xref: /openbmc/linux/kernel/power/snapshot.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 
34 #include <linux/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/pgtable.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #ifdef CONFIG_STRICT_KERNEL_RWX
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX */
78 
79 static int swsusp_page_is_free(struct page *);
80 static void swsusp_set_page_forbidden(struct page *);
81 static void swsusp_unset_page_forbidden(struct page *);
82 
83 /*
84  * Number of bytes to reserve for memory allocations made by device drivers
85  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
86  * cause image creation to fail (tunable via /sys/power/reserved_size).
87  */
88 unsigned long reserved_size;
89 
90 void __init hibernate_reserved_size_init(void)
91 {
92 	reserved_size = SPARE_PAGES * PAGE_SIZE;
93 }
94 
95 /*
96  * Preferred image size in bytes (tunable via /sys/power/image_size).
97  * When it is set to N, swsusp will do its best to ensure the image
98  * size will not exceed N bytes, but if that is impossible, it will
99  * try to create the smallest image possible.
100  */
101 unsigned long image_size;
102 
103 void __init hibernate_image_size_init(void)
104 {
105 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
106 }
107 
108 /*
109  * List of PBEs needed for restoring the pages that were allocated before
110  * the suspend and included in the suspend image, but have also been
111  * allocated by the "resume" kernel, so their contents cannot be written
112  * directly to their "original" page frames.
113  */
114 struct pbe *restore_pblist;
115 
116 /* struct linked_page is used to build chains of pages */
117 
118 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
119 
120 struct linked_page {
121 	struct linked_page *next;
122 	char data[LINKED_PAGE_DATA_SIZE];
123 } __packed;
124 
125 /*
126  * List of "safe" pages (ie. pages that were not used by the image kernel
127  * before hibernation) that may be used as temporary storage for image kernel
128  * memory contents.
129  */
130 static struct linked_page *safe_pages_list;
131 
132 /* Pointer to an auxiliary buffer (1 page) */
133 static void *buffer;
134 
135 #define PG_ANY		0
136 #define PG_SAFE		1
137 #define PG_UNSAFE_CLEAR	1
138 #define PG_UNSAFE_KEEP	0
139 
140 static unsigned int allocated_unsafe_pages;
141 
142 /**
143  * get_image_page - Allocate a page for a hibernation image.
144  * @gfp_mask: GFP mask for the allocation.
145  * @safe_needed: Get pages that were not used before hibernation (restore only)
146  *
147  * During image restoration, for storing the PBE list and the image data, we can
148  * only use memory pages that do not conflict with the pages used before
149  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
150  * using allocated_unsafe_pages.
151  *
152  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
153  * swsusp_free() can release it.
154  */
155 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
156 {
157 	void *res;
158 
159 	res = (void *)get_zeroed_page(gfp_mask);
160 	if (safe_needed)
161 		while (res && swsusp_page_is_free(virt_to_page(res))) {
162 			/* The page is unsafe, mark it for swsusp_free() */
163 			swsusp_set_page_forbidden(virt_to_page(res));
164 			allocated_unsafe_pages++;
165 			res = (void *)get_zeroed_page(gfp_mask);
166 		}
167 	if (res) {
168 		swsusp_set_page_forbidden(virt_to_page(res));
169 		swsusp_set_page_free(virt_to_page(res));
170 	}
171 	return res;
172 }
173 
174 static void *__get_safe_page(gfp_t gfp_mask)
175 {
176 	if (safe_pages_list) {
177 		void *ret = safe_pages_list;
178 
179 		safe_pages_list = safe_pages_list->next;
180 		memset(ret, 0, PAGE_SIZE);
181 		return ret;
182 	}
183 	return get_image_page(gfp_mask, PG_SAFE);
184 }
185 
186 unsigned long get_safe_page(gfp_t gfp_mask)
187 {
188 	return (unsigned long)__get_safe_page(gfp_mask);
189 }
190 
191 static struct page *alloc_image_page(gfp_t gfp_mask)
192 {
193 	struct page *page;
194 
195 	page = alloc_page(gfp_mask);
196 	if (page) {
197 		swsusp_set_page_forbidden(page);
198 		swsusp_set_page_free(page);
199 	}
200 	return page;
201 }
202 
203 static void recycle_safe_page(void *page_address)
204 {
205 	struct linked_page *lp = page_address;
206 
207 	lp->next = safe_pages_list;
208 	safe_pages_list = lp;
209 }
210 
211 /**
212  * free_image_page - Free a page allocated for hibernation image.
213  * @addr: Address of the page to free.
214  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
215  *
216  * The page to free should have been allocated by get_image_page() (page flags
217  * set by it are affected).
218  */
219 static inline void free_image_page(void *addr, int clear_nosave_free)
220 {
221 	struct page *page;
222 
223 	BUG_ON(!virt_addr_valid(addr));
224 
225 	page = virt_to_page(addr);
226 
227 	swsusp_unset_page_forbidden(page);
228 	if (clear_nosave_free)
229 		swsusp_unset_page_free(page);
230 
231 	__free_page(page);
232 }
233 
234 static inline void free_list_of_pages(struct linked_page *list,
235 				      int clear_page_nosave)
236 {
237 	while (list) {
238 		struct linked_page *lp = list->next;
239 
240 		free_image_page(list, clear_page_nosave);
241 		list = lp;
242 	}
243 }
244 
245 /*
246  * struct chain_allocator is used for allocating small objects out of
247  * a linked list of pages called 'the chain'.
248  *
249  * The chain grows each time when there is no room for a new object in
250  * the current page.  The allocated objects cannot be freed individually.
251  * It is only possible to free them all at once, by freeing the entire
252  * chain.
253  *
254  * NOTE: The chain allocator may be inefficient if the allocated objects
255  * are not much smaller than PAGE_SIZE.
256  */
257 struct chain_allocator {
258 	struct linked_page *chain;	/* the chain */
259 	unsigned int used_space;	/* total size of objects allocated out
260 					   of the current page */
261 	gfp_t gfp_mask;		/* mask for allocating pages */
262 	int safe_needed;	/* if set, only "safe" pages are allocated */
263 };
264 
265 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
266 		       int safe_needed)
267 {
268 	ca->chain = NULL;
269 	ca->used_space = LINKED_PAGE_DATA_SIZE;
270 	ca->gfp_mask = gfp_mask;
271 	ca->safe_needed = safe_needed;
272 }
273 
274 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
275 {
276 	void *ret;
277 
278 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
279 		struct linked_page *lp;
280 
281 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
282 					get_image_page(ca->gfp_mask, PG_ANY);
283 		if (!lp)
284 			return NULL;
285 
286 		lp->next = ca->chain;
287 		ca->chain = lp;
288 		ca->used_space = 0;
289 	}
290 	ret = ca->chain->data + ca->used_space;
291 	ca->used_space += size;
292 	return ret;
293 }
294 
295 /**
296  * Data types related to memory bitmaps.
297  *
298  * Memory bitmap is a structure consiting of many linked lists of
299  * objects.  The main list's elements are of type struct zone_bitmap
300  * and each of them corresonds to one zone.  For each zone bitmap
301  * object there is a list of objects of type struct bm_block that
302  * represent each blocks of bitmap in which information is stored.
303  *
304  * struct memory_bitmap contains a pointer to the main list of zone
305  * bitmap objects, a struct bm_position used for browsing the bitmap,
306  * and a pointer to the list of pages used for allocating all of the
307  * zone bitmap objects and bitmap block objects.
308  *
309  * NOTE: It has to be possible to lay out the bitmap in memory
310  * using only allocations of order 0.  Additionally, the bitmap is
311  * designed to work with arbitrary number of zones (this is over the
312  * top for now, but let's avoid making unnecessary assumptions ;-).
313  *
314  * struct zone_bitmap contains a pointer to a list of bitmap block
315  * objects and a pointer to the bitmap block object that has been
316  * most recently used for setting bits.  Additionally, it contains the
317  * PFNs that correspond to the start and end of the represented zone.
318  *
319  * struct bm_block contains a pointer to the memory page in which
320  * information is stored (in the form of a block of bitmap)
321  * It also contains the pfns that correspond to the start and end of
322  * the represented memory area.
323  *
324  * The memory bitmap is organized as a radix tree to guarantee fast random
325  * access to the bits. There is one radix tree for each zone (as returned
326  * from create_mem_extents).
327  *
328  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
329  * two linked lists for the nodes of the tree, one for the inner nodes and
330  * one for the leave nodes. The linked leave nodes are used for fast linear
331  * access of the memory bitmap.
332  *
333  * The struct rtree_node represents one node of the radix tree.
334  */
335 
336 #define BM_END_OF_MAP	(~0UL)
337 
338 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
339 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
340 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
341 
342 /*
343  * struct rtree_node is a wrapper struct to link the nodes
344  * of the rtree together for easy linear iteration over
345  * bits and easy freeing
346  */
347 struct rtree_node {
348 	struct list_head list;
349 	unsigned long *data;
350 };
351 
352 /*
353  * struct mem_zone_bm_rtree represents a bitmap used for one
354  * populated memory zone.
355  */
356 struct mem_zone_bm_rtree {
357 	struct list_head list;		/* Link Zones together         */
358 	struct list_head nodes;		/* Radix Tree inner nodes      */
359 	struct list_head leaves;	/* Radix Tree leaves           */
360 	unsigned long start_pfn;	/* Zone start page frame       */
361 	unsigned long end_pfn;		/* Zone end page frame + 1     */
362 	struct rtree_node *rtree;	/* Radix Tree Root             */
363 	int levels;			/* Number of Radix Tree Levels */
364 	unsigned int blocks;		/* Number of Bitmap Blocks     */
365 };
366 
367 /* strcut bm_position is used for browsing memory bitmaps */
368 
369 struct bm_position {
370 	struct mem_zone_bm_rtree *zone;
371 	struct rtree_node *node;
372 	unsigned long node_pfn;
373 	int node_bit;
374 };
375 
376 struct memory_bitmap {
377 	struct list_head zones;
378 	struct linked_page *p_list;	/* list of pages used to store zone
379 					   bitmap objects and bitmap block
380 					   objects */
381 	struct bm_position cur;	/* most recently used bit position */
382 };
383 
384 /* Functions that operate on memory bitmaps */
385 
386 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
387 #if BITS_PER_LONG == 32
388 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
389 #else
390 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
391 #endif
392 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
393 
394 /**
395  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
396  *
397  * This function is used to allocate inner nodes as well as the
398  * leave nodes of the radix tree. It also adds the node to the
399  * corresponding linked list passed in by the *list parameter.
400  */
401 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
402 					   struct chain_allocator *ca,
403 					   struct list_head *list)
404 {
405 	struct rtree_node *node;
406 
407 	node = chain_alloc(ca, sizeof(struct rtree_node));
408 	if (!node)
409 		return NULL;
410 
411 	node->data = get_image_page(gfp_mask, safe_needed);
412 	if (!node->data)
413 		return NULL;
414 
415 	list_add_tail(&node->list, list);
416 
417 	return node;
418 }
419 
420 /**
421  * add_rtree_block - Add a new leave node to the radix tree.
422  *
423  * The leave nodes need to be allocated in order to keep the leaves
424  * linked list in order. This is guaranteed by the zone->blocks
425  * counter.
426  */
427 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
428 			   int safe_needed, struct chain_allocator *ca)
429 {
430 	struct rtree_node *node, *block, **dst;
431 	unsigned int levels_needed, block_nr;
432 	int i;
433 
434 	block_nr = zone->blocks;
435 	levels_needed = 0;
436 
437 	/* How many levels do we need for this block nr? */
438 	while (block_nr) {
439 		levels_needed += 1;
440 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
441 	}
442 
443 	/* Make sure the rtree has enough levels */
444 	for (i = zone->levels; i < levels_needed; i++) {
445 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
446 					&zone->nodes);
447 		if (!node)
448 			return -ENOMEM;
449 
450 		node->data[0] = (unsigned long)zone->rtree;
451 		zone->rtree = node;
452 		zone->levels += 1;
453 	}
454 
455 	/* Allocate new block */
456 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
457 	if (!block)
458 		return -ENOMEM;
459 
460 	/* Now walk the rtree to insert the block */
461 	node = zone->rtree;
462 	dst = &zone->rtree;
463 	block_nr = zone->blocks;
464 	for (i = zone->levels; i > 0; i--) {
465 		int index;
466 
467 		if (!node) {
468 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
469 						&zone->nodes);
470 			if (!node)
471 				return -ENOMEM;
472 			*dst = node;
473 		}
474 
475 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
476 		index &= BM_RTREE_LEVEL_MASK;
477 		dst = (struct rtree_node **)&((*dst)->data[index]);
478 		node = *dst;
479 	}
480 
481 	zone->blocks += 1;
482 	*dst = block;
483 
484 	return 0;
485 }
486 
487 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
488 			       int clear_nosave_free);
489 
490 /**
491  * create_zone_bm_rtree - Create a radix tree for one zone.
492  *
493  * Allocated the mem_zone_bm_rtree structure and initializes it.
494  * This function also allocated and builds the radix tree for the
495  * zone.
496  */
497 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
498 						      int safe_needed,
499 						      struct chain_allocator *ca,
500 						      unsigned long start,
501 						      unsigned long end)
502 {
503 	struct mem_zone_bm_rtree *zone;
504 	unsigned int i, nr_blocks;
505 	unsigned long pages;
506 
507 	pages = end - start;
508 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
509 	if (!zone)
510 		return NULL;
511 
512 	INIT_LIST_HEAD(&zone->nodes);
513 	INIT_LIST_HEAD(&zone->leaves);
514 	zone->start_pfn = start;
515 	zone->end_pfn = end;
516 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
517 
518 	for (i = 0; i < nr_blocks; i++) {
519 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
520 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
521 			return NULL;
522 		}
523 	}
524 
525 	return zone;
526 }
527 
528 /**
529  * free_zone_bm_rtree - Free the memory of the radix tree.
530  *
531  * Free all node pages of the radix tree. The mem_zone_bm_rtree
532  * structure itself is not freed here nor are the rtree_node
533  * structs.
534  */
535 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
536 			       int clear_nosave_free)
537 {
538 	struct rtree_node *node;
539 
540 	list_for_each_entry(node, &zone->nodes, list)
541 		free_image_page(node->data, clear_nosave_free);
542 
543 	list_for_each_entry(node, &zone->leaves, list)
544 		free_image_page(node->data, clear_nosave_free);
545 }
546 
547 static void memory_bm_position_reset(struct memory_bitmap *bm)
548 {
549 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
550 				  list);
551 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
552 				  struct rtree_node, list);
553 	bm->cur.node_pfn = 0;
554 	bm->cur.node_bit = 0;
555 }
556 
557 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
558 
559 struct mem_extent {
560 	struct list_head hook;
561 	unsigned long start;
562 	unsigned long end;
563 };
564 
565 /**
566  * free_mem_extents - Free a list of memory extents.
567  * @list: List of extents to free.
568  */
569 static void free_mem_extents(struct list_head *list)
570 {
571 	struct mem_extent *ext, *aux;
572 
573 	list_for_each_entry_safe(ext, aux, list, hook) {
574 		list_del(&ext->hook);
575 		kfree(ext);
576 	}
577 }
578 
579 /**
580  * create_mem_extents - Create a list of memory extents.
581  * @list: List to put the extents into.
582  * @gfp_mask: Mask to use for memory allocations.
583  *
584  * The extents represent contiguous ranges of PFNs.
585  */
586 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
587 {
588 	struct zone *zone;
589 
590 	INIT_LIST_HEAD(list);
591 
592 	for_each_populated_zone(zone) {
593 		unsigned long zone_start, zone_end;
594 		struct mem_extent *ext, *cur, *aux;
595 
596 		zone_start = zone->zone_start_pfn;
597 		zone_end = zone_end_pfn(zone);
598 
599 		list_for_each_entry(ext, list, hook)
600 			if (zone_start <= ext->end)
601 				break;
602 
603 		if (&ext->hook == list || zone_end < ext->start) {
604 			/* New extent is necessary */
605 			struct mem_extent *new_ext;
606 
607 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
608 			if (!new_ext) {
609 				free_mem_extents(list);
610 				return -ENOMEM;
611 			}
612 			new_ext->start = zone_start;
613 			new_ext->end = zone_end;
614 			list_add_tail(&new_ext->hook, &ext->hook);
615 			continue;
616 		}
617 
618 		/* Merge this zone's range of PFNs with the existing one */
619 		if (zone_start < ext->start)
620 			ext->start = zone_start;
621 		if (zone_end > ext->end)
622 			ext->end = zone_end;
623 
624 		/* More merging may be possible */
625 		cur = ext;
626 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
627 			if (zone_end < cur->start)
628 				break;
629 			if (zone_end < cur->end)
630 				ext->end = cur->end;
631 			list_del(&cur->hook);
632 			kfree(cur);
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  * memory_bm_create - Allocate memory for a memory bitmap.
641  */
642 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
643 			    int safe_needed)
644 {
645 	struct chain_allocator ca;
646 	struct list_head mem_extents;
647 	struct mem_extent *ext;
648 	int error;
649 
650 	chain_init(&ca, gfp_mask, safe_needed);
651 	INIT_LIST_HEAD(&bm->zones);
652 
653 	error = create_mem_extents(&mem_extents, gfp_mask);
654 	if (error)
655 		return error;
656 
657 	list_for_each_entry(ext, &mem_extents, hook) {
658 		struct mem_zone_bm_rtree *zone;
659 
660 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
661 					    ext->start, ext->end);
662 		if (!zone) {
663 			error = -ENOMEM;
664 			goto Error;
665 		}
666 		list_add_tail(&zone->list, &bm->zones);
667 	}
668 
669 	bm->p_list = ca.chain;
670 	memory_bm_position_reset(bm);
671  Exit:
672 	free_mem_extents(&mem_extents);
673 	return error;
674 
675  Error:
676 	bm->p_list = ca.chain;
677 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
678 	goto Exit;
679 }
680 
681 /**
682  * memory_bm_free - Free memory occupied by the memory bitmap.
683  * @bm: Memory bitmap.
684  */
685 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
686 {
687 	struct mem_zone_bm_rtree *zone;
688 
689 	list_for_each_entry(zone, &bm->zones, list)
690 		free_zone_bm_rtree(zone, clear_nosave_free);
691 
692 	free_list_of_pages(bm->p_list, clear_nosave_free);
693 
694 	INIT_LIST_HEAD(&bm->zones);
695 }
696 
697 /**
698  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
699  *
700  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
701  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
702  *
703  * Walk the radix tree to find the page containing the bit that represents @pfn
704  * and return the position of the bit in @addr and @bit_nr.
705  */
706 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
707 			      void **addr, unsigned int *bit_nr)
708 {
709 	struct mem_zone_bm_rtree *curr, *zone;
710 	struct rtree_node *node;
711 	int i, block_nr;
712 
713 	zone = bm->cur.zone;
714 
715 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
716 		goto zone_found;
717 
718 	zone = NULL;
719 
720 	/* Find the right zone */
721 	list_for_each_entry(curr, &bm->zones, list) {
722 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
723 			zone = curr;
724 			break;
725 		}
726 	}
727 
728 	if (!zone)
729 		return -EFAULT;
730 
731 zone_found:
732 	/*
733 	 * We have found the zone. Now walk the radix tree to find the leaf node
734 	 * for our PFN.
735 	 */
736 	node = bm->cur.node;
737 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
738 		goto node_found;
739 
740 	node      = zone->rtree;
741 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
742 
743 	for (i = zone->levels; i > 0; i--) {
744 		int index;
745 
746 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
747 		index &= BM_RTREE_LEVEL_MASK;
748 		BUG_ON(node->data[index] == 0);
749 		node = (struct rtree_node *)node->data[index];
750 	}
751 
752 node_found:
753 	/* Update last position */
754 	bm->cur.zone = zone;
755 	bm->cur.node = node;
756 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
757 
758 	/* Set return values */
759 	*addr = node->data;
760 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
761 
762 	return 0;
763 }
764 
765 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
766 {
767 	void *addr;
768 	unsigned int bit;
769 	int error;
770 
771 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
772 	BUG_ON(error);
773 	set_bit(bit, addr);
774 }
775 
776 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
777 {
778 	void *addr;
779 	unsigned int bit;
780 	int error;
781 
782 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
783 	if (!error)
784 		set_bit(bit, addr);
785 
786 	return error;
787 }
788 
789 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
790 {
791 	void *addr;
792 	unsigned int bit;
793 	int error;
794 
795 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
796 	BUG_ON(error);
797 	clear_bit(bit, addr);
798 }
799 
800 static void memory_bm_clear_current(struct memory_bitmap *bm)
801 {
802 	int bit;
803 
804 	bit = max(bm->cur.node_bit - 1, 0);
805 	clear_bit(bit, bm->cur.node->data);
806 }
807 
808 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
809 {
810 	void *addr;
811 	unsigned int bit;
812 	int error;
813 
814 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
815 	BUG_ON(error);
816 	return test_bit(bit, addr);
817 }
818 
819 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
820 {
821 	void *addr;
822 	unsigned int bit;
823 
824 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
825 }
826 
827 /*
828  * rtree_next_node - Jump to the next leaf node.
829  *
830  * Set the position to the beginning of the next node in the
831  * memory bitmap. This is either the next node in the current
832  * zone's radix tree or the first node in the radix tree of the
833  * next zone.
834  *
835  * Return true if there is a next node, false otherwise.
836  */
837 static bool rtree_next_node(struct memory_bitmap *bm)
838 {
839 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
840 		bm->cur.node = list_entry(bm->cur.node->list.next,
841 					  struct rtree_node, list);
842 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
843 		bm->cur.node_bit  = 0;
844 		touch_softlockup_watchdog();
845 		return true;
846 	}
847 
848 	/* No more nodes, goto next zone */
849 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
850 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
851 				  struct mem_zone_bm_rtree, list);
852 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
853 					  struct rtree_node, list);
854 		bm->cur.node_pfn = 0;
855 		bm->cur.node_bit = 0;
856 		return true;
857 	}
858 
859 	/* No more zones */
860 	return false;
861 }
862 
863 /**
864  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
865  * @bm: Memory bitmap.
866  *
867  * Starting from the last returned position this function searches for the next
868  * set bit in @bm and returns the PFN represented by it.  If no more bits are
869  * set, BM_END_OF_MAP is returned.
870  *
871  * It is required to run memory_bm_position_reset() before the first call to
872  * this function for the given memory bitmap.
873  */
874 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
875 {
876 	unsigned long bits, pfn, pages;
877 	int bit;
878 
879 	do {
880 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
881 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
882 		bit	  = find_next_bit(bm->cur.node->data, bits,
883 					  bm->cur.node_bit);
884 		if (bit < bits) {
885 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
886 			bm->cur.node_bit = bit + 1;
887 			return pfn;
888 		}
889 	} while (rtree_next_node(bm));
890 
891 	return BM_END_OF_MAP;
892 }
893 
894 /*
895  * This structure represents a range of page frames the contents of which
896  * should not be saved during hibernation.
897  */
898 struct nosave_region {
899 	struct list_head list;
900 	unsigned long start_pfn;
901 	unsigned long end_pfn;
902 };
903 
904 static LIST_HEAD(nosave_regions);
905 
906 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
907 {
908 	struct rtree_node *node;
909 
910 	list_for_each_entry(node, &zone->nodes, list)
911 		recycle_safe_page(node->data);
912 
913 	list_for_each_entry(node, &zone->leaves, list)
914 		recycle_safe_page(node->data);
915 }
916 
917 static void memory_bm_recycle(struct memory_bitmap *bm)
918 {
919 	struct mem_zone_bm_rtree *zone;
920 	struct linked_page *p_list;
921 
922 	list_for_each_entry(zone, &bm->zones, list)
923 		recycle_zone_bm_rtree(zone);
924 
925 	p_list = bm->p_list;
926 	while (p_list) {
927 		struct linked_page *lp = p_list;
928 
929 		p_list = lp->next;
930 		recycle_safe_page(lp);
931 	}
932 }
933 
934 /**
935  * register_nosave_region - Register a region of unsaveable memory.
936  *
937  * Register a range of page frames the contents of which should not be saved
938  * during hibernation (to be used in the early initialization code).
939  */
940 void __init __register_nosave_region(unsigned long start_pfn,
941 				     unsigned long end_pfn, int use_kmalloc)
942 {
943 	struct nosave_region *region;
944 
945 	if (start_pfn >= end_pfn)
946 		return;
947 
948 	if (!list_empty(&nosave_regions)) {
949 		/* Try to extend the previous region (they should be sorted) */
950 		region = list_entry(nosave_regions.prev,
951 					struct nosave_region, list);
952 		if (region->end_pfn == start_pfn) {
953 			region->end_pfn = end_pfn;
954 			goto Report;
955 		}
956 	}
957 	if (use_kmalloc) {
958 		/* During init, this shouldn't fail */
959 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
960 		BUG_ON(!region);
961 	} else {
962 		/* This allocation cannot fail */
963 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
964 	}
965 	region->start_pfn = start_pfn;
966 	region->end_pfn = end_pfn;
967 	list_add_tail(&region->list, &nosave_regions);
968  Report:
969 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
970 		(unsigned long long) start_pfn << PAGE_SHIFT,
971 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
972 }
973 
974 /*
975  * Set bits in this map correspond to the page frames the contents of which
976  * should not be saved during the suspend.
977  */
978 static struct memory_bitmap *forbidden_pages_map;
979 
980 /* Set bits in this map correspond to free page frames. */
981 static struct memory_bitmap *free_pages_map;
982 
983 /*
984  * Each page frame allocated for creating the image is marked by setting the
985  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
986  */
987 
988 void swsusp_set_page_free(struct page *page)
989 {
990 	if (free_pages_map)
991 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
992 }
993 
994 static int swsusp_page_is_free(struct page *page)
995 {
996 	return free_pages_map ?
997 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
998 }
999 
1000 void swsusp_unset_page_free(struct page *page)
1001 {
1002 	if (free_pages_map)
1003 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1004 }
1005 
1006 static void swsusp_set_page_forbidden(struct page *page)
1007 {
1008 	if (forbidden_pages_map)
1009 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1010 }
1011 
1012 int swsusp_page_is_forbidden(struct page *page)
1013 {
1014 	return forbidden_pages_map ?
1015 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1016 }
1017 
1018 static void swsusp_unset_page_forbidden(struct page *page)
1019 {
1020 	if (forbidden_pages_map)
1021 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1022 }
1023 
1024 /**
1025  * mark_nosave_pages - Mark pages that should not be saved.
1026  * @bm: Memory bitmap.
1027  *
1028  * Set the bits in @bm that correspond to the page frames the contents of which
1029  * should not be saved.
1030  */
1031 static void mark_nosave_pages(struct memory_bitmap *bm)
1032 {
1033 	struct nosave_region *region;
1034 
1035 	if (list_empty(&nosave_regions))
1036 		return;
1037 
1038 	list_for_each_entry(region, &nosave_regions, list) {
1039 		unsigned long pfn;
1040 
1041 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1042 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1043 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1044 				- 1);
1045 
1046 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1047 			if (pfn_valid(pfn)) {
1048 				/*
1049 				 * It is safe to ignore the result of
1050 				 * mem_bm_set_bit_check() here, since we won't
1051 				 * touch the PFNs for which the error is
1052 				 * returned anyway.
1053 				 */
1054 				mem_bm_set_bit_check(bm, pfn);
1055 			}
1056 	}
1057 }
1058 
1059 /**
1060  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1061  *
1062  * Create bitmaps needed for marking page frames that should not be saved and
1063  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1064  * only modified if everything goes well, because we don't want the bits to be
1065  * touched before both bitmaps are set up.
1066  */
1067 int create_basic_memory_bitmaps(void)
1068 {
1069 	struct memory_bitmap *bm1, *bm2;
1070 	int error = 0;
1071 
1072 	if (forbidden_pages_map && free_pages_map)
1073 		return 0;
1074 	else
1075 		BUG_ON(forbidden_pages_map || free_pages_map);
1076 
1077 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1078 	if (!bm1)
1079 		return -ENOMEM;
1080 
1081 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1082 	if (error)
1083 		goto Free_first_object;
1084 
1085 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1086 	if (!bm2)
1087 		goto Free_first_bitmap;
1088 
1089 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1090 	if (error)
1091 		goto Free_second_object;
1092 
1093 	forbidden_pages_map = bm1;
1094 	free_pages_map = bm2;
1095 	mark_nosave_pages(forbidden_pages_map);
1096 
1097 	pr_debug("PM: Basic memory bitmaps created\n");
1098 
1099 	return 0;
1100 
1101  Free_second_object:
1102 	kfree(bm2);
1103  Free_first_bitmap:
1104  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1105  Free_first_object:
1106 	kfree(bm1);
1107 	return -ENOMEM;
1108 }
1109 
1110 /**
1111  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1112  *
1113  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1114  * auxiliary pointers are necessary so that the bitmaps themselves are not
1115  * referred to while they are being freed.
1116  */
1117 void free_basic_memory_bitmaps(void)
1118 {
1119 	struct memory_bitmap *bm1, *bm2;
1120 
1121 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1122 		return;
1123 
1124 	bm1 = forbidden_pages_map;
1125 	bm2 = free_pages_map;
1126 	forbidden_pages_map = NULL;
1127 	free_pages_map = NULL;
1128 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1129 	kfree(bm1);
1130 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1131 	kfree(bm2);
1132 
1133 	pr_debug("PM: Basic memory bitmaps freed\n");
1134 }
1135 
1136 void clear_free_pages(void)
1137 {
1138 #ifdef CONFIG_PAGE_POISONING_ZERO
1139 	struct memory_bitmap *bm = free_pages_map;
1140 	unsigned long pfn;
1141 
1142 	if (WARN_ON(!(free_pages_map)))
1143 		return;
1144 
1145 	memory_bm_position_reset(bm);
1146 	pfn = memory_bm_next_pfn(bm);
1147 	while (pfn != BM_END_OF_MAP) {
1148 		if (pfn_valid(pfn))
1149 			clear_highpage(pfn_to_page(pfn));
1150 
1151 		pfn = memory_bm_next_pfn(bm);
1152 	}
1153 	memory_bm_position_reset(bm);
1154 	pr_info("PM: free pages cleared after restore\n");
1155 #endif /* PAGE_POISONING_ZERO */
1156 }
1157 
1158 /**
1159  * snapshot_additional_pages - Estimate the number of extra pages needed.
1160  * @zone: Memory zone to carry out the computation for.
1161  *
1162  * Estimate the number of additional pages needed for setting up a hibernation
1163  * image data structures for @zone (usually, the returned value is greater than
1164  * the exact number).
1165  */
1166 unsigned int snapshot_additional_pages(struct zone *zone)
1167 {
1168 	unsigned int rtree, nodes;
1169 
1170 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1171 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1172 			      LINKED_PAGE_DATA_SIZE);
1173 	while (nodes > 1) {
1174 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1175 		rtree += nodes;
1176 	}
1177 
1178 	return 2 * rtree;
1179 }
1180 
1181 #ifdef CONFIG_HIGHMEM
1182 /**
1183  * count_free_highmem_pages - Compute the total number of free highmem pages.
1184  *
1185  * The returned number is system-wide.
1186  */
1187 static unsigned int count_free_highmem_pages(void)
1188 {
1189 	struct zone *zone;
1190 	unsigned int cnt = 0;
1191 
1192 	for_each_populated_zone(zone)
1193 		if (is_highmem(zone))
1194 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1195 
1196 	return cnt;
1197 }
1198 
1199 /**
1200  * saveable_highmem_page - Check if a highmem page is saveable.
1201  *
1202  * Determine whether a highmem page should be included in a hibernation image.
1203  *
1204  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1205  * and it isn't part of a free chunk of pages.
1206  */
1207 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1208 {
1209 	struct page *page;
1210 
1211 	if (!pfn_valid(pfn))
1212 		return NULL;
1213 
1214 	page = pfn_to_page(pfn);
1215 	if (page_zone(page) != zone)
1216 		return NULL;
1217 
1218 	BUG_ON(!PageHighMem(page));
1219 
1220 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1221 	    PageReserved(page))
1222 		return NULL;
1223 
1224 	if (page_is_guard(page))
1225 		return NULL;
1226 
1227 	return page;
1228 }
1229 
1230 /**
1231  * count_highmem_pages - Compute the total number of saveable highmem pages.
1232  */
1233 static unsigned int count_highmem_pages(void)
1234 {
1235 	struct zone *zone;
1236 	unsigned int n = 0;
1237 
1238 	for_each_populated_zone(zone) {
1239 		unsigned long pfn, max_zone_pfn;
1240 
1241 		if (!is_highmem(zone))
1242 			continue;
1243 
1244 		mark_free_pages(zone);
1245 		max_zone_pfn = zone_end_pfn(zone);
1246 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1247 			if (saveable_highmem_page(zone, pfn))
1248 				n++;
1249 	}
1250 	return n;
1251 }
1252 #else
1253 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1254 {
1255 	return NULL;
1256 }
1257 #endif /* CONFIG_HIGHMEM */
1258 
1259 /**
1260  * saveable_page - Check if the given page is saveable.
1261  *
1262  * Determine whether a non-highmem page should be included in a hibernation
1263  * image.
1264  *
1265  * We should save the page if it isn't Nosave, and is not in the range
1266  * of pages statically defined as 'unsaveable', and it isn't part of
1267  * a free chunk of pages.
1268  */
1269 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1270 {
1271 	struct page *page;
1272 
1273 	if (!pfn_valid(pfn))
1274 		return NULL;
1275 
1276 	page = pfn_to_page(pfn);
1277 	if (page_zone(page) != zone)
1278 		return NULL;
1279 
1280 	BUG_ON(PageHighMem(page));
1281 
1282 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1283 		return NULL;
1284 
1285 	if (PageReserved(page)
1286 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1287 		return NULL;
1288 
1289 	if (page_is_guard(page))
1290 		return NULL;
1291 
1292 	return page;
1293 }
1294 
1295 /**
1296  * count_data_pages - Compute the total number of saveable non-highmem pages.
1297  */
1298 static unsigned int count_data_pages(void)
1299 {
1300 	struct zone *zone;
1301 	unsigned long pfn, max_zone_pfn;
1302 	unsigned int n = 0;
1303 
1304 	for_each_populated_zone(zone) {
1305 		if (is_highmem(zone))
1306 			continue;
1307 
1308 		mark_free_pages(zone);
1309 		max_zone_pfn = zone_end_pfn(zone);
1310 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1311 			if (saveable_page(zone, pfn))
1312 				n++;
1313 	}
1314 	return n;
1315 }
1316 
1317 /*
1318  * This is needed, because copy_page and memcpy are not usable for copying
1319  * task structs.
1320  */
1321 static inline void do_copy_page(long *dst, long *src)
1322 {
1323 	int n;
1324 
1325 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1326 		*dst++ = *src++;
1327 }
1328 
1329 /**
1330  * safe_copy_page - Copy a page in a safe way.
1331  *
1332  * Check if the page we are going to copy is marked as present in the kernel
1333  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1334  * and in that case kernel_page_present() always returns 'true').
1335  */
1336 static void safe_copy_page(void *dst, struct page *s_page)
1337 {
1338 	if (kernel_page_present(s_page)) {
1339 		do_copy_page(dst, page_address(s_page));
1340 	} else {
1341 		kernel_map_pages(s_page, 1, 1);
1342 		do_copy_page(dst, page_address(s_page));
1343 		kernel_map_pages(s_page, 1, 0);
1344 	}
1345 }
1346 
1347 #ifdef CONFIG_HIGHMEM
1348 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1349 {
1350 	return is_highmem(zone) ?
1351 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1352 }
1353 
1354 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1355 {
1356 	struct page *s_page, *d_page;
1357 	void *src, *dst;
1358 
1359 	s_page = pfn_to_page(src_pfn);
1360 	d_page = pfn_to_page(dst_pfn);
1361 	if (PageHighMem(s_page)) {
1362 		src = kmap_atomic(s_page);
1363 		dst = kmap_atomic(d_page);
1364 		do_copy_page(dst, src);
1365 		kunmap_atomic(dst);
1366 		kunmap_atomic(src);
1367 	} else {
1368 		if (PageHighMem(d_page)) {
1369 			/*
1370 			 * The page pointed to by src may contain some kernel
1371 			 * data modified by kmap_atomic()
1372 			 */
1373 			safe_copy_page(buffer, s_page);
1374 			dst = kmap_atomic(d_page);
1375 			copy_page(dst, buffer);
1376 			kunmap_atomic(dst);
1377 		} else {
1378 			safe_copy_page(page_address(d_page), s_page);
1379 		}
1380 	}
1381 }
1382 #else
1383 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1384 
1385 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1386 {
1387 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1388 				pfn_to_page(src_pfn));
1389 }
1390 #endif /* CONFIG_HIGHMEM */
1391 
1392 static void copy_data_pages(struct memory_bitmap *copy_bm,
1393 			    struct memory_bitmap *orig_bm)
1394 {
1395 	struct zone *zone;
1396 	unsigned long pfn;
1397 
1398 	for_each_populated_zone(zone) {
1399 		unsigned long max_zone_pfn;
1400 
1401 		mark_free_pages(zone);
1402 		max_zone_pfn = zone_end_pfn(zone);
1403 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1404 			if (page_is_saveable(zone, pfn))
1405 				memory_bm_set_bit(orig_bm, pfn);
1406 	}
1407 	memory_bm_position_reset(orig_bm);
1408 	memory_bm_position_reset(copy_bm);
1409 	for(;;) {
1410 		pfn = memory_bm_next_pfn(orig_bm);
1411 		if (unlikely(pfn == BM_END_OF_MAP))
1412 			break;
1413 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1414 	}
1415 }
1416 
1417 /* Total number of image pages */
1418 static unsigned int nr_copy_pages;
1419 /* Number of pages needed for saving the original pfns of the image pages */
1420 static unsigned int nr_meta_pages;
1421 /*
1422  * Numbers of normal and highmem page frames allocated for hibernation image
1423  * before suspending devices.
1424  */
1425 unsigned int alloc_normal, alloc_highmem;
1426 /*
1427  * Memory bitmap used for marking saveable pages (during hibernation) or
1428  * hibernation image pages (during restore)
1429  */
1430 static struct memory_bitmap orig_bm;
1431 /*
1432  * Memory bitmap used during hibernation for marking allocated page frames that
1433  * will contain copies of saveable pages.  During restore it is initially used
1434  * for marking hibernation image pages, but then the set bits from it are
1435  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1436  * used for marking "safe" highmem pages, but it has to be reinitialized for
1437  * this purpose.
1438  */
1439 static struct memory_bitmap copy_bm;
1440 
1441 /**
1442  * swsusp_free - Free pages allocated for hibernation image.
1443  *
1444  * Image pages are alocated before snapshot creation, so they need to be
1445  * released after resume.
1446  */
1447 void swsusp_free(void)
1448 {
1449 	unsigned long fb_pfn, fr_pfn;
1450 
1451 	if (!forbidden_pages_map || !free_pages_map)
1452 		goto out;
1453 
1454 	memory_bm_position_reset(forbidden_pages_map);
1455 	memory_bm_position_reset(free_pages_map);
1456 
1457 loop:
1458 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1459 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1460 
1461 	/*
1462 	 * Find the next bit set in both bitmaps. This is guaranteed to
1463 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1464 	 */
1465 	do {
1466 		if (fb_pfn < fr_pfn)
1467 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1468 		if (fr_pfn < fb_pfn)
1469 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1470 	} while (fb_pfn != fr_pfn);
1471 
1472 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1473 		struct page *page = pfn_to_page(fr_pfn);
1474 
1475 		memory_bm_clear_current(forbidden_pages_map);
1476 		memory_bm_clear_current(free_pages_map);
1477 		hibernate_restore_unprotect_page(page_address(page));
1478 		__free_page(page);
1479 		goto loop;
1480 	}
1481 
1482 out:
1483 	nr_copy_pages = 0;
1484 	nr_meta_pages = 0;
1485 	restore_pblist = NULL;
1486 	buffer = NULL;
1487 	alloc_normal = 0;
1488 	alloc_highmem = 0;
1489 	hibernate_restore_protection_end();
1490 }
1491 
1492 /* Helper functions used for the shrinking of memory. */
1493 
1494 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1495 
1496 /**
1497  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1498  * @nr_pages: Number of page frames to allocate.
1499  * @mask: GFP flags to use for the allocation.
1500  *
1501  * Return value: Number of page frames actually allocated
1502  */
1503 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1504 {
1505 	unsigned long nr_alloc = 0;
1506 
1507 	while (nr_pages > 0) {
1508 		struct page *page;
1509 
1510 		page = alloc_image_page(mask);
1511 		if (!page)
1512 			break;
1513 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1514 		if (PageHighMem(page))
1515 			alloc_highmem++;
1516 		else
1517 			alloc_normal++;
1518 		nr_pages--;
1519 		nr_alloc++;
1520 	}
1521 
1522 	return nr_alloc;
1523 }
1524 
1525 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1526 					      unsigned long avail_normal)
1527 {
1528 	unsigned long alloc;
1529 
1530 	if (avail_normal <= alloc_normal)
1531 		return 0;
1532 
1533 	alloc = avail_normal - alloc_normal;
1534 	if (nr_pages < alloc)
1535 		alloc = nr_pages;
1536 
1537 	return preallocate_image_pages(alloc, GFP_IMAGE);
1538 }
1539 
1540 #ifdef CONFIG_HIGHMEM
1541 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1542 {
1543 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1544 }
1545 
1546 /**
1547  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1548  */
1549 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1550 {
1551 	x *= multiplier;
1552 	do_div(x, base);
1553 	return (unsigned long)x;
1554 }
1555 
1556 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1557 						  unsigned long highmem,
1558 						  unsigned long total)
1559 {
1560 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1561 
1562 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1563 }
1564 #else /* CONFIG_HIGHMEM */
1565 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1566 {
1567 	return 0;
1568 }
1569 
1570 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1571 							 unsigned long highmem,
1572 							 unsigned long total)
1573 {
1574 	return 0;
1575 }
1576 #endif /* CONFIG_HIGHMEM */
1577 
1578 /**
1579  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1580  */
1581 static unsigned long free_unnecessary_pages(void)
1582 {
1583 	unsigned long save, to_free_normal, to_free_highmem, free;
1584 
1585 	save = count_data_pages();
1586 	if (alloc_normal >= save) {
1587 		to_free_normal = alloc_normal - save;
1588 		save = 0;
1589 	} else {
1590 		to_free_normal = 0;
1591 		save -= alloc_normal;
1592 	}
1593 	save += count_highmem_pages();
1594 	if (alloc_highmem >= save) {
1595 		to_free_highmem = alloc_highmem - save;
1596 	} else {
1597 		to_free_highmem = 0;
1598 		save -= alloc_highmem;
1599 		if (to_free_normal > save)
1600 			to_free_normal -= save;
1601 		else
1602 			to_free_normal = 0;
1603 	}
1604 	free = to_free_normal + to_free_highmem;
1605 
1606 	memory_bm_position_reset(&copy_bm);
1607 
1608 	while (to_free_normal > 0 || to_free_highmem > 0) {
1609 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1610 		struct page *page = pfn_to_page(pfn);
1611 
1612 		if (PageHighMem(page)) {
1613 			if (!to_free_highmem)
1614 				continue;
1615 			to_free_highmem--;
1616 			alloc_highmem--;
1617 		} else {
1618 			if (!to_free_normal)
1619 				continue;
1620 			to_free_normal--;
1621 			alloc_normal--;
1622 		}
1623 		memory_bm_clear_bit(&copy_bm, pfn);
1624 		swsusp_unset_page_forbidden(page);
1625 		swsusp_unset_page_free(page);
1626 		__free_page(page);
1627 	}
1628 
1629 	return free;
1630 }
1631 
1632 /**
1633  * minimum_image_size - Estimate the minimum acceptable size of an image.
1634  * @saveable: Number of saveable pages in the system.
1635  *
1636  * We want to avoid attempting to free too much memory too hard, so estimate the
1637  * minimum acceptable size of a hibernation image to use as the lower limit for
1638  * preallocating memory.
1639  *
1640  * We assume that the minimum image size should be proportional to
1641  *
1642  * [number of saveable pages] - [number of pages that can be freed in theory]
1643  *
1644  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1645  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1646  * minus mapped file pages.
1647  */
1648 static unsigned long minimum_image_size(unsigned long saveable)
1649 {
1650 	unsigned long size;
1651 
1652 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1653 		+ global_node_page_state(NR_ACTIVE_ANON)
1654 		+ global_node_page_state(NR_INACTIVE_ANON)
1655 		+ global_node_page_state(NR_ACTIVE_FILE)
1656 		+ global_node_page_state(NR_INACTIVE_FILE)
1657 		- global_node_page_state(NR_FILE_MAPPED);
1658 
1659 	return saveable <= size ? 0 : saveable - size;
1660 }
1661 
1662 /**
1663  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1664  *
1665  * To create a hibernation image it is necessary to make a copy of every page
1666  * frame in use.  We also need a number of page frames to be free during
1667  * hibernation for allocations made while saving the image and for device
1668  * drivers, in case they need to allocate memory from their hibernation
1669  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1670  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1671  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1672  * total number of available page frames and allocate at least
1673  *
1674  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1675  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1676  *
1677  * of them, which corresponds to the maximum size of a hibernation image.
1678  *
1679  * If image_size is set below the number following from the above formula,
1680  * the preallocation of memory is continued until the total number of saveable
1681  * pages in the system is below the requested image size or the minimum
1682  * acceptable image size returned by minimum_image_size(), whichever is greater.
1683  */
1684 int hibernate_preallocate_memory(void)
1685 {
1686 	struct zone *zone;
1687 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1688 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1689 	ktime_t start, stop;
1690 	int error;
1691 
1692 	printk(KERN_INFO "PM: Preallocating image memory... ");
1693 	start = ktime_get();
1694 
1695 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1696 	if (error)
1697 		goto err_out;
1698 
1699 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1700 	if (error)
1701 		goto err_out;
1702 
1703 	alloc_normal = 0;
1704 	alloc_highmem = 0;
1705 
1706 	/* Count the number of saveable data pages. */
1707 	save_highmem = count_highmem_pages();
1708 	saveable = count_data_pages();
1709 
1710 	/*
1711 	 * Compute the total number of page frames we can use (count) and the
1712 	 * number of pages needed for image metadata (size).
1713 	 */
1714 	count = saveable;
1715 	saveable += save_highmem;
1716 	highmem = save_highmem;
1717 	size = 0;
1718 	for_each_populated_zone(zone) {
1719 		size += snapshot_additional_pages(zone);
1720 		if (is_highmem(zone))
1721 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1722 		else
1723 			count += zone_page_state(zone, NR_FREE_PAGES);
1724 	}
1725 	avail_normal = count;
1726 	count += highmem;
1727 	count -= totalreserve_pages;
1728 
1729 	/* Add number of pages required for page keys (s390 only). */
1730 	size += page_key_additional_pages(saveable);
1731 
1732 	/* Compute the maximum number of saveable pages to leave in memory. */
1733 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1734 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1735 	/* Compute the desired number of image pages specified by image_size. */
1736 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1737 	if (size > max_size)
1738 		size = max_size;
1739 	/*
1740 	 * If the desired number of image pages is at least as large as the
1741 	 * current number of saveable pages in memory, allocate page frames for
1742 	 * the image and we're done.
1743 	 */
1744 	if (size >= saveable) {
1745 		pages = preallocate_image_highmem(save_highmem);
1746 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1747 		goto out;
1748 	}
1749 
1750 	/* Estimate the minimum size of the image. */
1751 	pages = minimum_image_size(saveable);
1752 	/*
1753 	 * To avoid excessive pressure on the normal zone, leave room in it to
1754 	 * accommodate an image of the minimum size (unless it's already too
1755 	 * small, in which case don't preallocate pages from it at all).
1756 	 */
1757 	if (avail_normal > pages)
1758 		avail_normal -= pages;
1759 	else
1760 		avail_normal = 0;
1761 	if (size < pages)
1762 		size = min_t(unsigned long, pages, max_size);
1763 
1764 	/*
1765 	 * Let the memory management subsystem know that we're going to need a
1766 	 * large number of page frames to allocate and make it free some memory.
1767 	 * NOTE: If this is not done, performance will be hurt badly in some
1768 	 * test cases.
1769 	 */
1770 	shrink_all_memory(saveable - size);
1771 
1772 	/*
1773 	 * The number of saveable pages in memory was too high, so apply some
1774 	 * pressure to decrease it.  First, make room for the largest possible
1775 	 * image and fail if that doesn't work.  Next, try to decrease the size
1776 	 * of the image as much as indicated by 'size' using allocations from
1777 	 * highmem and non-highmem zones separately.
1778 	 */
1779 	pages_highmem = preallocate_image_highmem(highmem / 2);
1780 	alloc = count - max_size;
1781 	if (alloc > pages_highmem)
1782 		alloc -= pages_highmem;
1783 	else
1784 		alloc = 0;
1785 	pages = preallocate_image_memory(alloc, avail_normal);
1786 	if (pages < alloc) {
1787 		/* We have exhausted non-highmem pages, try highmem. */
1788 		alloc -= pages;
1789 		pages += pages_highmem;
1790 		pages_highmem = preallocate_image_highmem(alloc);
1791 		if (pages_highmem < alloc)
1792 			goto err_out;
1793 		pages += pages_highmem;
1794 		/*
1795 		 * size is the desired number of saveable pages to leave in
1796 		 * memory, so try to preallocate (all memory - size) pages.
1797 		 */
1798 		alloc = (count - pages) - size;
1799 		pages += preallocate_image_highmem(alloc);
1800 	} else {
1801 		/*
1802 		 * There are approximately max_size saveable pages at this point
1803 		 * and we want to reduce this number down to size.
1804 		 */
1805 		alloc = max_size - size;
1806 		size = preallocate_highmem_fraction(alloc, highmem, count);
1807 		pages_highmem += size;
1808 		alloc -= size;
1809 		size = preallocate_image_memory(alloc, avail_normal);
1810 		pages_highmem += preallocate_image_highmem(alloc - size);
1811 		pages += pages_highmem + size;
1812 	}
1813 
1814 	/*
1815 	 * We only need as many page frames for the image as there are saveable
1816 	 * pages in memory, but we have allocated more.  Release the excessive
1817 	 * ones now.
1818 	 */
1819 	pages -= free_unnecessary_pages();
1820 
1821  out:
1822 	stop = ktime_get();
1823 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1824 	swsusp_show_speed(start, stop, pages, "Allocated");
1825 
1826 	return 0;
1827 
1828  err_out:
1829 	printk(KERN_CONT "\n");
1830 	swsusp_free();
1831 	return -ENOMEM;
1832 }
1833 
1834 #ifdef CONFIG_HIGHMEM
1835 /**
1836  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1837  *
1838  * Compute the number of non-highmem pages that will be necessary for creating
1839  * copies of highmem pages.
1840  */
1841 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1842 {
1843 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1844 
1845 	if (free_highmem >= nr_highmem)
1846 		nr_highmem = 0;
1847 	else
1848 		nr_highmem -= free_highmem;
1849 
1850 	return nr_highmem;
1851 }
1852 #else
1853 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1854 #endif /* CONFIG_HIGHMEM */
1855 
1856 /**
1857  * enough_free_mem - Check if there is enough free memory for the image.
1858  */
1859 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1860 {
1861 	struct zone *zone;
1862 	unsigned int free = alloc_normal;
1863 
1864 	for_each_populated_zone(zone)
1865 		if (!is_highmem(zone))
1866 			free += zone_page_state(zone, NR_FREE_PAGES);
1867 
1868 	nr_pages += count_pages_for_highmem(nr_highmem);
1869 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1870 		nr_pages, PAGES_FOR_IO, free);
1871 
1872 	return free > nr_pages + PAGES_FOR_IO;
1873 }
1874 
1875 #ifdef CONFIG_HIGHMEM
1876 /**
1877  * get_highmem_buffer - Allocate a buffer for highmem pages.
1878  *
1879  * If there are some highmem pages in the hibernation image, we may need a
1880  * buffer to copy them and/or load their data.
1881  */
1882 static inline int get_highmem_buffer(int safe_needed)
1883 {
1884 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1885 	return buffer ? 0 : -ENOMEM;
1886 }
1887 
1888 /**
1889  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1890  *
1891  * Try to allocate as many pages as needed, but if the number of free highmem
1892  * pages is less than that, allocate them all.
1893  */
1894 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1895 					       unsigned int nr_highmem)
1896 {
1897 	unsigned int to_alloc = count_free_highmem_pages();
1898 
1899 	if (to_alloc > nr_highmem)
1900 		to_alloc = nr_highmem;
1901 
1902 	nr_highmem -= to_alloc;
1903 	while (to_alloc-- > 0) {
1904 		struct page *page;
1905 
1906 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1907 		memory_bm_set_bit(bm, page_to_pfn(page));
1908 	}
1909 	return nr_highmem;
1910 }
1911 #else
1912 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1913 
1914 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1915 					       unsigned int n) { return 0; }
1916 #endif /* CONFIG_HIGHMEM */
1917 
1918 /**
1919  * swsusp_alloc - Allocate memory for hibernation image.
1920  *
1921  * We first try to allocate as many highmem pages as there are
1922  * saveable highmem pages in the system.  If that fails, we allocate
1923  * non-highmem pages for the copies of the remaining highmem ones.
1924  *
1925  * In this approach it is likely that the copies of highmem pages will
1926  * also be located in the high memory, because of the way in which
1927  * copy_data_pages() works.
1928  */
1929 static int swsusp_alloc(struct memory_bitmap *orig_bm,
1930 			struct memory_bitmap *copy_bm,
1931 			unsigned int nr_pages, unsigned int nr_highmem)
1932 {
1933 	if (nr_highmem > 0) {
1934 		if (get_highmem_buffer(PG_ANY))
1935 			goto err_out;
1936 		if (nr_highmem > alloc_highmem) {
1937 			nr_highmem -= alloc_highmem;
1938 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939 		}
1940 	}
1941 	if (nr_pages > alloc_normal) {
1942 		nr_pages -= alloc_normal;
1943 		while (nr_pages-- > 0) {
1944 			struct page *page;
1945 
1946 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1947 			if (!page)
1948 				goto err_out;
1949 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950 		}
1951 	}
1952 
1953 	return 0;
1954 
1955  err_out:
1956 	swsusp_free();
1957 	return -ENOMEM;
1958 }
1959 
1960 asmlinkage __visible int swsusp_save(void)
1961 {
1962 	unsigned int nr_pages, nr_highmem;
1963 
1964 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1965 
1966 	drain_local_pages(NULL);
1967 	nr_pages = count_data_pages();
1968 	nr_highmem = count_highmem_pages();
1969 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1970 
1971 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972 		printk(KERN_ERR "PM: Not enough free memory\n");
1973 		return -ENOMEM;
1974 	}
1975 
1976 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1977 		printk(KERN_ERR "PM: Memory allocation failed\n");
1978 		return -ENOMEM;
1979 	}
1980 
1981 	/*
1982 	 * During allocating of suspend pagedir, new cold pages may appear.
1983 	 * Kill them.
1984 	 */
1985 	drain_local_pages(NULL);
1986 	copy_data_pages(&copy_bm, &orig_bm);
1987 
1988 	/*
1989 	 * End of critical section. From now on, we can write to memory,
1990 	 * but we should not touch disk. This specially means we must _not_
1991 	 * touch swap space! Except we must write out our image of course.
1992 	 */
1993 
1994 	nr_pages += nr_highmem;
1995 	nr_copy_pages = nr_pages;
1996 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997 
1998 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1999 		nr_pages);
2000 
2001 	return 0;
2002 }
2003 
2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005 static int init_header_complete(struct swsusp_info *info)
2006 {
2007 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008 	info->version_code = LINUX_VERSION_CODE;
2009 	return 0;
2010 }
2011 
2012 static char *check_image_kernel(struct swsusp_info *info)
2013 {
2014 	if (info->version_code != LINUX_VERSION_CODE)
2015 		return "kernel version";
2016 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2017 		return "system type";
2018 	if (strcmp(info->uts.release,init_utsname()->release))
2019 		return "kernel release";
2020 	if (strcmp(info->uts.version,init_utsname()->version))
2021 		return "version";
2022 	if (strcmp(info->uts.machine,init_utsname()->machine))
2023 		return "machine";
2024 	return NULL;
2025 }
2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2027 
2028 unsigned long snapshot_get_image_size(void)
2029 {
2030 	return nr_copy_pages + nr_meta_pages + 1;
2031 }
2032 
2033 static int init_header(struct swsusp_info *info)
2034 {
2035 	memset(info, 0, sizeof(struct swsusp_info));
2036 	info->num_physpages = get_num_physpages();
2037 	info->image_pages = nr_copy_pages;
2038 	info->pages = snapshot_get_image_size();
2039 	info->size = info->pages;
2040 	info->size <<= PAGE_SHIFT;
2041 	return init_header_complete(info);
2042 }
2043 
2044 /**
2045  * pack_pfns - Prepare PFNs for saving.
2046  * @bm: Memory bitmap.
2047  * @buf: Memory buffer to store the PFNs in.
2048  *
2049  * PFNs corresponding to set bits in @bm are stored in the area of memory
2050  * pointed to by @buf (1 page at a time).
2051  */
2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 {
2054 	int j;
2055 
2056 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 		buf[j] = memory_bm_next_pfn(bm);
2058 		if (unlikely(buf[j] == BM_END_OF_MAP))
2059 			break;
2060 		/* Save page key for data page (s390 only). */
2061 		page_key_read(buf + j);
2062 	}
2063 }
2064 
2065 /**
2066  * snapshot_read_next - Get the address to read the next image page from.
2067  * @handle: Snapshot handle to be used for the reading.
2068  *
2069  * On the first call, @handle should point to a zeroed snapshot_handle
2070  * structure.  The structure gets populated then and a pointer to it should be
2071  * passed to this function every next time.
2072  *
2073  * On success, the function returns a positive number.  Then, the caller
2074  * is allowed to read up to the returned number of bytes from the memory
2075  * location computed by the data_of() macro.
2076  *
2077  * The function returns 0 to indicate the end of the data stream condition,
2078  * and negative numbers are returned on errors.  If that happens, the structure
2079  * pointed to by @handle is not updated and should not be used any more.
2080  */
2081 int snapshot_read_next(struct snapshot_handle *handle)
2082 {
2083 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2084 		return 0;
2085 
2086 	if (!buffer) {
2087 		/* This makes the buffer be freed by swsusp_free() */
2088 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 		if (!buffer)
2090 			return -ENOMEM;
2091 	}
2092 	if (!handle->cur) {
2093 		int error;
2094 
2095 		error = init_header((struct swsusp_info *)buffer);
2096 		if (error)
2097 			return error;
2098 		handle->buffer = buffer;
2099 		memory_bm_position_reset(&orig_bm);
2100 		memory_bm_position_reset(&copy_bm);
2101 	} else if (handle->cur <= nr_meta_pages) {
2102 		clear_page(buffer);
2103 		pack_pfns(buffer, &orig_bm);
2104 	} else {
2105 		struct page *page;
2106 
2107 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2108 		if (PageHighMem(page)) {
2109 			/*
2110 			 * Highmem pages are copied to the buffer,
2111 			 * because we can't return with a kmapped
2112 			 * highmem page (we may not be called again).
2113 			 */
2114 			void *kaddr;
2115 
2116 			kaddr = kmap_atomic(page);
2117 			copy_page(buffer, kaddr);
2118 			kunmap_atomic(kaddr);
2119 			handle->buffer = buffer;
2120 		} else {
2121 			handle->buffer = page_address(page);
2122 		}
2123 	}
2124 	handle->cur++;
2125 	return PAGE_SIZE;
2126 }
2127 
2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2129 				    struct memory_bitmap *src)
2130 {
2131 	unsigned long pfn;
2132 
2133 	memory_bm_position_reset(src);
2134 	pfn = memory_bm_next_pfn(src);
2135 	while (pfn != BM_END_OF_MAP) {
2136 		memory_bm_set_bit(dst, pfn);
2137 		pfn = memory_bm_next_pfn(src);
2138 	}
2139 }
2140 
2141 /**
2142  * mark_unsafe_pages - Mark pages that were used before hibernation.
2143  *
2144  * Mark the pages that cannot be used for storing the image during restoration,
2145  * because they conflict with the pages that had been used before hibernation.
2146  */
2147 static void mark_unsafe_pages(struct memory_bitmap *bm)
2148 {
2149 	unsigned long pfn;
2150 
2151 	/* Clear the "free"/"unsafe" bit for all PFNs */
2152 	memory_bm_position_reset(free_pages_map);
2153 	pfn = memory_bm_next_pfn(free_pages_map);
2154 	while (pfn != BM_END_OF_MAP) {
2155 		memory_bm_clear_current(free_pages_map);
2156 		pfn = memory_bm_next_pfn(free_pages_map);
2157 	}
2158 
2159 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160 	duplicate_memory_bitmap(free_pages_map, bm);
2161 
2162 	allocated_unsafe_pages = 0;
2163 }
2164 
2165 static int check_header(struct swsusp_info *info)
2166 {
2167 	char *reason;
2168 
2169 	reason = check_image_kernel(info);
2170 	if (!reason && info->num_physpages != get_num_physpages())
2171 		reason = "memory size";
2172 	if (reason) {
2173 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2174 		return -EPERM;
2175 	}
2176 	return 0;
2177 }
2178 
2179 /**
2180  * load header - Check the image header and copy the data from it.
2181  */
2182 static int load_header(struct swsusp_info *info)
2183 {
2184 	int error;
2185 
2186 	restore_pblist = NULL;
2187 	error = check_header(info);
2188 	if (!error) {
2189 		nr_copy_pages = info->image_pages;
2190 		nr_meta_pages = info->pages - info->image_pages - 1;
2191 	}
2192 	return error;
2193 }
2194 
2195 /**
2196  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197  * @bm: Memory bitmap.
2198  * @buf: Area of memory containing the PFNs.
2199  *
2200  * For each element of the array pointed to by @buf (1 page at a time), set the
2201  * corresponding bit in @bm.
2202  */
2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 {
2205 	int j;
2206 
2207 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2208 		if (unlikely(buf[j] == BM_END_OF_MAP))
2209 			break;
2210 
2211 		/* Extract and buffer page key for data page (s390 only). */
2212 		page_key_memorize(buf + j);
2213 
2214 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 			memory_bm_set_bit(bm, buf[j]);
2216 		else
2217 			return -EFAULT;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 #ifdef CONFIG_HIGHMEM
2224 /*
2225  * struct highmem_pbe is used for creating the list of highmem pages that
2226  * should be restored atomically during the resume from disk, because the page
2227  * frames they have occupied before the suspend are in use.
2228  */
2229 struct highmem_pbe {
2230 	struct page *copy_page;	/* data is here now */
2231 	struct page *orig_page;	/* data was here before the suspend */
2232 	struct highmem_pbe *next;
2233 };
2234 
2235 /*
2236  * List of highmem PBEs needed for restoring the highmem pages that were
2237  * allocated before the suspend and included in the suspend image, but have
2238  * also been allocated by the "resume" kernel, so their contents cannot be
2239  * written directly to their "original" page frames.
2240  */
2241 static struct highmem_pbe *highmem_pblist;
2242 
2243 /**
2244  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245  * @bm: Memory bitmap.
2246  *
2247  * The bits in @bm that correspond to image pages are assumed to be set.
2248  */
2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2250 {
2251 	unsigned long pfn;
2252 	unsigned int cnt = 0;
2253 
2254 	memory_bm_position_reset(bm);
2255 	pfn = memory_bm_next_pfn(bm);
2256 	while (pfn != BM_END_OF_MAP) {
2257 		if (PageHighMem(pfn_to_page(pfn)))
2258 			cnt++;
2259 
2260 		pfn = memory_bm_next_pfn(bm);
2261 	}
2262 	return cnt;
2263 }
2264 
2265 static unsigned int safe_highmem_pages;
2266 
2267 static struct memory_bitmap *safe_highmem_bm;
2268 
2269 /**
2270  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271  * @bm: Pointer to an uninitialized memory bitmap structure.
2272  * @nr_highmem_p: Pointer to the number of highmem image pages.
2273  *
2274  * Try to allocate as many highmem pages as there are highmem image pages
2275  * (@nr_highmem_p points to the variable containing the number of highmem image
2276  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2277  * hibernation image is restored entirely) have the corresponding bits set in
2278  * @bm (it must be unitialized).
2279  *
2280  * NOTE: This function should not be called if there are no highmem image pages.
2281  */
2282 static int prepare_highmem_image(struct memory_bitmap *bm,
2283 				 unsigned int *nr_highmem_p)
2284 {
2285 	unsigned int to_alloc;
2286 
2287 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2288 		return -ENOMEM;
2289 
2290 	if (get_highmem_buffer(PG_SAFE))
2291 		return -ENOMEM;
2292 
2293 	to_alloc = count_free_highmem_pages();
2294 	if (to_alloc > *nr_highmem_p)
2295 		to_alloc = *nr_highmem_p;
2296 	else
2297 		*nr_highmem_p = to_alloc;
2298 
2299 	safe_highmem_pages = 0;
2300 	while (to_alloc-- > 0) {
2301 		struct page *page;
2302 
2303 		page = alloc_page(__GFP_HIGHMEM);
2304 		if (!swsusp_page_is_free(page)) {
2305 			/* The page is "safe", set its bit the bitmap */
2306 			memory_bm_set_bit(bm, page_to_pfn(page));
2307 			safe_highmem_pages++;
2308 		}
2309 		/* Mark the page as allocated */
2310 		swsusp_set_page_forbidden(page);
2311 		swsusp_set_page_free(page);
2312 	}
2313 	memory_bm_position_reset(bm);
2314 	safe_highmem_bm = bm;
2315 	return 0;
2316 }
2317 
2318 static struct page *last_highmem_page;
2319 
2320 /**
2321  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2322  *
2323  * For a given highmem image page get a buffer that suspend_write_next() should
2324  * return to its caller to write to.
2325  *
2326  * If the page is to be saved to its "original" page frame or a copy of
2327  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2328  * the copy of the page is to be made in normal memory, so the address of
2329  * the copy is returned.
2330  *
2331  * If @buffer is returned, the caller of suspend_write_next() will write
2332  * the page's contents to @buffer, so they will have to be copied to the
2333  * right location on the next call to suspend_write_next() and it is done
2334  * with the help of copy_last_highmem_page().  For this purpose, if
2335  * @buffer is returned, @last_highmem_page is set to the page to which
2336  * the data will have to be copied from @buffer.
2337  */
2338 static void *get_highmem_page_buffer(struct page *page,
2339 				     struct chain_allocator *ca)
2340 {
2341 	struct highmem_pbe *pbe;
2342 	void *kaddr;
2343 
2344 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 		/*
2346 		 * We have allocated the "original" page frame and we can
2347 		 * use it directly to store the loaded page.
2348 		 */
2349 		last_highmem_page = page;
2350 		return buffer;
2351 	}
2352 	/*
2353 	 * The "original" page frame has not been allocated and we have to
2354 	 * use a "safe" page frame to store the loaded page.
2355 	 */
2356 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2357 	if (!pbe) {
2358 		swsusp_free();
2359 		return ERR_PTR(-ENOMEM);
2360 	}
2361 	pbe->orig_page = page;
2362 	if (safe_highmem_pages > 0) {
2363 		struct page *tmp;
2364 
2365 		/* Copy of the page will be stored in high memory */
2366 		kaddr = buffer;
2367 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2368 		safe_highmem_pages--;
2369 		last_highmem_page = tmp;
2370 		pbe->copy_page = tmp;
2371 	} else {
2372 		/* Copy of the page will be stored in normal memory */
2373 		kaddr = safe_pages_list;
2374 		safe_pages_list = safe_pages_list->next;
2375 		pbe->copy_page = virt_to_page(kaddr);
2376 	}
2377 	pbe->next = highmem_pblist;
2378 	highmem_pblist = pbe;
2379 	return kaddr;
2380 }
2381 
2382 /**
2383  * copy_last_highmem_page - Copy most the most recent highmem image page.
2384  *
2385  * Copy the contents of a highmem image from @buffer, where the caller of
2386  * snapshot_write_next() has stored them, to the right location represented by
2387  * @last_highmem_page .
2388  */
2389 static void copy_last_highmem_page(void)
2390 {
2391 	if (last_highmem_page) {
2392 		void *dst;
2393 
2394 		dst = kmap_atomic(last_highmem_page);
2395 		copy_page(dst, buffer);
2396 		kunmap_atomic(dst);
2397 		last_highmem_page = NULL;
2398 	}
2399 }
2400 
2401 static inline int last_highmem_page_copied(void)
2402 {
2403 	return !last_highmem_page;
2404 }
2405 
2406 static inline void free_highmem_data(void)
2407 {
2408 	if (safe_highmem_bm)
2409 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2410 
2411 	if (buffer)
2412 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2413 }
2414 #else
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416 
2417 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2418 					unsigned int *nr_highmem_p) { return 0; }
2419 
2420 static inline void *get_highmem_page_buffer(struct page *page,
2421 					    struct chain_allocator *ca)
2422 {
2423 	return ERR_PTR(-EINVAL);
2424 }
2425 
2426 static inline void copy_last_highmem_page(void) {}
2427 static inline int last_highmem_page_copied(void) { return 1; }
2428 static inline void free_highmem_data(void) {}
2429 #endif /* CONFIG_HIGHMEM */
2430 
2431 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2432 
2433 /**
2434  * prepare_image - Make room for loading hibernation image.
2435  * @new_bm: Unitialized memory bitmap structure.
2436  * @bm: Memory bitmap with unsafe pages marked.
2437  *
2438  * Use @bm to mark the pages that will be overwritten in the process of
2439  * restoring the system memory state from the suspend image ("unsafe" pages)
2440  * and allocate memory for the image.
2441  *
2442  * The idea is to allocate a new memory bitmap first and then allocate
2443  * as many pages as needed for image data, but without specifying what those
2444  * pages will be used for just yet.  Instead, we mark them all as allocated and
2445  * create a lists of "safe" pages to be used later.  On systems with high
2446  * memory a list of "safe" highmem pages is created too.
2447  */
2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449 {
2450 	unsigned int nr_pages, nr_highmem;
2451 	struct linked_page *lp;
2452 	int error;
2453 
2454 	/* If there is no highmem, the buffer will not be necessary */
2455 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2456 	buffer = NULL;
2457 
2458 	nr_highmem = count_highmem_image_pages(bm);
2459 	mark_unsafe_pages(bm);
2460 
2461 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2462 	if (error)
2463 		goto Free;
2464 
2465 	duplicate_memory_bitmap(new_bm, bm);
2466 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 	if (nr_highmem > 0) {
2468 		error = prepare_highmem_image(bm, &nr_highmem);
2469 		if (error)
2470 			goto Free;
2471 	}
2472 	/*
2473 	 * Reserve some safe pages for potential later use.
2474 	 *
2475 	 * NOTE: This way we make sure there will be enough safe pages for the
2476 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2477 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 	 *
2479 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480 	 */
2481 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2483 	while (nr_pages > 0) {
2484 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485 		if (!lp) {
2486 			error = -ENOMEM;
2487 			goto Free;
2488 		}
2489 		lp->next = safe_pages_list;
2490 		safe_pages_list = lp;
2491 		nr_pages--;
2492 	}
2493 	/* Preallocate memory for the image */
2494 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 	while (nr_pages > 0) {
2496 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2497 		if (!lp) {
2498 			error = -ENOMEM;
2499 			goto Free;
2500 		}
2501 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 			/* The page is "safe", add it to the list */
2503 			lp->next = safe_pages_list;
2504 			safe_pages_list = lp;
2505 		}
2506 		/* Mark the page as allocated */
2507 		swsusp_set_page_forbidden(virt_to_page(lp));
2508 		swsusp_set_page_free(virt_to_page(lp));
2509 		nr_pages--;
2510 	}
2511 	return 0;
2512 
2513  Free:
2514 	swsusp_free();
2515 	return error;
2516 }
2517 
2518 /**
2519  * get_buffer - Get the address to store the next image data page.
2520  *
2521  * Get the address that snapshot_write_next() should return to its caller to
2522  * write to.
2523  */
2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525 {
2526 	struct pbe *pbe;
2527 	struct page *page;
2528 	unsigned long pfn = memory_bm_next_pfn(bm);
2529 
2530 	if (pfn == BM_END_OF_MAP)
2531 		return ERR_PTR(-EFAULT);
2532 
2533 	page = pfn_to_page(pfn);
2534 	if (PageHighMem(page))
2535 		return get_highmem_page_buffer(page, ca);
2536 
2537 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 		/*
2539 		 * We have allocated the "original" page frame and we can
2540 		 * use it directly to store the loaded page.
2541 		 */
2542 		return page_address(page);
2543 
2544 	/*
2545 	 * The "original" page frame has not been allocated and we have to
2546 	 * use a "safe" page frame to store the loaded page.
2547 	 */
2548 	pbe = chain_alloc(ca, sizeof(struct pbe));
2549 	if (!pbe) {
2550 		swsusp_free();
2551 		return ERR_PTR(-ENOMEM);
2552 	}
2553 	pbe->orig_address = page_address(page);
2554 	pbe->address = safe_pages_list;
2555 	safe_pages_list = safe_pages_list->next;
2556 	pbe->next = restore_pblist;
2557 	restore_pblist = pbe;
2558 	return pbe->address;
2559 }
2560 
2561 /**
2562  * snapshot_write_next - Get the address to store the next image page.
2563  * @handle: Snapshot handle structure to guide the writing.
2564  *
2565  * On the first call, @handle should point to a zeroed snapshot_handle
2566  * structure.  The structure gets populated then and a pointer to it should be
2567  * passed to this function every next time.
2568  *
2569  * On success, the function returns a positive number.  Then, the caller
2570  * is allowed to write up to the returned number of bytes to the memory
2571  * location computed by the data_of() macro.
2572  *
2573  * The function returns 0 to indicate the "end of file" condition.  Negative
2574  * numbers are returned on errors, in which cases the structure pointed to by
2575  * @handle is not updated and should not be used any more.
2576  */
2577 int snapshot_write_next(struct snapshot_handle *handle)
2578 {
2579 	static struct chain_allocator ca;
2580 	int error = 0;
2581 
2582 	/* Check if we have already loaded the entire image */
2583 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584 		return 0;
2585 
2586 	handle->sync_read = 1;
2587 
2588 	if (!handle->cur) {
2589 		if (!buffer)
2590 			/* This makes the buffer be freed by swsusp_free() */
2591 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2592 
2593 		if (!buffer)
2594 			return -ENOMEM;
2595 
2596 		handle->buffer = buffer;
2597 	} else if (handle->cur == 1) {
2598 		error = load_header(buffer);
2599 		if (error)
2600 			return error;
2601 
2602 		safe_pages_list = NULL;
2603 
2604 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2605 		if (error)
2606 			return error;
2607 
2608 		/* Allocate buffer for page keys. */
2609 		error = page_key_alloc(nr_copy_pages);
2610 		if (error)
2611 			return error;
2612 
2613 		hibernate_restore_protection_begin();
2614 	} else if (handle->cur <= nr_meta_pages + 1) {
2615 		error = unpack_orig_pfns(buffer, &copy_bm);
2616 		if (error)
2617 			return error;
2618 
2619 		if (handle->cur == nr_meta_pages + 1) {
2620 			error = prepare_image(&orig_bm, &copy_bm);
2621 			if (error)
2622 				return error;
2623 
2624 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2625 			memory_bm_position_reset(&orig_bm);
2626 			restore_pblist = NULL;
2627 			handle->buffer = get_buffer(&orig_bm, &ca);
2628 			handle->sync_read = 0;
2629 			if (IS_ERR(handle->buffer))
2630 				return PTR_ERR(handle->buffer);
2631 		}
2632 	} else {
2633 		copy_last_highmem_page();
2634 		/* Restore page key for data page (s390 only). */
2635 		page_key_write(handle->buffer);
2636 		hibernate_restore_protect_page(handle->buffer);
2637 		handle->buffer = get_buffer(&orig_bm, &ca);
2638 		if (IS_ERR(handle->buffer))
2639 			return PTR_ERR(handle->buffer);
2640 		if (handle->buffer != buffer)
2641 			handle->sync_read = 0;
2642 	}
2643 	handle->cur++;
2644 	return PAGE_SIZE;
2645 }
2646 
2647 /**
2648  * snapshot_write_finalize - Complete the loading of a hibernation image.
2649  *
2650  * Must be called after the last call to snapshot_write_next() in case the last
2651  * page in the image happens to be a highmem page and its contents should be
2652  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2653  * necessary any more.
2654  */
2655 void snapshot_write_finalize(struct snapshot_handle *handle)
2656 {
2657 	copy_last_highmem_page();
2658 	/* Restore page key for data page (s390 only). */
2659 	page_key_write(handle->buffer);
2660 	page_key_free();
2661 	hibernate_restore_protect_page(handle->buffer);
2662 	/* Do that only if we have loaded the image entirely */
2663 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664 		memory_bm_recycle(&orig_bm);
2665 		free_highmem_data();
2666 	}
2667 }
2668 
2669 int snapshot_image_loaded(struct snapshot_handle *handle)
2670 {
2671 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 			handle->cur <= nr_meta_pages + nr_copy_pages);
2673 }
2674 
2675 #ifdef CONFIG_HIGHMEM
2676 /* Assumes that @buf is ready and points to a "safe" page */
2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2678 				       void *buf)
2679 {
2680 	void *kaddr1, *kaddr2;
2681 
2682 	kaddr1 = kmap_atomic(p1);
2683 	kaddr2 = kmap_atomic(p2);
2684 	copy_page(buf, kaddr1);
2685 	copy_page(kaddr1, kaddr2);
2686 	copy_page(kaddr2, buf);
2687 	kunmap_atomic(kaddr2);
2688 	kunmap_atomic(kaddr1);
2689 }
2690 
2691 /**
2692  * restore_highmem - Put highmem image pages into their original locations.
2693  *
2694  * For each highmem page that was in use before hibernation and is included in
2695  * the image, and also has been allocated by the "restore" kernel, swap its
2696  * current contents with the previous (ie. "before hibernation") ones.
2697  *
2698  * If the restore eventually fails, we can call this function once again and
2699  * restore the highmem state as seen by the restore kernel.
2700  */
2701 int restore_highmem(void)
2702 {
2703 	struct highmem_pbe *pbe = highmem_pblist;
2704 	void *buf;
2705 
2706 	if (!pbe)
2707 		return 0;
2708 
2709 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2710 	if (!buf)
2711 		return -ENOMEM;
2712 
2713 	while (pbe) {
2714 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2715 		pbe = pbe->next;
2716 	}
2717 	free_image_page(buf, PG_UNSAFE_CLEAR);
2718 	return 0;
2719 }
2720 #endif /* CONFIG_HIGHMEM */
2721