xref: /openbmc/linux/kernel/power/snapshot.c (revision fd589a8f)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 
30 #include <asm/uaccess.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <asm/io.h>
35 
36 #include "power.h"
37 
38 static int swsusp_page_is_free(struct page *);
39 static void swsusp_set_page_forbidden(struct page *);
40 static void swsusp_unset_page_forbidden(struct page *);
41 
42 /*
43  * Preferred image size in bytes (tunable via /sys/power/image_size).
44  * When it is set to N, swsusp will do its best to ensure the image
45  * size will not exceed N bytes, but if that is impossible, it will
46  * try to create the smallest image possible.
47  */
48 unsigned long image_size = 500 * 1024 * 1024;
49 
50 /* List of PBEs needed for restoring the pages that were allocated before
51  * the suspend and included in the suspend image, but have also been
52  * allocated by the "resume" kernel, so their contents cannot be written
53  * directly to their "original" page frames.
54  */
55 struct pbe *restore_pblist;
56 
57 /* Pointer to an auxiliary buffer (1 page) */
58 static void *buffer;
59 
60 /**
61  *	@safe_needed - on resume, for storing the PBE list and the image,
62  *	we can only use memory pages that do not conflict with the pages
63  *	used before suspend.  The unsafe pages have PageNosaveFree set
64  *	and we count them using unsafe_pages.
65  *
66  *	Each allocated image page is marked as PageNosave and PageNosaveFree
67  *	so that swsusp_free() can release it.
68  */
69 
70 #define PG_ANY		0
71 #define PG_SAFE		1
72 #define PG_UNSAFE_CLEAR	1
73 #define PG_UNSAFE_KEEP	0
74 
75 static unsigned int allocated_unsafe_pages;
76 
77 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
78 {
79 	void *res;
80 
81 	res = (void *)get_zeroed_page(gfp_mask);
82 	if (safe_needed)
83 		while (res && swsusp_page_is_free(virt_to_page(res))) {
84 			/* The page is unsafe, mark it for swsusp_free() */
85 			swsusp_set_page_forbidden(virt_to_page(res));
86 			allocated_unsafe_pages++;
87 			res = (void *)get_zeroed_page(gfp_mask);
88 		}
89 	if (res) {
90 		swsusp_set_page_forbidden(virt_to_page(res));
91 		swsusp_set_page_free(virt_to_page(res));
92 	}
93 	return res;
94 }
95 
96 unsigned long get_safe_page(gfp_t gfp_mask)
97 {
98 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
99 }
100 
101 static struct page *alloc_image_page(gfp_t gfp_mask)
102 {
103 	struct page *page;
104 
105 	page = alloc_page(gfp_mask);
106 	if (page) {
107 		swsusp_set_page_forbidden(page);
108 		swsusp_set_page_free(page);
109 	}
110 	return page;
111 }
112 
113 /**
114  *	free_image_page - free page represented by @addr, allocated with
115  *	get_image_page (page flags set by it must be cleared)
116  */
117 
118 static inline void free_image_page(void *addr, int clear_nosave_free)
119 {
120 	struct page *page;
121 
122 	BUG_ON(!virt_addr_valid(addr));
123 
124 	page = virt_to_page(addr);
125 
126 	swsusp_unset_page_forbidden(page);
127 	if (clear_nosave_free)
128 		swsusp_unset_page_free(page);
129 
130 	__free_page(page);
131 }
132 
133 /* struct linked_page is used to build chains of pages */
134 
135 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
136 
137 struct linked_page {
138 	struct linked_page *next;
139 	char data[LINKED_PAGE_DATA_SIZE];
140 } __attribute__((packed));
141 
142 static inline void
143 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
144 {
145 	while (list) {
146 		struct linked_page *lp = list->next;
147 
148 		free_image_page(list, clear_page_nosave);
149 		list = lp;
150 	}
151 }
152 
153 /**
154   *	struct chain_allocator is used for allocating small objects out of
155   *	a linked list of pages called 'the chain'.
156   *
157   *	The chain grows each time when there is no room for a new object in
158   *	the current page.  The allocated objects cannot be freed individually.
159   *	It is only possible to free them all at once, by freeing the entire
160   *	chain.
161   *
162   *	NOTE: The chain allocator may be inefficient if the allocated objects
163   *	are not much smaller than PAGE_SIZE.
164   */
165 
166 struct chain_allocator {
167 	struct linked_page *chain;	/* the chain */
168 	unsigned int used_space;	/* total size of objects allocated out
169 					 * of the current page
170 					 */
171 	gfp_t gfp_mask;		/* mask for allocating pages */
172 	int safe_needed;	/* if set, only "safe" pages are allocated */
173 };
174 
175 static void
176 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
177 {
178 	ca->chain = NULL;
179 	ca->used_space = LINKED_PAGE_DATA_SIZE;
180 	ca->gfp_mask = gfp_mask;
181 	ca->safe_needed = safe_needed;
182 }
183 
184 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
185 {
186 	void *ret;
187 
188 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
189 		struct linked_page *lp;
190 
191 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
192 		if (!lp)
193 			return NULL;
194 
195 		lp->next = ca->chain;
196 		ca->chain = lp;
197 		ca->used_space = 0;
198 	}
199 	ret = ca->chain->data + ca->used_space;
200 	ca->used_space += size;
201 	return ret;
202 }
203 
204 /**
205  *	Data types related to memory bitmaps.
206  *
207  *	Memory bitmap is a structure consiting of many linked lists of
208  *	objects.  The main list's elements are of type struct zone_bitmap
209  *	and each of them corresonds to one zone.  For each zone bitmap
210  *	object there is a list of objects of type struct bm_block that
211  *	represent each blocks of bitmap in which information is stored.
212  *
213  *	struct memory_bitmap contains a pointer to the main list of zone
214  *	bitmap objects, a struct bm_position used for browsing the bitmap,
215  *	and a pointer to the list of pages used for allocating all of the
216  *	zone bitmap objects and bitmap block objects.
217  *
218  *	NOTE: It has to be possible to lay out the bitmap in memory
219  *	using only allocations of order 0.  Additionally, the bitmap is
220  *	designed to work with arbitrary number of zones (this is over the
221  *	top for now, but let's avoid making unnecessary assumptions ;-).
222  *
223  *	struct zone_bitmap contains a pointer to a list of bitmap block
224  *	objects and a pointer to the bitmap block object that has been
225  *	most recently used for setting bits.  Additionally, it contains the
226  *	pfns that correspond to the start and end of the represented zone.
227  *
228  *	struct bm_block contains a pointer to the memory page in which
229  *	information is stored (in the form of a block of bitmap)
230  *	It also contains the pfns that correspond to the start and end of
231  *	the represented memory area.
232  */
233 
234 #define BM_END_OF_MAP	(~0UL)
235 
236 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
237 
238 struct bm_block {
239 	struct list_head hook;	/* hook into a list of bitmap blocks */
240 	unsigned long start_pfn;	/* pfn represented by the first bit */
241 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
242 	unsigned long *data;	/* bitmap representing pages */
243 };
244 
245 static inline unsigned long bm_block_bits(struct bm_block *bb)
246 {
247 	return bb->end_pfn - bb->start_pfn;
248 }
249 
250 /* strcut bm_position is used for browsing memory bitmaps */
251 
252 struct bm_position {
253 	struct bm_block *block;
254 	int bit;
255 };
256 
257 struct memory_bitmap {
258 	struct list_head blocks;	/* list of bitmap blocks */
259 	struct linked_page *p_list;	/* list of pages used to store zone
260 					 * bitmap objects and bitmap block
261 					 * objects
262 					 */
263 	struct bm_position cur;	/* most recently used bit position */
264 };
265 
266 /* Functions that operate on memory bitmaps */
267 
268 static void memory_bm_position_reset(struct memory_bitmap *bm)
269 {
270 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
271 	bm->cur.bit = 0;
272 }
273 
274 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
275 
276 /**
277  *	create_bm_block_list - create a list of block bitmap objects
278  *	@pages - number of pages to track
279  *	@list - list to put the allocated blocks into
280  *	@ca - chain allocator to be used for allocating memory
281  */
282 static int create_bm_block_list(unsigned long pages,
283 				struct list_head *list,
284 				struct chain_allocator *ca)
285 {
286 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
287 
288 	while (nr_blocks-- > 0) {
289 		struct bm_block *bb;
290 
291 		bb = chain_alloc(ca, sizeof(struct bm_block));
292 		if (!bb)
293 			return -ENOMEM;
294 		list_add(&bb->hook, list);
295 	}
296 
297 	return 0;
298 }
299 
300 struct mem_extent {
301 	struct list_head hook;
302 	unsigned long start;
303 	unsigned long end;
304 };
305 
306 /**
307  *	free_mem_extents - free a list of memory extents
308  *	@list - list of extents to empty
309  */
310 static void free_mem_extents(struct list_head *list)
311 {
312 	struct mem_extent *ext, *aux;
313 
314 	list_for_each_entry_safe(ext, aux, list, hook) {
315 		list_del(&ext->hook);
316 		kfree(ext);
317 	}
318 }
319 
320 /**
321  *	create_mem_extents - create a list of memory extents representing
322  *	                     contiguous ranges of PFNs
323  *	@list - list to put the extents into
324  *	@gfp_mask - mask to use for memory allocations
325  */
326 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
327 {
328 	struct zone *zone;
329 
330 	INIT_LIST_HEAD(list);
331 
332 	for_each_populated_zone(zone) {
333 		unsigned long zone_start, zone_end;
334 		struct mem_extent *ext, *cur, *aux;
335 
336 		zone_start = zone->zone_start_pfn;
337 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
338 
339 		list_for_each_entry(ext, list, hook)
340 			if (zone_start <= ext->end)
341 				break;
342 
343 		if (&ext->hook == list || zone_end < ext->start) {
344 			/* New extent is necessary */
345 			struct mem_extent *new_ext;
346 
347 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
348 			if (!new_ext) {
349 				free_mem_extents(list);
350 				return -ENOMEM;
351 			}
352 			new_ext->start = zone_start;
353 			new_ext->end = zone_end;
354 			list_add_tail(&new_ext->hook, &ext->hook);
355 			continue;
356 		}
357 
358 		/* Merge this zone's range of PFNs with the existing one */
359 		if (zone_start < ext->start)
360 			ext->start = zone_start;
361 		if (zone_end > ext->end)
362 			ext->end = zone_end;
363 
364 		/* More merging may be possible */
365 		cur = ext;
366 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
367 			if (zone_end < cur->start)
368 				break;
369 			if (zone_end < cur->end)
370 				ext->end = cur->end;
371 			list_del(&cur->hook);
372 			kfree(cur);
373 		}
374 	}
375 
376 	return 0;
377 }
378 
379 /**
380   *	memory_bm_create - allocate memory for a memory bitmap
381   */
382 static int
383 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
384 {
385 	struct chain_allocator ca;
386 	struct list_head mem_extents;
387 	struct mem_extent *ext;
388 	int error;
389 
390 	chain_init(&ca, gfp_mask, safe_needed);
391 	INIT_LIST_HEAD(&bm->blocks);
392 
393 	error = create_mem_extents(&mem_extents, gfp_mask);
394 	if (error)
395 		return error;
396 
397 	list_for_each_entry(ext, &mem_extents, hook) {
398 		struct bm_block *bb;
399 		unsigned long pfn = ext->start;
400 		unsigned long pages = ext->end - ext->start;
401 
402 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
403 
404 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
405 		if (error)
406 			goto Error;
407 
408 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
409 			bb->data = get_image_page(gfp_mask, safe_needed);
410 			if (!bb->data) {
411 				error = -ENOMEM;
412 				goto Error;
413 			}
414 
415 			bb->start_pfn = pfn;
416 			if (pages >= BM_BITS_PER_BLOCK) {
417 				pfn += BM_BITS_PER_BLOCK;
418 				pages -= BM_BITS_PER_BLOCK;
419 			} else {
420 				/* This is executed only once in the loop */
421 				pfn += pages;
422 			}
423 			bb->end_pfn = pfn;
424 		}
425 	}
426 
427 	bm->p_list = ca.chain;
428 	memory_bm_position_reset(bm);
429  Exit:
430 	free_mem_extents(&mem_extents);
431 	return error;
432 
433  Error:
434 	bm->p_list = ca.chain;
435 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
436 	goto Exit;
437 }
438 
439 /**
440   *	memory_bm_free - free memory occupied by the memory bitmap @bm
441   */
442 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
443 {
444 	struct bm_block *bb;
445 
446 	list_for_each_entry(bb, &bm->blocks, hook)
447 		if (bb->data)
448 			free_image_page(bb->data, clear_nosave_free);
449 
450 	free_list_of_pages(bm->p_list, clear_nosave_free);
451 
452 	INIT_LIST_HEAD(&bm->blocks);
453 }
454 
455 /**
456  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
457  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
458  *	of @bm->cur_zone_bm are updated.
459  */
460 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
461 				void **addr, unsigned int *bit_nr)
462 {
463 	struct bm_block *bb;
464 
465 	/*
466 	 * Check if the pfn corresponds to the current bitmap block and find
467 	 * the block where it fits if this is not the case.
468 	 */
469 	bb = bm->cur.block;
470 	if (pfn < bb->start_pfn)
471 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
472 			if (pfn >= bb->start_pfn)
473 				break;
474 
475 	if (pfn >= bb->end_pfn)
476 		list_for_each_entry_continue(bb, &bm->blocks, hook)
477 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
478 				break;
479 
480 	if (&bb->hook == &bm->blocks)
481 		return -EFAULT;
482 
483 	/* The block has been found */
484 	bm->cur.block = bb;
485 	pfn -= bb->start_pfn;
486 	bm->cur.bit = pfn + 1;
487 	*bit_nr = pfn;
488 	*addr = bb->data;
489 	return 0;
490 }
491 
492 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
493 {
494 	void *addr;
495 	unsigned int bit;
496 	int error;
497 
498 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
499 	BUG_ON(error);
500 	set_bit(bit, addr);
501 }
502 
503 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
504 {
505 	void *addr;
506 	unsigned int bit;
507 	int error;
508 
509 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
510 	if (!error)
511 		set_bit(bit, addr);
512 	return error;
513 }
514 
515 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
516 {
517 	void *addr;
518 	unsigned int bit;
519 	int error;
520 
521 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
522 	BUG_ON(error);
523 	clear_bit(bit, addr);
524 }
525 
526 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
527 {
528 	void *addr;
529 	unsigned int bit;
530 	int error;
531 
532 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
533 	BUG_ON(error);
534 	return test_bit(bit, addr);
535 }
536 
537 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
538 {
539 	void *addr;
540 	unsigned int bit;
541 
542 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
543 }
544 
545 /**
546  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
547  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
548  *	returned.
549  *
550  *	It is required to run memory_bm_position_reset() before the first call to
551  *	this function.
552  */
553 
554 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
555 {
556 	struct bm_block *bb;
557 	int bit;
558 
559 	bb = bm->cur.block;
560 	do {
561 		bit = bm->cur.bit;
562 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
563 		if (bit < bm_block_bits(bb))
564 			goto Return_pfn;
565 
566 		bb = list_entry(bb->hook.next, struct bm_block, hook);
567 		bm->cur.block = bb;
568 		bm->cur.bit = 0;
569 	} while (&bb->hook != &bm->blocks);
570 
571 	memory_bm_position_reset(bm);
572 	return BM_END_OF_MAP;
573 
574  Return_pfn:
575 	bm->cur.bit = bit + 1;
576 	return bb->start_pfn + bit;
577 }
578 
579 /**
580  *	This structure represents a range of page frames the contents of which
581  *	should not be saved during the suspend.
582  */
583 
584 struct nosave_region {
585 	struct list_head list;
586 	unsigned long start_pfn;
587 	unsigned long end_pfn;
588 };
589 
590 static LIST_HEAD(nosave_regions);
591 
592 /**
593  *	register_nosave_region - register a range of page frames the contents
594  *	of which should not be saved during the suspend (to be used in the early
595  *	initialization code)
596  */
597 
598 void __init
599 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
600 			 int use_kmalloc)
601 {
602 	struct nosave_region *region;
603 
604 	if (start_pfn >= end_pfn)
605 		return;
606 
607 	if (!list_empty(&nosave_regions)) {
608 		/* Try to extend the previous region (they should be sorted) */
609 		region = list_entry(nosave_regions.prev,
610 					struct nosave_region, list);
611 		if (region->end_pfn == start_pfn) {
612 			region->end_pfn = end_pfn;
613 			goto Report;
614 		}
615 	}
616 	if (use_kmalloc) {
617 		/* during init, this shouldn't fail */
618 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
619 		BUG_ON(!region);
620 	} else
621 		/* This allocation cannot fail */
622 		region = alloc_bootmem_low(sizeof(struct nosave_region));
623 	region->start_pfn = start_pfn;
624 	region->end_pfn = end_pfn;
625 	list_add_tail(&region->list, &nosave_regions);
626  Report:
627 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
628 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
629 }
630 
631 /*
632  * Set bits in this map correspond to the page frames the contents of which
633  * should not be saved during the suspend.
634  */
635 static struct memory_bitmap *forbidden_pages_map;
636 
637 /* Set bits in this map correspond to free page frames. */
638 static struct memory_bitmap *free_pages_map;
639 
640 /*
641  * Each page frame allocated for creating the image is marked by setting the
642  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
643  */
644 
645 void swsusp_set_page_free(struct page *page)
646 {
647 	if (free_pages_map)
648 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
649 }
650 
651 static int swsusp_page_is_free(struct page *page)
652 {
653 	return free_pages_map ?
654 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
655 }
656 
657 void swsusp_unset_page_free(struct page *page)
658 {
659 	if (free_pages_map)
660 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
661 }
662 
663 static void swsusp_set_page_forbidden(struct page *page)
664 {
665 	if (forbidden_pages_map)
666 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
667 }
668 
669 int swsusp_page_is_forbidden(struct page *page)
670 {
671 	return forbidden_pages_map ?
672 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
673 }
674 
675 static void swsusp_unset_page_forbidden(struct page *page)
676 {
677 	if (forbidden_pages_map)
678 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
679 }
680 
681 /**
682  *	mark_nosave_pages - set bits corresponding to the page frames the
683  *	contents of which should not be saved in a given bitmap.
684  */
685 
686 static void mark_nosave_pages(struct memory_bitmap *bm)
687 {
688 	struct nosave_region *region;
689 
690 	if (list_empty(&nosave_regions))
691 		return;
692 
693 	list_for_each_entry(region, &nosave_regions, list) {
694 		unsigned long pfn;
695 
696 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
697 				region->start_pfn << PAGE_SHIFT,
698 				region->end_pfn << PAGE_SHIFT);
699 
700 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
701 			if (pfn_valid(pfn)) {
702 				/*
703 				 * It is safe to ignore the result of
704 				 * mem_bm_set_bit_check() here, since we won't
705 				 * touch the PFNs for which the error is
706 				 * returned anyway.
707 				 */
708 				mem_bm_set_bit_check(bm, pfn);
709 			}
710 	}
711 }
712 
713 /**
714  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
715  *	frames that should not be saved and free page frames.  The pointers
716  *	forbidden_pages_map and free_pages_map are only modified if everything
717  *	goes well, because we don't want the bits to be used before both bitmaps
718  *	are set up.
719  */
720 
721 int create_basic_memory_bitmaps(void)
722 {
723 	struct memory_bitmap *bm1, *bm2;
724 	int error = 0;
725 
726 	BUG_ON(forbidden_pages_map || free_pages_map);
727 
728 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
729 	if (!bm1)
730 		return -ENOMEM;
731 
732 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
733 	if (error)
734 		goto Free_first_object;
735 
736 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
737 	if (!bm2)
738 		goto Free_first_bitmap;
739 
740 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
741 	if (error)
742 		goto Free_second_object;
743 
744 	forbidden_pages_map = bm1;
745 	free_pages_map = bm2;
746 	mark_nosave_pages(forbidden_pages_map);
747 
748 	pr_debug("PM: Basic memory bitmaps created\n");
749 
750 	return 0;
751 
752  Free_second_object:
753 	kfree(bm2);
754  Free_first_bitmap:
755  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
756  Free_first_object:
757 	kfree(bm1);
758 	return -ENOMEM;
759 }
760 
761 /**
762  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
763  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
764  *	so that the bitmaps themselves are not referred to while they are being
765  *	freed.
766  */
767 
768 void free_basic_memory_bitmaps(void)
769 {
770 	struct memory_bitmap *bm1, *bm2;
771 
772 	BUG_ON(!(forbidden_pages_map && free_pages_map));
773 
774 	bm1 = forbidden_pages_map;
775 	bm2 = free_pages_map;
776 	forbidden_pages_map = NULL;
777 	free_pages_map = NULL;
778 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 	kfree(bm1);
780 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
781 	kfree(bm2);
782 
783 	pr_debug("PM: Basic memory bitmaps freed\n");
784 }
785 
786 /**
787  *	snapshot_additional_pages - estimate the number of additional pages
788  *	be needed for setting up the suspend image data structures for given
789  *	zone (usually the returned value is greater than the exact number)
790  */
791 
792 unsigned int snapshot_additional_pages(struct zone *zone)
793 {
794 	unsigned int res;
795 
796 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
797 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
798 	return 2 * res;
799 }
800 
801 #ifdef CONFIG_HIGHMEM
802 /**
803  *	count_free_highmem_pages - compute the total number of free highmem
804  *	pages, system-wide.
805  */
806 
807 static unsigned int count_free_highmem_pages(void)
808 {
809 	struct zone *zone;
810 	unsigned int cnt = 0;
811 
812 	for_each_populated_zone(zone)
813 		if (is_highmem(zone))
814 			cnt += zone_page_state(zone, NR_FREE_PAGES);
815 
816 	return cnt;
817 }
818 
819 /**
820  *	saveable_highmem_page - Determine whether a highmem page should be
821  *	included in the suspend image.
822  *
823  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
824  *	and it isn't a part of a free chunk of pages.
825  */
826 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
827 {
828 	struct page *page;
829 
830 	if (!pfn_valid(pfn))
831 		return NULL;
832 
833 	page = pfn_to_page(pfn);
834 	if (page_zone(page) != zone)
835 		return NULL;
836 
837 	BUG_ON(!PageHighMem(page));
838 
839 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
840 	    PageReserved(page))
841 		return NULL;
842 
843 	return page;
844 }
845 
846 /**
847  *	count_highmem_pages - compute the total number of saveable highmem
848  *	pages.
849  */
850 
851 static unsigned int count_highmem_pages(void)
852 {
853 	struct zone *zone;
854 	unsigned int n = 0;
855 
856 	for_each_populated_zone(zone) {
857 		unsigned long pfn, max_zone_pfn;
858 
859 		if (!is_highmem(zone))
860 			continue;
861 
862 		mark_free_pages(zone);
863 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
864 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
865 			if (saveable_highmem_page(zone, pfn))
866 				n++;
867 	}
868 	return n;
869 }
870 #else
871 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
872 {
873 	return NULL;
874 }
875 #endif /* CONFIG_HIGHMEM */
876 
877 /**
878  *	saveable_page - Determine whether a non-highmem page should be included
879  *	in the suspend image.
880  *
881  *	We should save the page if it isn't Nosave, and is not in the range
882  *	of pages statically defined as 'unsaveable', and it isn't a part of
883  *	a free chunk of pages.
884  */
885 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
886 {
887 	struct page *page;
888 
889 	if (!pfn_valid(pfn))
890 		return NULL;
891 
892 	page = pfn_to_page(pfn);
893 	if (page_zone(page) != zone)
894 		return NULL;
895 
896 	BUG_ON(PageHighMem(page));
897 
898 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
899 		return NULL;
900 
901 	if (PageReserved(page)
902 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
903 		return NULL;
904 
905 	return page;
906 }
907 
908 /**
909  *	count_data_pages - compute the total number of saveable non-highmem
910  *	pages.
911  */
912 
913 static unsigned int count_data_pages(void)
914 {
915 	struct zone *zone;
916 	unsigned long pfn, max_zone_pfn;
917 	unsigned int n = 0;
918 
919 	for_each_populated_zone(zone) {
920 		if (is_highmem(zone))
921 			continue;
922 
923 		mark_free_pages(zone);
924 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
925 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
926 			if (saveable_page(zone, pfn))
927 				n++;
928 	}
929 	return n;
930 }
931 
932 /* This is needed, because copy_page and memcpy are not usable for copying
933  * task structs.
934  */
935 static inline void do_copy_page(long *dst, long *src)
936 {
937 	int n;
938 
939 	for (n = PAGE_SIZE / sizeof(long); n; n--)
940 		*dst++ = *src++;
941 }
942 
943 
944 /**
945  *	safe_copy_page - check if the page we are going to copy is marked as
946  *		present in the kernel page tables (this always is the case if
947  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
948  *		kernel_page_present() always returns 'true').
949  */
950 static void safe_copy_page(void *dst, struct page *s_page)
951 {
952 	if (kernel_page_present(s_page)) {
953 		do_copy_page(dst, page_address(s_page));
954 	} else {
955 		kernel_map_pages(s_page, 1, 1);
956 		do_copy_page(dst, page_address(s_page));
957 		kernel_map_pages(s_page, 1, 0);
958 	}
959 }
960 
961 
962 #ifdef CONFIG_HIGHMEM
963 static inline struct page *
964 page_is_saveable(struct zone *zone, unsigned long pfn)
965 {
966 	return is_highmem(zone) ?
967 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
968 }
969 
970 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
971 {
972 	struct page *s_page, *d_page;
973 	void *src, *dst;
974 
975 	s_page = pfn_to_page(src_pfn);
976 	d_page = pfn_to_page(dst_pfn);
977 	if (PageHighMem(s_page)) {
978 		src = kmap_atomic(s_page, KM_USER0);
979 		dst = kmap_atomic(d_page, KM_USER1);
980 		do_copy_page(dst, src);
981 		kunmap_atomic(src, KM_USER0);
982 		kunmap_atomic(dst, KM_USER1);
983 	} else {
984 		if (PageHighMem(d_page)) {
985 			/* Page pointed to by src may contain some kernel
986 			 * data modified by kmap_atomic()
987 			 */
988 			safe_copy_page(buffer, s_page);
989 			dst = kmap_atomic(d_page, KM_USER0);
990 			memcpy(dst, buffer, PAGE_SIZE);
991 			kunmap_atomic(dst, KM_USER0);
992 		} else {
993 			safe_copy_page(page_address(d_page), s_page);
994 		}
995 	}
996 }
997 #else
998 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
999 
1000 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1003 				pfn_to_page(src_pfn));
1004 }
1005 #endif /* CONFIG_HIGHMEM */
1006 
1007 static void
1008 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1009 {
1010 	struct zone *zone;
1011 	unsigned long pfn;
1012 
1013 	for_each_populated_zone(zone) {
1014 		unsigned long max_zone_pfn;
1015 
1016 		mark_free_pages(zone);
1017 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1018 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1019 			if (page_is_saveable(zone, pfn))
1020 				memory_bm_set_bit(orig_bm, pfn);
1021 	}
1022 	memory_bm_position_reset(orig_bm);
1023 	memory_bm_position_reset(copy_bm);
1024 	for(;;) {
1025 		pfn = memory_bm_next_pfn(orig_bm);
1026 		if (unlikely(pfn == BM_END_OF_MAP))
1027 			break;
1028 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1029 	}
1030 }
1031 
1032 /* Total number of image pages */
1033 static unsigned int nr_copy_pages;
1034 /* Number of pages needed for saving the original pfns of the image pages */
1035 static unsigned int nr_meta_pages;
1036 /*
1037  * Numbers of normal and highmem page frames allocated for hibernation image
1038  * before suspending devices.
1039  */
1040 unsigned int alloc_normal, alloc_highmem;
1041 /*
1042  * Memory bitmap used for marking saveable pages (during hibernation) or
1043  * hibernation image pages (during restore)
1044  */
1045 static struct memory_bitmap orig_bm;
1046 /*
1047  * Memory bitmap used during hibernation for marking allocated page frames that
1048  * will contain copies of saveable pages.  During restore it is initially used
1049  * for marking hibernation image pages, but then the set bits from it are
1050  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1051  * used for marking "safe" highmem pages, but it has to be reinitialized for
1052  * this purpose.
1053  */
1054 static struct memory_bitmap copy_bm;
1055 
1056 /**
1057  *	swsusp_free - free pages allocated for the suspend.
1058  *
1059  *	Suspend pages are alocated before the atomic copy is made, so we
1060  *	need to release them after the resume.
1061  */
1062 
1063 void swsusp_free(void)
1064 {
1065 	struct zone *zone;
1066 	unsigned long pfn, max_zone_pfn;
1067 
1068 	for_each_populated_zone(zone) {
1069 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1070 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1071 			if (pfn_valid(pfn)) {
1072 				struct page *page = pfn_to_page(pfn);
1073 
1074 				if (swsusp_page_is_forbidden(page) &&
1075 				    swsusp_page_is_free(page)) {
1076 					swsusp_unset_page_forbidden(page);
1077 					swsusp_unset_page_free(page);
1078 					__free_page(page);
1079 				}
1080 			}
1081 	}
1082 	nr_copy_pages = 0;
1083 	nr_meta_pages = 0;
1084 	restore_pblist = NULL;
1085 	buffer = NULL;
1086 	alloc_normal = 0;
1087 	alloc_highmem = 0;
1088 }
1089 
1090 /* Helper functions used for the shrinking of memory. */
1091 
1092 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1093 
1094 /**
1095  * preallocate_image_pages - Allocate a number of pages for hibernation image
1096  * @nr_pages: Number of page frames to allocate.
1097  * @mask: GFP flags to use for the allocation.
1098  *
1099  * Return value: Number of page frames actually allocated
1100  */
1101 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1102 {
1103 	unsigned long nr_alloc = 0;
1104 
1105 	while (nr_pages > 0) {
1106 		struct page *page;
1107 
1108 		page = alloc_image_page(mask);
1109 		if (!page)
1110 			break;
1111 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1112 		if (PageHighMem(page))
1113 			alloc_highmem++;
1114 		else
1115 			alloc_normal++;
1116 		nr_pages--;
1117 		nr_alloc++;
1118 	}
1119 
1120 	return nr_alloc;
1121 }
1122 
1123 static unsigned long preallocate_image_memory(unsigned long nr_pages)
1124 {
1125 	return preallocate_image_pages(nr_pages, GFP_IMAGE);
1126 }
1127 
1128 #ifdef CONFIG_HIGHMEM
1129 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1130 {
1131 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1132 }
1133 
1134 /**
1135  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1136  */
1137 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1138 {
1139 	x *= multiplier;
1140 	do_div(x, base);
1141 	return (unsigned long)x;
1142 }
1143 
1144 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1145 						unsigned long highmem,
1146 						unsigned long total)
1147 {
1148 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1149 
1150 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1151 }
1152 #else /* CONFIG_HIGHMEM */
1153 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1154 {
1155 	return 0;
1156 }
1157 
1158 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1159 						unsigned long highmem,
1160 						unsigned long total)
1161 {
1162 	return 0;
1163 }
1164 #endif /* CONFIG_HIGHMEM */
1165 
1166 /**
1167  * free_unnecessary_pages - Release preallocated pages not needed for the image
1168  */
1169 static void free_unnecessary_pages(void)
1170 {
1171 	unsigned long save_highmem, to_free_normal, to_free_highmem;
1172 
1173 	to_free_normal = alloc_normal - count_data_pages();
1174 	save_highmem = count_highmem_pages();
1175 	if (alloc_highmem > save_highmem) {
1176 		to_free_highmem = alloc_highmem - save_highmem;
1177 	} else {
1178 		to_free_highmem = 0;
1179 		to_free_normal -= save_highmem - alloc_highmem;
1180 	}
1181 
1182 	memory_bm_position_reset(&copy_bm);
1183 
1184 	while (to_free_normal > 0 && to_free_highmem > 0) {
1185 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1186 		struct page *page = pfn_to_page(pfn);
1187 
1188 		if (PageHighMem(page)) {
1189 			if (!to_free_highmem)
1190 				continue;
1191 			to_free_highmem--;
1192 			alloc_highmem--;
1193 		} else {
1194 			if (!to_free_normal)
1195 				continue;
1196 			to_free_normal--;
1197 			alloc_normal--;
1198 		}
1199 		memory_bm_clear_bit(&copy_bm, pfn);
1200 		swsusp_unset_page_forbidden(page);
1201 		swsusp_unset_page_free(page);
1202 		__free_page(page);
1203 	}
1204 }
1205 
1206 /**
1207  * minimum_image_size - Estimate the minimum acceptable size of an image
1208  * @saveable: Number of saveable pages in the system.
1209  *
1210  * We want to avoid attempting to free too much memory too hard, so estimate the
1211  * minimum acceptable size of a hibernation image to use as the lower limit for
1212  * preallocating memory.
1213  *
1214  * We assume that the minimum image size should be proportional to
1215  *
1216  * [number of saveable pages] - [number of pages that can be freed in theory]
1217  *
1218  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1219  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1220  * minus mapped file pages.
1221  */
1222 static unsigned long minimum_image_size(unsigned long saveable)
1223 {
1224 	unsigned long size;
1225 
1226 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1227 		+ global_page_state(NR_ACTIVE_ANON)
1228 		+ global_page_state(NR_INACTIVE_ANON)
1229 		+ global_page_state(NR_ACTIVE_FILE)
1230 		+ global_page_state(NR_INACTIVE_FILE)
1231 		- global_page_state(NR_FILE_MAPPED);
1232 
1233 	return saveable <= size ? 0 : saveable - size;
1234 }
1235 
1236 /**
1237  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1238  *
1239  * To create a hibernation image it is necessary to make a copy of every page
1240  * frame in use.  We also need a number of page frames to be free during
1241  * hibernation for allocations made while saving the image and for device
1242  * drivers, in case they need to allocate memory from their hibernation
1243  * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES,
1244  * respectively, both of which are rough estimates).  To make this happen, we
1245  * compute the total number of available page frames and allocate at least
1246  *
1247  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES
1248  *
1249  * of them, which corresponds to the maximum size of a hibernation image.
1250  *
1251  * If image_size is set below the number following from the above formula,
1252  * the preallocation of memory is continued until the total number of saveable
1253  * pages in the system is below the requested image size or the minimum
1254  * acceptable image size returned by minimum_image_size(), whichever is greater.
1255  */
1256 int hibernate_preallocate_memory(void)
1257 {
1258 	struct zone *zone;
1259 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1260 	unsigned long alloc, save_highmem, pages_highmem;
1261 	struct timeval start, stop;
1262 	int error;
1263 
1264 	printk(KERN_INFO "PM: Preallocating image memory... ");
1265 	do_gettimeofday(&start);
1266 
1267 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1268 	if (error)
1269 		goto err_out;
1270 
1271 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1272 	if (error)
1273 		goto err_out;
1274 
1275 	alloc_normal = 0;
1276 	alloc_highmem = 0;
1277 
1278 	/* Count the number of saveable data pages. */
1279 	save_highmem = count_highmem_pages();
1280 	saveable = count_data_pages();
1281 
1282 	/*
1283 	 * Compute the total number of page frames we can use (count) and the
1284 	 * number of pages needed for image metadata (size).
1285 	 */
1286 	count = saveable;
1287 	saveable += save_highmem;
1288 	highmem = save_highmem;
1289 	size = 0;
1290 	for_each_populated_zone(zone) {
1291 		size += snapshot_additional_pages(zone);
1292 		if (is_highmem(zone))
1293 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1294 		else
1295 			count += zone_page_state(zone, NR_FREE_PAGES);
1296 	}
1297 	count += highmem;
1298 	count -= totalreserve_pages;
1299 
1300 	/* Compute the maximum number of saveable pages to leave in memory. */
1301 	max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES;
1302 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1303 	if (size > max_size)
1304 		size = max_size;
1305 	/*
1306 	 * If the maximum is not less than the current number of saveable pages
1307 	 * in memory, allocate page frames for the image and we're done.
1308 	 */
1309 	if (size >= saveable) {
1310 		pages = preallocate_image_highmem(save_highmem);
1311 		pages += preallocate_image_memory(saveable - pages);
1312 		goto out;
1313 	}
1314 
1315 	/* Estimate the minimum size of the image. */
1316 	pages = minimum_image_size(saveable);
1317 	if (size < pages)
1318 		size = min_t(unsigned long, pages, max_size);
1319 
1320 	/*
1321 	 * Let the memory management subsystem know that we're going to need a
1322 	 * large number of page frames to allocate and make it free some memory.
1323 	 * NOTE: If this is not done, performance will be hurt badly in some
1324 	 * test cases.
1325 	 */
1326 	shrink_all_memory(saveable - size);
1327 
1328 	/*
1329 	 * The number of saveable pages in memory was too high, so apply some
1330 	 * pressure to decrease it.  First, make room for the largest possible
1331 	 * image and fail if that doesn't work.  Next, try to decrease the size
1332 	 * of the image as much as indicated by 'size' using allocations from
1333 	 * highmem and non-highmem zones separately.
1334 	 */
1335 	pages_highmem = preallocate_image_highmem(highmem / 2);
1336 	alloc = (count - max_size) - pages_highmem;
1337 	pages = preallocate_image_memory(alloc);
1338 	if (pages < alloc)
1339 		goto err_out;
1340 	size = max_size - size;
1341 	alloc = size;
1342 	size = preallocate_highmem_fraction(size, highmem, count);
1343 	pages_highmem += size;
1344 	alloc -= size;
1345 	pages += preallocate_image_memory(alloc);
1346 	pages += pages_highmem;
1347 
1348 	/*
1349 	 * We only need as many page frames for the image as there are saveable
1350 	 * pages in memory, but we have allocated more.  Release the excessive
1351 	 * ones now.
1352 	 */
1353 	free_unnecessary_pages();
1354 
1355  out:
1356 	do_gettimeofday(&stop);
1357 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1358 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1359 
1360 	return 0;
1361 
1362  err_out:
1363 	printk(KERN_CONT "\n");
1364 	swsusp_free();
1365 	return -ENOMEM;
1366 }
1367 
1368 #ifdef CONFIG_HIGHMEM
1369 /**
1370   *	count_pages_for_highmem - compute the number of non-highmem pages
1371   *	that will be necessary for creating copies of highmem pages.
1372   */
1373 
1374 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1375 {
1376 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1377 
1378 	if (free_highmem >= nr_highmem)
1379 		nr_highmem = 0;
1380 	else
1381 		nr_highmem -= free_highmem;
1382 
1383 	return nr_highmem;
1384 }
1385 #else
1386 static unsigned int
1387 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1388 #endif /* CONFIG_HIGHMEM */
1389 
1390 /**
1391  *	enough_free_mem - Make sure we have enough free memory for the
1392  *	snapshot image.
1393  */
1394 
1395 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1396 {
1397 	struct zone *zone;
1398 	unsigned int free = alloc_normal;
1399 
1400 	for_each_populated_zone(zone)
1401 		if (!is_highmem(zone))
1402 			free += zone_page_state(zone, NR_FREE_PAGES);
1403 
1404 	nr_pages += count_pages_for_highmem(nr_highmem);
1405 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1406 		nr_pages, PAGES_FOR_IO, free);
1407 
1408 	return free > nr_pages + PAGES_FOR_IO;
1409 }
1410 
1411 #ifdef CONFIG_HIGHMEM
1412 /**
1413  *	get_highmem_buffer - if there are some highmem pages in the suspend
1414  *	image, we may need the buffer to copy them and/or load their data.
1415  */
1416 
1417 static inline int get_highmem_buffer(int safe_needed)
1418 {
1419 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1420 	return buffer ? 0 : -ENOMEM;
1421 }
1422 
1423 /**
1424  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1425  *	Try to allocate as many pages as needed, but if the number of free
1426  *	highmem pages is lesser than that, allocate them all.
1427  */
1428 
1429 static inline unsigned int
1430 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1431 {
1432 	unsigned int to_alloc = count_free_highmem_pages();
1433 
1434 	if (to_alloc > nr_highmem)
1435 		to_alloc = nr_highmem;
1436 
1437 	nr_highmem -= to_alloc;
1438 	while (to_alloc-- > 0) {
1439 		struct page *page;
1440 
1441 		page = alloc_image_page(__GFP_HIGHMEM);
1442 		memory_bm_set_bit(bm, page_to_pfn(page));
1443 	}
1444 	return nr_highmem;
1445 }
1446 #else
1447 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1448 
1449 static inline unsigned int
1450 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1451 #endif /* CONFIG_HIGHMEM */
1452 
1453 /**
1454  *	swsusp_alloc - allocate memory for the suspend image
1455  *
1456  *	We first try to allocate as many highmem pages as there are
1457  *	saveable highmem pages in the system.  If that fails, we allocate
1458  *	non-highmem pages for the copies of the remaining highmem ones.
1459  *
1460  *	In this approach it is likely that the copies of highmem pages will
1461  *	also be located in the high memory, because of the way in which
1462  *	copy_data_pages() works.
1463  */
1464 
1465 static int
1466 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1467 		unsigned int nr_pages, unsigned int nr_highmem)
1468 {
1469 	int error = 0;
1470 
1471 	if (nr_highmem > 0) {
1472 		error = get_highmem_buffer(PG_ANY);
1473 		if (error)
1474 			goto err_out;
1475 		if (nr_highmem > alloc_highmem) {
1476 			nr_highmem -= alloc_highmem;
1477 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1478 		}
1479 	}
1480 	if (nr_pages > alloc_normal) {
1481 		nr_pages -= alloc_normal;
1482 		while (nr_pages-- > 0) {
1483 			struct page *page;
1484 
1485 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1486 			if (!page)
1487 				goto err_out;
1488 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1489 		}
1490 	}
1491 
1492 	return 0;
1493 
1494  err_out:
1495 	swsusp_free();
1496 	return error;
1497 }
1498 
1499 asmlinkage int swsusp_save(void)
1500 {
1501 	unsigned int nr_pages, nr_highmem;
1502 
1503 	printk(KERN_INFO "PM: Creating hibernation image: \n");
1504 
1505 	drain_local_pages(NULL);
1506 	nr_pages = count_data_pages();
1507 	nr_highmem = count_highmem_pages();
1508 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1509 
1510 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1511 		printk(KERN_ERR "PM: Not enough free memory\n");
1512 		return -ENOMEM;
1513 	}
1514 
1515 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1516 		printk(KERN_ERR "PM: Memory allocation failed\n");
1517 		return -ENOMEM;
1518 	}
1519 
1520 	/* During allocating of suspend pagedir, new cold pages may appear.
1521 	 * Kill them.
1522 	 */
1523 	drain_local_pages(NULL);
1524 	copy_data_pages(&copy_bm, &orig_bm);
1525 
1526 	/*
1527 	 * End of critical section. From now on, we can write to memory,
1528 	 * but we should not touch disk. This specially means we must _not_
1529 	 * touch swap space! Except we must write out our image of course.
1530 	 */
1531 
1532 	nr_pages += nr_highmem;
1533 	nr_copy_pages = nr_pages;
1534 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1535 
1536 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1537 		nr_pages);
1538 
1539 	return 0;
1540 }
1541 
1542 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1543 static int init_header_complete(struct swsusp_info *info)
1544 {
1545 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1546 	info->version_code = LINUX_VERSION_CODE;
1547 	return 0;
1548 }
1549 
1550 static char *check_image_kernel(struct swsusp_info *info)
1551 {
1552 	if (info->version_code != LINUX_VERSION_CODE)
1553 		return "kernel version";
1554 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1555 		return "system type";
1556 	if (strcmp(info->uts.release,init_utsname()->release))
1557 		return "kernel release";
1558 	if (strcmp(info->uts.version,init_utsname()->version))
1559 		return "version";
1560 	if (strcmp(info->uts.machine,init_utsname()->machine))
1561 		return "machine";
1562 	return NULL;
1563 }
1564 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1565 
1566 unsigned long snapshot_get_image_size(void)
1567 {
1568 	return nr_copy_pages + nr_meta_pages + 1;
1569 }
1570 
1571 static int init_header(struct swsusp_info *info)
1572 {
1573 	memset(info, 0, sizeof(struct swsusp_info));
1574 	info->num_physpages = num_physpages;
1575 	info->image_pages = nr_copy_pages;
1576 	info->pages = snapshot_get_image_size();
1577 	info->size = info->pages;
1578 	info->size <<= PAGE_SHIFT;
1579 	return init_header_complete(info);
1580 }
1581 
1582 /**
1583  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1584  *	are stored in the array @buf[] (1 page at a time)
1585  */
1586 
1587 static inline void
1588 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1589 {
1590 	int j;
1591 
1592 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1593 		buf[j] = memory_bm_next_pfn(bm);
1594 		if (unlikely(buf[j] == BM_END_OF_MAP))
1595 			break;
1596 	}
1597 }
1598 
1599 /**
1600  *	snapshot_read_next - used for reading the system memory snapshot.
1601  *
1602  *	On the first call to it @handle should point to a zeroed
1603  *	snapshot_handle structure.  The structure gets updated and a pointer
1604  *	to it should be passed to this function every next time.
1605  *
1606  *	The @count parameter should contain the number of bytes the caller
1607  *	wants to read from the snapshot.  It must not be zero.
1608  *
1609  *	On success the function returns a positive number.  Then, the caller
1610  *	is allowed to read up to the returned number of bytes from the memory
1611  *	location computed by the data_of() macro.  The number returned
1612  *	may be smaller than @count, but this only happens if the read would
1613  *	cross a page boundary otherwise.
1614  *
1615  *	The function returns 0 to indicate the end of data stream condition,
1616  *	and a negative number is returned on error.  In such cases the
1617  *	structure pointed to by @handle is not updated and should not be used
1618  *	any more.
1619  */
1620 
1621 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1622 {
1623 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1624 		return 0;
1625 
1626 	if (!buffer) {
1627 		/* This makes the buffer be freed by swsusp_free() */
1628 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1629 		if (!buffer)
1630 			return -ENOMEM;
1631 	}
1632 	if (!handle->offset) {
1633 		int error;
1634 
1635 		error = init_header((struct swsusp_info *)buffer);
1636 		if (error)
1637 			return error;
1638 		handle->buffer = buffer;
1639 		memory_bm_position_reset(&orig_bm);
1640 		memory_bm_position_reset(&copy_bm);
1641 	}
1642 	if (handle->prev < handle->cur) {
1643 		if (handle->cur <= nr_meta_pages) {
1644 			memset(buffer, 0, PAGE_SIZE);
1645 			pack_pfns(buffer, &orig_bm);
1646 		} else {
1647 			struct page *page;
1648 
1649 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1650 			if (PageHighMem(page)) {
1651 				/* Highmem pages are copied to the buffer,
1652 				 * because we can't return with a kmapped
1653 				 * highmem page (we may not be called again).
1654 				 */
1655 				void *kaddr;
1656 
1657 				kaddr = kmap_atomic(page, KM_USER0);
1658 				memcpy(buffer, kaddr, PAGE_SIZE);
1659 				kunmap_atomic(kaddr, KM_USER0);
1660 				handle->buffer = buffer;
1661 			} else {
1662 				handle->buffer = page_address(page);
1663 			}
1664 		}
1665 		handle->prev = handle->cur;
1666 	}
1667 	handle->buf_offset = handle->cur_offset;
1668 	if (handle->cur_offset + count >= PAGE_SIZE) {
1669 		count = PAGE_SIZE - handle->cur_offset;
1670 		handle->cur_offset = 0;
1671 		handle->cur++;
1672 	} else {
1673 		handle->cur_offset += count;
1674 	}
1675 	handle->offset += count;
1676 	return count;
1677 }
1678 
1679 /**
1680  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1681  *	the image during resume, because they conflict with the pages that
1682  *	had been used before suspend
1683  */
1684 
1685 static int mark_unsafe_pages(struct memory_bitmap *bm)
1686 {
1687 	struct zone *zone;
1688 	unsigned long pfn, max_zone_pfn;
1689 
1690 	/* Clear page flags */
1691 	for_each_populated_zone(zone) {
1692 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1693 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1694 			if (pfn_valid(pfn))
1695 				swsusp_unset_page_free(pfn_to_page(pfn));
1696 	}
1697 
1698 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1699 	memory_bm_position_reset(bm);
1700 	do {
1701 		pfn = memory_bm_next_pfn(bm);
1702 		if (likely(pfn != BM_END_OF_MAP)) {
1703 			if (likely(pfn_valid(pfn)))
1704 				swsusp_set_page_free(pfn_to_page(pfn));
1705 			else
1706 				return -EFAULT;
1707 		}
1708 	} while (pfn != BM_END_OF_MAP);
1709 
1710 	allocated_unsafe_pages = 0;
1711 
1712 	return 0;
1713 }
1714 
1715 static void
1716 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1717 {
1718 	unsigned long pfn;
1719 
1720 	memory_bm_position_reset(src);
1721 	pfn = memory_bm_next_pfn(src);
1722 	while (pfn != BM_END_OF_MAP) {
1723 		memory_bm_set_bit(dst, pfn);
1724 		pfn = memory_bm_next_pfn(src);
1725 	}
1726 }
1727 
1728 static int check_header(struct swsusp_info *info)
1729 {
1730 	char *reason;
1731 
1732 	reason = check_image_kernel(info);
1733 	if (!reason && info->num_physpages != num_physpages)
1734 		reason = "memory size";
1735 	if (reason) {
1736 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1737 		return -EPERM;
1738 	}
1739 	return 0;
1740 }
1741 
1742 /**
1743  *	load header - check the image header and copy data from it
1744  */
1745 
1746 static int
1747 load_header(struct swsusp_info *info)
1748 {
1749 	int error;
1750 
1751 	restore_pblist = NULL;
1752 	error = check_header(info);
1753 	if (!error) {
1754 		nr_copy_pages = info->image_pages;
1755 		nr_meta_pages = info->pages - info->image_pages - 1;
1756 	}
1757 	return error;
1758 }
1759 
1760 /**
1761  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1762  *	the corresponding bit in the memory bitmap @bm
1763  */
1764 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1765 {
1766 	int j;
1767 
1768 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1769 		if (unlikely(buf[j] == BM_END_OF_MAP))
1770 			break;
1771 
1772 		if (memory_bm_pfn_present(bm, buf[j]))
1773 			memory_bm_set_bit(bm, buf[j]);
1774 		else
1775 			return -EFAULT;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 /* List of "safe" pages that may be used to store data loaded from the suspend
1782  * image
1783  */
1784 static struct linked_page *safe_pages_list;
1785 
1786 #ifdef CONFIG_HIGHMEM
1787 /* struct highmem_pbe is used for creating the list of highmem pages that
1788  * should be restored atomically during the resume from disk, because the page
1789  * frames they have occupied before the suspend are in use.
1790  */
1791 struct highmem_pbe {
1792 	struct page *copy_page;	/* data is here now */
1793 	struct page *orig_page;	/* data was here before the suspend */
1794 	struct highmem_pbe *next;
1795 };
1796 
1797 /* List of highmem PBEs needed for restoring the highmem pages that were
1798  * allocated before the suspend and included in the suspend image, but have
1799  * also been allocated by the "resume" kernel, so their contents cannot be
1800  * written directly to their "original" page frames.
1801  */
1802 static struct highmem_pbe *highmem_pblist;
1803 
1804 /**
1805  *	count_highmem_image_pages - compute the number of highmem pages in the
1806  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1807  *	image pages are assumed to be set.
1808  */
1809 
1810 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1811 {
1812 	unsigned long pfn;
1813 	unsigned int cnt = 0;
1814 
1815 	memory_bm_position_reset(bm);
1816 	pfn = memory_bm_next_pfn(bm);
1817 	while (pfn != BM_END_OF_MAP) {
1818 		if (PageHighMem(pfn_to_page(pfn)))
1819 			cnt++;
1820 
1821 		pfn = memory_bm_next_pfn(bm);
1822 	}
1823 	return cnt;
1824 }
1825 
1826 /**
1827  *	prepare_highmem_image - try to allocate as many highmem pages as
1828  *	there are highmem image pages (@nr_highmem_p points to the variable
1829  *	containing the number of highmem image pages).  The pages that are
1830  *	"safe" (ie. will not be overwritten when the suspend image is
1831  *	restored) have the corresponding bits set in @bm (it must be
1832  *	unitialized).
1833  *
1834  *	NOTE: This function should not be called if there are no highmem
1835  *	image pages.
1836  */
1837 
1838 static unsigned int safe_highmem_pages;
1839 
1840 static struct memory_bitmap *safe_highmem_bm;
1841 
1842 static int
1843 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1844 {
1845 	unsigned int to_alloc;
1846 
1847 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1848 		return -ENOMEM;
1849 
1850 	if (get_highmem_buffer(PG_SAFE))
1851 		return -ENOMEM;
1852 
1853 	to_alloc = count_free_highmem_pages();
1854 	if (to_alloc > *nr_highmem_p)
1855 		to_alloc = *nr_highmem_p;
1856 	else
1857 		*nr_highmem_p = to_alloc;
1858 
1859 	safe_highmem_pages = 0;
1860 	while (to_alloc-- > 0) {
1861 		struct page *page;
1862 
1863 		page = alloc_page(__GFP_HIGHMEM);
1864 		if (!swsusp_page_is_free(page)) {
1865 			/* The page is "safe", set its bit the bitmap */
1866 			memory_bm_set_bit(bm, page_to_pfn(page));
1867 			safe_highmem_pages++;
1868 		}
1869 		/* Mark the page as allocated */
1870 		swsusp_set_page_forbidden(page);
1871 		swsusp_set_page_free(page);
1872 	}
1873 	memory_bm_position_reset(bm);
1874 	safe_highmem_bm = bm;
1875 	return 0;
1876 }
1877 
1878 /**
1879  *	get_highmem_page_buffer - for given highmem image page find the buffer
1880  *	that suspend_write_next() should set for its caller to write to.
1881  *
1882  *	If the page is to be saved to its "original" page frame or a copy of
1883  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1884  *	the copy of the page is to be made in normal memory, so the address of
1885  *	the copy is returned.
1886  *
1887  *	If @buffer is returned, the caller of suspend_write_next() will write
1888  *	the page's contents to @buffer, so they will have to be copied to the
1889  *	right location on the next call to suspend_write_next() and it is done
1890  *	with the help of copy_last_highmem_page().  For this purpose, if
1891  *	@buffer is returned, @last_highmem page is set to the page to which
1892  *	the data will have to be copied from @buffer.
1893  */
1894 
1895 static struct page *last_highmem_page;
1896 
1897 static void *
1898 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1899 {
1900 	struct highmem_pbe *pbe;
1901 	void *kaddr;
1902 
1903 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1904 		/* We have allocated the "original" page frame and we can
1905 		 * use it directly to store the loaded page.
1906 		 */
1907 		last_highmem_page = page;
1908 		return buffer;
1909 	}
1910 	/* The "original" page frame has not been allocated and we have to
1911 	 * use a "safe" page frame to store the loaded page.
1912 	 */
1913 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1914 	if (!pbe) {
1915 		swsusp_free();
1916 		return ERR_PTR(-ENOMEM);
1917 	}
1918 	pbe->orig_page = page;
1919 	if (safe_highmem_pages > 0) {
1920 		struct page *tmp;
1921 
1922 		/* Copy of the page will be stored in high memory */
1923 		kaddr = buffer;
1924 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1925 		safe_highmem_pages--;
1926 		last_highmem_page = tmp;
1927 		pbe->copy_page = tmp;
1928 	} else {
1929 		/* Copy of the page will be stored in normal memory */
1930 		kaddr = safe_pages_list;
1931 		safe_pages_list = safe_pages_list->next;
1932 		pbe->copy_page = virt_to_page(kaddr);
1933 	}
1934 	pbe->next = highmem_pblist;
1935 	highmem_pblist = pbe;
1936 	return kaddr;
1937 }
1938 
1939 /**
1940  *	copy_last_highmem_page - copy the contents of a highmem image from
1941  *	@buffer, where the caller of snapshot_write_next() has place them,
1942  *	to the right location represented by @last_highmem_page .
1943  */
1944 
1945 static void copy_last_highmem_page(void)
1946 {
1947 	if (last_highmem_page) {
1948 		void *dst;
1949 
1950 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1951 		memcpy(dst, buffer, PAGE_SIZE);
1952 		kunmap_atomic(dst, KM_USER0);
1953 		last_highmem_page = NULL;
1954 	}
1955 }
1956 
1957 static inline int last_highmem_page_copied(void)
1958 {
1959 	return !last_highmem_page;
1960 }
1961 
1962 static inline void free_highmem_data(void)
1963 {
1964 	if (safe_highmem_bm)
1965 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1966 
1967 	if (buffer)
1968 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1969 }
1970 #else
1971 static inline int get_safe_write_buffer(void) { return 0; }
1972 
1973 static unsigned int
1974 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1975 
1976 static inline int
1977 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1978 {
1979 	return 0;
1980 }
1981 
1982 static inline void *
1983 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1984 {
1985 	return ERR_PTR(-EINVAL);
1986 }
1987 
1988 static inline void copy_last_highmem_page(void) {}
1989 static inline int last_highmem_page_copied(void) { return 1; }
1990 static inline void free_highmem_data(void) {}
1991 #endif /* CONFIG_HIGHMEM */
1992 
1993 /**
1994  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1995  *	be overwritten in the process of restoring the system memory state
1996  *	from the suspend image ("unsafe" pages) and allocate memory for the
1997  *	image.
1998  *
1999  *	The idea is to allocate a new memory bitmap first and then allocate
2000  *	as many pages as needed for the image data, but not to assign these
2001  *	pages to specific tasks initially.  Instead, we just mark them as
2002  *	allocated and create a lists of "safe" pages that will be used
2003  *	later.  On systems with high memory a list of "safe" highmem pages is
2004  *	also created.
2005  */
2006 
2007 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2008 
2009 static int
2010 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2011 {
2012 	unsigned int nr_pages, nr_highmem;
2013 	struct linked_page *sp_list, *lp;
2014 	int error;
2015 
2016 	/* If there is no highmem, the buffer will not be necessary */
2017 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2018 	buffer = NULL;
2019 
2020 	nr_highmem = count_highmem_image_pages(bm);
2021 	error = mark_unsafe_pages(bm);
2022 	if (error)
2023 		goto Free;
2024 
2025 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2026 	if (error)
2027 		goto Free;
2028 
2029 	duplicate_memory_bitmap(new_bm, bm);
2030 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2031 	if (nr_highmem > 0) {
2032 		error = prepare_highmem_image(bm, &nr_highmem);
2033 		if (error)
2034 			goto Free;
2035 	}
2036 	/* Reserve some safe pages for potential later use.
2037 	 *
2038 	 * NOTE: This way we make sure there will be enough safe pages for the
2039 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2040 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2041 	 */
2042 	sp_list = NULL;
2043 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2044 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2045 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2046 	while (nr_pages > 0) {
2047 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2048 		if (!lp) {
2049 			error = -ENOMEM;
2050 			goto Free;
2051 		}
2052 		lp->next = sp_list;
2053 		sp_list = lp;
2054 		nr_pages--;
2055 	}
2056 	/* Preallocate memory for the image */
2057 	safe_pages_list = NULL;
2058 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2059 	while (nr_pages > 0) {
2060 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2061 		if (!lp) {
2062 			error = -ENOMEM;
2063 			goto Free;
2064 		}
2065 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2066 			/* The page is "safe", add it to the list */
2067 			lp->next = safe_pages_list;
2068 			safe_pages_list = lp;
2069 		}
2070 		/* Mark the page as allocated */
2071 		swsusp_set_page_forbidden(virt_to_page(lp));
2072 		swsusp_set_page_free(virt_to_page(lp));
2073 		nr_pages--;
2074 	}
2075 	/* Free the reserved safe pages so that chain_alloc() can use them */
2076 	while (sp_list) {
2077 		lp = sp_list->next;
2078 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2079 		sp_list = lp;
2080 	}
2081 	return 0;
2082 
2083  Free:
2084 	swsusp_free();
2085 	return error;
2086 }
2087 
2088 /**
2089  *	get_buffer - compute the address that snapshot_write_next() should
2090  *	set for its caller to write to.
2091  */
2092 
2093 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2094 {
2095 	struct pbe *pbe;
2096 	struct page *page;
2097 	unsigned long pfn = memory_bm_next_pfn(bm);
2098 
2099 	if (pfn == BM_END_OF_MAP)
2100 		return ERR_PTR(-EFAULT);
2101 
2102 	page = pfn_to_page(pfn);
2103 	if (PageHighMem(page))
2104 		return get_highmem_page_buffer(page, ca);
2105 
2106 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2107 		/* We have allocated the "original" page frame and we can
2108 		 * use it directly to store the loaded page.
2109 		 */
2110 		return page_address(page);
2111 
2112 	/* The "original" page frame has not been allocated and we have to
2113 	 * use a "safe" page frame to store the loaded page.
2114 	 */
2115 	pbe = chain_alloc(ca, sizeof(struct pbe));
2116 	if (!pbe) {
2117 		swsusp_free();
2118 		return ERR_PTR(-ENOMEM);
2119 	}
2120 	pbe->orig_address = page_address(page);
2121 	pbe->address = safe_pages_list;
2122 	safe_pages_list = safe_pages_list->next;
2123 	pbe->next = restore_pblist;
2124 	restore_pblist = pbe;
2125 	return pbe->address;
2126 }
2127 
2128 /**
2129  *	snapshot_write_next - used for writing the system memory snapshot.
2130  *
2131  *	On the first call to it @handle should point to a zeroed
2132  *	snapshot_handle structure.  The structure gets updated and a pointer
2133  *	to it should be passed to this function every next time.
2134  *
2135  *	The @count parameter should contain the number of bytes the caller
2136  *	wants to write to the image.  It must not be zero.
2137  *
2138  *	On success the function returns a positive number.  Then, the caller
2139  *	is allowed to write up to the returned number of bytes to the memory
2140  *	location computed by the data_of() macro.  The number returned
2141  *	may be smaller than @count, but this only happens if the write would
2142  *	cross a page boundary otherwise.
2143  *
2144  *	The function returns 0 to indicate the "end of file" condition,
2145  *	and a negative number is returned on error.  In such cases the
2146  *	structure pointed to by @handle is not updated and should not be used
2147  *	any more.
2148  */
2149 
2150 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
2151 {
2152 	static struct chain_allocator ca;
2153 	int error = 0;
2154 
2155 	/* Check if we have already loaded the entire image */
2156 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
2157 		return 0;
2158 
2159 	if (handle->offset == 0) {
2160 		if (!buffer)
2161 			/* This makes the buffer be freed by swsusp_free() */
2162 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2163 
2164 		if (!buffer)
2165 			return -ENOMEM;
2166 
2167 		handle->buffer = buffer;
2168 	}
2169 	handle->sync_read = 1;
2170 	if (handle->prev < handle->cur) {
2171 		if (handle->prev == 0) {
2172 			error = load_header(buffer);
2173 			if (error)
2174 				return error;
2175 
2176 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2177 			if (error)
2178 				return error;
2179 
2180 		} else if (handle->prev <= nr_meta_pages) {
2181 			error = unpack_orig_pfns(buffer, &copy_bm);
2182 			if (error)
2183 				return error;
2184 
2185 			if (handle->prev == nr_meta_pages) {
2186 				error = prepare_image(&orig_bm, &copy_bm);
2187 				if (error)
2188 					return error;
2189 
2190 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2191 				memory_bm_position_reset(&orig_bm);
2192 				restore_pblist = NULL;
2193 				handle->buffer = get_buffer(&orig_bm, &ca);
2194 				handle->sync_read = 0;
2195 				if (IS_ERR(handle->buffer))
2196 					return PTR_ERR(handle->buffer);
2197 			}
2198 		} else {
2199 			copy_last_highmem_page();
2200 			handle->buffer = get_buffer(&orig_bm, &ca);
2201 			if (IS_ERR(handle->buffer))
2202 				return PTR_ERR(handle->buffer);
2203 			if (handle->buffer != buffer)
2204 				handle->sync_read = 0;
2205 		}
2206 		handle->prev = handle->cur;
2207 	}
2208 	handle->buf_offset = handle->cur_offset;
2209 	if (handle->cur_offset + count >= PAGE_SIZE) {
2210 		count = PAGE_SIZE - handle->cur_offset;
2211 		handle->cur_offset = 0;
2212 		handle->cur++;
2213 	} else {
2214 		handle->cur_offset += count;
2215 	}
2216 	handle->offset += count;
2217 	return count;
2218 }
2219 
2220 /**
2221  *	snapshot_write_finalize - must be called after the last call to
2222  *	snapshot_write_next() in case the last page in the image happens
2223  *	to be a highmem page and its contents should be stored in the
2224  *	highmem.  Additionally, it releases the memory that will not be
2225  *	used any more.
2226  */
2227 
2228 void snapshot_write_finalize(struct snapshot_handle *handle)
2229 {
2230 	copy_last_highmem_page();
2231 	/* Free only if we have loaded the image entirely */
2232 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
2233 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2234 		free_highmem_data();
2235 	}
2236 }
2237 
2238 int snapshot_image_loaded(struct snapshot_handle *handle)
2239 {
2240 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2241 			handle->cur <= nr_meta_pages + nr_copy_pages);
2242 }
2243 
2244 #ifdef CONFIG_HIGHMEM
2245 /* Assumes that @buf is ready and points to a "safe" page */
2246 static inline void
2247 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2248 {
2249 	void *kaddr1, *kaddr2;
2250 
2251 	kaddr1 = kmap_atomic(p1, KM_USER0);
2252 	kaddr2 = kmap_atomic(p2, KM_USER1);
2253 	memcpy(buf, kaddr1, PAGE_SIZE);
2254 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
2255 	memcpy(kaddr2, buf, PAGE_SIZE);
2256 	kunmap_atomic(kaddr1, KM_USER0);
2257 	kunmap_atomic(kaddr2, KM_USER1);
2258 }
2259 
2260 /**
2261  *	restore_highmem - for each highmem page that was allocated before
2262  *	the suspend and included in the suspend image, and also has been
2263  *	allocated by the "resume" kernel swap its current (ie. "before
2264  *	resume") contents with the previous (ie. "before suspend") one.
2265  *
2266  *	If the resume eventually fails, we can call this function once
2267  *	again and restore the "before resume" highmem state.
2268  */
2269 
2270 int restore_highmem(void)
2271 {
2272 	struct highmem_pbe *pbe = highmem_pblist;
2273 	void *buf;
2274 
2275 	if (!pbe)
2276 		return 0;
2277 
2278 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2279 	if (!buf)
2280 		return -ENOMEM;
2281 
2282 	while (pbe) {
2283 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2284 		pbe = pbe->next;
2285 	}
2286 	free_image_page(buf, PG_UNSAFE_CLEAR);
2287 	return 0;
2288 }
2289 #endif /* CONFIG_HIGHMEM */
2290