xref: /openbmc/linux/kernel/power/snapshot.c (revision fd432b9f)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36 
37 #include "power.h"
38 
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42 
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49 
50 void __init hibernate_reserved_size_init(void)
51 {
52 	reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54 
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62 
63 void __init hibernate_image_size_init(void)
64 {
65 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67 
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74 
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77 
78 /**
79  *	@safe_needed - on resume, for storing the PBE list and the image,
80  *	we can only use memory pages that do not conflict with the pages
81  *	used before suspend.  The unsafe pages have PageNosaveFree set
82  *	and we count them using unsafe_pages.
83  *
84  *	Each allocated image page is marked as PageNosave and PageNosaveFree
85  *	so that swsusp_free() can release it.
86  */
87 
88 #define PG_ANY		0
89 #define PG_SAFE		1
90 #define PG_UNSAFE_CLEAR	1
91 #define PG_UNSAFE_KEEP	0
92 
93 static unsigned int allocated_unsafe_pages;
94 
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 	void *res;
98 
99 	res = (void *)get_zeroed_page(gfp_mask);
100 	if (safe_needed)
101 		while (res && swsusp_page_is_free(virt_to_page(res))) {
102 			/* The page is unsafe, mark it for swsusp_free() */
103 			swsusp_set_page_forbidden(virt_to_page(res));
104 			allocated_unsafe_pages++;
105 			res = (void *)get_zeroed_page(gfp_mask);
106 		}
107 	if (res) {
108 		swsusp_set_page_forbidden(virt_to_page(res));
109 		swsusp_set_page_free(virt_to_page(res));
110 	}
111 	return res;
112 }
113 
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118 
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 	struct page *page;
122 
123 	page = alloc_page(gfp_mask);
124 	if (page) {
125 		swsusp_set_page_forbidden(page);
126 		swsusp_set_page_free(page);
127 	}
128 	return page;
129 }
130 
131 /**
132  *	free_image_page - free page represented by @addr, allocated with
133  *	get_image_page (page flags set by it must be cleared)
134  */
135 
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 	struct page *page;
139 
140 	BUG_ON(!virt_addr_valid(addr));
141 
142 	page = virt_to_page(addr);
143 
144 	swsusp_unset_page_forbidden(page);
145 	if (clear_nosave_free)
146 		swsusp_unset_page_free(page);
147 
148 	__free_page(page);
149 }
150 
151 /* struct linked_page is used to build chains of pages */
152 
153 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
154 
155 struct linked_page {
156 	struct linked_page *next;
157 	char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159 
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 	while (list) {
164 		struct linked_page *lp = list->next;
165 
166 		free_image_page(list, clear_page_nosave);
167 		list = lp;
168 	}
169 }
170 
171 /**
172   *	struct chain_allocator is used for allocating small objects out of
173   *	a linked list of pages called 'the chain'.
174   *
175   *	The chain grows each time when there is no room for a new object in
176   *	the current page.  The allocated objects cannot be freed individually.
177   *	It is only possible to free them all at once, by freeing the entire
178   *	chain.
179   *
180   *	NOTE: The chain allocator may be inefficient if the allocated objects
181   *	are not much smaller than PAGE_SIZE.
182   */
183 
184 struct chain_allocator {
185 	struct linked_page *chain;	/* the chain */
186 	unsigned int used_space;	/* total size of objects allocated out
187 					 * of the current page
188 					 */
189 	gfp_t gfp_mask;		/* mask for allocating pages */
190 	int safe_needed;	/* if set, only "safe" pages are allocated */
191 };
192 
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 	ca->chain = NULL;
197 	ca->used_space = LINKED_PAGE_DATA_SIZE;
198 	ca->gfp_mask = gfp_mask;
199 	ca->safe_needed = safe_needed;
200 }
201 
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 	void *ret;
205 
206 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 		struct linked_page *lp;
208 
209 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 		if (!lp)
211 			return NULL;
212 
213 		lp->next = ca->chain;
214 		ca->chain = lp;
215 		ca->used_space = 0;
216 	}
217 	ret = ca->chain->data + ca->used_space;
218 	ca->used_space += size;
219 	return ret;
220 }
221 
222 /**
223  *	Data types related to memory bitmaps.
224  *
225  *	Memory bitmap is a structure consiting of many linked lists of
226  *	objects.  The main list's elements are of type struct zone_bitmap
227  *	and each of them corresonds to one zone.  For each zone bitmap
228  *	object there is a list of objects of type struct bm_block that
229  *	represent each blocks of bitmap in which information is stored.
230  *
231  *	struct memory_bitmap contains a pointer to the main list of zone
232  *	bitmap objects, a struct bm_position used for browsing the bitmap,
233  *	and a pointer to the list of pages used for allocating all of the
234  *	zone bitmap objects and bitmap block objects.
235  *
236  *	NOTE: It has to be possible to lay out the bitmap in memory
237  *	using only allocations of order 0.  Additionally, the bitmap is
238  *	designed to work with arbitrary number of zones (this is over the
239  *	top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *	struct zone_bitmap contains a pointer to a list of bitmap block
242  *	objects and a pointer to the bitmap block object that has been
243  *	most recently used for setting bits.  Additionally, it contains the
244  *	pfns that correspond to the start and end of the represented zone.
245  *
246  *	struct bm_block contains a pointer to the memory page in which
247  *	information is stored (in the form of a block of bitmap)
248  *	It also contains the pfns that correspond to the start and end of
249  *	the represented memory area.
250  */
251 
252 #define BM_END_OF_MAP	(~0UL)
253 
254 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 
256 struct bm_block {
257 	struct list_head hook;	/* hook into a list of bitmap blocks */
258 	unsigned long start_pfn;	/* pfn represented by the first bit */
259 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260 	unsigned long *data;	/* bitmap representing pages */
261 };
262 
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 	return bb->end_pfn - bb->start_pfn;
266 }
267 
268 /* strcut bm_position is used for browsing memory bitmaps */
269 
270 struct bm_position {
271 	struct bm_block *block;
272 	int bit;
273 };
274 
275 struct memory_bitmap {
276 	struct list_head blocks;	/* list of bitmap blocks */
277 	struct linked_page *p_list;	/* list of pages used to store zone
278 					 * bitmap objects and bitmap block
279 					 * objects
280 					 */
281 	struct bm_position cur;	/* most recently used bit position */
282 };
283 
284 /* Functions that operate on memory bitmaps */
285 
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 	bm->cur.bit = 0;
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  *	@pages - number of pages to track
297  *	@list - list to put the allocated blocks into
298  *	@ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301 				struct list_head *list,
302 				struct chain_allocator *ca)
303 {
304 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 
306 	while (nr_blocks-- > 0) {
307 		struct bm_block *bb;
308 
309 		bb = chain_alloc(ca, sizeof(struct bm_block));
310 		if (!bb)
311 			return -ENOMEM;
312 		list_add(&bb->hook, list);
313 	}
314 
315 	return 0;
316 }
317 
318 struct mem_extent {
319 	struct list_head hook;
320 	unsigned long start;
321 	unsigned long end;
322 };
323 
324 /**
325  *	free_mem_extents - free a list of memory extents
326  *	@list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330 	struct mem_extent *ext, *aux;
331 
332 	list_for_each_entry_safe(ext, aux, list, hook) {
333 		list_del(&ext->hook);
334 		kfree(ext);
335 	}
336 }
337 
338 /**
339  *	create_mem_extents - create a list of memory extents representing
340  *	                     contiguous ranges of PFNs
341  *	@list - list to put the extents into
342  *	@gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 	struct zone *zone;
347 
348 	INIT_LIST_HEAD(list);
349 
350 	for_each_populated_zone(zone) {
351 		unsigned long zone_start, zone_end;
352 		struct mem_extent *ext, *cur, *aux;
353 
354 		zone_start = zone->zone_start_pfn;
355 		zone_end = zone_end_pfn(zone);
356 
357 		list_for_each_entry(ext, list, hook)
358 			if (zone_start <= ext->end)
359 				break;
360 
361 		if (&ext->hook == list || zone_end < ext->start) {
362 			/* New extent is necessary */
363 			struct mem_extent *new_ext;
364 
365 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 			if (!new_ext) {
367 				free_mem_extents(list);
368 				return -ENOMEM;
369 			}
370 			new_ext->start = zone_start;
371 			new_ext->end = zone_end;
372 			list_add_tail(&new_ext->hook, &ext->hook);
373 			continue;
374 		}
375 
376 		/* Merge this zone's range of PFNs with the existing one */
377 		if (zone_start < ext->start)
378 			ext->start = zone_start;
379 		if (zone_end > ext->end)
380 			ext->end = zone_end;
381 
382 		/* More merging may be possible */
383 		cur = ext;
384 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 			if (zone_end < cur->start)
386 				break;
387 			if (zone_end < cur->end)
388 				ext->end = cur->end;
389 			list_del(&cur->hook);
390 			kfree(cur);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 /**
398   *	memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 	struct chain_allocator ca;
404 	struct list_head mem_extents;
405 	struct mem_extent *ext;
406 	int error;
407 
408 	chain_init(&ca, gfp_mask, safe_needed);
409 	INIT_LIST_HEAD(&bm->blocks);
410 
411 	error = create_mem_extents(&mem_extents, gfp_mask);
412 	if (error)
413 		return error;
414 
415 	list_for_each_entry(ext, &mem_extents, hook) {
416 		struct bm_block *bb;
417 		unsigned long pfn = ext->start;
418 		unsigned long pages = ext->end - ext->start;
419 
420 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421 
422 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 		if (error)
424 			goto Error;
425 
426 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 			bb->data = get_image_page(gfp_mask, safe_needed);
428 			if (!bb->data) {
429 				error = -ENOMEM;
430 				goto Error;
431 			}
432 
433 			bb->start_pfn = pfn;
434 			if (pages >= BM_BITS_PER_BLOCK) {
435 				pfn += BM_BITS_PER_BLOCK;
436 				pages -= BM_BITS_PER_BLOCK;
437 			} else {
438 				/* This is executed only once in the loop */
439 				pfn += pages;
440 			}
441 			bb->end_pfn = pfn;
442 		}
443 	}
444 
445 	bm->p_list = ca.chain;
446 	memory_bm_position_reset(bm);
447  Exit:
448 	free_mem_extents(&mem_extents);
449 	return error;
450 
451  Error:
452 	bm->p_list = ca.chain;
453 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 	goto Exit;
455 }
456 
457 /**
458   *	memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 	struct bm_block *bb;
463 
464 	list_for_each_entry(bb, &bm->blocks, hook)
465 		if (bb->data)
466 			free_image_page(bb->data, clear_nosave_free);
467 
468 	free_list_of_pages(bm->p_list, clear_nosave_free);
469 
470 	INIT_LIST_HEAD(&bm->blocks);
471 }
472 
473 /**
474  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *	of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 				void **addr, unsigned int *bit_nr)
480 {
481 	struct bm_block *bb;
482 
483 	/*
484 	 * Check if the pfn corresponds to the current bitmap block and find
485 	 * the block where it fits if this is not the case.
486 	 */
487 	bb = bm->cur.block;
488 	if (pfn < bb->start_pfn)
489 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 			if (pfn >= bb->start_pfn)
491 				break;
492 
493 	if (pfn >= bb->end_pfn)
494 		list_for_each_entry_continue(bb, &bm->blocks, hook)
495 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 				break;
497 
498 	if (&bb->hook == &bm->blocks)
499 		return -EFAULT;
500 
501 	/* The block has been found */
502 	bm->cur.block = bb;
503 	pfn -= bb->start_pfn;
504 	bm->cur.bit = pfn + 1;
505 	*bit_nr = pfn;
506 	*addr = bb->data;
507 	return 0;
508 }
509 
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 	void *addr;
513 	unsigned int bit;
514 	int error;
515 
516 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 	BUG_ON(error);
518 	set_bit(bit, addr);
519 }
520 
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 	void *addr;
524 	unsigned int bit;
525 	int error;
526 
527 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 	if (!error)
529 		set_bit(bit, addr);
530 	return error;
531 }
532 
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 	void *addr;
536 	unsigned int bit;
537 	int error;
538 
539 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 	BUG_ON(error);
541 	clear_bit(bit, addr);
542 }
543 
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 	void *addr;
547 	unsigned int bit;
548 	int error;
549 
550 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 	BUG_ON(error);
552 	return test_bit(bit, addr);
553 }
554 
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 	void *addr;
558 	unsigned int bit;
559 
560 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562 
563 /**
564  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *	returned.
567  *
568  *	It is required to run memory_bm_position_reset() before the first call to
569  *	this function.
570  */
571 
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 	struct bm_block *bb;
575 	int bit;
576 
577 	bb = bm->cur.block;
578 	do {
579 		bit = bm->cur.bit;
580 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 		if (bit < bm_block_bits(bb))
582 			goto Return_pfn;
583 
584 		bb = list_entry(bb->hook.next, struct bm_block, hook);
585 		bm->cur.block = bb;
586 		bm->cur.bit = 0;
587 	} while (&bb->hook != &bm->blocks);
588 
589 	memory_bm_position_reset(bm);
590 	return BM_END_OF_MAP;
591 
592  Return_pfn:
593 	bm->cur.bit = bit + 1;
594 	return bb->start_pfn + bit;
595 }
596 
597 /**
598  *	This structure represents a range of page frames the contents of which
599  *	should not be saved during the suspend.
600  */
601 
602 struct nosave_region {
603 	struct list_head list;
604 	unsigned long start_pfn;
605 	unsigned long end_pfn;
606 };
607 
608 static LIST_HEAD(nosave_regions);
609 
610 /**
611  *	register_nosave_region - register a range of page frames the contents
612  *	of which should not be saved during the suspend (to be used in the early
613  *	initialization code)
614  */
615 
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 			 int use_kmalloc)
619 {
620 	struct nosave_region *region;
621 
622 	if (start_pfn >= end_pfn)
623 		return;
624 
625 	if (!list_empty(&nosave_regions)) {
626 		/* Try to extend the previous region (they should be sorted) */
627 		region = list_entry(nosave_regions.prev,
628 					struct nosave_region, list);
629 		if (region->end_pfn == start_pfn) {
630 			region->end_pfn = end_pfn;
631 			goto Report;
632 		}
633 	}
634 	if (use_kmalloc) {
635 		/* during init, this shouldn't fail */
636 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 		BUG_ON(!region);
638 	} else
639 		/* This allocation cannot fail */
640 		region = alloc_bootmem(sizeof(struct nosave_region));
641 	region->start_pfn = start_pfn;
642 	region->end_pfn = end_pfn;
643 	list_add_tail(&region->list, &nosave_regions);
644  Report:
645 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646 		(unsigned long long) start_pfn << PAGE_SHIFT,
647 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649 
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655 
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658 
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663 
664 void swsusp_set_page_free(struct page *page)
665 {
666 	if (free_pages_map)
667 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669 
670 static int swsusp_page_is_free(struct page *page)
671 {
672 	return free_pages_map ?
673 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675 
676 void swsusp_unset_page_free(struct page *page)
677 {
678 	if (free_pages_map)
679 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681 
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684 	if (forbidden_pages_map)
685 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687 
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690 	return forbidden_pages_map ?
691 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693 
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696 	if (forbidden_pages_map)
697 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699 
700 /**
701  *	mark_nosave_pages - set bits corresponding to the page frames the
702  *	contents of which should not be saved in a given bitmap.
703  */
704 
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707 	struct nosave_region *region;
708 
709 	if (list_empty(&nosave_regions))
710 		return;
711 
712 	list_for_each_entry(region, &nosave_regions, list) {
713 		unsigned long pfn;
714 
715 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
717 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718 				- 1);
719 
720 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721 			if (pfn_valid(pfn)) {
722 				/*
723 				 * It is safe to ignore the result of
724 				 * mem_bm_set_bit_check() here, since we won't
725 				 * touch the PFNs for which the error is
726 				 * returned anyway.
727 				 */
728 				mem_bm_set_bit_check(bm, pfn);
729 			}
730 	}
731 }
732 
733 /**
734  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *	frames that should not be saved and free page frames.  The pointers
736  *	forbidden_pages_map and free_pages_map are only modified if everything
737  *	goes well, because we don't want the bits to be used before both bitmaps
738  *	are set up.
739  */
740 
741 int create_basic_memory_bitmaps(void)
742 {
743 	struct memory_bitmap *bm1, *bm2;
744 	int error = 0;
745 
746 	if (forbidden_pages_map && free_pages_map)
747 		return 0;
748 	else
749 		BUG_ON(forbidden_pages_map || free_pages_map);
750 
751 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
752 	if (!bm1)
753 		return -ENOMEM;
754 
755 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
756 	if (error)
757 		goto Free_first_object;
758 
759 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760 	if (!bm2)
761 		goto Free_first_bitmap;
762 
763 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
764 	if (error)
765 		goto Free_second_object;
766 
767 	forbidden_pages_map = bm1;
768 	free_pages_map = bm2;
769 	mark_nosave_pages(forbidden_pages_map);
770 
771 	pr_debug("PM: Basic memory bitmaps created\n");
772 
773 	return 0;
774 
775  Free_second_object:
776 	kfree(bm2);
777  Free_first_bitmap:
778  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779  Free_first_object:
780 	kfree(bm1);
781 	return -ENOMEM;
782 }
783 
784 /**
785  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
786  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
787  *	so that the bitmaps themselves are not referred to while they are being
788  *	freed.
789  */
790 
791 void free_basic_memory_bitmaps(void)
792 {
793 	struct memory_bitmap *bm1, *bm2;
794 
795 	BUG_ON(!(forbidden_pages_map && free_pages_map));
796 
797 	bm1 = forbidden_pages_map;
798 	bm2 = free_pages_map;
799 	forbidden_pages_map = NULL;
800 	free_pages_map = NULL;
801 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
802 	kfree(bm1);
803 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
804 	kfree(bm2);
805 
806 	pr_debug("PM: Basic memory bitmaps freed\n");
807 }
808 
809 /**
810  *	snapshot_additional_pages - estimate the number of additional pages
811  *	be needed for setting up the suspend image data structures for given
812  *	zone (usually the returned value is greater than the exact number)
813  */
814 
815 unsigned int snapshot_additional_pages(struct zone *zone)
816 {
817 	unsigned int res;
818 
819 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
820 	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
821 			    LINKED_PAGE_DATA_SIZE);
822 	return 2 * res;
823 }
824 
825 #ifdef CONFIG_HIGHMEM
826 /**
827  *	count_free_highmem_pages - compute the total number of free highmem
828  *	pages, system-wide.
829  */
830 
831 static unsigned int count_free_highmem_pages(void)
832 {
833 	struct zone *zone;
834 	unsigned int cnt = 0;
835 
836 	for_each_populated_zone(zone)
837 		if (is_highmem(zone))
838 			cnt += zone_page_state(zone, NR_FREE_PAGES);
839 
840 	return cnt;
841 }
842 
843 /**
844  *	saveable_highmem_page - Determine whether a highmem page should be
845  *	included in the suspend image.
846  *
847  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
848  *	and it isn't a part of a free chunk of pages.
849  */
850 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
851 {
852 	struct page *page;
853 
854 	if (!pfn_valid(pfn))
855 		return NULL;
856 
857 	page = pfn_to_page(pfn);
858 	if (page_zone(page) != zone)
859 		return NULL;
860 
861 	BUG_ON(!PageHighMem(page));
862 
863 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
864 	    PageReserved(page))
865 		return NULL;
866 
867 	if (page_is_guard(page))
868 		return NULL;
869 
870 	return page;
871 }
872 
873 /**
874  *	count_highmem_pages - compute the total number of saveable highmem
875  *	pages.
876  */
877 
878 static unsigned int count_highmem_pages(void)
879 {
880 	struct zone *zone;
881 	unsigned int n = 0;
882 
883 	for_each_populated_zone(zone) {
884 		unsigned long pfn, max_zone_pfn;
885 
886 		if (!is_highmem(zone))
887 			continue;
888 
889 		mark_free_pages(zone);
890 		max_zone_pfn = zone_end_pfn(zone);
891 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
892 			if (saveable_highmem_page(zone, pfn))
893 				n++;
894 	}
895 	return n;
896 }
897 #else
898 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
899 {
900 	return NULL;
901 }
902 #endif /* CONFIG_HIGHMEM */
903 
904 /**
905  *	saveable_page - Determine whether a non-highmem page should be included
906  *	in the suspend image.
907  *
908  *	We should save the page if it isn't Nosave, and is not in the range
909  *	of pages statically defined as 'unsaveable', and it isn't a part of
910  *	a free chunk of pages.
911  */
912 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
913 {
914 	struct page *page;
915 
916 	if (!pfn_valid(pfn))
917 		return NULL;
918 
919 	page = pfn_to_page(pfn);
920 	if (page_zone(page) != zone)
921 		return NULL;
922 
923 	BUG_ON(PageHighMem(page));
924 
925 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
926 		return NULL;
927 
928 	if (PageReserved(page)
929 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
930 		return NULL;
931 
932 	if (page_is_guard(page))
933 		return NULL;
934 
935 	return page;
936 }
937 
938 /**
939  *	count_data_pages - compute the total number of saveable non-highmem
940  *	pages.
941  */
942 
943 static unsigned int count_data_pages(void)
944 {
945 	struct zone *zone;
946 	unsigned long pfn, max_zone_pfn;
947 	unsigned int n = 0;
948 
949 	for_each_populated_zone(zone) {
950 		if (is_highmem(zone))
951 			continue;
952 
953 		mark_free_pages(zone);
954 		max_zone_pfn = zone_end_pfn(zone);
955 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
956 			if (saveable_page(zone, pfn))
957 				n++;
958 	}
959 	return n;
960 }
961 
962 /* This is needed, because copy_page and memcpy are not usable for copying
963  * task structs.
964  */
965 static inline void do_copy_page(long *dst, long *src)
966 {
967 	int n;
968 
969 	for (n = PAGE_SIZE / sizeof(long); n; n--)
970 		*dst++ = *src++;
971 }
972 
973 
974 /**
975  *	safe_copy_page - check if the page we are going to copy is marked as
976  *		present in the kernel page tables (this always is the case if
977  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
978  *		kernel_page_present() always returns 'true').
979  */
980 static void safe_copy_page(void *dst, struct page *s_page)
981 {
982 	if (kernel_page_present(s_page)) {
983 		do_copy_page(dst, page_address(s_page));
984 	} else {
985 		kernel_map_pages(s_page, 1, 1);
986 		do_copy_page(dst, page_address(s_page));
987 		kernel_map_pages(s_page, 1, 0);
988 	}
989 }
990 
991 
992 #ifdef CONFIG_HIGHMEM
993 static inline struct page *
994 page_is_saveable(struct zone *zone, unsigned long pfn)
995 {
996 	return is_highmem(zone) ?
997 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
998 }
999 
1000 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1001 {
1002 	struct page *s_page, *d_page;
1003 	void *src, *dst;
1004 
1005 	s_page = pfn_to_page(src_pfn);
1006 	d_page = pfn_to_page(dst_pfn);
1007 	if (PageHighMem(s_page)) {
1008 		src = kmap_atomic(s_page);
1009 		dst = kmap_atomic(d_page);
1010 		do_copy_page(dst, src);
1011 		kunmap_atomic(dst);
1012 		kunmap_atomic(src);
1013 	} else {
1014 		if (PageHighMem(d_page)) {
1015 			/* Page pointed to by src may contain some kernel
1016 			 * data modified by kmap_atomic()
1017 			 */
1018 			safe_copy_page(buffer, s_page);
1019 			dst = kmap_atomic(d_page);
1020 			copy_page(dst, buffer);
1021 			kunmap_atomic(dst);
1022 		} else {
1023 			safe_copy_page(page_address(d_page), s_page);
1024 		}
1025 	}
1026 }
1027 #else
1028 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1029 
1030 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1031 {
1032 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1033 				pfn_to_page(src_pfn));
1034 }
1035 #endif /* CONFIG_HIGHMEM */
1036 
1037 static void
1038 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1039 {
1040 	struct zone *zone;
1041 	unsigned long pfn;
1042 
1043 	for_each_populated_zone(zone) {
1044 		unsigned long max_zone_pfn;
1045 
1046 		mark_free_pages(zone);
1047 		max_zone_pfn = zone_end_pfn(zone);
1048 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1049 			if (page_is_saveable(zone, pfn))
1050 				memory_bm_set_bit(orig_bm, pfn);
1051 	}
1052 	memory_bm_position_reset(orig_bm);
1053 	memory_bm_position_reset(copy_bm);
1054 	for(;;) {
1055 		pfn = memory_bm_next_pfn(orig_bm);
1056 		if (unlikely(pfn == BM_END_OF_MAP))
1057 			break;
1058 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1059 	}
1060 }
1061 
1062 /* Total number of image pages */
1063 static unsigned int nr_copy_pages;
1064 /* Number of pages needed for saving the original pfns of the image pages */
1065 static unsigned int nr_meta_pages;
1066 /*
1067  * Numbers of normal and highmem page frames allocated for hibernation image
1068  * before suspending devices.
1069  */
1070 unsigned int alloc_normal, alloc_highmem;
1071 /*
1072  * Memory bitmap used for marking saveable pages (during hibernation) or
1073  * hibernation image pages (during restore)
1074  */
1075 static struct memory_bitmap orig_bm;
1076 /*
1077  * Memory bitmap used during hibernation for marking allocated page frames that
1078  * will contain copies of saveable pages.  During restore it is initially used
1079  * for marking hibernation image pages, but then the set bits from it are
1080  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1081  * used for marking "safe" highmem pages, but it has to be reinitialized for
1082  * this purpose.
1083  */
1084 static struct memory_bitmap copy_bm;
1085 
1086 /**
1087  *	swsusp_free - free pages allocated for the suspend.
1088  *
1089  *	Suspend pages are alocated before the atomic copy is made, so we
1090  *	need to release them after the resume.
1091  */
1092 
1093 void swsusp_free(void)
1094 {
1095 	struct zone *zone;
1096 	unsigned long pfn, max_zone_pfn;
1097 
1098 	for_each_populated_zone(zone) {
1099 		max_zone_pfn = zone_end_pfn(zone);
1100 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1101 			if (pfn_valid(pfn)) {
1102 				struct page *page = pfn_to_page(pfn);
1103 
1104 				if (swsusp_page_is_forbidden(page) &&
1105 				    swsusp_page_is_free(page)) {
1106 					swsusp_unset_page_forbidden(page);
1107 					swsusp_unset_page_free(page);
1108 					__free_page(page);
1109 				}
1110 			}
1111 	}
1112 	nr_copy_pages = 0;
1113 	nr_meta_pages = 0;
1114 	restore_pblist = NULL;
1115 	buffer = NULL;
1116 	alloc_normal = 0;
1117 	alloc_highmem = 0;
1118 }
1119 
1120 /* Helper functions used for the shrinking of memory. */
1121 
1122 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1123 
1124 /**
1125  * preallocate_image_pages - Allocate a number of pages for hibernation image
1126  * @nr_pages: Number of page frames to allocate.
1127  * @mask: GFP flags to use for the allocation.
1128  *
1129  * Return value: Number of page frames actually allocated
1130  */
1131 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1132 {
1133 	unsigned long nr_alloc = 0;
1134 
1135 	while (nr_pages > 0) {
1136 		struct page *page;
1137 
1138 		page = alloc_image_page(mask);
1139 		if (!page)
1140 			break;
1141 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1142 		if (PageHighMem(page))
1143 			alloc_highmem++;
1144 		else
1145 			alloc_normal++;
1146 		nr_pages--;
1147 		nr_alloc++;
1148 	}
1149 
1150 	return nr_alloc;
1151 }
1152 
1153 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1154 					      unsigned long avail_normal)
1155 {
1156 	unsigned long alloc;
1157 
1158 	if (avail_normal <= alloc_normal)
1159 		return 0;
1160 
1161 	alloc = avail_normal - alloc_normal;
1162 	if (nr_pages < alloc)
1163 		alloc = nr_pages;
1164 
1165 	return preallocate_image_pages(alloc, GFP_IMAGE);
1166 }
1167 
1168 #ifdef CONFIG_HIGHMEM
1169 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170 {
1171 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1172 }
1173 
1174 /**
1175  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1176  */
1177 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1178 {
1179 	x *= multiplier;
1180 	do_div(x, base);
1181 	return (unsigned long)x;
1182 }
1183 
1184 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1185 						unsigned long highmem,
1186 						unsigned long total)
1187 {
1188 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1189 
1190 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1191 }
1192 #else /* CONFIG_HIGHMEM */
1193 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1194 {
1195 	return 0;
1196 }
1197 
1198 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1199 						unsigned long highmem,
1200 						unsigned long total)
1201 {
1202 	return 0;
1203 }
1204 #endif /* CONFIG_HIGHMEM */
1205 
1206 /**
1207  * free_unnecessary_pages - Release preallocated pages not needed for the image
1208  */
1209 static void free_unnecessary_pages(void)
1210 {
1211 	unsigned long save, to_free_normal, to_free_highmem;
1212 
1213 	save = count_data_pages();
1214 	if (alloc_normal >= save) {
1215 		to_free_normal = alloc_normal - save;
1216 		save = 0;
1217 	} else {
1218 		to_free_normal = 0;
1219 		save -= alloc_normal;
1220 	}
1221 	save += count_highmem_pages();
1222 	if (alloc_highmem >= save) {
1223 		to_free_highmem = alloc_highmem - save;
1224 	} else {
1225 		to_free_highmem = 0;
1226 		save -= alloc_highmem;
1227 		if (to_free_normal > save)
1228 			to_free_normal -= save;
1229 		else
1230 			to_free_normal = 0;
1231 	}
1232 
1233 	memory_bm_position_reset(&copy_bm);
1234 
1235 	while (to_free_normal > 0 || to_free_highmem > 0) {
1236 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1237 		struct page *page = pfn_to_page(pfn);
1238 
1239 		if (PageHighMem(page)) {
1240 			if (!to_free_highmem)
1241 				continue;
1242 			to_free_highmem--;
1243 			alloc_highmem--;
1244 		} else {
1245 			if (!to_free_normal)
1246 				continue;
1247 			to_free_normal--;
1248 			alloc_normal--;
1249 		}
1250 		memory_bm_clear_bit(&copy_bm, pfn);
1251 		swsusp_unset_page_forbidden(page);
1252 		swsusp_unset_page_free(page);
1253 		__free_page(page);
1254 	}
1255 }
1256 
1257 /**
1258  * minimum_image_size - Estimate the minimum acceptable size of an image
1259  * @saveable: Number of saveable pages in the system.
1260  *
1261  * We want to avoid attempting to free too much memory too hard, so estimate the
1262  * minimum acceptable size of a hibernation image to use as the lower limit for
1263  * preallocating memory.
1264  *
1265  * We assume that the minimum image size should be proportional to
1266  *
1267  * [number of saveable pages] - [number of pages that can be freed in theory]
1268  *
1269  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1270  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1271  * minus mapped file pages.
1272  */
1273 static unsigned long minimum_image_size(unsigned long saveable)
1274 {
1275 	unsigned long size;
1276 
1277 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1278 		+ global_page_state(NR_ACTIVE_ANON)
1279 		+ global_page_state(NR_INACTIVE_ANON)
1280 		+ global_page_state(NR_ACTIVE_FILE)
1281 		+ global_page_state(NR_INACTIVE_FILE)
1282 		- global_page_state(NR_FILE_MAPPED);
1283 
1284 	return saveable <= size ? 0 : saveable - size;
1285 }
1286 
1287 /**
1288  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1289  *
1290  * To create a hibernation image it is necessary to make a copy of every page
1291  * frame in use.  We also need a number of page frames to be free during
1292  * hibernation for allocations made while saving the image and for device
1293  * drivers, in case they need to allocate memory from their hibernation
1294  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1295  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1296  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1297  * total number of available page frames and allocate at least
1298  *
1299  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1300  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1301  *
1302  * of them, which corresponds to the maximum size of a hibernation image.
1303  *
1304  * If image_size is set below the number following from the above formula,
1305  * the preallocation of memory is continued until the total number of saveable
1306  * pages in the system is below the requested image size or the minimum
1307  * acceptable image size returned by minimum_image_size(), whichever is greater.
1308  */
1309 int hibernate_preallocate_memory(void)
1310 {
1311 	struct zone *zone;
1312 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1313 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1314 	struct timeval start, stop;
1315 	int error;
1316 
1317 	printk(KERN_INFO "PM: Preallocating image memory... ");
1318 	do_gettimeofday(&start);
1319 
1320 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1321 	if (error)
1322 		goto err_out;
1323 
1324 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1325 	if (error)
1326 		goto err_out;
1327 
1328 	alloc_normal = 0;
1329 	alloc_highmem = 0;
1330 
1331 	/* Count the number of saveable data pages. */
1332 	save_highmem = count_highmem_pages();
1333 	saveable = count_data_pages();
1334 
1335 	/*
1336 	 * Compute the total number of page frames we can use (count) and the
1337 	 * number of pages needed for image metadata (size).
1338 	 */
1339 	count = saveable;
1340 	saveable += save_highmem;
1341 	highmem = save_highmem;
1342 	size = 0;
1343 	for_each_populated_zone(zone) {
1344 		size += snapshot_additional_pages(zone);
1345 		if (is_highmem(zone))
1346 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1347 		else
1348 			count += zone_page_state(zone, NR_FREE_PAGES);
1349 	}
1350 	avail_normal = count;
1351 	count += highmem;
1352 	count -= totalreserve_pages;
1353 
1354 	/* Add number of pages required for page keys (s390 only). */
1355 	size += page_key_additional_pages(saveable);
1356 
1357 	/* Compute the maximum number of saveable pages to leave in memory. */
1358 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1359 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1360 	/* Compute the desired number of image pages specified by image_size. */
1361 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1362 	if (size > max_size)
1363 		size = max_size;
1364 	/*
1365 	 * If the desired number of image pages is at least as large as the
1366 	 * current number of saveable pages in memory, allocate page frames for
1367 	 * the image and we're done.
1368 	 */
1369 	if (size >= saveable) {
1370 		pages = preallocate_image_highmem(save_highmem);
1371 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1372 		goto out;
1373 	}
1374 
1375 	/* Estimate the minimum size of the image. */
1376 	pages = minimum_image_size(saveable);
1377 	/*
1378 	 * To avoid excessive pressure on the normal zone, leave room in it to
1379 	 * accommodate an image of the minimum size (unless it's already too
1380 	 * small, in which case don't preallocate pages from it at all).
1381 	 */
1382 	if (avail_normal > pages)
1383 		avail_normal -= pages;
1384 	else
1385 		avail_normal = 0;
1386 	if (size < pages)
1387 		size = min_t(unsigned long, pages, max_size);
1388 
1389 	/*
1390 	 * Let the memory management subsystem know that we're going to need a
1391 	 * large number of page frames to allocate and make it free some memory.
1392 	 * NOTE: If this is not done, performance will be hurt badly in some
1393 	 * test cases.
1394 	 */
1395 	shrink_all_memory(saveable - size);
1396 
1397 	/*
1398 	 * The number of saveable pages in memory was too high, so apply some
1399 	 * pressure to decrease it.  First, make room for the largest possible
1400 	 * image and fail if that doesn't work.  Next, try to decrease the size
1401 	 * of the image as much as indicated by 'size' using allocations from
1402 	 * highmem and non-highmem zones separately.
1403 	 */
1404 	pages_highmem = preallocate_image_highmem(highmem / 2);
1405 	alloc = count - max_size;
1406 	if (alloc > pages_highmem)
1407 		alloc -= pages_highmem;
1408 	else
1409 		alloc = 0;
1410 	pages = preallocate_image_memory(alloc, avail_normal);
1411 	if (pages < alloc) {
1412 		/* We have exhausted non-highmem pages, try highmem. */
1413 		alloc -= pages;
1414 		pages += pages_highmem;
1415 		pages_highmem = preallocate_image_highmem(alloc);
1416 		if (pages_highmem < alloc)
1417 			goto err_out;
1418 		pages += pages_highmem;
1419 		/*
1420 		 * size is the desired number of saveable pages to leave in
1421 		 * memory, so try to preallocate (all memory - size) pages.
1422 		 */
1423 		alloc = (count - pages) - size;
1424 		pages += preallocate_image_highmem(alloc);
1425 	} else {
1426 		/*
1427 		 * There are approximately max_size saveable pages at this point
1428 		 * and we want to reduce this number down to size.
1429 		 */
1430 		alloc = max_size - size;
1431 		size = preallocate_highmem_fraction(alloc, highmem, count);
1432 		pages_highmem += size;
1433 		alloc -= size;
1434 		size = preallocate_image_memory(alloc, avail_normal);
1435 		pages_highmem += preallocate_image_highmem(alloc - size);
1436 		pages += pages_highmem + size;
1437 	}
1438 
1439 	/*
1440 	 * We only need as many page frames for the image as there are saveable
1441 	 * pages in memory, but we have allocated more.  Release the excessive
1442 	 * ones now.
1443 	 */
1444 	free_unnecessary_pages();
1445 
1446  out:
1447 	do_gettimeofday(&stop);
1448 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1449 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1450 
1451 	return 0;
1452 
1453  err_out:
1454 	printk(KERN_CONT "\n");
1455 	swsusp_free();
1456 	return -ENOMEM;
1457 }
1458 
1459 #ifdef CONFIG_HIGHMEM
1460 /**
1461   *	count_pages_for_highmem - compute the number of non-highmem pages
1462   *	that will be necessary for creating copies of highmem pages.
1463   */
1464 
1465 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1466 {
1467 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1468 
1469 	if (free_highmem >= nr_highmem)
1470 		nr_highmem = 0;
1471 	else
1472 		nr_highmem -= free_highmem;
1473 
1474 	return nr_highmem;
1475 }
1476 #else
1477 static unsigned int
1478 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1479 #endif /* CONFIG_HIGHMEM */
1480 
1481 /**
1482  *	enough_free_mem - Make sure we have enough free memory for the
1483  *	snapshot image.
1484  */
1485 
1486 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1487 {
1488 	struct zone *zone;
1489 	unsigned int free = alloc_normal;
1490 
1491 	for_each_populated_zone(zone)
1492 		if (!is_highmem(zone))
1493 			free += zone_page_state(zone, NR_FREE_PAGES);
1494 
1495 	nr_pages += count_pages_for_highmem(nr_highmem);
1496 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1497 		nr_pages, PAGES_FOR_IO, free);
1498 
1499 	return free > nr_pages + PAGES_FOR_IO;
1500 }
1501 
1502 #ifdef CONFIG_HIGHMEM
1503 /**
1504  *	get_highmem_buffer - if there are some highmem pages in the suspend
1505  *	image, we may need the buffer to copy them and/or load their data.
1506  */
1507 
1508 static inline int get_highmem_buffer(int safe_needed)
1509 {
1510 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1511 	return buffer ? 0 : -ENOMEM;
1512 }
1513 
1514 /**
1515  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1516  *	Try to allocate as many pages as needed, but if the number of free
1517  *	highmem pages is lesser than that, allocate them all.
1518  */
1519 
1520 static inline unsigned int
1521 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1522 {
1523 	unsigned int to_alloc = count_free_highmem_pages();
1524 
1525 	if (to_alloc > nr_highmem)
1526 		to_alloc = nr_highmem;
1527 
1528 	nr_highmem -= to_alloc;
1529 	while (to_alloc-- > 0) {
1530 		struct page *page;
1531 
1532 		page = alloc_image_page(__GFP_HIGHMEM);
1533 		memory_bm_set_bit(bm, page_to_pfn(page));
1534 	}
1535 	return nr_highmem;
1536 }
1537 #else
1538 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1539 
1540 static inline unsigned int
1541 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1542 #endif /* CONFIG_HIGHMEM */
1543 
1544 /**
1545  *	swsusp_alloc - allocate memory for the suspend image
1546  *
1547  *	We first try to allocate as many highmem pages as there are
1548  *	saveable highmem pages in the system.  If that fails, we allocate
1549  *	non-highmem pages for the copies of the remaining highmem ones.
1550  *
1551  *	In this approach it is likely that the copies of highmem pages will
1552  *	also be located in the high memory, because of the way in which
1553  *	copy_data_pages() works.
1554  */
1555 
1556 static int
1557 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1558 		unsigned int nr_pages, unsigned int nr_highmem)
1559 {
1560 	if (nr_highmem > 0) {
1561 		if (get_highmem_buffer(PG_ANY))
1562 			goto err_out;
1563 		if (nr_highmem > alloc_highmem) {
1564 			nr_highmem -= alloc_highmem;
1565 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1566 		}
1567 	}
1568 	if (nr_pages > alloc_normal) {
1569 		nr_pages -= alloc_normal;
1570 		while (nr_pages-- > 0) {
1571 			struct page *page;
1572 
1573 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1574 			if (!page)
1575 				goto err_out;
1576 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1577 		}
1578 	}
1579 
1580 	return 0;
1581 
1582  err_out:
1583 	swsusp_free();
1584 	return -ENOMEM;
1585 }
1586 
1587 asmlinkage int swsusp_save(void)
1588 {
1589 	unsigned int nr_pages, nr_highmem;
1590 
1591 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1592 
1593 	drain_local_pages(NULL);
1594 	nr_pages = count_data_pages();
1595 	nr_highmem = count_highmem_pages();
1596 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1597 
1598 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1599 		printk(KERN_ERR "PM: Not enough free memory\n");
1600 		return -ENOMEM;
1601 	}
1602 
1603 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1604 		printk(KERN_ERR "PM: Memory allocation failed\n");
1605 		return -ENOMEM;
1606 	}
1607 
1608 	/* During allocating of suspend pagedir, new cold pages may appear.
1609 	 * Kill them.
1610 	 */
1611 	drain_local_pages(NULL);
1612 	copy_data_pages(&copy_bm, &orig_bm);
1613 
1614 	/*
1615 	 * End of critical section. From now on, we can write to memory,
1616 	 * but we should not touch disk. This specially means we must _not_
1617 	 * touch swap space! Except we must write out our image of course.
1618 	 */
1619 
1620 	nr_pages += nr_highmem;
1621 	nr_copy_pages = nr_pages;
1622 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1623 
1624 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1625 		nr_pages);
1626 
1627 	return 0;
1628 }
1629 
1630 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1631 static int init_header_complete(struct swsusp_info *info)
1632 {
1633 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1634 	info->version_code = LINUX_VERSION_CODE;
1635 	return 0;
1636 }
1637 
1638 static char *check_image_kernel(struct swsusp_info *info)
1639 {
1640 	if (info->version_code != LINUX_VERSION_CODE)
1641 		return "kernel version";
1642 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1643 		return "system type";
1644 	if (strcmp(info->uts.release,init_utsname()->release))
1645 		return "kernel release";
1646 	if (strcmp(info->uts.version,init_utsname()->version))
1647 		return "version";
1648 	if (strcmp(info->uts.machine,init_utsname()->machine))
1649 		return "machine";
1650 	return NULL;
1651 }
1652 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1653 
1654 unsigned long snapshot_get_image_size(void)
1655 {
1656 	return nr_copy_pages + nr_meta_pages + 1;
1657 }
1658 
1659 static int init_header(struct swsusp_info *info)
1660 {
1661 	memset(info, 0, sizeof(struct swsusp_info));
1662 	info->num_physpages = get_num_physpages();
1663 	info->image_pages = nr_copy_pages;
1664 	info->pages = snapshot_get_image_size();
1665 	info->size = info->pages;
1666 	info->size <<= PAGE_SHIFT;
1667 	return init_header_complete(info);
1668 }
1669 
1670 /**
1671  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1672  *	are stored in the array @buf[] (1 page at a time)
1673  */
1674 
1675 static inline void
1676 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1677 {
1678 	int j;
1679 
1680 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1681 		buf[j] = memory_bm_next_pfn(bm);
1682 		if (unlikely(buf[j] == BM_END_OF_MAP))
1683 			break;
1684 		/* Save page key for data page (s390 only). */
1685 		page_key_read(buf + j);
1686 	}
1687 }
1688 
1689 /**
1690  *	snapshot_read_next - used for reading the system memory snapshot.
1691  *
1692  *	On the first call to it @handle should point to a zeroed
1693  *	snapshot_handle structure.  The structure gets updated and a pointer
1694  *	to it should be passed to this function every next time.
1695  *
1696  *	On success the function returns a positive number.  Then, the caller
1697  *	is allowed to read up to the returned number of bytes from the memory
1698  *	location computed by the data_of() macro.
1699  *
1700  *	The function returns 0 to indicate the end of data stream condition,
1701  *	and a negative number is returned on error.  In such cases the
1702  *	structure pointed to by @handle is not updated and should not be used
1703  *	any more.
1704  */
1705 
1706 int snapshot_read_next(struct snapshot_handle *handle)
1707 {
1708 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1709 		return 0;
1710 
1711 	if (!buffer) {
1712 		/* This makes the buffer be freed by swsusp_free() */
1713 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1714 		if (!buffer)
1715 			return -ENOMEM;
1716 	}
1717 	if (!handle->cur) {
1718 		int error;
1719 
1720 		error = init_header((struct swsusp_info *)buffer);
1721 		if (error)
1722 			return error;
1723 		handle->buffer = buffer;
1724 		memory_bm_position_reset(&orig_bm);
1725 		memory_bm_position_reset(&copy_bm);
1726 	} else if (handle->cur <= nr_meta_pages) {
1727 		clear_page(buffer);
1728 		pack_pfns(buffer, &orig_bm);
1729 	} else {
1730 		struct page *page;
1731 
1732 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1733 		if (PageHighMem(page)) {
1734 			/* Highmem pages are copied to the buffer,
1735 			 * because we can't return with a kmapped
1736 			 * highmem page (we may not be called again).
1737 			 */
1738 			void *kaddr;
1739 
1740 			kaddr = kmap_atomic(page);
1741 			copy_page(buffer, kaddr);
1742 			kunmap_atomic(kaddr);
1743 			handle->buffer = buffer;
1744 		} else {
1745 			handle->buffer = page_address(page);
1746 		}
1747 	}
1748 	handle->cur++;
1749 	return PAGE_SIZE;
1750 }
1751 
1752 /**
1753  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1754  *	the image during resume, because they conflict with the pages that
1755  *	had been used before suspend
1756  */
1757 
1758 static int mark_unsafe_pages(struct memory_bitmap *bm)
1759 {
1760 	struct zone *zone;
1761 	unsigned long pfn, max_zone_pfn;
1762 
1763 	/* Clear page flags */
1764 	for_each_populated_zone(zone) {
1765 		max_zone_pfn = zone_end_pfn(zone);
1766 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1767 			if (pfn_valid(pfn))
1768 				swsusp_unset_page_free(pfn_to_page(pfn));
1769 	}
1770 
1771 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1772 	memory_bm_position_reset(bm);
1773 	do {
1774 		pfn = memory_bm_next_pfn(bm);
1775 		if (likely(pfn != BM_END_OF_MAP)) {
1776 			if (likely(pfn_valid(pfn)))
1777 				swsusp_set_page_free(pfn_to_page(pfn));
1778 			else
1779 				return -EFAULT;
1780 		}
1781 	} while (pfn != BM_END_OF_MAP);
1782 
1783 	allocated_unsafe_pages = 0;
1784 
1785 	return 0;
1786 }
1787 
1788 static void
1789 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1790 {
1791 	unsigned long pfn;
1792 
1793 	memory_bm_position_reset(src);
1794 	pfn = memory_bm_next_pfn(src);
1795 	while (pfn != BM_END_OF_MAP) {
1796 		memory_bm_set_bit(dst, pfn);
1797 		pfn = memory_bm_next_pfn(src);
1798 	}
1799 }
1800 
1801 static int check_header(struct swsusp_info *info)
1802 {
1803 	char *reason;
1804 
1805 	reason = check_image_kernel(info);
1806 	if (!reason && info->num_physpages != get_num_physpages())
1807 		reason = "memory size";
1808 	if (reason) {
1809 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1810 		return -EPERM;
1811 	}
1812 	return 0;
1813 }
1814 
1815 /**
1816  *	load header - check the image header and copy data from it
1817  */
1818 
1819 static int
1820 load_header(struct swsusp_info *info)
1821 {
1822 	int error;
1823 
1824 	restore_pblist = NULL;
1825 	error = check_header(info);
1826 	if (!error) {
1827 		nr_copy_pages = info->image_pages;
1828 		nr_meta_pages = info->pages - info->image_pages - 1;
1829 	}
1830 	return error;
1831 }
1832 
1833 /**
1834  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1835  *	the corresponding bit in the memory bitmap @bm
1836  */
1837 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1838 {
1839 	int j;
1840 
1841 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1842 		if (unlikely(buf[j] == BM_END_OF_MAP))
1843 			break;
1844 
1845 		/* Extract and buffer page key for data page (s390 only). */
1846 		page_key_memorize(buf + j);
1847 
1848 		if (memory_bm_pfn_present(bm, buf[j]))
1849 			memory_bm_set_bit(bm, buf[j]);
1850 		else
1851 			return -EFAULT;
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 /* List of "safe" pages that may be used to store data loaded from the suspend
1858  * image
1859  */
1860 static struct linked_page *safe_pages_list;
1861 
1862 #ifdef CONFIG_HIGHMEM
1863 /* struct highmem_pbe is used for creating the list of highmem pages that
1864  * should be restored atomically during the resume from disk, because the page
1865  * frames they have occupied before the suspend are in use.
1866  */
1867 struct highmem_pbe {
1868 	struct page *copy_page;	/* data is here now */
1869 	struct page *orig_page;	/* data was here before the suspend */
1870 	struct highmem_pbe *next;
1871 };
1872 
1873 /* List of highmem PBEs needed for restoring the highmem pages that were
1874  * allocated before the suspend and included in the suspend image, but have
1875  * also been allocated by the "resume" kernel, so their contents cannot be
1876  * written directly to their "original" page frames.
1877  */
1878 static struct highmem_pbe *highmem_pblist;
1879 
1880 /**
1881  *	count_highmem_image_pages - compute the number of highmem pages in the
1882  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1883  *	image pages are assumed to be set.
1884  */
1885 
1886 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1887 {
1888 	unsigned long pfn;
1889 	unsigned int cnt = 0;
1890 
1891 	memory_bm_position_reset(bm);
1892 	pfn = memory_bm_next_pfn(bm);
1893 	while (pfn != BM_END_OF_MAP) {
1894 		if (PageHighMem(pfn_to_page(pfn)))
1895 			cnt++;
1896 
1897 		pfn = memory_bm_next_pfn(bm);
1898 	}
1899 	return cnt;
1900 }
1901 
1902 /**
1903  *	prepare_highmem_image - try to allocate as many highmem pages as
1904  *	there are highmem image pages (@nr_highmem_p points to the variable
1905  *	containing the number of highmem image pages).  The pages that are
1906  *	"safe" (ie. will not be overwritten when the suspend image is
1907  *	restored) have the corresponding bits set in @bm (it must be
1908  *	unitialized).
1909  *
1910  *	NOTE: This function should not be called if there are no highmem
1911  *	image pages.
1912  */
1913 
1914 static unsigned int safe_highmem_pages;
1915 
1916 static struct memory_bitmap *safe_highmem_bm;
1917 
1918 static int
1919 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1920 {
1921 	unsigned int to_alloc;
1922 
1923 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1924 		return -ENOMEM;
1925 
1926 	if (get_highmem_buffer(PG_SAFE))
1927 		return -ENOMEM;
1928 
1929 	to_alloc = count_free_highmem_pages();
1930 	if (to_alloc > *nr_highmem_p)
1931 		to_alloc = *nr_highmem_p;
1932 	else
1933 		*nr_highmem_p = to_alloc;
1934 
1935 	safe_highmem_pages = 0;
1936 	while (to_alloc-- > 0) {
1937 		struct page *page;
1938 
1939 		page = alloc_page(__GFP_HIGHMEM);
1940 		if (!swsusp_page_is_free(page)) {
1941 			/* The page is "safe", set its bit the bitmap */
1942 			memory_bm_set_bit(bm, page_to_pfn(page));
1943 			safe_highmem_pages++;
1944 		}
1945 		/* Mark the page as allocated */
1946 		swsusp_set_page_forbidden(page);
1947 		swsusp_set_page_free(page);
1948 	}
1949 	memory_bm_position_reset(bm);
1950 	safe_highmem_bm = bm;
1951 	return 0;
1952 }
1953 
1954 /**
1955  *	get_highmem_page_buffer - for given highmem image page find the buffer
1956  *	that suspend_write_next() should set for its caller to write to.
1957  *
1958  *	If the page is to be saved to its "original" page frame or a copy of
1959  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1960  *	the copy of the page is to be made in normal memory, so the address of
1961  *	the copy is returned.
1962  *
1963  *	If @buffer is returned, the caller of suspend_write_next() will write
1964  *	the page's contents to @buffer, so they will have to be copied to the
1965  *	right location on the next call to suspend_write_next() and it is done
1966  *	with the help of copy_last_highmem_page().  For this purpose, if
1967  *	@buffer is returned, @last_highmem page is set to the page to which
1968  *	the data will have to be copied from @buffer.
1969  */
1970 
1971 static struct page *last_highmem_page;
1972 
1973 static void *
1974 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1975 {
1976 	struct highmem_pbe *pbe;
1977 	void *kaddr;
1978 
1979 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1980 		/* We have allocated the "original" page frame and we can
1981 		 * use it directly to store the loaded page.
1982 		 */
1983 		last_highmem_page = page;
1984 		return buffer;
1985 	}
1986 	/* The "original" page frame has not been allocated and we have to
1987 	 * use a "safe" page frame to store the loaded page.
1988 	 */
1989 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1990 	if (!pbe) {
1991 		swsusp_free();
1992 		return ERR_PTR(-ENOMEM);
1993 	}
1994 	pbe->orig_page = page;
1995 	if (safe_highmem_pages > 0) {
1996 		struct page *tmp;
1997 
1998 		/* Copy of the page will be stored in high memory */
1999 		kaddr = buffer;
2000 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2001 		safe_highmem_pages--;
2002 		last_highmem_page = tmp;
2003 		pbe->copy_page = tmp;
2004 	} else {
2005 		/* Copy of the page will be stored in normal memory */
2006 		kaddr = safe_pages_list;
2007 		safe_pages_list = safe_pages_list->next;
2008 		pbe->copy_page = virt_to_page(kaddr);
2009 	}
2010 	pbe->next = highmem_pblist;
2011 	highmem_pblist = pbe;
2012 	return kaddr;
2013 }
2014 
2015 /**
2016  *	copy_last_highmem_page - copy the contents of a highmem image from
2017  *	@buffer, where the caller of snapshot_write_next() has place them,
2018  *	to the right location represented by @last_highmem_page .
2019  */
2020 
2021 static void copy_last_highmem_page(void)
2022 {
2023 	if (last_highmem_page) {
2024 		void *dst;
2025 
2026 		dst = kmap_atomic(last_highmem_page);
2027 		copy_page(dst, buffer);
2028 		kunmap_atomic(dst);
2029 		last_highmem_page = NULL;
2030 	}
2031 }
2032 
2033 static inline int last_highmem_page_copied(void)
2034 {
2035 	return !last_highmem_page;
2036 }
2037 
2038 static inline void free_highmem_data(void)
2039 {
2040 	if (safe_highmem_bm)
2041 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2042 
2043 	if (buffer)
2044 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2045 }
2046 #else
2047 static inline int get_safe_write_buffer(void) { return 0; }
2048 
2049 static unsigned int
2050 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2051 
2052 static inline int
2053 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2054 {
2055 	return 0;
2056 }
2057 
2058 static inline void *
2059 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2060 {
2061 	return ERR_PTR(-EINVAL);
2062 }
2063 
2064 static inline void copy_last_highmem_page(void) {}
2065 static inline int last_highmem_page_copied(void) { return 1; }
2066 static inline void free_highmem_data(void) {}
2067 #endif /* CONFIG_HIGHMEM */
2068 
2069 /**
2070  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2071  *	be overwritten in the process of restoring the system memory state
2072  *	from the suspend image ("unsafe" pages) and allocate memory for the
2073  *	image.
2074  *
2075  *	The idea is to allocate a new memory bitmap first and then allocate
2076  *	as many pages as needed for the image data, but not to assign these
2077  *	pages to specific tasks initially.  Instead, we just mark them as
2078  *	allocated and create a lists of "safe" pages that will be used
2079  *	later.  On systems with high memory a list of "safe" highmem pages is
2080  *	also created.
2081  */
2082 
2083 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2084 
2085 static int
2086 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2087 {
2088 	unsigned int nr_pages, nr_highmem;
2089 	struct linked_page *sp_list, *lp;
2090 	int error;
2091 
2092 	/* If there is no highmem, the buffer will not be necessary */
2093 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2094 	buffer = NULL;
2095 
2096 	nr_highmem = count_highmem_image_pages(bm);
2097 	error = mark_unsafe_pages(bm);
2098 	if (error)
2099 		goto Free;
2100 
2101 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2102 	if (error)
2103 		goto Free;
2104 
2105 	duplicate_memory_bitmap(new_bm, bm);
2106 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2107 	if (nr_highmem > 0) {
2108 		error = prepare_highmem_image(bm, &nr_highmem);
2109 		if (error)
2110 			goto Free;
2111 	}
2112 	/* Reserve some safe pages for potential later use.
2113 	 *
2114 	 * NOTE: This way we make sure there will be enough safe pages for the
2115 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2116 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2117 	 */
2118 	sp_list = NULL;
2119 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2120 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2121 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2122 	while (nr_pages > 0) {
2123 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2124 		if (!lp) {
2125 			error = -ENOMEM;
2126 			goto Free;
2127 		}
2128 		lp->next = sp_list;
2129 		sp_list = lp;
2130 		nr_pages--;
2131 	}
2132 	/* Preallocate memory for the image */
2133 	safe_pages_list = NULL;
2134 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2135 	while (nr_pages > 0) {
2136 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2137 		if (!lp) {
2138 			error = -ENOMEM;
2139 			goto Free;
2140 		}
2141 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2142 			/* The page is "safe", add it to the list */
2143 			lp->next = safe_pages_list;
2144 			safe_pages_list = lp;
2145 		}
2146 		/* Mark the page as allocated */
2147 		swsusp_set_page_forbidden(virt_to_page(lp));
2148 		swsusp_set_page_free(virt_to_page(lp));
2149 		nr_pages--;
2150 	}
2151 	/* Free the reserved safe pages so that chain_alloc() can use them */
2152 	while (sp_list) {
2153 		lp = sp_list->next;
2154 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2155 		sp_list = lp;
2156 	}
2157 	return 0;
2158 
2159  Free:
2160 	swsusp_free();
2161 	return error;
2162 }
2163 
2164 /**
2165  *	get_buffer - compute the address that snapshot_write_next() should
2166  *	set for its caller to write to.
2167  */
2168 
2169 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2170 {
2171 	struct pbe *pbe;
2172 	struct page *page;
2173 	unsigned long pfn = memory_bm_next_pfn(bm);
2174 
2175 	if (pfn == BM_END_OF_MAP)
2176 		return ERR_PTR(-EFAULT);
2177 
2178 	page = pfn_to_page(pfn);
2179 	if (PageHighMem(page))
2180 		return get_highmem_page_buffer(page, ca);
2181 
2182 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2183 		/* We have allocated the "original" page frame and we can
2184 		 * use it directly to store the loaded page.
2185 		 */
2186 		return page_address(page);
2187 
2188 	/* The "original" page frame has not been allocated and we have to
2189 	 * use a "safe" page frame to store the loaded page.
2190 	 */
2191 	pbe = chain_alloc(ca, sizeof(struct pbe));
2192 	if (!pbe) {
2193 		swsusp_free();
2194 		return ERR_PTR(-ENOMEM);
2195 	}
2196 	pbe->orig_address = page_address(page);
2197 	pbe->address = safe_pages_list;
2198 	safe_pages_list = safe_pages_list->next;
2199 	pbe->next = restore_pblist;
2200 	restore_pblist = pbe;
2201 	return pbe->address;
2202 }
2203 
2204 /**
2205  *	snapshot_write_next - used for writing the system memory snapshot.
2206  *
2207  *	On the first call to it @handle should point to a zeroed
2208  *	snapshot_handle structure.  The structure gets updated and a pointer
2209  *	to it should be passed to this function every next time.
2210  *
2211  *	On success the function returns a positive number.  Then, the caller
2212  *	is allowed to write up to the returned number of bytes to the memory
2213  *	location computed by the data_of() macro.
2214  *
2215  *	The function returns 0 to indicate the "end of file" condition,
2216  *	and a negative number is returned on error.  In such cases the
2217  *	structure pointed to by @handle is not updated and should not be used
2218  *	any more.
2219  */
2220 
2221 int snapshot_write_next(struct snapshot_handle *handle)
2222 {
2223 	static struct chain_allocator ca;
2224 	int error = 0;
2225 
2226 	/* Check if we have already loaded the entire image */
2227 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2228 		return 0;
2229 
2230 	handle->sync_read = 1;
2231 
2232 	if (!handle->cur) {
2233 		if (!buffer)
2234 			/* This makes the buffer be freed by swsusp_free() */
2235 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2236 
2237 		if (!buffer)
2238 			return -ENOMEM;
2239 
2240 		handle->buffer = buffer;
2241 	} else if (handle->cur == 1) {
2242 		error = load_header(buffer);
2243 		if (error)
2244 			return error;
2245 
2246 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2247 		if (error)
2248 			return error;
2249 
2250 		/* Allocate buffer for page keys. */
2251 		error = page_key_alloc(nr_copy_pages);
2252 		if (error)
2253 			return error;
2254 
2255 	} else if (handle->cur <= nr_meta_pages + 1) {
2256 		error = unpack_orig_pfns(buffer, &copy_bm);
2257 		if (error)
2258 			return error;
2259 
2260 		if (handle->cur == nr_meta_pages + 1) {
2261 			error = prepare_image(&orig_bm, &copy_bm);
2262 			if (error)
2263 				return error;
2264 
2265 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2266 			memory_bm_position_reset(&orig_bm);
2267 			restore_pblist = NULL;
2268 			handle->buffer = get_buffer(&orig_bm, &ca);
2269 			handle->sync_read = 0;
2270 			if (IS_ERR(handle->buffer))
2271 				return PTR_ERR(handle->buffer);
2272 		}
2273 	} else {
2274 		copy_last_highmem_page();
2275 		/* Restore page key for data page (s390 only). */
2276 		page_key_write(handle->buffer);
2277 		handle->buffer = get_buffer(&orig_bm, &ca);
2278 		if (IS_ERR(handle->buffer))
2279 			return PTR_ERR(handle->buffer);
2280 		if (handle->buffer != buffer)
2281 			handle->sync_read = 0;
2282 	}
2283 	handle->cur++;
2284 	return PAGE_SIZE;
2285 }
2286 
2287 /**
2288  *	snapshot_write_finalize - must be called after the last call to
2289  *	snapshot_write_next() in case the last page in the image happens
2290  *	to be a highmem page and its contents should be stored in the
2291  *	highmem.  Additionally, it releases the memory that will not be
2292  *	used any more.
2293  */
2294 
2295 void snapshot_write_finalize(struct snapshot_handle *handle)
2296 {
2297 	copy_last_highmem_page();
2298 	/* Restore page key for data page (s390 only). */
2299 	page_key_write(handle->buffer);
2300 	page_key_free();
2301 	/* Free only if we have loaded the image entirely */
2302 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2303 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2304 		free_highmem_data();
2305 	}
2306 }
2307 
2308 int snapshot_image_loaded(struct snapshot_handle *handle)
2309 {
2310 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2311 			handle->cur <= nr_meta_pages + nr_copy_pages);
2312 }
2313 
2314 #ifdef CONFIG_HIGHMEM
2315 /* Assumes that @buf is ready and points to a "safe" page */
2316 static inline void
2317 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2318 {
2319 	void *kaddr1, *kaddr2;
2320 
2321 	kaddr1 = kmap_atomic(p1);
2322 	kaddr2 = kmap_atomic(p2);
2323 	copy_page(buf, kaddr1);
2324 	copy_page(kaddr1, kaddr2);
2325 	copy_page(kaddr2, buf);
2326 	kunmap_atomic(kaddr2);
2327 	kunmap_atomic(kaddr1);
2328 }
2329 
2330 /**
2331  *	restore_highmem - for each highmem page that was allocated before
2332  *	the suspend and included in the suspend image, and also has been
2333  *	allocated by the "resume" kernel swap its current (ie. "before
2334  *	resume") contents with the previous (ie. "before suspend") one.
2335  *
2336  *	If the resume eventually fails, we can call this function once
2337  *	again and restore the "before resume" highmem state.
2338  */
2339 
2340 int restore_highmem(void)
2341 {
2342 	struct highmem_pbe *pbe = highmem_pblist;
2343 	void *buf;
2344 
2345 	if (!pbe)
2346 		return 0;
2347 
2348 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2349 	if (!buf)
2350 		return -ENOMEM;
2351 
2352 	while (pbe) {
2353 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2354 		pbe = pbe->next;
2355 	}
2356 	free_image_page(buf, PG_UNSAFE_CLEAR);
2357 	return 0;
2358 }
2359 #endif /* CONFIG_HIGHMEM */
2360