1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Preferred image size in bytes (tunable via /sys/power/image_size). 45 * When it is set to N, swsusp will do its best to ensure the image 46 * size will not exceed N bytes, but if that is impossible, it will 47 * try to create the smallest image possible. 48 */ 49 unsigned long image_size; 50 51 void __init hibernate_image_size_init(void) 52 { 53 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 54 } 55 56 /* List of PBEs needed for restoring the pages that were allocated before 57 * the suspend and included in the suspend image, but have also been 58 * allocated by the "resume" kernel, so their contents cannot be written 59 * directly to their "original" page frames. 60 */ 61 struct pbe *restore_pblist; 62 63 /* Pointer to an auxiliary buffer (1 page) */ 64 static void *buffer; 65 66 /** 67 * @safe_needed - on resume, for storing the PBE list and the image, 68 * we can only use memory pages that do not conflict with the pages 69 * used before suspend. The unsafe pages have PageNosaveFree set 70 * and we count them using unsafe_pages. 71 * 72 * Each allocated image page is marked as PageNosave and PageNosaveFree 73 * so that swsusp_free() can release it. 74 */ 75 76 #define PG_ANY 0 77 #define PG_SAFE 1 78 #define PG_UNSAFE_CLEAR 1 79 #define PG_UNSAFE_KEEP 0 80 81 static unsigned int allocated_unsafe_pages; 82 83 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 84 { 85 void *res; 86 87 res = (void *)get_zeroed_page(gfp_mask); 88 if (safe_needed) 89 while (res && swsusp_page_is_free(virt_to_page(res))) { 90 /* The page is unsafe, mark it for swsusp_free() */ 91 swsusp_set_page_forbidden(virt_to_page(res)); 92 allocated_unsafe_pages++; 93 res = (void *)get_zeroed_page(gfp_mask); 94 } 95 if (res) { 96 swsusp_set_page_forbidden(virt_to_page(res)); 97 swsusp_set_page_free(virt_to_page(res)); 98 } 99 return res; 100 } 101 102 unsigned long get_safe_page(gfp_t gfp_mask) 103 { 104 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 105 } 106 107 static struct page *alloc_image_page(gfp_t gfp_mask) 108 { 109 struct page *page; 110 111 page = alloc_page(gfp_mask); 112 if (page) { 113 swsusp_set_page_forbidden(page); 114 swsusp_set_page_free(page); 115 } 116 return page; 117 } 118 119 /** 120 * free_image_page - free page represented by @addr, allocated with 121 * get_image_page (page flags set by it must be cleared) 122 */ 123 124 static inline void free_image_page(void *addr, int clear_nosave_free) 125 { 126 struct page *page; 127 128 BUG_ON(!virt_addr_valid(addr)); 129 130 page = virt_to_page(addr); 131 132 swsusp_unset_page_forbidden(page); 133 if (clear_nosave_free) 134 swsusp_unset_page_free(page); 135 136 __free_page(page); 137 } 138 139 /* struct linked_page is used to build chains of pages */ 140 141 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 142 143 struct linked_page { 144 struct linked_page *next; 145 char data[LINKED_PAGE_DATA_SIZE]; 146 } __attribute__((packed)); 147 148 static inline void 149 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 150 { 151 while (list) { 152 struct linked_page *lp = list->next; 153 154 free_image_page(list, clear_page_nosave); 155 list = lp; 156 } 157 } 158 159 /** 160 * struct chain_allocator is used for allocating small objects out of 161 * a linked list of pages called 'the chain'. 162 * 163 * The chain grows each time when there is no room for a new object in 164 * the current page. The allocated objects cannot be freed individually. 165 * It is only possible to free them all at once, by freeing the entire 166 * chain. 167 * 168 * NOTE: The chain allocator may be inefficient if the allocated objects 169 * are not much smaller than PAGE_SIZE. 170 */ 171 172 struct chain_allocator { 173 struct linked_page *chain; /* the chain */ 174 unsigned int used_space; /* total size of objects allocated out 175 * of the current page 176 */ 177 gfp_t gfp_mask; /* mask for allocating pages */ 178 int safe_needed; /* if set, only "safe" pages are allocated */ 179 }; 180 181 static void 182 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 183 { 184 ca->chain = NULL; 185 ca->used_space = LINKED_PAGE_DATA_SIZE; 186 ca->gfp_mask = gfp_mask; 187 ca->safe_needed = safe_needed; 188 } 189 190 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 191 { 192 void *ret; 193 194 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 195 struct linked_page *lp; 196 197 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 198 if (!lp) 199 return NULL; 200 201 lp->next = ca->chain; 202 ca->chain = lp; 203 ca->used_space = 0; 204 } 205 ret = ca->chain->data + ca->used_space; 206 ca->used_space += size; 207 return ret; 208 } 209 210 /** 211 * Data types related to memory bitmaps. 212 * 213 * Memory bitmap is a structure consiting of many linked lists of 214 * objects. The main list's elements are of type struct zone_bitmap 215 * and each of them corresonds to one zone. For each zone bitmap 216 * object there is a list of objects of type struct bm_block that 217 * represent each blocks of bitmap in which information is stored. 218 * 219 * struct memory_bitmap contains a pointer to the main list of zone 220 * bitmap objects, a struct bm_position used for browsing the bitmap, 221 * and a pointer to the list of pages used for allocating all of the 222 * zone bitmap objects and bitmap block objects. 223 * 224 * NOTE: It has to be possible to lay out the bitmap in memory 225 * using only allocations of order 0. Additionally, the bitmap is 226 * designed to work with arbitrary number of zones (this is over the 227 * top for now, but let's avoid making unnecessary assumptions ;-). 228 * 229 * struct zone_bitmap contains a pointer to a list of bitmap block 230 * objects and a pointer to the bitmap block object that has been 231 * most recently used for setting bits. Additionally, it contains the 232 * pfns that correspond to the start and end of the represented zone. 233 * 234 * struct bm_block contains a pointer to the memory page in which 235 * information is stored (in the form of a block of bitmap) 236 * It also contains the pfns that correspond to the start and end of 237 * the represented memory area. 238 */ 239 240 #define BM_END_OF_MAP (~0UL) 241 242 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 243 244 struct bm_block { 245 struct list_head hook; /* hook into a list of bitmap blocks */ 246 unsigned long start_pfn; /* pfn represented by the first bit */ 247 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 248 unsigned long *data; /* bitmap representing pages */ 249 }; 250 251 static inline unsigned long bm_block_bits(struct bm_block *bb) 252 { 253 return bb->end_pfn - bb->start_pfn; 254 } 255 256 /* strcut bm_position is used for browsing memory bitmaps */ 257 258 struct bm_position { 259 struct bm_block *block; 260 int bit; 261 }; 262 263 struct memory_bitmap { 264 struct list_head blocks; /* list of bitmap blocks */ 265 struct linked_page *p_list; /* list of pages used to store zone 266 * bitmap objects and bitmap block 267 * objects 268 */ 269 struct bm_position cur; /* most recently used bit position */ 270 }; 271 272 /* Functions that operate on memory bitmaps */ 273 274 static void memory_bm_position_reset(struct memory_bitmap *bm) 275 { 276 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 277 bm->cur.bit = 0; 278 } 279 280 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 281 282 /** 283 * create_bm_block_list - create a list of block bitmap objects 284 * @pages - number of pages to track 285 * @list - list to put the allocated blocks into 286 * @ca - chain allocator to be used for allocating memory 287 */ 288 static int create_bm_block_list(unsigned long pages, 289 struct list_head *list, 290 struct chain_allocator *ca) 291 { 292 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 293 294 while (nr_blocks-- > 0) { 295 struct bm_block *bb; 296 297 bb = chain_alloc(ca, sizeof(struct bm_block)); 298 if (!bb) 299 return -ENOMEM; 300 list_add(&bb->hook, list); 301 } 302 303 return 0; 304 } 305 306 struct mem_extent { 307 struct list_head hook; 308 unsigned long start; 309 unsigned long end; 310 }; 311 312 /** 313 * free_mem_extents - free a list of memory extents 314 * @list - list of extents to empty 315 */ 316 static void free_mem_extents(struct list_head *list) 317 { 318 struct mem_extent *ext, *aux; 319 320 list_for_each_entry_safe(ext, aux, list, hook) { 321 list_del(&ext->hook); 322 kfree(ext); 323 } 324 } 325 326 /** 327 * create_mem_extents - create a list of memory extents representing 328 * contiguous ranges of PFNs 329 * @list - list to put the extents into 330 * @gfp_mask - mask to use for memory allocations 331 */ 332 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 333 { 334 struct zone *zone; 335 336 INIT_LIST_HEAD(list); 337 338 for_each_populated_zone(zone) { 339 unsigned long zone_start, zone_end; 340 struct mem_extent *ext, *cur, *aux; 341 342 zone_start = zone->zone_start_pfn; 343 zone_end = zone->zone_start_pfn + zone->spanned_pages; 344 345 list_for_each_entry(ext, list, hook) 346 if (zone_start <= ext->end) 347 break; 348 349 if (&ext->hook == list || zone_end < ext->start) { 350 /* New extent is necessary */ 351 struct mem_extent *new_ext; 352 353 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 354 if (!new_ext) { 355 free_mem_extents(list); 356 return -ENOMEM; 357 } 358 new_ext->start = zone_start; 359 new_ext->end = zone_end; 360 list_add_tail(&new_ext->hook, &ext->hook); 361 continue; 362 } 363 364 /* Merge this zone's range of PFNs with the existing one */ 365 if (zone_start < ext->start) 366 ext->start = zone_start; 367 if (zone_end > ext->end) 368 ext->end = zone_end; 369 370 /* More merging may be possible */ 371 cur = ext; 372 list_for_each_entry_safe_continue(cur, aux, list, hook) { 373 if (zone_end < cur->start) 374 break; 375 if (zone_end < cur->end) 376 ext->end = cur->end; 377 list_del(&cur->hook); 378 kfree(cur); 379 } 380 } 381 382 return 0; 383 } 384 385 /** 386 * memory_bm_create - allocate memory for a memory bitmap 387 */ 388 static int 389 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 390 { 391 struct chain_allocator ca; 392 struct list_head mem_extents; 393 struct mem_extent *ext; 394 int error; 395 396 chain_init(&ca, gfp_mask, safe_needed); 397 INIT_LIST_HEAD(&bm->blocks); 398 399 error = create_mem_extents(&mem_extents, gfp_mask); 400 if (error) 401 return error; 402 403 list_for_each_entry(ext, &mem_extents, hook) { 404 struct bm_block *bb; 405 unsigned long pfn = ext->start; 406 unsigned long pages = ext->end - ext->start; 407 408 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 409 410 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 411 if (error) 412 goto Error; 413 414 list_for_each_entry_continue(bb, &bm->blocks, hook) { 415 bb->data = get_image_page(gfp_mask, safe_needed); 416 if (!bb->data) { 417 error = -ENOMEM; 418 goto Error; 419 } 420 421 bb->start_pfn = pfn; 422 if (pages >= BM_BITS_PER_BLOCK) { 423 pfn += BM_BITS_PER_BLOCK; 424 pages -= BM_BITS_PER_BLOCK; 425 } else { 426 /* This is executed only once in the loop */ 427 pfn += pages; 428 } 429 bb->end_pfn = pfn; 430 } 431 } 432 433 bm->p_list = ca.chain; 434 memory_bm_position_reset(bm); 435 Exit: 436 free_mem_extents(&mem_extents); 437 return error; 438 439 Error: 440 bm->p_list = ca.chain; 441 memory_bm_free(bm, PG_UNSAFE_CLEAR); 442 goto Exit; 443 } 444 445 /** 446 * memory_bm_free - free memory occupied by the memory bitmap @bm 447 */ 448 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 449 { 450 struct bm_block *bb; 451 452 list_for_each_entry(bb, &bm->blocks, hook) 453 if (bb->data) 454 free_image_page(bb->data, clear_nosave_free); 455 456 free_list_of_pages(bm->p_list, clear_nosave_free); 457 458 INIT_LIST_HEAD(&bm->blocks); 459 } 460 461 /** 462 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 463 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 464 * of @bm->cur_zone_bm are updated. 465 */ 466 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 467 void **addr, unsigned int *bit_nr) 468 { 469 struct bm_block *bb; 470 471 /* 472 * Check if the pfn corresponds to the current bitmap block and find 473 * the block where it fits if this is not the case. 474 */ 475 bb = bm->cur.block; 476 if (pfn < bb->start_pfn) 477 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 478 if (pfn >= bb->start_pfn) 479 break; 480 481 if (pfn >= bb->end_pfn) 482 list_for_each_entry_continue(bb, &bm->blocks, hook) 483 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 484 break; 485 486 if (&bb->hook == &bm->blocks) 487 return -EFAULT; 488 489 /* The block has been found */ 490 bm->cur.block = bb; 491 pfn -= bb->start_pfn; 492 bm->cur.bit = pfn + 1; 493 *bit_nr = pfn; 494 *addr = bb->data; 495 return 0; 496 } 497 498 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 499 { 500 void *addr; 501 unsigned int bit; 502 int error; 503 504 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 505 BUG_ON(error); 506 set_bit(bit, addr); 507 } 508 509 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 510 { 511 void *addr; 512 unsigned int bit; 513 int error; 514 515 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 516 if (!error) 517 set_bit(bit, addr); 518 return error; 519 } 520 521 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 BUG_ON(error); 529 clear_bit(bit, addr); 530 } 531 532 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 533 { 534 void *addr; 535 unsigned int bit; 536 int error; 537 538 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 539 BUG_ON(error); 540 return test_bit(bit, addr); 541 } 542 543 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 544 { 545 void *addr; 546 unsigned int bit; 547 548 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 549 } 550 551 /** 552 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 553 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 554 * returned. 555 * 556 * It is required to run memory_bm_position_reset() before the first call to 557 * this function. 558 */ 559 560 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 561 { 562 struct bm_block *bb; 563 int bit; 564 565 bb = bm->cur.block; 566 do { 567 bit = bm->cur.bit; 568 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 569 if (bit < bm_block_bits(bb)) 570 goto Return_pfn; 571 572 bb = list_entry(bb->hook.next, struct bm_block, hook); 573 bm->cur.block = bb; 574 bm->cur.bit = 0; 575 } while (&bb->hook != &bm->blocks); 576 577 memory_bm_position_reset(bm); 578 return BM_END_OF_MAP; 579 580 Return_pfn: 581 bm->cur.bit = bit + 1; 582 return bb->start_pfn + bit; 583 } 584 585 /** 586 * This structure represents a range of page frames the contents of which 587 * should not be saved during the suspend. 588 */ 589 590 struct nosave_region { 591 struct list_head list; 592 unsigned long start_pfn; 593 unsigned long end_pfn; 594 }; 595 596 static LIST_HEAD(nosave_regions); 597 598 /** 599 * register_nosave_region - register a range of page frames the contents 600 * of which should not be saved during the suspend (to be used in the early 601 * initialization code) 602 */ 603 604 void __init 605 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 606 int use_kmalloc) 607 { 608 struct nosave_region *region; 609 610 if (start_pfn >= end_pfn) 611 return; 612 613 if (!list_empty(&nosave_regions)) { 614 /* Try to extend the previous region (they should be sorted) */ 615 region = list_entry(nosave_regions.prev, 616 struct nosave_region, list); 617 if (region->end_pfn == start_pfn) { 618 region->end_pfn = end_pfn; 619 goto Report; 620 } 621 } 622 if (use_kmalloc) { 623 /* during init, this shouldn't fail */ 624 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 625 BUG_ON(!region); 626 } else 627 /* This allocation cannot fail */ 628 region = alloc_bootmem(sizeof(struct nosave_region)); 629 region->start_pfn = start_pfn; 630 region->end_pfn = end_pfn; 631 list_add_tail(®ion->list, &nosave_regions); 632 Report: 633 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 634 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 635 } 636 637 /* 638 * Set bits in this map correspond to the page frames the contents of which 639 * should not be saved during the suspend. 640 */ 641 static struct memory_bitmap *forbidden_pages_map; 642 643 /* Set bits in this map correspond to free page frames. */ 644 static struct memory_bitmap *free_pages_map; 645 646 /* 647 * Each page frame allocated for creating the image is marked by setting the 648 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 649 */ 650 651 void swsusp_set_page_free(struct page *page) 652 { 653 if (free_pages_map) 654 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 655 } 656 657 static int swsusp_page_is_free(struct page *page) 658 { 659 return free_pages_map ? 660 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 661 } 662 663 void swsusp_unset_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static void swsusp_set_page_forbidden(struct page *page) 670 { 671 if (forbidden_pages_map) 672 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 673 } 674 675 int swsusp_page_is_forbidden(struct page *page) 676 { 677 return forbidden_pages_map ? 678 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 679 } 680 681 static void swsusp_unset_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 /** 688 * mark_nosave_pages - set bits corresponding to the page frames the 689 * contents of which should not be saved in a given bitmap. 690 */ 691 692 static void mark_nosave_pages(struct memory_bitmap *bm) 693 { 694 struct nosave_region *region; 695 696 if (list_empty(&nosave_regions)) 697 return; 698 699 list_for_each_entry(region, &nosave_regions, list) { 700 unsigned long pfn; 701 702 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 703 region->start_pfn << PAGE_SHIFT, 704 region->end_pfn << PAGE_SHIFT); 705 706 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 707 if (pfn_valid(pfn)) { 708 /* 709 * It is safe to ignore the result of 710 * mem_bm_set_bit_check() here, since we won't 711 * touch the PFNs for which the error is 712 * returned anyway. 713 */ 714 mem_bm_set_bit_check(bm, pfn); 715 } 716 } 717 } 718 719 /** 720 * create_basic_memory_bitmaps - create bitmaps needed for marking page 721 * frames that should not be saved and free page frames. The pointers 722 * forbidden_pages_map and free_pages_map are only modified if everything 723 * goes well, because we don't want the bits to be used before both bitmaps 724 * are set up. 725 */ 726 727 int create_basic_memory_bitmaps(void) 728 { 729 struct memory_bitmap *bm1, *bm2; 730 int error = 0; 731 732 BUG_ON(forbidden_pages_map || free_pages_map); 733 734 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 735 if (!bm1) 736 return -ENOMEM; 737 738 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 739 if (error) 740 goto Free_first_object; 741 742 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 743 if (!bm2) 744 goto Free_first_bitmap; 745 746 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 747 if (error) 748 goto Free_second_object; 749 750 forbidden_pages_map = bm1; 751 free_pages_map = bm2; 752 mark_nosave_pages(forbidden_pages_map); 753 754 pr_debug("PM: Basic memory bitmaps created\n"); 755 756 return 0; 757 758 Free_second_object: 759 kfree(bm2); 760 Free_first_bitmap: 761 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 762 Free_first_object: 763 kfree(bm1); 764 return -ENOMEM; 765 } 766 767 /** 768 * free_basic_memory_bitmaps - free memory bitmaps allocated by 769 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 770 * so that the bitmaps themselves are not referred to while they are being 771 * freed. 772 */ 773 774 void free_basic_memory_bitmaps(void) 775 { 776 struct memory_bitmap *bm1, *bm2; 777 778 BUG_ON(!(forbidden_pages_map && free_pages_map)); 779 780 bm1 = forbidden_pages_map; 781 bm2 = free_pages_map; 782 forbidden_pages_map = NULL; 783 free_pages_map = NULL; 784 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 785 kfree(bm1); 786 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 787 kfree(bm2); 788 789 pr_debug("PM: Basic memory bitmaps freed\n"); 790 } 791 792 /** 793 * snapshot_additional_pages - estimate the number of additional pages 794 * be needed for setting up the suspend image data structures for given 795 * zone (usually the returned value is greater than the exact number) 796 */ 797 798 unsigned int snapshot_additional_pages(struct zone *zone) 799 { 800 unsigned int res; 801 802 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 803 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 804 return 2 * res; 805 } 806 807 #ifdef CONFIG_HIGHMEM 808 /** 809 * count_free_highmem_pages - compute the total number of free highmem 810 * pages, system-wide. 811 */ 812 813 static unsigned int count_free_highmem_pages(void) 814 { 815 struct zone *zone; 816 unsigned int cnt = 0; 817 818 for_each_populated_zone(zone) 819 if (is_highmem(zone)) 820 cnt += zone_page_state(zone, NR_FREE_PAGES); 821 822 return cnt; 823 } 824 825 /** 826 * saveable_highmem_page - Determine whether a highmem page should be 827 * included in the suspend image. 828 * 829 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 830 * and it isn't a part of a free chunk of pages. 831 */ 832 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 833 { 834 struct page *page; 835 836 if (!pfn_valid(pfn)) 837 return NULL; 838 839 page = pfn_to_page(pfn); 840 if (page_zone(page) != zone) 841 return NULL; 842 843 BUG_ON(!PageHighMem(page)); 844 845 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 846 PageReserved(page)) 847 return NULL; 848 849 return page; 850 } 851 852 /** 853 * count_highmem_pages - compute the total number of saveable highmem 854 * pages. 855 */ 856 857 static unsigned int count_highmem_pages(void) 858 { 859 struct zone *zone; 860 unsigned int n = 0; 861 862 for_each_populated_zone(zone) { 863 unsigned long pfn, max_zone_pfn; 864 865 if (!is_highmem(zone)) 866 continue; 867 868 mark_free_pages(zone); 869 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 870 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 871 if (saveable_highmem_page(zone, pfn)) 872 n++; 873 } 874 return n; 875 } 876 #else 877 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 878 { 879 return NULL; 880 } 881 #endif /* CONFIG_HIGHMEM */ 882 883 /** 884 * saveable_page - Determine whether a non-highmem page should be included 885 * in the suspend image. 886 * 887 * We should save the page if it isn't Nosave, and is not in the range 888 * of pages statically defined as 'unsaveable', and it isn't a part of 889 * a free chunk of pages. 890 */ 891 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 892 { 893 struct page *page; 894 895 if (!pfn_valid(pfn)) 896 return NULL; 897 898 page = pfn_to_page(pfn); 899 if (page_zone(page) != zone) 900 return NULL; 901 902 BUG_ON(PageHighMem(page)); 903 904 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 905 return NULL; 906 907 if (PageReserved(page) 908 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 909 return NULL; 910 911 return page; 912 } 913 914 /** 915 * count_data_pages - compute the total number of saveable non-highmem 916 * pages. 917 */ 918 919 static unsigned int count_data_pages(void) 920 { 921 struct zone *zone; 922 unsigned long pfn, max_zone_pfn; 923 unsigned int n = 0; 924 925 for_each_populated_zone(zone) { 926 if (is_highmem(zone)) 927 continue; 928 929 mark_free_pages(zone); 930 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 931 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 932 if (saveable_page(zone, pfn)) 933 n++; 934 } 935 return n; 936 } 937 938 /* This is needed, because copy_page and memcpy are not usable for copying 939 * task structs. 940 */ 941 static inline void do_copy_page(long *dst, long *src) 942 { 943 int n; 944 945 for (n = PAGE_SIZE / sizeof(long); n; n--) 946 *dst++ = *src++; 947 } 948 949 950 /** 951 * safe_copy_page - check if the page we are going to copy is marked as 952 * present in the kernel page tables (this always is the case if 953 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 954 * kernel_page_present() always returns 'true'). 955 */ 956 static void safe_copy_page(void *dst, struct page *s_page) 957 { 958 if (kernel_page_present(s_page)) { 959 do_copy_page(dst, page_address(s_page)); 960 } else { 961 kernel_map_pages(s_page, 1, 1); 962 do_copy_page(dst, page_address(s_page)); 963 kernel_map_pages(s_page, 1, 0); 964 } 965 } 966 967 968 #ifdef CONFIG_HIGHMEM 969 static inline struct page * 970 page_is_saveable(struct zone *zone, unsigned long pfn) 971 { 972 return is_highmem(zone) ? 973 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 974 } 975 976 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 977 { 978 struct page *s_page, *d_page; 979 void *src, *dst; 980 981 s_page = pfn_to_page(src_pfn); 982 d_page = pfn_to_page(dst_pfn); 983 if (PageHighMem(s_page)) { 984 src = kmap_atomic(s_page, KM_USER0); 985 dst = kmap_atomic(d_page, KM_USER1); 986 do_copy_page(dst, src); 987 kunmap_atomic(dst, KM_USER1); 988 kunmap_atomic(src, KM_USER0); 989 } else { 990 if (PageHighMem(d_page)) { 991 /* Page pointed to by src may contain some kernel 992 * data modified by kmap_atomic() 993 */ 994 safe_copy_page(buffer, s_page); 995 dst = kmap_atomic(d_page, KM_USER0); 996 copy_page(dst, buffer); 997 kunmap_atomic(dst, KM_USER0); 998 } else { 999 safe_copy_page(page_address(d_page), s_page); 1000 } 1001 } 1002 } 1003 #else 1004 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1005 1006 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1007 { 1008 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1009 pfn_to_page(src_pfn)); 1010 } 1011 #endif /* CONFIG_HIGHMEM */ 1012 1013 static void 1014 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1015 { 1016 struct zone *zone; 1017 unsigned long pfn; 1018 1019 for_each_populated_zone(zone) { 1020 unsigned long max_zone_pfn; 1021 1022 mark_free_pages(zone); 1023 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1024 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1025 if (page_is_saveable(zone, pfn)) 1026 memory_bm_set_bit(orig_bm, pfn); 1027 } 1028 memory_bm_position_reset(orig_bm); 1029 memory_bm_position_reset(copy_bm); 1030 for(;;) { 1031 pfn = memory_bm_next_pfn(orig_bm); 1032 if (unlikely(pfn == BM_END_OF_MAP)) 1033 break; 1034 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1035 } 1036 } 1037 1038 /* Total number of image pages */ 1039 static unsigned int nr_copy_pages; 1040 /* Number of pages needed for saving the original pfns of the image pages */ 1041 static unsigned int nr_meta_pages; 1042 /* 1043 * Numbers of normal and highmem page frames allocated for hibernation image 1044 * before suspending devices. 1045 */ 1046 unsigned int alloc_normal, alloc_highmem; 1047 /* 1048 * Memory bitmap used for marking saveable pages (during hibernation) or 1049 * hibernation image pages (during restore) 1050 */ 1051 static struct memory_bitmap orig_bm; 1052 /* 1053 * Memory bitmap used during hibernation for marking allocated page frames that 1054 * will contain copies of saveable pages. During restore it is initially used 1055 * for marking hibernation image pages, but then the set bits from it are 1056 * duplicated in @orig_bm and it is released. On highmem systems it is next 1057 * used for marking "safe" highmem pages, but it has to be reinitialized for 1058 * this purpose. 1059 */ 1060 static struct memory_bitmap copy_bm; 1061 1062 /** 1063 * swsusp_free - free pages allocated for the suspend. 1064 * 1065 * Suspend pages are alocated before the atomic copy is made, so we 1066 * need to release them after the resume. 1067 */ 1068 1069 void swsusp_free(void) 1070 { 1071 struct zone *zone; 1072 unsigned long pfn, max_zone_pfn; 1073 1074 for_each_populated_zone(zone) { 1075 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1076 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1077 if (pfn_valid(pfn)) { 1078 struct page *page = pfn_to_page(pfn); 1079 1080 if (swsusp_page_is_forbidden(page) && 1081 swsusp_page_is_free(page)) { 1082 swsusp_unset_page_forbidden(page); 1083 swsusp_unset_page_free(page); 1084 __free_page(page); 1085 } 1086 } 1087 } 1088 nr_copy_pages = 0; 1089 nr_meta_pages = 0; 1090 restore_pblist = NULL; 1091 buffer = NULL; 1092 alloc_normal = 0; 1093 alloc_highmem = 0; 1094 } 1095 1096 /* Helper functions used for the shrinking of memory. */ 1097 1098 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1099 1100 /** 1101 * preallocate_image_pages - Allocate a number of pages for hibernation image 1102 * @nr_pages: Number of page frames to allocate. 1103 * @mask: GFP flags to use for the allocation. 1104 * 1105 * Return value: Number of page frames actually allocated 1106 */ 1107 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1108 { 1109 unsigned long nr_alloc = 0; 1110 1111 while (nr_pages > 0) { 1112 struct page *page; 1113 1114 page = alloc_image_page(mask); 1115 if (!page) 1116 break; 1117 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1118 if (PageHighMem(page)) 1119 alloc_highmem++; 1120 else 1121 alloc_normal++; 1122 nr_pages--; 1123 nr_alloc++; 1124 } 1125 1126 return nr_alloc; 1127 } 1128 1129 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1130 unsigned long avail_normal) 1131 { 1132 unsigned long alloc; 1133 1134 if (avail_normal <= alloc_normal) 1135 return 0; 1136 1137 alloc = avail_normal - alloc_normal; 1138 if (nr_pages < alloc) 1139 alloc = nr_pages; 1140 1141 return preallocate_image_pages(alloc, GFP_IMAGE); 1142 } 1143 1144 #ifdef CONFIG_HIGHMEM 1145 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1146 { 1147 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1148 } 1149 1150 /** 1151 * __fraction - Compute (an approximation of) x * (multiplier / base) 1152 */ 1153 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1154 { 1155 x *= multiplier; 1156 do_div(x, base); 1157 return (unsigned long)x; 1158 } 1159 1160 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1161 unsigned long highmem, 1162 unsigned long total) 1163 { 1164 unsigned long alloc = __fraction(nr_pages, highmem, total); 1165 1166 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1167 } 1168 #else /* CONFIG_HIGHMEM */ 1169 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1170 { 1171 return 0; 1172 } 1173 1174 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1175 unsigned long highmem, 1176 unsigned long total) 1177 { 1178 return 0; 1179 } 1180 #endif /* CONFIG_HIGHMEM */ 1181 1182 /** 1183 * free_unnecessary_pages - Release preallocated pages not needed for the image 1184 */ 1185 static void free_unnecessary_pages(void) 1186 { 1187 unsigned long save, to_free_normal, to_free_highmem; 1188 1189 save = count_data_pages(); 1190 if (alloc_normal >= save) { 1191 to_free_normal = alloc_normal - save; 1192 save = 0; 1193 } else { 1194 to_free_normal = 0; 1195 save -= alloc_normal; 1196 } 1197 save += count_highmem_pages(); 1198 if (alloc_highmem >= save) { 1199 to_free_highmem = alloc_highmem - save; 1200 } else { 1201 to_free_highmem = 0; 1202 to_free_normal -= save - alloc_highmem; 1203 } 1204 1205 memory_bm_position_reset(©_bm); 1206 1207 while (to_free_normal > 0 || to_free_highmem > 0) { 1208 unsigned long pfn = memory_bm_next_pfn(©_bm); 1209 struct page *page = pfn_to_page(pfn); 1210 1211 if (PageHighMem(page)) { 1212 if (!to_free_highmem) 1213 continue; 1214 to_free_highmem--; 1215 alloc_highmem--; 1216 } else { 1217 if (!to_free_normal) 1218 continue; 1219 to_free_normal--; 1220 alloc_normal--; 1221 } 1222 memory_bm_clear_bit(©_bm, pfn); 1223 swsusp_unset_page_forbidden(page); 1224 swsusp_unset_page_free(page); 1225 __free_page(page); 1226 } 1227 } 1228 1229 /** 1230 * minimum_image_size - Estimate the minimum acceptable size of an image 1231 * @saveable: Number of saveable pages in the system. 1232 * 1233 * We want to avoid attempting to free too much memory too hard, so estimate the 1234 * minimum acceptable size of a hibernation image to use as the lower limit for 1235 * preallocating memory. 1236 * 1237 * We assume that the minimum image size should be proportional to 1238 * 1239 * [number of saveable pages] - [number of pages that can be freed in theory] 1240 * 1241 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1242 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1243 * minus mapped file pages. 1244 */ 1245 static unsigned long minimum_image_size(unsigned long saveable) 1246 { 1247 unsigned long size; 1248 1249 size = global_page_state(NR_SLAB_RECLAIMABLE) 1250 + global_page_state(NR_ACTIVE_ANON) 1251 + global_page_state(NR_INACTIVE_ANON) 1252 + global_page_state(NR_ACTIVE_FILE) 1253 + global_page_state(NR_INACTIVE_FILE) 1254 - global_page_state(NR_FILE_MAPPED); 1255 1256 return saveable <= size ? 0 : saveable - size; 1257 } 1258 1259 /** 1260 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1261 * 1262 * To create a hibernation image it is necessary to make a copy of every page 1263 * frame in use. We also need a number of page frames to be free during 1264 * hibernation for allocations made while saving the image and for device 1265 * drivers, in case they need to allocate memory from their hibernation 1266 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, 1267 * respectively, both of which are rough estimates). To make this happen, we 1268 * compute the total number of available page frames and allocate at least 1269 * 1270 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES 1271 * 1272 * of them, which corresponds to the maximum size of a hibernation image. 1273 * 1274 * If image_size is set below the number following from the above formula, 1275 * the preallocation of memory is continued until the total number of saveable 1276 * pages in the system is below the requested image size or the minimum 1277 * acceptable image size returned by minimum_image_size(), whichever is greater. 1278 */ 1279 int hibernate_preallocate_memory(void) 1280 { 1281 struct zone *zone; 1282 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1283 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1284 struct timeval start, stop; 1285 int error; 1286 1287 printk(KERN_INFO "PM: Preallocating image memory... "); 1288 do_gettimeofday(&start); 1289 1290 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1291 if (error) 1292 goto err_out; 1293 1294 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1295 if (error) 1296 goto err_out; 1297 1298 alloc_normal = 0; 1299 alloc_highmem = 0; 1300 1301 /* Count the number of saveable data pages. */ 1302 save_highmem = count_highmem_pages(); 1303 saveable = count_data_pages(); 1304 1305 /* 1306 * Compute the total number of page frames we can use (count) and the 1307 * number of pages needed for image metadata (size). 1308 */ 1309 count = saveable; 1310 saveable += save_highmem; 1311 highmem = save_highmem; 1312 size = 0; 1313 for_each_populated_zone(zone) { 1314 size += snapshot_additional_pages(zone); 1315 if (is_highmem(zone)) 1316 highmem += zone_page_state(zone, NR_FREE_PAGES); 1317 else 1318 count += zone_page_state(zone, NR_FREE_PAGES); 1319 } 1320 avail_normal = count; 1321 count += highmem; 1322 count -= totalreserve_pages; 1323 1324 /* Compute the maximum number of saveable pages to leave in memory. */ 1325 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; 1326 /* Compute the desired number of image pages specified by image_size. */ 1327 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1328 if (size > max_size) 1329 size = max_size; 1330 /* 1331 * If the desired number of image pages is at least as large as the 1332 * current number of saveable pages in memory, allocate page frames for 1333 * the image and we're done. 1334 */ 1335 if (size >= saveable) { 1336 pages = preallocate_image_highmem(save_highmem); 1337 pages += preallocate_image_memory(saveable - pages, avail_normal); 1338 goto out; 1339 } 1340 1341 /* Estimate the minimum size of the image. */ 1342 pages = minimum_image_size(saveable); 1343 /* 1344 * To avoid excessive pressure on the normal zone, leave room in it to 1345 * accommodate an image of the minimum size (unless it's already too 1346 * small, in which case don't preallocate pages from it at all). 1347 */ 1348 if (avail_normal > pages) 1349 avail_normal -= pages; 1350 else 1351 avail_normal = 0; 1352 if (size < pages) 1353 size = min_t(unsigned long, pages, max_size); 1354 1355 /* 1356 * Let the memory management subsystem know that we're going to need a 1357 * large number of page frames to allocate and make it free some memory. 1358 * NOTE: If this is not done, performance will be hurt badly in some 1359 * test cases. 1360 */ 1361 shrink_all_memory(saveable - size); 1362 1363 /* 1364 * The number of saveable pages in memory was too high, so apply some 1365 * pressure to decrease it. First, make room for the largest possible 1366 * image and fail if that doesn't work. Next, try to decrease the size 1367 * of the image as much as indicated by 'size' using allocations from 1368 * highmem and non-highmem zones separately. 1369 */ 1370 pages_highmem = preallocate_image_highmem(highmem / 2); 1371 alloc = (count - max_size) - pages_highmem; 1372 pages = preallocate_image_memory(alloc, avail_normal); 1373 if (pages < alloc) { 1374 /* We have exhausted non-highmem pages, try highmem. */ 1375 alloc -= pages; 1376 pages += pages_highmem; 1377 pages_highmem = preallocate_image_highmem(alloc); 1378 if (pages_highmem < alloc) 1379 goto err_out; 1380 pages += pages_highmem; 1381 /* 1382 * size is the desired number of saveable pages to leave in 1383 * memory, so try to preallocate (all memory - size) pages. 1384 */ 1385 alloc = (count - pages) - size; 1386 pages += preallocate_image_highmem(alloc); 1387 } else { 1388 /* 1389 * There are approximately max_size saveable pages at this point 1390 * and we want to reduce this number down to size. 1391 */ 1392 alloc = max_size - size; 1393 size = preallocate_highmem_fraction(alloc, highmem, count); 1394 pages_highmem += size; 1395 alloc -= size; 1396 size = preallocate_image_memory(alloc, avail_normal); 1397 pages_highmem += preallocate_image_highmem(alloc - size); 1398 pages += pages_highmem + size; 1399 } 1400 1401 /* 1402 * We only need as many page frames for the image as there are saveable 1403 * pages in memory, but we have allocated more. Release the excessive 1404 * ones now. 1405 */ 1406 free_unnecessary_pages(); 1407 1408 out: 1409 do_gettimeofday(&stop); 1410 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1411 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1412 1413 return 0; 1414 1415 err_out: 1416 printk(KERN_CONT "\n"); 1417 swsusp_free(); 1418 return -ENOMEM; 1419 } 1420 1421 #ifdef CONFIG_HIGHMEM 1422 /** 1423 * count_pages_for_highmem - compute the number of non-highmem pages 1424 * that will be necessary for creating copies of highmem pages. 1425 */ 1426 1427 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1428 { 1429 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1430 1431 if (free_highmem >= nr_highmem) 1432 nr_highmem = 0; 1433 else 1434 nr_highmem -= free_highmem; 1435 1436 return nr_highmem; 1437 } 1438 #else 1439 static unsigned int 1440 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1441 #endif /* CONFIG_HIGHMEM */ 1442 1443 /** 1444 * enough_free_mem - Make sure we have enough free memory for the 1445 * snapshot image. 1446 */ 1447 1448 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1449 { 1450 struct zone *zone; 1451 unsigned int free = alloc_normal; 1452 1453 for_each_populated_zone(zone) 1454 if (!is_highmem(zone)) 1455 free += zone_page_state(zone, NR_FREE_PAGES); 1456 1457 nr_pages += count_pages_for_highmem(nr_highmem); 1458 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1459 nr_pages, PAGES_FOR_IO, free); 1460 1461 return free > nr_pages + PAGES_FOR_IO; 1462 } 1463 1464 #ifdef CONFIG_HIGHMEM 1465 /** 1466 * get_highmem_buffer - if there are some highmem pages in the suspend 1467 * image, we may need the buffer to copy them and/or load their data. 1468 */ 1469 1470 static inline int get_highmem_buffer(int safe_needed) 1471 { 1472 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1473 return buffer ? 0 : -ENOMEM; 1474 } 1475 1476 /** 1477 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1478 * Try to allocate as many pages as needed, but if the number of free 1479 * highmem pages is lesser than that, allocate them all. 1480 */ 1481 1482 static inline unsigned int 1483 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1484 { 1485 unsigned int to_alloc = count_free_highmem_pages(); 1486 1487 if (to_alloc > nr_highmem) 1488 to_alloc = nr_highmem; 1489 1490 nr_highmem -= to_alloc; 1491 while (to_alloc-- > 0) { 1492 struct page *page; 1493 1494 page = alloc_image_page(__GFP_HIGHMEM); 1495 memory_bm_set_bit(bm, page_to_pfn(page)); 1496 } 1497 return nr_highmem; 1498 } 1499 #else 1500 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1501 1502 static inline unsigned int 1503 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1504 #endif /* CONFIG_HIGHMEM */ 1505 1506 /** 1507 * swsusp_alloc - allocate memory for the suspend image 1508 * 1509 * We first try to allocate as many highmem pages as there are 1510 * saveable highmem pages in the system. If that fails, we allocate 1511 * non-highmem pages for the copies of the remaining highmem ones. 1512 * 1513 * In this approach it is likely that the copies of highmem pages will 1514 * also be located in the high memory, because of the way in which 1515 * copy_data_pages() works. 1516 */ 1517 1518 static int 1519 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1520 unsigned int nr_pages, unsigned int nr_highmem) 1521 { 1522 if (nr_highmem > 0) { 1523 if (get_highmem_buffer(PG_ANY)) 1524 goto err_out; 1525 if (nr_highmem > alloc_highmem) { 1526 nr_highmem -= alloc_highmem; 1527 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1528 } 1529 } 1530 if (nr_pages > alloc_normal) { 1531 nr_pages -= alloc_normal; 1532 while (nr_pages-- > 0) { 1533 struct page *page; 1534 1535 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1536 if (!page) 1537 goto err_out; 1538 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1539 } 1540 } 1541 1542 return 0; 1543 1544 err_out: 1545 swsusp_free(); 1546 return -ENOMEM; 1547 } 1548 1549 asmlinkage int swsusp_save(void) 1550 { 1551 unsigned int nr_pages, nr_highmem; 1552 1553 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1554 1555 drain_local_pages(NULL); 1556 nr_pages = count_data_pages(); 1557 nr_highmem = count_highmem_pages(); 1558 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1559 1560 if (!enough_free_mem(nr_pages, nr_highmem)) { 1561 printk(KERN_ERR "PM: Not enough free memory\n"); 1562 return -ENOMEM; 1563 } 1564 1565 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1566 printk(KERN_ERR "PM: Memory allocation failed\n"); 1567 return -ENOMEM; 1568 } 1569 1570 /* During allocating of suspend pagedir, new cold pages may appear. 1571 * Kill them. 1572 */ 1573 drain_local_pages(NULL); 1574 copy_data_pages(©_bm, &orig_bm); 1575 1576 /* 1577 * End of critical section. From now on, we can write to memory, 1578 * but we should not touch disk. This specially means we must _not_ 1579 * touch swap space! Except we must write out our image of course. 1580 */ 1581 1582 nr_pages += nr_highmem; 1583 nr_copy_pages = nr_pages; 1584 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1585 1586 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1587 nr_pages); 1588 1589 return 0; 1590 } 1591 1592 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1593 static int init_header_complete(struct swsusp_info *info) 1594 { 1595 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1596 info->version_code = LINUX_VERSION_CODE; 1597 return 0; 1598 } 1599 1600 static char *check_image_kernel(struct swsusp_info *info) 1601 { 1602 if (info->version_code != LINUX_VERSION_CODE) 1603 return "kernel version"; 1604 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1605 return "system type"; 1606 if (strcmp(info->uts.release,init_utsname()->release)) 1607 return "kernel release"; 1608 if (strcmp(info->uts.version,init_utsname()->version)) 1609 return "version"; 1610 if (strcmp(info->uts.machine,init_utsname()->machine)) 1611 return "machine"; 1612 return NULL; 1613 } 1614 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1615 1616 unsigned long snapshot_get_image_size(void) 1617 { 1618 return nr_copy_pages + nr_meta_pages + 1; 1619 } 1620 1621 static int init_header(struct swsusp_info *info) 1622 { 1623 memset(info, 0, sizeof(struct swsusp_info)); 1624 info->num_physpages = num_physpages; 1625 info->image_pages = nr_copy_pages; 1626 info->pages = snapshot_get_image_size(); 1627 info->size = info->pages; 1628 info->size <<= PAGE_SHIFT; 1629 return init_header_complete(info); 1630 } 1631 1632 /** 1633 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1634 * are stored in the array @buf[] (1 page at a time) 1635 */ 1636 1637 static inline void 1638 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1639 { 1640 int j; 1641 1642 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1643 buf[j] = memory_bm_next_pfn(bm); 1644 if (unlikely(buf[j] == BM_END_OF_MAP)) 1645 break; 1646 } 1647 } 1648 1649 /** 1650 * snapshot_read_next - used for reading the system memory snapshot. 1651 * 1652 * On the first call to it @handle should point to a zeroed 1653 * snapshot_handle structure. The structure gets updated and a pointer 1654 * to it should be passed to this function every next time. 1655 * 1656 * On success the function returns a positive number. Then, the caller 1657 * is allowed to read up to the returned number of bytes from the memory 1658 * location computed by the data_of() macro. 1659 * 1660 * The function returns 0 to indicate the end of data stream condition, 1661 * and a negative number is returned on error. In such cases the 1662 * structure pointed to by @handle is not updated and should not be used 1663 * any more. 1664 */ 1665 1666 int snapshot_read_next(struct snapshot_handle *handle) 1667 { 1668 if (handle->cur > nr_meta_pages + nr_copy_pages) 1669 return 0; 1670 1671 if (!buffer) { 1672 /* This makes the buffer be freed by swsusp_free() */ 1673 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1674 if (!buffer) 1675 return -ENOMEM; 1676 } 1677 if (!handle->cur) { 1678 int error; 1679 1680 error = init_header((struct swsusp_info *)buffer); 1681 if (error) 1682 return error; 1683 handle->buffer = buffer; 1684 memory_bm_position_reset(&orig_bm); 1685 memory_bm_position_reset(©_bm); 1686 } else if (handle->cur <= nr_meta_pages) { 1687 clear_page(buffer); 1688 pack_pfns(buffer, &orig_bm); 1689 } else { 1690 struct page *page; 1691 1692 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1693 if (PageHighMem(page)) { 1694 /* Highmem pages are copied to the buffer, 1695 * because we can't return with a kmapped 1696 * highmem page (we may not be called again). 1697 */ 1698 void *kaddr; 1699 1700 kaddr = kmap_atomic(page, KM_USER0); 1701 copy_page(buffer, kaddr); 1702 kunmap_atomic(kaddr, KM_USER0); 1703 handle->buffer = buffer; 1704 } else { 1705 handle->buffer = page_address(page); 1706 } 1707 } 1708 handle->cur++; 1709 return PAGE_SIZE; 1710 } 1711 1712 /** 1713 * mark_unsafe_pages - mark the pages that cannot be used for storing 1714 * the image during resume, because they conflict with the pages that 1715 * had been used before suspend 1716 */ 1717 1718 static int mark_unsafe_pages(struct memory_bitmap *bm) 1719 { 1720 struct zone *zone; 1721 unsigned long pfn, max_zone_pfn; 1722 1723 /* Clear page flags */ 1724 for_each_populated_zone(zone) { 1725 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1726 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1727 if (pfn_valid(pfn)) 1728 swsusp_unset_page_free(pfn_to_page(pfn)); 1729 } 1730 1731 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1732 memory_bm_position_reset(bm); 1733 do { 1734 pfn = memory_bm_next_pfn(bm); 1735 if (likely(pfn != BM_END_OF_MAP)) { 1736 if (likely(pfn_valid(pfn))) 1737 swsusp_set_page_free(pfn_to_page(pfn)); 1738 else 1739 return -EFAULT; 1740 } 1741 } while (pfn != BM_END_OF_MAP); 1742 1743 allocated_unsafe_pages = 0; 1744 1745 return 0; 1746 } 1747 1748 static void 1749 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1750 { 1751 unsigned long pfn; 1752 1753 memory_bm_position_reset(src); 1754 pfn = memory_bm_next_pfn(src); 1755 while (pfn != BM_END_OF_MAP) { 1756 memory_bm_set_bit(dst, pfn); 1757 pfn = memory_bm_next_pfn(src); 1758 } 1759 } 1760 1761 static int check_header(struct swsusp_info *info) 1762 { 1763 char *reason; 1764 1765 reason = check_image_kernel(info); 1766 if (!reason && info->num_physpages != num_physpages) 1767 reason = "memory size"; 1768 if (reason) { 1769 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1770 return -EPERM; 1771 } 1772 return 0; 1773 } 1774 1775 /** 1776 * load header - check the image header and copy data from it 1777 */ 1778 1779 static int 1780 load_header(struct swsusp_info *info) 1781 { 1782 int error; 1783 1784 restore_pblist = NULL; 1785 error = check_header(info); 1786 if (!error) { 1787 nr_copy_pages = info->image_pages; 1788 nr_meta_pages = info->pages - info->image_pages - 1; 1789 } 1790 return error; 1791 } 1792 1793 /** 1794 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1795 * the corresponding bit in the memory bitmap @bm 1796 */ 1797 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1798 { 1799 int j; 1800 1801 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1802 if (unlikely(buf[j] == BM_END_OF_MAP)) 1803 break; 1804 1805 if (memory_bm_pfn_present(bm, buf[j])) 1806 memory_bm_set_bit(bm, buf[j]); 1807 else 1808 return -EFAULT; 1809 } 1810 1811 return 0; 1812 } 1813 1814 /* List of "safe" pages that may be used to store data loaded from the suspend 1815 * image 1816 */ 1817 static struct linked_page *safe_pages_list; 1818 1819 #ifdef CONFIG_HIGHMEM 1820 /* struct highmem_pbe is used for creating the list of highmem pages that 1821 * should be restored atomically during the resume from disk, because the page 1822 * frames they have occupied before the suspend are in use. 1823 */ 1824 struct highmem_pbe { 1825 struct page *copy_page; /* data is here now */ 1826 struct page *orig_page; /* data was here before the suspend */ 1827 struct highmem_pbe *next; 1828 }; 1829 1830 /* List of highmem PBEs needed for restoring the highmem pages that were 1831 * allocated before the suspend and included in the suspend image, but have 1832 * also been allocated by the "resume" kernel, so their contents cannot be 1833 * written directly to their "original" page frames. 1834 */ 1835 static struct highmem_pbe *highmem_pblist; 1836 1837 /** 1838 * count_highmem_image_pages - compute the number of highmem pages in the 1839 * suspend image. The bits in the memory bitmap @bm that correspond to the 1840 * image pages are assumed to be set. 1841 */ 1842 1843 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1844 { 1845 unsigned long pfn; 1846 unsigned int cnt = 0; 1847 1848 memory_bm_position_reset(bm); 1849 pfn = memory_bm_next_pfn(bm); 1850 while (pfn != BM_END_OF_MAP) { 1851 if (PageHighMem(pfn_to_page(pfn))) 1852 cnt++; 1853 1854 pfn = memory_bm_next_pfn(bm); 1855 } 1856 return cnt; 1857 } 1858 1859 /** 1860 * prepare_highmem_image - try to allocate as many highmem pages as 1861 * there are highmem image pages (@nr_highmem_p points to the variable 1862 * containing the number of highmem image pages). The pages that are 1863 * "safe" (ie. will not be overwritten when the suspend image is 1864 * restored) have the corresponding bits set in @bm (it must be 1865 * unitialized). 1866 * 1867 * NOTE: This function should not be called if there are no highmem 1868 * image pages. 1869 */ 1870 1871 static unsigned int safe_highmem_pages; 1872 1873 static struct memory_bitmap *safe_highmem_bm; 1874 1875 static int 1876 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1877 { 1878 unsigned int to_alloc; 1879 1880 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1881 return -ENOMEM; 1882 1883 if (get_highmem_buffer(PG_SAFE)) 1884 return -ENOMEM; 1885 1886 to_alloc = count_free_highmem_pages(); 1887 if (to_alloc > *nr_highmem_p) 1888 to_alloc = *nr_highmem_p; 1889 else 1890 *nr_highmem_p = to_alloc; 1891 1892 safe_highmem_pages = 0; 1893 while (to_alloc-- > 0) { 1894 struct page *page; 1895 1896 page = alloc_page(__GFP_HIGHMEM); 1897 if (!swsusp_page_is_free(page)) { 1898 /* The page is "safe", set its bit the bitmap */ 1899 memory_bm_set_bit(bm, page_to_pfn(page)); 1900 safe_highmem_pages++; 1901 } 1902 /* Mark the page as allocated */ 1903 swsusp_set_page_forbidden(page); 1904 swsusp_set_page_free(page); 1905 } 1906 memory_bm_position_reset(bm); 1907 safe_highmem_bm = bm; 1908 return 0; 1909 } 1910 1911 /** 1912 * get_highmem_page_buffer - for given highmem image page find the buffer 1913 * that suspend_write_next() should set for its caller to write to. 1914 * 1915 * If the page is to be saved to its "original" page frame or a copy of 1916 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1917 * the copy of the page is to be made in normal memory, so the address of 1918 * the copy is returned. 1919 * 1920 * If @buffer is returned, the caller of suspend_write_next() will write 1921 * the page's contents to @buffer, so they will have to be copied to the 1922 * right location on the next call to suspend_write_next() and it is done 1923 * with the help of copy_last_highmem_page(). For this purpose, if 1924 * @buffer is returned, @last_highmem page is set to the page to which 1925 * the data will have to be copied from @buffer. 1926 */ 1927 1928 static struct page *last_highmem_page; 1929 1930 static void * 1931 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1932 { 1933 struct highmem_pbe *pbe; 1934 void *kaddr; 1935 1936 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1937 /* We have allocated the "original" page frame and we can 1938 * use it directly to store the loaded page. 1939 */ 1940 last_highmem_page = page; 1941 return buffer; 1942 } 1943 /* The "original" page frame has not been allocated and we have to 1944 * use a "safe" page frame to store the loaded page. 1945 */ 1946 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1947 if (!pbe) { 1948 swsusp_free(); 1949 return ERR_PTR(-ENOMEM); 1950 } 1951 pbe->orig_page = page; 1952 if (safe_highmem_pages > 0) { 1953 struct page *tmp; 1954 1955 /* Copy of the page will be stored in high memory */ 1956 kaddr = buffer; 1957 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1958 safe_highmem_pages--; 1959 last_highmem_page = tmp; 1960 pbe->copy_page = tmp; 1961 } else { 1962 /* Copy of the page will be stored in normal memory */ 1963 kaddr = safe_pages_list; 1964 safe_pages_list = safe_pages_list->next; 1965 pbe->copy_page = virt_to_page(kaddr); 1966 } 1967 pbe->next = highmem_pblist; 1968 highmem_pblist = pbe; 1969 return kaddr; 1970 } 1971 1972 /** 1973 * copy_last_highmem_page - copy the contents of a highmem image from 1974 * @buffer, where the caller of snapshot_write_next() has place them, 1975 * to the right location represented by @last_highmem_page . 1976 */ 1977 1978 static void copy_last_highmem_page(void) 1979 { 1980 if (last_highmem_page) { 1981 void *dst; 1982 1983 dst = kmap_atomic(last_highmem_page, KM_USER0); 1984 copy_page(dst, buffer); 1985 kunmap_atomic(dst, KM_USER0); 1986 last_highmem_page = NULL; 1987 } 1988 } 1989 1990 static inline int last_highmem_page_copied(void) 1991 { 1992 return !last_highmem_page; 1993 } 1994 1995 static inline void free_highmem_data(void) 1996 { 1997 if (safe_highmem_bm) 1998 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1999 2000 if (buffer) 2001 free_image_page(buffer, PG_UNSAFE_CLEAR); 2002 } 2003 #else 2004 static inline int get_safe_write_buffer(void) { return 0; } 2005 2006 static unsigned int 2007 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2008 2009 static inline int 2010 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2011 { 2012 return 0; 2013 } 2014 2015 static inline void * 2016 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2017 { 2018 return ERR_PTR(-EINVAL); 2019 } 2020 2021 static inline void copy_last_highmem_page(void) {} 2022 static inline int last_highmem_page_copied(void) { return 1; } 2023 static inline void free_highmem_data(void) {} 2024 #endif /* CONFIG_HIGHMEM */ 2025 2026 /** 2027 * prepare_image - use the memory bitmap @bm to mark the pages that will 2028 * be overwritten in the process of restoring the system memory state 2029 * from the suspend image ("unsafe" pages) and allocate memory for the 2030 * image. 2031 * 2032 * The idea is to allocate a new memory bitmap first and then allocate 2033 * as many pages as needed for the image data, but not to assign these 2034 * pages to specific tasks initially. Instead, we just mark them as 2035 * allocated and create a lists of "safe" pages that will be used 2036 * later. On systems with high memory a list of "safe" highmem pages is 2037 * also created. 2038 */ 2039 2040 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2041 2042 static int 2043 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2044 { 2045 unsigned int nr_pages, nr_highmem; 2046 struct linked_page *sp_list, *lp; 2047 int error; 2048 2049 /* If there is no highmem, the buffer will not be necessary */ 2050 free_image_page(buffer, PG_UNSAFE_CLEAR); 2051 buffer = NULL; 2052 2053 nr_highmem = count_highmem_image_pages(bm); 2054 error = mark_unsafe_pages(bm); 2055 if (error) 2056 goto Free; 2057 2058 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2059 if (error) 2060 goto Free; 2061 2062 duplicate_memory_bitmap(new_bm, bm); 2063 memory_bm_free(bm, PG_UNSAFE_KEEP); 2064 if (nr_highmem > 0) { 2065 error = prepare_highmem_image(bm, &nr_highmem); 2066 if (error) 2067 goto Free; 2068 } 2069 /* Reserve some safe pages for potential later use. 2070 * 2071 * NOTE: This way we make sure there will be enough safe pages for the 2072 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2073 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2074 */ 2075 sp_list = NULL; 2076 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2077 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2078 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2079 while (nr_pages > 0) { 2080 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2081 if (!lp) { 2082 error = -ENOMEM; 2083 goto Free; 2084 } 2085 lp->next = sp_list; 2086 sp_list = lp; 2087 nr_pages--; 2088 } 2089 /* Preallocate memory for the image */ 2090 safe_pages_list = NULL; 2091 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2092 while (nr_pages > 0) { 2093 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2094 if (!lp) { 2095 error = -ENOMEM; 2096 goto Free; 2097 } 2098 if (!swsusp_page_is_free(virt_to_page(lp))) { 2099 /* The page is "safe", add it to the list */ 2100 lp->next = safe_pages_list; 2101 safe_pages_list = lp; 2102 } 2103 /* Mark the page as allocated */ 2104 swsusp_set_page_forbidden(virt_to_page(lp)); 2105 swsusp_set_page_free(virt_to_page(lp)); 2106 nr_pages--; 2107 } 2108 /* Free the reserved safe pages so that chain_alloc() can use them */ 2109 while (sp_list) { 2110 lp = sp_list->next; 2111 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2112 sp_list = lp; 2113 } 2114 return 0; 2115 2116 Free: 2117 swsusp_free(); 2118 return error; 2119 } 2120 2121 /** 2122 * get_buffer - compute the address that snapshot_write_next() should 2123 * set for its caller to write to. 2124 */ 2125 2126 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2127 { 2128 struct pbe *pbe; 2129 struct page *page; 2130 unsigned long pfn = memory_bm_next_pfn(bm); 2131 2132 if (pfn == BM_END_OF_MAP) 2133 return ERR_PTR(-EFAULT); 2134 2135 page = pfn_to_page(pfn); 2136 if (PageHighMem(page)) 2137 return get_highmem_page_buffer(page, ca); 2138 2139 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2140 /* We have allocated the "original" page frame and we can 2141 * use it directly to store the loaded page. 2142 */ 2143 return page_address(page); 2144 2145 /* The "original" page frame has not been allocated and we have to 2146 * use a "safe" page frame to store the loaded page. 2147 */ 2148 pbe = chain_alloc(ca, sizeof(struct pbe)); 2149 if (!pbe) { 2150 swsusp_free(); 2151 return ERR_PTR(-ENOMEM); 2152 } 2153 pbe->orig_address = page_address(page); 2154 pbe->address = safe_pages_list; 2155 safe_pages_list = safe_pages_list->next; 2156 pbe->next = restore_pblist; 2157 restore_pblist = pbe; 2158 return pbe->address; 2159 } 2160 2161 /** 2162 * snapshot_write_next - used for writing the system memory snapshot. 2163 * 2164 * On the first call to it @handle should point to a zeroed 2165 * snapshot_handle structure. The structure gets updated and a pointer 2166 * to it should be passed to this function every next time. 2167 * 2168 * On success the function returns a positive number. Then, the caller 2169 * is allowed to write up to the returned number of bytes to the memory 2170 * location computed by the data_of() macro. 2171 * 2172 * The function returns 0 to indicate the "end of file" condition, 2173 * and a negative number is returned on error. In such cases the 2174 * structure pointed to by @handle is not updated and should not be used 2175 * any more. 2176 */ 2177 2178 int snapshot_write_next(struct snapshot_handle *handle) 2179 { 2180 static struct chain_allocator ca; 2181 int error = 0; 2182 2183 /* Check if we have already loaded the entire image */ 2184 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2185 return 0; 2186 2187 handle->sync_read = 1; 2188 2189 if (!handle->cur) { 2190 if (!buffer) 2191 /* This makes the buffer be freed by swsusp_free() */ 2192 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2193 2194 if (!buffer) 2195 return -ENOMEM; 2196 2197 handle->buffer = buffer; 2198 } else if (handle->cur == 1) { 2199 error = load_header(buffer); 2200 if (error) 2201 return error; 2202 2203 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2204 if (error) 2205 return error; 2206 2207 } else if (handle->cur <= nr_meta_pages + 1) { 2208 error = unpack_orig_pfns(buffer, ©_bm); 2209 if (error) 2210 return error; 2211 2212 if (handle->cur == nr_meta_pages + 1) { 2213 error = prepare_image(&orig_bm, ©_bm); 2214 if (error) 2215 return error; 2216 2217 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2218 memory_bm_position_reset(&orig_bm); 2219 restore_pblist = NULL; 2220 handle->buffer = get_buffer(&orig_bm, &ca); 2221 handle->sync_read = 0; 2222 if (IS_ERR(handle->buffer)) 2223 return PTR_ERR(handle->buffer); 2224 } 2225 } else { 2226 copy_last_highmem_page(); 2227 handle->buffer = get_buffer(&orig_bm, &ca); 2228 if (IS_ERR(handle->buffer)) 2229 return PTR_ERR(handle->buffer); 2230 if (handle->buffer != buffer) 2231 handle->sync_read = 0; 2232 } 2233 handle->cur++; 2234 return PAGE_SIZE; 2235 } 2236 2237 /** 2238 * snapshot_write_finalize - must be called after the last call to 2239 * snapshot_write_next() in case the last page in the image happens 2240 * to be a highmem page and its contents should be stored in the 2241 * highmem. Additionally, it releases the memory that will not be 2242 * used any more. 2243 */ 2244 2245 void snapshot_write_finalize(struct snapshot_handle *handle) 2246 { 2247 copy_last_highmem_page(); 2248 /* Free only if we have loaded the image entirely */ 2249 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2250 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2251 free_highmem_data(); 2252 } 2253 } 2254 2255 int snapshot_image_loaded(struct snapshot_handle *handle) 2256 { 2257 return !(!nr_copy_pages || !last_highmem_page_copied() || 2258 handle->cur <= nr_meta_pages + nr_copy_pages); 2259 } 2260 2261 #ifdef CONFIG_HIGHMEM 2262 /* Assumes that @buf is ready and points to a "safe" page */ 2263 static inline void 2264 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2265 { 2266 void *kaddr1, *kaddr2; 2267 2268 kaddr1 = kmap_atomic(p1, KM_USER0); 2269 kaddr2 = kmap_atomic(p2, KM_USER1); 2270 copy_page(buf, kaddr1); 2271 copy_page(kaddr1, kaddr2); 2272 copy_page(kaddr2, buf); 2273 kunmap_atomic(kaddr2, KM_USER1); 2274 kunmap_atomic(kaddr1, KM_USER0); 2275 } 2276 2277 /** 2278 * restore_highmem - for each highmem page that was allocated before 2279 * the suspend and included in the suspend image, and also has been 2280 * allocated by the "resume" kernel swap its current (ie. "before 2281 * resume") contents with the previous (ie. "before suspend") one. 2282 * 2283 * If the resume eventually fails, we can call this function once 2284 * again and restore the "before resume" highmem state. 2285 */ 2286 2287 int restore_highmem(void) 2288 { 2289 struct highmem_pbe *pbe = highmem_pblist; 2290 void *buf; 2291 2292 if (!pbe) 2293 return 0; 2294 2295 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2296 if (!buf) 2297 return -ENOMEM; 2298 2299 while (pbe) { 2300 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2301 pbe = pbe->next; 2302 } 2303 free_image_page(buf, PG_UNSAFE_CLEAR); 2304 return 0; 2305 } 2306 #endif /* CONFIG_HIGHMEM */ 2307