, NULL); 1515 if (!IS_ERR(hib_resume_bdev)) { 1516 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1517 clear_page(swsusp_header); 1518 error = hib_submit_io(REQ_OP_READ, 0, 1519 swsusp_resume_block, 1520 swsusp_header, NULL); 1521 if (error) 1522 goto put; 1523 1524 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1525 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1526 /* Reset swap signature now */ 1527 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1528 swsusp_resume_block, 1529 swsusp_header, NULL); 1530 } else { 1531 error = -EINVAL; 1532 } 1533 1534 put: 1535 if (error) 1536 blkdev_put(hib_resume_bdev, FMODE_READ); 1537 else 1538 pr_debug("Image signature found, resuming\n"); 1539 } else { 1540 error = PTR_ERR(hib_resume_bdev); 1541 } 1542 1543 if (error) 1544 pr_debug("Image not found (code %d)\n", error); 1545 1546 return error; 1547 } 1548 1549 /** 1550 * swsusp_close - close swap device. 1551 */ 1552 1553 void swsusp_close(fmode_t mode) 1554 { 1555 if (IS_ERR(hib_resume_bdev)) { 1556 pr_debug("Image device not initialised\n"); 1557 return; 1558 } 1559 1560 blkdev_put(hib_resume_bdev, mode); 1561 } 1562 1563 /** 1564 * swsusp_unmark - Unmark swsusp signature in the resume device 1565 */ 1566 1567 #ifdef CONFIG_SUSPEND 1568 int swsusp_unmark(void) 1569 { 1570 int error; 1571 1572 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 1573 swsusp_header, NULL); 1574 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1575 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1576 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1577 swsusp_resume_block, 1578 swsusp_header, NULL); 1579 } else { 1580 pr_err("Cannot find swsusp signature!\n"); 1581 error = -ENODEV; 1582 } 1583 1584 /* 1585 * We just returned from suspend, we don't need the image any more. 1586 */ 1587 free_all_swap_pages(root_swap); 1588 1589 return error; 1590 } 1591 #endif 1592 1593 static int __init swsusp_header_init(void) 1594 { 1595 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1596 if (!swsusp_header) 1597 panic("Could not allocate memory for swsusp_header\n"); 1598 return 0; 1599 } 1600 1601 core_initcall(swsusp_header_init); 1602