xref: /openbmc/linux/kernel/power/snapshot.c (revision cc19db8b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
78 
79 
80 /*
81  * The calls to set_direct_map_*() should not fail because remapping a page
82  * here means that we only update protection bits in an existing PTE.
83  * It is still worth to have a warning here if something changes and this
84  * will no longer be the case.
85  */
86 static inline void hibernate_map_page(struct page *page)
87 {
88 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 		int ret = set_direct_map_default_noflush(page);
90 
91 		if (ret)
92 			pr_warn_once("Failed to remap page\n");
93 	} else {
94 		debug_pagealloc_map_pages(page, 1);
95 	}
96 }
97 
98 static inline void hibernate_unmap_page(struct page *page)
99 {
100 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 		unsigned long addr = (unsigned long)page_address(page);
102 		int ret  = set_direct_map_invalid_noflush(page);
103 
104 		if (ret)
105 			pr_warn_once("Failed to remap page\n");
106 
107 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 	} else {
109 		debug_pagealloc_unmap_pages(page, 1);
110 	}
111 }
112 
113 static int swsusp_page_is_free(struct page *);
114 static void swsusp_set_page_forbidden(struct page *);
115 static void swsusp_unset_page_forbidden(struct page *);
116 
117 /*
118  * Number of bytes to reserve for memory allocations made by device drivers
119  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120  * cause image creation to fail (tunable via /sys/power/reserved_size).
121  */
122 unsigned long reserved_size;
123 
124 void __init hibernate_reserved_size_init(void)
125 {
126 	reserved_size = SPARE_PAGES * PAGE_SIZE;
127 }
128 
129 /*
130  * Preferred image size in bytes (tunable via /sys/power/image_size).
131  * When it is set to N, swsusp will do its best to ensure the image
132  * size will not exceed N bytes, but if that is impossible, it will
133  * try to create the smallest image possible.
134  */
135 unsigned long image_size;
136 
137 void __init hibernate_image_size_init(void)
138 {
139 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140 }
141 
142 /*
143  * List of PBEs needed for restoring the pages that were allocated before
144  * the suspend and included in the suspend image, but have also been
145  * allocated by the "resume" kernel, so their contents cannot be written
146  * directly to their "original" page frames.
147  */
148 struct pbe *restore_pblist;
149 
150 /* struct linked_page is used to build chains of pages */
151 
152 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
153 
154 struct linked_page {
155 	struct linked_page *next;
156 	char data[LINKED_PAGE_DATA_SIZE];
157 } __packed;
158 
159 /*
160  * List of "safe" pages (ie. pages that were not used by the image kernel
161  * before hibernation) that may be used as temporary storage for image kernel
162  * memory contents.
163  */
164 static struct linked_page *safe_pages_list;
165 
166 /* Pointer to an auxiliary buffer (1 page) */
167 static void *buffer;
168 
169 #define PG_ANY		0
170 #define PG_SAFE		1
171 #define PG_UNSAFE_CLEAR	1
172 #define PG_UNSAFE_KEEP	0
173 
174 static unsigned int allocated_unsafe_pages;
175 
176 /**
177  * get_image_page - Allocate a page for a hibernation image.
178  * @gfp_mask: GFP mask for the allocation.
179  * @safe_needed: Get pages that were not used before hibernation (restore only)
180  *
181  * During image restoration, for storing the PBE list and the image data, we can
182  * only use memory pages that do not conflict with the pages used before
183  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
184  * using allocated_unsafe_pages.
185  *
186  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187  * swsusp_free() can release it.
188  */
189 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190 {
191 	void *res;
192 
193 	res = (void *)get_zeroed_page(gfp_mask);
194 	if (safe_needed)
195 		while (res && swsusp_page_is_free(virt_to_page(res))) {
196 			/* The page is unsafe, mark it for swsusp_free() */
197 			swsusp_set_page_forbidden(virt_to_page(res));
198 			allocated_unsafe_pages++;
199 			res = (void *)get_zeroed_page(gfp_mask);
200 		}
201 	if (res) {
202 		swsusp_set_page_forbidden(virt_to_page(res));
203 		swsusp_set_page_free(virt_to_page(res));
204 	}
205 	return res;
206 }
207 
208 static void *__get_safe_page(gfp_t gfp_mask)
209 {
210 	if (safe_pages_list) {
211 		void *ret = safe_pages_list;
212 
213 		safe_pages_list = safe_pages_list->next;
214 		memset(ret, 0, PAGE_SIZE);
215 		return ret;
216 	}
217 	return get_image_page(gfp_mask, PG_SAFE);
218 }
219 
220 unsigned long get_safe_page(gfp_t gfp_mask)
221 {
222 	return (unsigned long)__get_safe_page(gfp_mask);
223 }
224 
225 static struct page *alloc_image_page(gfp_t gfp_mask)
226 {
227 	struct page *page;
228 
229 	page = alloc_page(gfp_mask);
230 	if (page) {
231 		swsusp_set_page_forbidden(page);
232 		swsusp_set_page_free(page);
233 	}
234 	return page;
235 }
236 
237 static void recycle_safe_page(void *page_address)
238 {
239 	struct linked_page *lp = page_address;
240 
241 	lp->next = safe_pages_list;
242 	safe_pages_list = lp;
243 }
244 
245 /**
246  * free_image_page - Free a page allocated for hibernation image.
247  * @addr: Address of the page to free.
248  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249  *
250  * The page to free should have been allocated by get_image_page() (page flags
251  * set by it are affected).
252  */
253 static inline void free_image_page(void *addr, int clear_nosave_free)
254 {
255 	struct page *page;
256 
257 	BUG_ON(!virt_addr_valid(addr));
258 
259 	page = virt_to_page(addr);
260 
261 	swsusp_unset_page_forbidden(page);
262 	if (clear_nosave_free)
263 		swsusp_unset_page_free(page);
264 
265 	__free_page(page);
266 }
267 
268 static inline void free_list_of_pages(struct linked_page *list,
269 				      int clear_page_nosave)
270 {
271 	while (list) {
272 		struct linked_page *lp = list->next;
273 
274 		free_image_page(list, clear_page_nosave);
275 		list = lp;
276 	}
277 }
278 
279 /*
280  * struct chain_allocator is used for allocating small objects out of
281  * a linked list of pages called 'the chain'.
282  *
283  * The chain grows each time when there is no room for a new object in
284  * the current page.  The allocated objects cannot be freed individually.
285  * It is only possible to free them all at once, by freeing the entire
286  * chain.
287  *
288  * NOTE: The chain allocator may be inefficient if the allocated objects
289  * are not much smaller than PAGE_SIZE.
290  */
291 struct chain_allocator {
292 	struct linked_page *chain;	/* the chain */
293 	unsigned int used_space;	/* total size of objects allocated out
294 					   of the current page */
295 	gfp_t gfp_mask;		/* mask for allocating pages */
296 	int safe_needed;	/* if set, only "safe" pages are allocated */
297 };
298 
299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 		       int safe_needed)
301 {
302 	ca->chain = NULL;
303 	ca->used_space = LINKED_PAGE_DATA_SIZE;
304 	ca->gfp_mask = gfp_mask;
305 	ca->safe_needed = safe_needed;
306 }
307 
308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309 {
310 	void *ret;
311 
312 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 		struct linked_page *lp;
314 
315 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 					get_image_page(ca->gfp_mask, PG_ANY);
317 		if (!lp)
318 			return NULL;
319 
320 		lp->next = ca->chain;
321 		ca->chain = lp;
322 		ca->used_space = 0;
323 	}
324 	ret = ca->chain->data + ca->used_space;
325 	ca->used_space += size;
326 	return ret;
327 }
328 
329 /**
330  * Data types related to memory bitmaps.
331  *
332  * Memory bitmap is a structure consisting of many linked lists of
333  * objects.  The main list's elements are of type struct zone_bitmap
334  * and each of them corresponds to one zone.  For each zone bitmap
335  * object there is a list of objects of type struct bm_block that
336  * represent each blocks of bitmap in which information is stored.
337  *
338  * struct memory_bitmap contains a pointer to the main list of zone
339  * bitmap objects, a struct bm_position used for browsing the bitmap,
340  * and a pointer to the list of pages used for allocating all of the
341  * zone bitmap objects and bitmap block objects.
342  *
343  * NOTE: It has to be possible to lay out the bitmap in memory
344  * using only allocations of order 0.  Additionally, the bitmap is
345  * designed to work with arbitrary number of zones (this is over the
346  * top for now, but let's avoid making unnecessary assumptions ;-).
347  *
348  * struct zone_bitmap contains a pointer to a list of bitmap block
349  * objects and a pointer to the bitmap block object that has been
350  * most recently used for setting bits.  Additionally, it contains the
351  * PFNs that correspond to the start and end of the represented zone.
352  *
353  * struct bm_block contains a pointer to the memory page in which
354  * information is stored (in the form of a block of bitmap)
355  * It also contains the pfns that correspond to the start and end of
356  * the represented memory area.
357  *
358  * The memory bitmap is organized as a radix tree to guarantee fast random
359  * access to the bits. There is one radix tree for each zone (as returned
360  * from create_mem_extents).
361  *
362  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363  * two linked lists for the nodes of the tree, one for the inner nodes and
364  * one for the leave nodes. The linked leave nodes are used for fast linear
365  * access of the memory bitmap.
366  *
367  * The struct rtree_node represents one node of the radix tree.
368  */
369 
370 #define BM_END_OF_MAP	(~0UL)
371 
372 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
373 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
374 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
375 
376 /*
377  * struct rtree_node is a wrapper struct to link the nodes
378  * of the rtree together for easy linear iteration over
379  * bits and easy freeing
380  */
381 struct rtree_node {
382 	struct list_head list;
383 	unsigned long *data;
384 };
385 
386 /*
387  * struct mem_zone_bm_rtree represents a bitmap used for one
388  * populated memory zone.
389  */
390 struct mem_zone_bm_rtree {
391 	struct list_head list;		/* Link Zones together         */
392 	struct list_head nodes;		/* Radix Tree inner nodes      */
393 	struct list_head leaves;	/* Radix Tree leaves           */
394 	unsigned long start_pfn;	/* Zone start page frame       */
395 	unsigned long end_pfn;		/* Zone end page frame + 1     */
396 	struct rtree_node *rtree;	/* Radix Tree Root             */
397 	int levels;			/* Number of Radix Tree Levels */
398 	unsigned int blocks;		/* Number of Bitmap Blocks     */
399 };
400 
401 /* strcut bm_position is used for browsing memory bitmaps */
402 
403 struct bm_position {
404 	struct mem_zone_bm_rtree *zone;
405 	struct rtree_node *node;
406 	unsigned long node_pfn;
407 	int node_bit;
408 };
409 
410 struct memory_bitmap {
411 	struct list_head zones;
412 	struct linked_page *p_list;	/* list of pages used to store zone
413 					   bitmap objects and bitmap block
414 					   objects */
415 	struct bm_position cur;	/* most recently used bit position */
416 };
417 
418 /* Functions that operate on memory bitmaps */
419 
420 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
421 #if BITS_PER_LONG == 32
422 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
423 #else
424 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
425 #endif
426 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427 
428 /**
429  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
430  *
431  * This function is used to allocate inner nodes as well as the
432  * leave nodes of the radix tree. It also adds the node to the
433  * corresponding linked list passed in by the *list parameter.
434  */
435 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
436 					   struct chain_allocator *ca,
437 					   struct list_head *list)
438 {
439 	struct rtree_node *node;
440 
441 	node = chain_alloc(ca, sizeof(struct rtree_node));
442 	if (!node)
443 		return NULL;
444 
445 	node->data = get_image_page(gfp_mask, safe_needed);
446 	if (!node->data)
447 		return NULL;
448 
449 	list_add_tail(&node->list, list);
450 
451 	return node;
452 }
453 
454 /**
455  * add_rtree_block - Add a new leave node to the radix tree.
456  *
457  * The leave nodes need to be allocated in order to keep the leaves
458  * linked list in order. This is guaranteed by the zone->blocks
459  * counter.
460  */
461 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
462 			   int safe_needed, struct chain_allocator *ca)
463 {
464 	struct rtree_node *node, *block, **dst;
465 	unsigned int levels_needed, block_nr;
466 	int i;
467 
468 	block_nr = zone->blocks;
469 	levels_needed = 0;
470 
471 	/* How many levels do we need for this block nr? */
472 	while (block_nr) {
473 		levels_needed += 1;
474 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
475 	}
476 
477 	/* Make sure the rtree has enough levels */
478 	for (i = zone->levels; i < levels_needed; i++) {
479 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
480 					&zone->nodes);
481 		if (!node)
482 			return -ENOMEM;
483 
484 		node->data[0] = (unsigned long)zone->rtree;
485 		zone->rtree = node;
486 		zone->levels += 1;
487 	}
488 
489 	/* Allocate new block */
490 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
491 	if (!block)
492 		return -ENOMEM;
493 
494 	/* Now walk the rtree to insert the block */
495 	node = zone->rtree;
496 	dst = &zone->rtree;
497 	block_nr = zone->blocks;
498 	for (i = zone->levels; i > 0; i--) {
499 		int index;
500 
501 		if (!node) {
502 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
503 						&zone->nodes);
504 			if (!node)
505 				return -ENOMEM;
506 			*dst = node;
507 		}
508 
509 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
510 		index &= BM_RTREE_LEVEL_MASK;
511 		dst = (struct rtree_node **)&((*dst)->data[index]);
512 		node = *dst;
513 	}
514 
515 	zone->blocks += 1;
516 	*dst = block;
517 
518 	return 0;
519 }
520 
521 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
522 			       int clear_nosave_free);
523 
524 /**
525  * create_zone_bm_rtree - Create a radix tree for one zone.
526  *
527  * Allocated the mem_zone_bm_rtree structure and initializes it.
528  * This function also allocated and builds the radix tree for the
529  * zone.
530  */
531 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
532 						      int safe_needed,
533 						      struct chain_allocator *ca,
534 						      unsigned long start,
535 						      unsigned long end)
536 {
537 	struct mem_zone_bm_rtree *zone;
538 	unsigned int i, nr_blocks;
539 	unsigned long pages;
540 
541 	pages = end - start;
542 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
543 	if (!zone)
544 		return NULL;
545 
546 	INIT_LIST_HEAD(&zone->nodes);
547 	INIT_LIST_HEAD(&zone->leaves);
548 	zone->start_pfn = start;
549 	zone->end_pfn = end;
550 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
551 
552 	for (i = 0; i < nr_blocks; i++) {
553 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
554 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
555 			return NULL;
556 		}
557 	}
558 
559 	return zone;
560 }
561 
562 /**
563  * free_zone_bm_rtree - Free the memory of the radix tree.
564  *
565  * Free all node pages of the radix tree. The mem_zone_bm_rtree
566  * structure itself is not freed here nor are the rtree_node
567  * structs.
568  */
569 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
570 			       int clear_nosave_free)
571 {
572 	struct rtree_node *node;
573 
574 	list_for_each_entry(node, &zone->nodes, list)
575 		free_image_page(node->data, clear_nosave_free);
576 
577 	list_for_each_entry(node, &zone->leaves, list)
578 		free_image_page(node->data, clear_nosave_free);
579 }
580 
581 static void memory_bm_position_reset(struct memory_bitmap *bm)
582 {
583 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
584 				  list);
585 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
586 				  struct rtree_node, list);
587 	bm->cur.node_pfn = 0;
588 	bm->cur.node_bit = 0;
589 }
590 
591 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
592 
593 struct mem_extent {
594 	struct list_head hook;
595 	unsigned long start;
596 	unsigned long end;
597 };
598 
599 /**
600  * free_mem_extents - Free a list of memory extents.
601  * @list: List of extents to free.
602  */
603 static void free_mem_extents(struct list_head *list)
604 {
605 	struct mem_extent *ext, *aux;
606 
607 	list_for_each_entry_safe(ext, aux, list, hook) {
608 		list_del(&ext->hook);
609 		kfree(ext);
610 	}
611 }
612 
613 /**
614  * create_mem_extents - Create a list of memory extents.
615  * @list: List to put the extents into.
616  * @gfp_mask: Mask to use for memory allocations.
617  *
618  * The extents represent contiguous ranges of PFNs.
619  */
620 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
621 {
622 	struct zone *zone;
623 
624 	INIT_LIST_HEAD(list);
625 
626 	for_each_populated_zone(zone) {
627 		unsigned long zone_start, zone_end;
628 		struct mem_extent *ext, *cur, *aux;
629 
630 		zone_start = zone->zone_start_pfn;
631 		zone_end = zone_end_pfn(zone);
632 
633 		list_for_each_entry(ext, list, hook)
634 			if (zone_start <= ext->end)
635 				break;
636 
637 		if (&ext->hook == list || zone_end < ext->start) {
638 			/* New extent is necessary */
639 			struct mem_extent *new_ext;
640 
641 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
642 			if (!new_ext) {
643 				free_mem_extents(list);
644 				return -ENOMEM;
645 			}
646 			new_ext->start = zone_start;
647 			new_ext->end = zone_end;
648 			list_add_tail(&new_ext->hook, &ext->hook);
649 			continue;
650 		}
651 
652 		/* Merge this zone's range of PFNs with the existing one */
653 		if (zone_start < ext->start)
654 			ext->start = zone_start;
655 		if (zone_end > ext->end)
656 			ext->end = zone_end;
657 
658 		/* More merging may be possible */
659 		cur = ext;
660 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
661 			if (zone_end < cur->start)
662 				break;
663 			if (zone_end < cur->end)
664 				ext->end = cur->end;
665 			list_del(&cur->hook);
666 			kfree(cur);
667 		}
668 	}
669 
670 	return 0;
671 }
672 
673 /**
674  * memory_bm_create - Allocate memory for a memory bitmap.
675  */
676 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
677 			    int safe_needed)
678 {
679 	struct chain_allocator ca;
680 	struct list_head mem_extents;
681 	struct mem_extent *ext;
682 	int error;
683 
684 	chain_init(&ca, gfp_mask, safe_needed);
685 	INIT_LIST_HEAD(&bm->zones);
686 
687 	error = create_mem_extents(&mem_extents, gfp_mask);
688 	if (error)
689 		return error;
690 
691 	list_for_each_entry(ext, &mem_extents, hook) {
692 		struct mem_zone_bm_rtree *zone;
693 
694 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
695 					    ext->start, ext->end);
696 		if (!zone) {
697 			error = -ENOMEM;
698 			goto Error;
699 		}
700 		list_add_tail(&zone->list, &bm->zones);
701 	}
702 
703 	bm->p_list = ca.chain;
704 	memory_bm_position_reset(bm);
705  Exit:
706 	free_mem_extents(&mem_extents);
707 	return error;
708 
709  Error:
710 	bm->p_list = ca.chain;
711 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
712 	goto Exit;
713 }
714 
715 /**
716  * memory_bm_free - Free memory occupied by the memory bitmap.
717  * @bm: Memory bitmap.
718  */
719 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
720 {
721 	struct mem_zone_bm_rtree *zone;
722 
723 	list_for_each_entry(zone, &bm->zones, list)
724 		free_zone_bm_rtree(zone, clear_nosave_free);
725 
726 	free_list_of_pages(bm->p_list, clear_nosave_free);
727 
728 	INIT_LIST_HEAD(&bm->zones);
729 }
730 
731 /**
732  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
733  *
734  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
735  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
736  *
737  * Walk the radix tree to find the page containing the bit that represents @pfn
738  * and return the position of the bit in @addr and @bit_nr.
739  */
740 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
741 			      void **addr, unsigned int *bit_nr)
742 {
743 	struct mem_zone_bm_rtree *curr, *zone;
744 	struct rtree_node *node;
745 	int i, block_nr;
746 
747 	zone = bm->cur.zone;
748 
749 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
750 		goto zone_found;
751 
752 	zone = NULL;
753 
754 	/* Find the right zone */
755 	list_for_each_entry(curr, &bm->zones, list) {
756 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
757 			zone = curr;
758 			break;
759 		}
760 	}
761 
762 	if (!zone)
763 		return -EFAULT;
764 
765 zone_found:
766 	/*
767 	 * We have found the zone. Now walk the radix tree to find the leaf node
768 	 * for our PFN.
769 	 */
770 
771 	/*
772 	 * If the zone we wish to scan is the current zone and the
773 	 * pfn falls into the current node then we do not need to walk
774 	 * the tree.
775 	 */
776 	node = bm->cur.node;
777 	if (zone == bm->cur.zone &&
778 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
779 		goto node_found;
780 
781 	node      = zone->rtree;
782 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
783 
784 	for (i = zone->levels; i > 0; i--) {
785 		int index;
786 
787 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
788 		index &= BM_RTREE_LEVEL_MASK;
789 		BUG_ON(node->data[index] == 0);
790 		node = (struct rtree_node *)node->data[index];
791 	}
792 
793 node_found:
794 	/* Update last position */
795 	bm->cur.zone = zone;
796 	bm->cur.node = node;
797 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
798 
799 	/* Set return values */
800 	*addr = node->data;
801 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
802 
803 	return 0;
804 }
805 
806 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
807 {
808 	void *addr;
809 	unsigned int bit;
810 	int error;
811 
812 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
813 	BUG_ON(error);
814 	set_bit(bit, addr);
815 }
816 
817 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
818 {
819 	void *addr;
820 	unsigned int bit;
821 	int error;
822 
823 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
824 	if (!error)
825 		set_bit(bit, addr);
826 
827 	return error;
828 }
829 
830 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
831 {
832 	void *addr;
833 	unsigned int bit;
834 	int error;
835 
836 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
837 	BUG_ON(error);
838 	clear_bit(bit, addr);
839 }
840 
841 static void memory_bm_clear_current(struct memory_bitmap *bm)
842 {
843 	int bit;
844 
845 	bit = max(bm->cur.node_bit - 1, 0);
846 	clear_bit(bit, bm->cur.node->data);
847 }
848 
849 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
850 {
851 	void *addr;
852 	unsigned int bit;
853 	int error;
854 
855 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
856 	BUG_ON(error);
857 	return test_bit(bit, addr);
858 }
859 
860 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
861 {
862 	void *addr;
863 	unsigned int bit;
864 
865 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
866 }
867 
868 /*
869  * rtree_next_node - Jump to the next leaf node.
870  *
871  * Set the position to the beginning of the next node in the
872  * memory bitmap. This is either the next node in the current
873  * zone's radix tree or the first node in the radix tree of the
874  * next zone.
875  *
876  * Return true if there is a next node, false otherwise.
877  */
878 static bool rtree_next_node(struct memory_bitmap *bm)
879 {
880 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
881 		bm->cur.node = list_entry(bm->cur.node->list.next,
882 					  struct rtree_node, list);
883 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
884 		bm->cur.node_bit  = 0;
885 		touch_softlockup_watchdog();
886 		return true;
887 	}
888 
889 	/* No more nodes, goto next zone */
890 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
891 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
892 				  struct mem_zone_bm_rtree, list);
893 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
894 					  struct rtree_node, list);
895 		bm->cur.node_pfn = 0;
896 		bm->cur.node_bit = 0;
897 		return true;
898 	}
899 
900 	/* No more zones */
901 	return false;
902 }
903 
904 /**
905  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
906  * @bm: Memory bitmap.
907  *
908  * Starting from the last returned position this function searches for the next
909  * set bit in @bm and returns the PFN represented by it.  If no more bits are
910  * set, BM_END_OF_MAP is returned.
911  *
912  * It is required to run memory_bm_position_reset() before the first call to
913  * this function for the given memory bitmap.
914  */
915 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
916 {
917 	unsigned long bits, pfn, pages;
918 	int bit;
919 
920 	do {
921 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
922 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
923 		bit	  = find_next_bit(bm->cur.node->data, bits,
924 					  bm->cur.node_bit);
925 		if (bit < bits) {
926 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
927 			bm->cur.node_bit = bit + 1;
928 			return pfn;
929 		}
930 	} while (rtree_next_node(bm));
931 
932 	return BM_END_OF_MAP;
933 }
934 
935 /*
936  * This structure represents a range of page frames the contents of which
937  * should not be saved during hibernation.
938  */
939 struct nosave_region {
940 	struct list_head list;
941 	unsigned long start_pfn;
942 	unsigned long end_pfn;
943 };
944 
945 static LIST_HEAD(nosave_regions);
946 
947 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
948 {
949 	struct rtree_node *node;
950 
951 	list_for_each_entry(node, &zone->nodes, list)
952 		recycle_safe_page(node->data);
953 
954 	list_for_each_entry(node, &zone->leaves, list)
955 		recycle_safe_page(node->data);
956 }
957 
958 static void memory_bm_recycle(struct memory_bitmap *bm)
959 {
960 	struct mem_zone_bm_rtree *zone;
961 	struct linked_page *p_list;
962 
963 	list_for_each_entry(zone, &bm->zones, list)
964 		recycle_zone_bm_rtree(zone);
965 
966 	p_list = bm->p_list;
967 	while (p_list) {
968 		struct linked_page *lp = p_list;
969 
970 		p_list = lp->next;
971 		recycle_safe_page(lp);
972 	}
973 }
974 
975 /**
976  * register_nosave_region - Register a region of unsaveable memory.
977  *
978  * Register a range of page frames the contents of which should not be saved
979  * during hibernation (to be used in the early initialization code).
980  */
981 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
982 {
983 	struct nosave_region *region;
984 
985 	if (start_pfn >= end_pfn)
986 		return;
987 
988 	if (!list_empty(&nosave_regions)) {
989 		/* Try to extend the previous region (they should be sorted) */
990 		region = list_entry(nosave_regions.prev,
991 					struct nosave_region, list);
992 		if (region->end_pfn == start_pfn) {
993 			region->end_pfn = end_pfn;
994 			goto Report;
995 		}
996 	}
997 	/* This allocation cannot fail */
998 	region = memblock_alloc(sizeof(struct nosave_region),
999 				SMP_CACHE_BYTES);
1000 	if (!region)
1001 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1002 		      sizeof(struct nosave_region));
1003 	region->start_pfn = start_pfn;
1004 	region->end_pfn = end_pfn;
1005 	list_add_tail(&region->list, &nosave_regions);
1006  Report:
1007 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1008 		(unsigned long long) start_pfn << PAGE_SHIFT,
1009 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1010 }
1011 
1012 /*
1013  * Set bits in this map correspond to the page frames the contents of which
1014  * should not be saved during the suspend.
1015  */
1016 static struct memory_bitmap *forbidden_pages_map;
1017 
1018 /* Set bits in this map correspond to free page frames. */
1019 static struct memory_bitmap *free_pages_map;
1020 
1021 /*
1022  * Each page frame allocated for creating the image is marked by setting the
1023  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1024  */
1025 
1026 void swsusp_set_page_free(struct page *page)
1027 {
1028 	if (free_pages_map)
1029 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1030 }
1031 
1032 static int swsusp_page_is_free(struct page *page)
1033 {
1034 	return free_pages_map ?
1035 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1036 }
1037 
1038 void swsusp_unset_page_free(struct page *page)
1039 {
1040 	if (free_pages_map)
1041 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1042 }
1043 
1044 static void swsusp_set_page_forbidden(struct page *page)
1045 {
1046 	if (forbidden_pages_map)
1047 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1048 }
1049 
1050 int swsusp_page_is_forbidden(struct page *page)
1051 {
1052 	return forbidden_pages_map ?
1053 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1054 }
1055 
1056 static void swsusp_unset_page_forbidden(struct page *page)
1057 {
1058 	if (forbidden_pages_map)
1059 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1060 }
1061 
1062 /**
1063  * mark_nosave_pages - Mark pages that should not be saved.
1064  * @bm: Memory bitmap.
1065  *
1066  * Set the bits in @bm that correspond to the page frames the contents of which
1067  * should not be saved.
1068  */
1069 static void mark_nosave_pages(struct memory_bitmap *bm)
1070 {
1071 	struct nosave_region *region;
1072 
1073 	if (list_empty(&nosave_regions))
1074 		return;
1075 
1076 	list_for_each_entry(region, &nosave_regions, list) {
1077 		unsigned long pfn;
1078 
1079 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1080 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1081 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1082 				- 1);
1083 
1084 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1085 			if (pfn_valid(pfn)) {
1086 				/*
1087 				 * It is safe to ignore the result of
1088 				 * mem_bm_set_bit_check() here, since we won't
1089 				 * touch the PFNs for which the error is
1090 				 * returned anyway.
1091 				 */
1092 				mem_bm_set_bit_check(bm, pfn);
1093 			}
1094 	}
1095 }
1096 
1097 /**
1098  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1099  *
1100  * Create bitmaps needed for marking page frames that should not be saved and
1101  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1102  * only modified if everything goes well, because we don't want the bits to be
1103  * touched before both bitmaps are set up.
1104  */
1105 int create_basic_memory_bitmaps(void)
1106 {
1107 	struct memory_bitmap *bm1, *bm2;
1108 	int error = 0;
1109 
1110 	if (forbidden_pages_map && free_pages_map)
1111 		return 0;
1112 	else
1113 		BUG_ON(forbidden_pages_map || free_pages_map);
1114 
1115 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1116 	if (!bm1)
1117 		return -ENOMEM;
1118 
1119 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1120 	if (error)
1121 		goto Free_first_object;
1122 
1123 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1124 	if (!bm2)
1125 		goto Free_first_bitmap;
1126 
1127 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1128 	if (error)
1129 		goto Free_second_object;
1130 
1131 	forbidden_pages_map = bm1;
1132 	free_pages_map = bm2;
1133 	mark_nosave_pages(forbidden_pages_map);
1134 
1135 	pr_debug("Basic memory bitmaps created\n");
1136 
1137 	return 0;
1138 
1139  Free_second_object:
1140 	kfree(bm2);
1141  Free_first_bitmap:
1142 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1143  Free_first_object:
1144 	kfree(bm1);
1145 	return -ENOMEM;
1146 }
1147 
1148 /**
1149  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1150  *
1151  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1152  * auxiliary pointers are necessary so that the bitmaps themselves are not
1153  * referred to while they are being freed.
1154  */
1155 void free_basic_memory_bitmaps(void)
1156 {
1157 	struct memory_bitmap *bm1, *bm2;
1158 
1159 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1160 		return;
1161 
1162 	bm1 = forbidden_pages_map;
1163 	bm2 = free_pages_map;
1164 	forbidden_pages_map = NULL;
1165 	free_pages_map = NULL;
1166 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1167 	kfree(bm1);
1168 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1169 	kfree(bm2);
1170 
1171 	pr_debug("Basic memory bitmaps freed\n");
1172 }
1173 
1174 static void clear_or_poison_free_page(struct page *page)
1175 {
1176 	if (page_poisoning_enabled_static())
1177 		__kernel_poison_pages(page, 1);
1178 	else if (want_init_on_free())
1179 		clear_highpage(page);
1180 }
1181 
1182 void clear_or_poison_free_pages(void)
1183 {
1184 	struct memory_bitmap *bm = free_pages_map;
1185 	unsigned long pfn;
1186 
1187 	if (WARN_ON(!(free_pages_map)))
1188 		return;
1189 
1190 	if (page_poisoning_enabled() || want_init_on_free()) {
1191 		memory_bm_position_reset(bm);
1192 		pfn = memory_bm_next_pfn(bm);
1193 		while (pfn != BM_END_OF_MAP) {
1194 			if (pfn_valid(pfn))
1195 				clear_or_poison_free_page(pfn_to_page(pfn));
1196 
1197 			pfn = memory_bm_next_pfn(bm);
1198 		}
1199 		memory_bm_position_reset(bm);
1200 		pr_info("free pages cleared after restore\n");
1201 	}
1202 }
1203 
1204 /**
1205  * snapshot_additional_pages - Estimate the number of extra pages needed.
1206  * @zone: Memory zone to carry out the computation for.
1207  *
1208  * Estimate the number of additional pages needed for setting up a hibernation
1209  * image data structures for @zone (usually, the returned value is greater than
1210  * the exact number).
1211  */
1212 unsigned int snapshot_additional_pages(struct zone *zone)
1213 {
1214 	unsigned int rtree, nodes;
1215 
1216 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1217 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1218 			      LINKED_PAGE_DATA_SIZE);
1219 	while (nodes > 1) {
1220 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1221 		rtree += nodes;
1222 	}
1223 
1224 	return 2 * rtree;
1225 }
1226 
1227 #ifdef CONFIG_HIGHMEM
1228 /**
1229  * count_free_highmem_pages - Compute the total number of free highmem pages.
1230  *
1231  * The returned number is system-wide.
1232  */
1233 static unsigned int count_free_highmem_pages(void)
1234 {
1235 	struct zone *zone;
1236 	unsigned int cnt = 0;
1237 
1238 	for_each_populated_zone(zone)
1239 		if (is_highmem(zone))
1240 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1241 
1242 	return cnt;
1243 }
1244 
1245 /**
1246  * saveable_highmem_page - Check if a highmem page is saveable.
1247  *
1248  * Determine whether a highmem page should be included in a hibernation image.
1249  *
1250  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1251  * and it isn't part of a free chunk of pages.
1252  */
1253 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1254 {
1255 	struct page *page;
1256 
1257 	if (!pfn_valid(pfn))
1258 		return NULL;
1259 
1260 	page = pfn_to_online_page(pfn);
1261 	if (!page || page_zone(page) != zone)
1262 		return NULL;
1263 
1264 	BUG_ON(!PageHighMem(page));
1265 
1266 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1267 		return NULL;
1268 
1269 	if (PageReserved(page) || PageOffline(page))
1270 		return NULL;
1271 
1272 	if (page_is_guard(page))
1273 		return NULL;
1274 
1275 	return page;
1276 }
1277 
1278 /**
1279  * count_highmem_pages - Compute the total number of saveable highmem pages.
1280  */
1281 static unsigned int count_highmem_pages(void)
1282 {
1283 	struct zone *zone;
1284 	unsigned int n = 0;
1285 
1286 	for_each_populated_zone(zone) {
1287 		unsigned long pfn, max_zone_pfn;
1288 
1289 		if (!is_highmem(zone))
1290 			continue;
1291 
1292 		mark_free_pages(zone);
1293 		max_zone_pfn = zone_end_pfn(zone);
1294 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1295 			if (saveable_highmem_page(zone, pfn))
1296 				n++;
1297 	}
1298 	return n;
1299 }
1300 #else
1301 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1302 {
1303 	return NULL;
1304 }
1305 #endif /* CONFIG_HIGHMEM */
1306 
1307 /**
1308  * saveable_page - Check if the given page is saveable.
1309  *
1310  * Determine whether a non-highmem page should be included in a hibernation
1311  * image.
1312  *
1313  * We should save the page if it isn't Nosave, and is not in the range
1314  * of pages statically defined as 'unsaveable', and it isn't part of
1315  * a free chunk of pages.
1316  */
1317 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1318 {
1319 	struct page *page;
1320 
1321 	if (!pfn_valid(pfn))
1322 		return NULL;
1323 
1324 	page = pfn_to_online_page(pfn);
1325 	if (!page || page_zone(page) != zone)
1326 		return NULL;
1327 
1328 	BUG_ON(PageHighMem(page));
1329 
1330 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1331 		return NULL;
1332 
1333 	if (PageOffline(page))
1334 		return NULL;
1335 
1336 	if (PageReserved(page)
1337 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1338 		return NULL;
1339 
1340 	if (page_is_guard(page))
1341 		return NULL;
1342 
1343 	return page;
1344 }
1345 
1346 /**
1347  * count_data_pages - Compute the total number of saveable non-highmem pages.
1348  */
1349 static unsigned int count_data_pages(void)
1350 {
1351 	struct zone *zone;
1352 	unsigned long pfn, max_zone_pfn;
1353 	unsigned int n = 0;
1354 
1355 	for_each_populated_zone(zone) {
1356 		if (is_highmem(zone))
1357 			continue;
1358 
1359 		mark_free_pages(zone);
1360 		max_zone_pfn = zone_end_pfn(zone);
1361 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1362 			if (saveable_page(zone, pfn))
1363 				n++;
1364 	}
1365 	return n;
1366 }
1367 
1368 /*
1369  * This is needed, because copy_page and memcpy are not usable for copying
1370  * task structs.
1371  */
1372 static inline void do_copy_page(long *dst, long *src)
1373 {
1374 	int n;
1375 
1376 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1377 		*dst++ = *src++;
1378 }
1379 
1380 /**
1381  * safe_copy_page - Copy a page in a safe way.
1382  *
1383  * Check if the page we are going to copy is marked as present in the kernel
1384  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1385  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1386  * always returns 'true'.
1387  */
1388 static void safe_copy_page(void *dst, struct page *s_page)
1389 {
1390 	if (kernel_page_present(s_page)) {
1391 		do_copy_page(dst, page_address(s_page));
1392 	} else {
1393 		hibernate_map_page(s_page);
1394 		do_copy_page(dst, page_address(s_page));
1395 		hibernate_unmap_page(s_page);
1396 	}
1397 }
1398 
1399 #ifdef CONFIG_HIGHMEM
1400 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1401 {
1402 	return is_highmem(zone) ?
1403 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1404 }
1405 
1406 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1407 {
1408 	struct page *s_page, *d_page;
1409 	void *src, *dst;
1410 
1411 	s_page = pfn_to_page(src_pfn);
1412 	d_page = pfn_to_page(dst_pfn);
1413 	if (PageHighMem(s_page)) {
1414 		src = kmap_atomic(s_page);
1415 		dst = kmap_atomic(d_page);
1416 		do_copy_page(dst, src);
1417 		kunmap_atomic(dst);
1418 		kunmap_atomic(src);
1419 	} else {
1420 		if (PageHighMem(d_page)) {
1421 			/*
1422 			 * The page pointed to by src may contain some kernel
1423 			 * data modified by kmap_atomic()
1424 			 */
1425 			safe_copy_page(buffer, s_page);
1426 			dst = kmap_atomic(d_page);
1427 			copy_page(dst, buffer);
1428 			kunmap_atomic(dst);
1429 		} else {
1430 			safe_copy_page(page_address(d_page), s_page);
1431 		}
1432 	}
1433 }
1434 #else
1435 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1436 
1437 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1438 {
1439 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1440 				pfn_to_page(src_pfn));
1441 }
1442 #endif /* CONFIG_HIGHMEM */
1443 
1444 static void copy_data_pages(struct memory_bitmap *copy_bm,
1445 			    struct memory_bitmap *orig_bm)
1446 {
1447 	struct zone *zone;
1448 	unsigned long pfn;
1449 
1450 	for_each_populated_zone(zone) {
1451 		unsigned long max_zone_pfn;
1452 
1453 		mark_free_pages(zone);
1454 		max_zone_pfn = zone_end_pfn(zone);
1455 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1456 			if (page_is_saveable(zone, pfn))
1457 				memory_bm_set_bit(orig_bm, pfn);
1458 	}
1459 	memory_bm_position_reset(orig_bm);
1460 	memory_bm_position_reset(copy_bm);
1461 	for(;;) {
1462 		pfn = memory_bm_next_pfn(orig_bm);
1463 		if (unlikely(pfn == BM_END_OF_MAP))
1464 			break;
1465 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1466 	}
1467 }
1468 
1469 /* Total number of image pages */
1470 static unsigned int nr_copy_pages;
1471 /* Number of pages needed for saving the original pfns of the image pages */
1472 static unsigned int nr_meta_pages;
1473 /*
1474  * Numbers of normal and highmem page frames allocated for hibernation image
1475  * before suspending devices.
1476  */
1477 static unsigned int alloc_normal, alloc_highmem;
1478 /*
1479  * Memory bitmap used for marking saveable pages (during hibernation) or
1480  * hibernation image pages (during restore)
1481  */
1482 static struct memory_bitmap orig_bm;
1483 /*
1484  * Memory bitmap used during hibernation for marking allocated page frames that
1485  * will contain copies of saveable pages.  During restore it is initially used
1486  * for marking hibernation image pages, but then the set bits from it are
1487  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1488  * used for marking "safe" highmem pages, but it has to be reinitialized for
1489  * this purpose.
1490  */
1491 static struct memory_bitmap copy_bm;
1492 
1493 /**
1494  * swsusp_free - Free pages allocated for hibernation image.
1495  *
1496  * Image pages are allocated before snapshot creation, so they need to be
1497  * released after resume.
1498  */
1499 void swsusp_free(void)
1500 {
1501 	unsigned long fb_pfn, fr_pfn;
1502 
1503 	if (!forbidden_pages_map || !free_pages_map)
1504 		goto out;
1505 
1506 	memory_bm_position_reset(forbidden_pages_map);
1507 	memory_bm_position_reset(free_pages_map);
1508 
1509 loop:
1510 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1511 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1512 
1513 	/*
1514 	 * Find the next bit set in both bitmaps. This is guaranteed to
1515 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1516 	 */
1517 	do {
1518 		if (fb_pfn < fr_pfn)
1519 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1520 		if (fr_pfn < fb_pfn)
1521 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1522 	} while (fb_pfn != fr_pfn);
1523 
1524 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1525 		struct page *page = pfn_to_page(fr_pfn);
1526 
1527 		memory_bm_clear_current(forbidden_pages_map);
1528 		memory_bm_clear_current(free_pages_map);
1529 		hibernate_restore_unprotect_page(page_address(page));
1530 		__free_page(page);
1531 		goto loop;
1532 	}
1533 
1534 out:
1535 	nr_copy_pages = 0;
1536 	nr_meta_pages = 0;
1537 	restore_pblist = NULL;
1538 	buffer = NULL;
1539 	alloc_normal = 0;
1540 	alloc_highmem = 0;
1541 	hibernate_restore_protection_end();
1542 }
1543 
1544 /* Helper functions used for the shrinking of memory. */
1545 
1546 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1547 
1548 /**
1549  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1550  * @nr_pages: Number of page frames to allocate.
1551  * @mask: GFP flags to use for the allocation.
1552  *
1553  * Return value: Number of page frames actually allocated
1554  */
1555 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1556 {
1557 	unsigned long nr_alloc = 0;
1558 
1559 	while (nr_pages > 0) {
1560 		struct page *page;
1561 
1562 		page = alloc_image_page(mask);
1563 		if (!page)
1564 			break;
1565 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1566 		if (PageHighMem(page))
1567 			alloc_highmem++;
1568 		else
1569 			alloc_normal++;
1570 		nr_pages--;
1571 		nr_alloc++;
1572 	}
1573 
1574 	return nr_alloc;
1575 }
1576 
1577 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1578 					      unsigned long avail_normal)
1579 {
1580 	unsigned long alloc;
1581 
1582 	if (avail_normal <= alloc_normal)
1583 		return 0;
1584 
1585 	alloc = avail_normal - alloc_normal;
1586 	if (nr_pages < alloc)
1587 		alloc = nr_pages;
1588 
1589 	return preallocate_image_pages(alloc, GFP_IMAGE);
1590 }
1591 
1592 #ifdef CONFIG_HIGHMEM
1593 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1594 {
1595 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1596 }
1597 
1598 /**
1599  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1600  */
1601 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1602 {
1603 	return div64_u64(x * multiplier, base);
1604 }
1605 
1606 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1607 						  unsigned long highmem,
1608 						  unsigned long total)
1609 {
1610 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1611 
1612 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1613 }
1614 #else /* CONFIG_HIGHMEM */
1615 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1616 {
1617 	return 0;
1618 }
1619 
1620 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1621 							 unsigned long highmem,
1622 							 unsigned long total)
1623 {
1624 	return 0;
1625 }
1626 #endif /* CONFIG_HIGHMEM */
1627 
1628 /**
1629  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1630  */
1631 static unsigned long free_unnecessary_pages(void)
1632 {
1633 	unsigned long save, to_free_normal, to_free_highmem, free;
1634 
1635 	save = count_data_pages();
1636 	if (alloc_normal >= save) {
1637 		to_free_normal = alloc_normal - save;
1638 		save = 0;
1639 	} else {
1640 		to_free_normal = 0;
1641 		save -= alloc_normal;
1642 	}
1643 	save += count_highmem_pages();
1644 	if (alloc_highmem >= save) {
1645 		to_free_highmem = alloc_highmem - save;
1646 	} else {
1647 		to_free_highmem = 0;
1648 		save -= alloc_highmem;
1649 		if (to_free_normal > save)
1650 			to_free_normal -= save;
1651 		else
1652 			to_free_normal = 0;
1653 	}
1654 	free = to_free_normal + to_free_highmem;
1655 
1656 	memory_bm_position_reset(&copy_bm);
1657 
1658 	while (to_free_normal > 0 || to_free_highmem > 0) {
1659 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1660 		struct page *page = pfn_to_page(pfn);
1661 
1662 		if (PageHighMem(page)) {
1663 			if (!to_free_highmem)
1664 				continue;
1665 			to_free_highmem--;
1666 			alloc_highmem--;
1667 		} else {
1668 			if (!to_free_normal)
1669 				continue;
1670 			to_free_normal--;
1671 			alloc_normal--;
1672 		}
1673 		memory_bm_clear_bit(&copy_bm, pfn);
1674 		swsusp_unset_page_forbidden(page);
1675 		swsusp_unset_page_free(page);
1676 		__free_page(page);
1677 	}
1678 
1679 	return free;
1680 }
1681 
1682 /**
1683  * minimum_image_size - Estimate the minimum acceptable size of an image.
1684  * @saveable: Number of saveable pages in the system.
1685  *
1686  * We want to avoid attempting to free too much memory too hard, so estimate the
1687  * minimum acceptable size of a hibernation image to use as the lower limit for
1688  * preallocating memory.
1689  *
1690  * We assume that the minimum image size should be proportional to
1691  *
1692  * [number of saveable pages] - [number of pages that can be freed in theory]
1693  *
1694  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1695  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1696  */
1697 static unsigned long minimum_image_size(unsigned long saveable)
1698 {
1699 	unsigned long size;
1700 
1701 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1702 		+ global_node_page_state(NR_ACTIVE_ANON)
1703 		+ global_node_page_state(NR_INACTIVE_ANON)
1704 		+ global_node_page_state(NR_ACTIVE_FILE)
1705 		+ global_node_page_state(NR_INACTIVE_FILE);
1706 
1707 	return saveable <= size ? 0 : saveable - size;
1708 }
1709 
1710 /**
1711  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1712  *
1713  * To create a hibernation image it is necessary to make a copy of every page
1714  * frame in use.  We also need a number of page frames to be free during
1715  * hibernation for allocations made while saving the image and for device
1716  * drivers, in case they need to allocate memory from their hibernation
1717  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1718  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1719  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1720  * total number of available page frames and allocate at least
1721  *
1722  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1723  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1724  *
1725  * of them, which corresponds to the maximum size of a hibernation image.
1726  *
1727  * If image_size is set below the number following from the above formula,
1728  * the preallocation of memory is continued until the total number of saveable
1729  * pages in the system is below the requested image size or the minimum
1730  * acceptable image size returned by minimum_image_size(), whichever is greater.
1731  */
1732 int hibernate_preallocate_memory(void)
1733 {
1734 	struct zone *zone;
1735 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1736 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1737 	ktime_t start, stop;
1738 	int error;
1739 
1740 	pr_info("Preallocating image memory\n");
1741 	start = ktime_get();
1742 
1743 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1744 	if (error) {
1745 		pr_err("Cannot allocate original bitmap\n");
1746 		goto err_out;
1747 	}
1748 
1749 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1750 	if (error) {
1751 		pr_err("Cannot allocate copy bitmap\n");
1752 		goto err_out;
1753 	}
1754 
1755 	alloc_normal = 0;
1756 	alloc_highmem = 0;
1757 
1758 	/* Count the number of saveable data pages. */
1759 	save_highmem = count_highmem_pages();
1760 	saveable = count_data_pages();
1761 
1762 	/*
1763 	 * Compute the total number of page frames we can use (count) and the
1764 	 * number of pages needed for image metadata (size).
1765 	 */
1766 	count = saveable;
1767 	saveable += save_highmem;
1768 	highmem = save_highmem;
1769 	size = 0;
1770 	for_each_populated_zone(zone) {
1771 		size += snapshot_additional_pages(zone);
1772 		if (is_highmem(zone))
1773 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1774 		else
1775 			count += zone_page_state(zone, NR_FREE_PAGES);
1776 	}
1777 	avail_normal = count;
1778 	count += highmem;
1779 	count -= totalreserve_pages;
1780 
1781 	/* Compute the maximum number of saveable pages to leave in memory. */
1782 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1783 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1784 	/* Compute the desired number of image pages specified by image_size. */
1785 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1786 	if (size > max_size)
1787 		size = max_size;
1788 	/*
1789 	 * If the desired number of image pages is at least as large as the
1790 	 * current number of saveable pages in memory, allocate page frames for
1791 	 * the image and we're done.
1792 	 */
1793 	if (size >= saveable) {
1794 		pages = preallocate_image_highmem(save_highmem);
1795 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1796 		goto out;
1797 	}
1798 
1799 	/* Estimate the minimum size of the image. */
1800 	pages = minimum_image_size(saveable);
1801 	/*
1802 	 * To avoid excessive pressure on the normal zone, leave room in it to
1803 	 * accommodate an image of the minimum size (unless it's already too
1804 	 * small, in which case don't preallocate pages from it at all).
1805 	 */
1806 	if (avail_normal > pages)
1807 		avail_normal -= pages;
1808 	else
1809 		avail_normal = 0;
1810 	if (size < pages)
1811 		size = min_t(unsigned long, pages, max_size);
1812 
1813 	/*
1814 	 * Let the memory management subsystem know that we're going to need a
1815 	 * large number of page frames to allocate and make it free some memory.
1816 	 * NOTE: If this is not done, performance will be hurt badly in some
1817 	 * test cases.
1818 	 */
1819 	shrink_all_memory(saveable - size);
1820 
1821 	/*
1822 	 * The number of saveable pages in memory was too high, so apply some
1823 	 * pressure to decrease it.  First, make room for the largest possible
1824 	 * image and fail if that doesn't work.  Next, try to decrease the size
1825 	 * of the image as much as indicated by 'size' using allocations from
1826 	 * highmem and non-highmem zones separately.
1827 	 */
1828 	pages_highmem = preallocate_image_highmem(highmem / 2);
1829 	alloc = count - max_size;
1830 	if (alloc > pages_highmem)
1831 		alloc -= pages_highmem;
1832 	else
1833 		alloc = 0;
1834 	pages = preallocate_image_memory(alloc, avail_normal);
1835 	if (pages < alloc) {
1836 		/* We have exhausted non-highmem pages, try highmem. */
1837 		alloc -= pages;
1838 		pages += pages_highmem;
1839 		pages_highmem = preallocate_image_highmem(alloc);
1840 		if (pages_highmem < alloc) {
1841 			pr_err("Image allocation is %lu pages short\n",
1842 				alloc - pages_highmem);
1843 			goto err_out;
1844 		}
1845 		pages += pages_highmem;
1846 		/*
1847 		 * size is the desired number of saveable pages to leave in
1848 		 * memory, so try to preallocate (all memory - size) pages.
1849 		 */
1850 		alloc = (count - pages) - size;
1851 		pages += preallocate_image_highmem(alloc);
1852 	} else {
1853 		/*
1854 		 * There are approximately max_size saveable pages at this point
1855 		 * and we want to reduce this number down to size.
1856 		 */
1857 		alloc = max_size - size;
1858 		size = preallocate_highmem_fraction(alloc, highmem, count);
1859 		pages_highmem += size;
1860 		alloc -= size;
1861 		size = preallocate_image_memory(alloc, avail_normal);
1862 		pages_highmem += preallocate_image_highmem(alloc - size);
1863 		pages += pages_highmem + size;
1864 	}
1865 
1866 	/*
1867 	 * We only need as many page frames for the image as there are saveable
1868 	 * pages in memory, but we have allocated more.  Release the excessive
1869 	 * ones now.
1870 	 */
1871 	pages -= free_unnecessary_pages();
1872 
1873  out:
1874 	stop = ktime_get();
1875 	pr_info("Allocated %lu pages for snapshot\n", pages);
1876 	swsusp_show_speed(start, stop, pages, "Allocated");
1877 
1878 	return 0;
1879 
1880  err_out:
1881 	swsusp_free();
1882 	return -ENOMEM;
1883 }
1884 
1885 #ifdef CONFIG_HIGHMEM
1886 /**
1887  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1888  *
1889  * Compute the number of non-highmem pages that will be necessary for creating
1890  * copies of highmem pages.
1891  */
1892 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1893 {
1894 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1895 
1896 	if (free_highmem >= nr_highmem)
1897 		nr_highmem = 0;
1898 	else
1899 		nr_highmem -= free_highmem;
1900 
1901 	return nr_highmem;
1902 }
1903 #else
1904 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1905 #endif /* CONFIG_HIGHMEM */
1906 
1907 /**
1908  * enough_free_mem - Check if there is enough free memory for the image.
1909  */
1910 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1911 {
1912 	struct zone *zone;
1913 	unsigned int free = alloc_normal;
1914 
1915 	for_each_populated_zone(zone)
1916 		if (!is_highmem(zone))
1917 			free += zone_page_state(zone, NR_FREE_PAGES);
1918 
1919 	nr_pages += count_pages_for_highmem(nr_highmem);
1920 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1921 		 nr_pages, PAGES_FOR_IO, free);
1922 
1923 	return free > nr_pages + PAGES_FOR_IO;
1924 }
1925 
1926 #ifdef CONFIG_HIGHMEM
1927 /**
1928  * get_highmem_buffer - Allocate a buffer for highmem pages.
1929  *
1930  * If there are some highmem pages in the hibernation image, we may need a
1931  * buffer to copy them and/or load their data.
1932  */
1933 static inline int get_highmem_buffer(int safe_needed)
1934 {
1935 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1936 	return buffer ? 0 : -ENOMEM;
1937 }
1938 
1939 /**
1940  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1941  *
1942  * Try to allocate as many pages as needed, but if the number of free highmem
1943  * pages is less than that, allocate them all.
1944  */
1945 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1946 					       unsigned int nr_highmem)
1947 {
1948 	unsigned int to_alloc = count_free_highmem_pages();
1949 
1950 	if (to_alloc > nr_highmem)
1951 		to_alloc = nr_highmem;
1952 
1953 	nr_highmem -= to_alloc;
1954 	while (to_alloc-- > 0) {
1955 		struct page *page;
1956 
1957 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1958 		memory_bm_set_bit(bm, page_to_pfn(page));
1959 	}
1960 	return nr_highmem;
1961 }
1962 #else
1963 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1964 
1965 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1966 					       unsigned int n) { return 0; }
1967 #endif /* CONFIG_HIGHMEM */
1968 
1969 /**
1970  * swsusp_alloc - Allocate memory for hibernation image.
1971  *
1972  * We first try to allocate as many highmem pages as there are
1973  * saveable highmem pages in the system.  If that fails, we allocate
1974  * non-highmem pages for the copies of the remaining highmem ones.
1975  *
1976  * In this approach it is likely that the copies of highmem pages will
1977  * also be located in the high memory, because of the way in which
1978  * copy_data_pages() works.
1979  */
1980 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1981 			unsigned int nr_pages, unsigned int nr_highmem)
1982 {
1983 	if (nr_highmem > 0) {
1984 		if (get_highmem_buffer(PG_ANY))
1985 			goto err_out;
1986 		if (nr_highmem > alloc_highmem) {
1987 			nr_highmem -= alloc_highmem;
1988 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1989 		}
1990 	}
1991 	if (nr_pages > alloc_normal) {
1992 		nr_pages -= alloc_normal;
1993 		while (nr_pages-- > 0) {
1994 			struct page *page;
1995 
1996 			page = alloc_image_page(GFP_ATOMIC);
1997 			if (!page)
1998 				goto err_out;
1999 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2000 		}
2001 	}
2002 
2003 	return 0;
2004 
2005  err_out:
2006 	swsusp_free();
2007 	return -ENOMEM;
2008 }
2009 
2010 asmlinkage __visible int swsusp_save(void)
2011 {
2012 	unsigned int nr_pages, nr_highmem;
2013 
2014 	pr_info("Creating image:\n");
2015 
2016 	drain_local_pages(NULL);
2017 	nr_pages = count_data_pages();
2018 	nr_highmem = count_highmem_pages();
2019 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2020 
2021 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2022 		pr_err("Not enough free memory\n");
2023 		return -ENOMEM;
2024 	}
2025 
2026 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2027 		pr_err("Memory allocation failed\n");
2028 		return -ENOMEM;
2029 	}
2030 
2031 	/*
2032 	 * During allocating of suspend pagedir, new cold pages may appear.
2033 	 * Kill them.
2034 	 */
2035 	drain_local_pages(NULL);
2036 	copy_data_pages(&copy_bm, &orig_bm);
2037 
2038 	/*
2039 	 * End of critical section. From now on, we can write to memory,
2040 	 * but we should not touch disk. This specially means we must _not_
2041 	 * touch swap space! Except we must write out our image of course.
2042 	 */
2043 
2044 	nr_pages += nr_highmem;
2045 	nr_copy_pages = nr_pages;
2046 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2047 
2048 	pr_info("Image created (%d pages copied)\n", nr_pages);
2049 
2050 	return 0;
2051 }
2052 
2053 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2054 static int init_header_complete(struct swsusp_info *info)
2055 {
2056 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2057 	info->version_code = LINUX_VERSION_CODE;
2058 	return 0;
2059 }
2060 
2061 static const char *check_image_kernel(struct swsusp_info *info)
2062 {
2063 	if (info->version_code != LINUX_VERSION_CODE)
2064 		return "kernel version";
2065 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2066 		return "system type";
2067 	if (strcmp(info->uts.release,init_utsname()->release))
2068 		return "kernel release";
2069 	if (strcmp(info->uts.version,init_utsname()->version))
2070 		return "version";
2071 	if (strcmp(info->uts.machine,init_utsname()->machine))
2072 		return "machine";
2073 	return NULL;
2074 }
2075 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2076 
2077 unsigned long snapshot_get_image_size(void)
2078 {
2079 	return nr_copy_pages + nr_meta_pages + 1;
2080 }
2081 
2082 static int init_header(struct swsusp_info *info)
2083 {
2084 	memset(info, 0, sizeof(struct swsusp_info));
2085 	info->num_physpages = get_num_physpages();
2086 	info->image_pages = nr_copy_pages;
2087 	info->pages = snapshot_get_image_size();
2088 	info->size = info->pages;
2089 	info->size <<= PAGE_SHIFT;
2090 	return init_header_complete(info);
2091 }
2092 
2093 /**
2094  * pack_pfns - Prepare PFNs for saving.
2095  * @bm: Memory bitmap.
2096  * @buf: Memory buffer to store the PFNs in.
2097  *
2098  * PFNs corresponding to set bits in @bm are stored in the area of memory
2099  * pointed to by @buf (1 page at a time).
2100  */
2101 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2102 {
2103 	int j;
2104 
2105 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2106 		buf[j] = memory_bm_next_pfn(bm);
2107 		if (unlikely(buf[j] == BM_END_OF_MAP))
2108 			break;
2109 	}
2110 }
2111 
2112 /**
2113  * snapshot_read_next - Get the address to read the next image page from.
2114  * @handle: Snapshot handle to be used for the reading.
2115  *
2116  * On the first call, @handle should point to a zeroed snapshot_handle
2117  * structure.  The structure gets populated then and a pointer to it should be
2118  * passed to this function every next time.
2119  *
2120  * On success, the function returns a positive number.  Then, the caller
2121  * is allowed to read up to the returned number of bytes from the memory
2122  * location computed by the data_of() macro.
2123  *
2124  * The function returns 0 to indicate the end of the data stream condition,
2125  * and negative numbers are returned on errors.  If that happens, the structure
2126  * pointed to by @handle is not updated and should not be used any more.
2127  */
2128 int snapshot_read_next(struct snapshot_handle *handle)
2129 {
2130 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2131 		return 0;
2132 
2133 	if (!buffer) {
2134 		/* This makes the buffer be freed by swsusp_free() */
2135 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2136 		if (!buffer)
2137 			return -ENOMEM;
2138 	}
2139 	if (!handle->cur) {
2140 		int error;
2141 
2142 		error = init_header((struct swsusp_info *)buffer);
2143 		if (error)
2144 			return error;
2145 		handle->buffer = buffer;
2146 		memory_bm_position_reset(&orig_bm);
2147 		memory_bm_position_reset(&copy_bm);
2148 	} else if (handle->cur <= nr_meta_pages) {
2149 		clear_page(buffer);
2150 		pack_pfns(buffer, &orig_bm);
2151 	} else {
2152 		struct page *page;
2153 
2154 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2155 		if (PageHighMem(page)) {
2156 			/*
2157 			 * Highmem pages are copied to the buffer,
2158 			 * because we can't return with a kmapped
2159 			 * highmem page (we may not be called again).
2160 			 */
2161 			void *kaddr;
2162 
2163 			kaddr = kmap_atomic(page);
2164 			copy_page(buffer, kaddr);
2165 			kunmap_atomic(kaddr);
2166 			handle->buffer = buffer;
2167 		} else {
2168 			handle->buffer = page_address(page);
2169 		}
2170 	}
2171 	handle->cur++;
2172 	return PAGE_SIZE;
2173 }
2174 
2175 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2176 				    struct memory_bitmap *src)
2177 {
2178 	unsigned long pfn;
2179 
2180 	memory_bm_position_reset(src);
2181 	pfn = memory_bm_next_pfn(src);
2182 	while (pfn != BM_END_OF_MAP) {
2183 		memory_bm_set_bit(dst, pfn);
2184 		pfn = memory_bm_next_pfn(src);
2185 	}
2186 }
2187 
2188 /**
2189  * mark_unsafe_pages - Mark pages that were used before hibernation.
2190  *
2191  * Mark the pages that cannot be used for storing the image during restoration,
2192  * because they conflict with the pages that had been used before hibernation.
2193  */
2194 static void mark_unsafe_pages(struct memory_bitmap *bm)
2195 {
2196 	unsigned long pfn;
2197 
2198 	/* Clear the "free"/"unsafe" bit for all PFNs */
2199 	memory_bm_position_reset(free_pages_map);
2200 	pfn = memory_bm_next_pfn(free_pages_map);
2201 	while (pfn != BM_END_OF_MAP) {
2202 		memory_bm_clear_current(free_pages_map);
2203 		pfn = memory_bm_next_pfn(free_pages_map);
2204 	}
2205 
2206 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2207 	duplicate_memory_bitmap(free_pages_map, bm);
2208 
2209 	allocated_unsafe_pages = 0;
2210 }
2211 
2212 static int check_header(struct swsusp_info *info)
2213 {
2214 	const char *reason;
2215 
2216 	reason = check_image_kernel(info);
2217 	if (!reason && info->num_physpages != get_num_physpages())
2218 		reason = "memory size";
2219 	if (reason) {
2220 		pr_err("Image mismatch: %s\n", reason);
2221 		return -EPERM;
2222 	}
2223 	return 0;
2224 }
2225 
2226 /**
2227  * load header - Check the image header and copy the data from it.
2228  */
2229 static int load_header(struct swsusp_info *info)
2230 {
2231 	int error;
2232 
2233 	restore_pblist = NULL;
2234 	error = check_header(info);
2235 	if (!error) {
2236 		nr_copy_pages = info->image_pages;
2237 		nr_meta_pages = info->pages - info->image_pages - 1;
2238 	}
2239 	return error;
2240 }
2241 
2242 /**
2243  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2244  * @bm: Memory bitmap.
2245  * @buf: Area of memory containing the PFNs.
2246  *
2247  * For each element of the array pointed to by @buf (1 page at a time), set the
2248  * corresponding bit in @bm.
2249  */
2250 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2251 {
2252 	int j;
2253 
2254 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2255 		if (unlikely(buf[j] == BM_END_OF_MAP))
2256 			break;
2257 
2258 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2259 			memory_bm_set_bit(bm, buf[j]);
2260 		else
2261 			return -EFAULT;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 #ifdef CONFIG_HIGHMEM
2268 /*
2269  * struct highmem_pbe is used for creating the list of highmem pages that
2270  * should be restored atomically during the resume from disk, because the page
2271  * frames they have occupied before the suspend are in use.
2272  */
2273 struct highmem_pbe {
2274 	struct page *copy_page;	/* data is here now */
2275 	struct page *orig_page;	/* data was here before the suspend */
2276 	struct highmem_pbe *next;
2277 };
2278 
2279 /*
2280  * List of highmem PBEs needed for restoring the highmem pages that were
2281  * allocated before the suspend and included in the suspend image, but have
2282  * also been allocated by the "resume" kernel, so their contents cannot be
2283  * written directly to their "original" page frames.
2284  */
2285 static struct highmem_pbe *highmem_pblist;
2286 
2287 /**
2288  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2289  * @bm: Memory bitmap.
2290  *
2291  * The bits in @bm that correspond to image pages are assumed to be set.
2292  */
2293 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2294 {
2295 	unsigned long pfn;
2296 	unsigned int cnt = 0;
2297 
2298 	memory_bm_position_reset(bm);
2299 	pfn = memory_bm_next_pfn(bm);
2300 	while (pfn != BM_END_OF_MAP) {
2301 		if (PageHighMem(pfn_to_page(pfn)))
2302 			cnt++;
2303 
2304 		pfn = memory_bm_next_pfn(bm);
2305 	}
2306 	return cnt;
2307 }
2308 
2309 static unsigned int safe_highmem_pages;
2310 
2311 static struct memory_bitmap *safe_highmem_bm;
2312 
2313 /**
2314  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2315  * @bm: Pointer to an uninitialized memory bitmap structure.
2316  * @nr_highmem_p: Pointer to the number of highmem image pages.
2317  *
2318  * Try to allocate as many highmem pages as there are highmem image pages
2319  * (@nr_highmem_p points to the variable containing the number of highmem image
2320  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2321  * hibernation image is restored entirely) have the corresponding bits set in
2322  * @bm (it must be uninitialized).
2323  *
2324  * NOTE: This function should not be called if there are no highmem image pages.
2325  */
2326 static int prepare_highmem_image(struct memory_bitmap *bm,
2327 				 unsigned int *nr_highmem_p)
2328 {
2329 	unsigned int to_alloc;
2330 
2331 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2332 		return -ENOMEM;
2333 
2334 	if (get_highmem_buffer(PG_SAFE))
2335 		return -ENOMEM;
2336 
2337 	to_alloc = count_free_highmem_pages();
2338 	if (to_alloc > *nr_highmem_p)
2339 		to_alloc = *nr_highmem_p;
2340 	else
2341 		*nr_highmem_p = to_alloc;
2342 
2343 	safe_highmem_pages = 0;
2344 	while (to_alloc-- > 0) {
2345 		struct page *page;
2346 
2347 		page = alloc_page(__GFP_HIGHMEM);
2348 		if (!swsusp_page_is_free(page)) {
2349 			/* The page is "safe", set its bit the bitmap */
2350 			memory_bm_set_bit(bm, page_to_pfn(page));
2351 			safe_highmem_pages++;
2352 		}
2353 		/* Mark the page as allocated */
2354 		swsusp_set_page_forbidden(page);
2355 		swsusp_set_page_free(page);
2356 	}
2357 	memory_bm_position_reset(bm);
2358 	safe_highmem_bm = bm;
2359 	return 0;
2360 }
2361 
2362 static struct page *last_highmem_page;
2363 
2364 /**
2365  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2366  *
2367  * For a given highmem image page get a buffer that suspend_write_next() should
2368  * return to its caller to write to.
2369  *
2370  * If the page is to be saved to its "original" page frame or a copy of
2371  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2372  * the copy of the page is to be made in normal memory, so the address of
2373  * the copy is returned.
2374  *
2375  * If @buffer is returned, the caller of suspend_write_next() will write
2376  * the page's contents to @buffer, so they will have to be copied to the
2377  * right location on the next call to suspend_write_next() and it is done
2378  * with the help of copy_last_highmem_page().  For this purpose, if
2379  * @buffer is returned, @last_highmem_page is set to the page to which
2380  * the data will have to be copied from @buffer.
2381  */
2382 static void *get_highmem_page_buffer(struct page *page,
2383 				     struct chain_allocator *ca)
2384 {
2385 	struct highmem_pbe *pbe;
2386 	void *kaddr;
2387 
2388 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2389 		/*
2390 		 * We have allocated the "original" page frame and we can
2391 		 * use it directly to store the loaded page.
2392 		 */
2393 		last_highmem_page = page;
2394 		return buffer;
2395 	}
2396 	/*
2397 	 * The "original" page frame has not been allocated and we have to
2398 	 * use a "safe" page frame to store the loaded page.
2399 	 */
2400 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2401 	if (!pbe) {
2402 		swsusp_free();
2403 		return ERR_PTR(-ENOMEM);
2404 	}
2405 	pbe->orig_page = page;
2406 	if (safe_highmem_pages > 0) {
2407 		struct page *tmp;
2408 
2409 		/* Copy of the page will be stored in high memory */
2410 		kaddr = buffer;
2411 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2412 		safe_highmem_pages--;
2413 		last_highmem_page = tmp;
2414 		pbe->copy_page = tmp;
2415 	} else {
2416 		/* Copy of the page will be stored in normal memory */
2417 		kaddr = safe_pages_list;
2418 		safe_pages_list = safe_pages_list->next;
2419 		pbe->copy_page = virt_to_page(kaddr);
2420 	}
2421 	pbe->next = highmem_pblist;
2422 	highmem_pblist = pbe;
2423 	return kaddr;
2424 }
2425 
2426 /**
2427  * copy_last_highmem_page - Copy most the most recent highmem image page.
2428  *
2429  * Copy the contents of a highmem image from @buffer, where the caller of
2430  * snapshot_write_next() has stored them, to the right location represented by
2431  * @last_highmem_page .
2432  */
2433 static void copy_last_highmem_page(void)
2434 {
2435 	if (last_highmem_page) {
2436 		void *dst;
2437 
2438 		dst = kmap_atomic(last_highmem_page);
2439 		copy_page(dst, buffer);
2440 		kunmap_atomic(dst);
2441 		last_highmem_page = NULL;
2442 	}
2443 }
2444 
2445 static inline int last_highmem_page_copied(void)
2446 {
2447 	return !last_highmem_page;
2448 }
2449 
2450 static inline void free_highmem_data(void)
2451 {
2452 	if (safe_highmem_bm)
2453 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2454 
2455 	if (buffer)
2456 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2457 }
2458 #else
2459 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2460 
2461 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2462 					unsigned int *nr_highmem_p) { return 0; }
2463 
2464 static inline void *get_highmem_page_buffer(struct page *page,
2465 					    struct chain_allocator *ca)
2466 {
2467 	return ERR_PTR(-EINVAL);
2468 }
2469 
2470 static inline void copy_last_highmem_page(void) {}
2471 static inline int last_highmem_page_copied(void) { return 1; }
2472 static inline void free_highmem_data(void) {}
2473 #endif /* CONFIG_HIGHMEM */
2474 
2475 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2476 
2477 /**
2478  * prepare_image - Make room for loading hibernation image.
2479  * @new_bm: Uninitialized memory bitmap structure.
2480  * @bm: Memory bitmap with unsafe pages marked.
2481  *
2482  * Use @bm to mark the pages that will be overwritten in the process of
2483  * restoring the system memory state from the suspend image ("unsafe" pages)
2484  * and allocate memory for the image.
2485  *
2486  * The idea is to allocate a new memory bitmap first and then allocate
2487  * as many pages as needed for image data, but without specifying what those
2488  * pages will be used for just yet.  Instead, we mark them all as allocated and
2489  * create a lists of "safe" pages to be used later.  On systems with high
2490  * memory a list of "safe" highmem pages is created too.
2491  */
2492 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2493 {
2494 	unsigned int nr_pages, nr_highmem;
2495 	struct linked_page *lp;
2496 	int error;
2497 
2498 	/* If there is no highmem, the buffer will not be necessary */
2499 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2500 	buffer = NULL;
2501 
2502 	nr_highmem = count_highmem_image_pages(bm);
2503 	mark_unsafe_pages(bm);
2504 
2505 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2506 	if (error)
2507 		goto Free;
2508 
2509 	duplicate_memory_bitmap(new_bm, bm);
2510 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2511 	if (nr_highmem > 0) {
2512 		error = prepare_highmem_image(bm, &nr_highmem);
2513 		if (error)
2514 			goto Free;
2515 	}
2516 	/*
2517 	 * Reserve some safe pages for potential later use.
2518 	 *
2519 	 * NOTE: This way we make sure there will be enough safe pages for the
2520 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2521 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2522 	 *
2523 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2524 	 */
2525 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2526 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2527 	while (nr_pages > 0) {
2528 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2529 		if (!lp) {
2530 			error = -ENOMEM;
2531 			goto Free;
2532 		}
2533 		lp->next = safe_pages_list;
2534 		safe_pages_list = lp;
2535 		nr_pages--;
2536 	}
2537 	/* Preallocate memory for the image */
2538 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2539 	while (nr_pages > 0) {
2540 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2541 		if (!lp) {
2542 			error = -ENOMEM;
2543 			goto Free;
2544 		}
2545 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2546 			/* The page is "safe", add it to the list */
2547 			lp->next = safe_pages_list;
2548 			safe_pages_list = lp;
2549 		}
2550 		/* Mark the page as allocated */
2551 		swsusp_set_page_forbidden(virt_to_page(lp));
2552 		swsusp_set_page_free(virt_to_page(lp));
2553 		nr_pages--;
2554 	}
2555 	return 0;
2556 
2557  Free:
2558 	swsusp_free();
2559 	return error;
2560 }
2561 
2562 /**
2563  * get_buffer - Get the address to store the next image data page.
2564  *
2565  * Get the address that snapshot_write_next() should return to its caller to
2566  * write to.
2567  */
2568 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2569 {
2570 	struct pbe *pbe;
2571 	struct page *page;
2572 	unsigned long pfn = memory_bm_next_pfn(bm);
2573 
2574 	if (pfn == BM_END_OF_MAP)
2575 		return ERR_PTR(-EFAULT);
2576 
2577 	page = pfn_to_page(pfn);
2578 	if (PageHighMem(page))
2579 		return get_highmem_page_buffer(page, ca);
2580 
2581 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2582 		/*
2583 		 * We have allocated the "original" page frame and we can
2584 		 * use it directly to store the loaded page.
2585 		 */
2586 		return page_address(page);
2587 
2588 	/*
2589 	 * The "original" page frame has not been allocated and we have to
2590 	 * use a "safe" page frame to store the loaded page.
2591 	 */
2592 	pbe = chain_alloc(ca, sizeof(struct pbe));
2593 	if (!pbe) {
2594 		swsusp_free();
2595 		return ERR_PTR(-ENOMEM);
2596 	}
2597 	pbe->orig_address = page_address(page);
2598 	pbe->address = safe_pages_list;
2599 	safe_pages_list = safe_pages_list->next;
2600 	pbe->next = restore_pblist;
2601 	restore_pblist = pbe;
2602 	return pbe->address;
2603 }
2604 
2605 /**
2606  * snapshot_write_next - Get the address to store the next image page.
2607  * @handle: Snapshot handle structure to guide the writing.
2608  *
2609  * On the first call, @handle should point to a zeroed snapshot_handle
2610  * structure.  The structure gets populated then and a pointer to it should be
2611  * passed to this function every next time.
2612  *
2613  * On success, the function returns a positive number.  Then, the caller
2614  * is allowed to write up to the returned number of bytes to the memory
2615  * location computed by the data_of() macro.
2616  *
2617  * The function returns 0 to indicate the "end of file" condition.  Negative
2618  * numbers are returned on errors, in which cases the structure pointed to by
2619  * @handle is not updated and should not be used any more.
2620  */
2621 int snapshot_write_next(struct snapshot_handle *handle)
2622 {
2623 	static struct chain_allocator ca;
2624 	int error = 0;
2625 
2626 	/* Check if we have already loaded the entire image */
2627 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2628 		return 0;
2629 
2630 	handle->sync_read = 1;
2631 
2632 	if (!handle->cur) {
2633 		if (!buffer)
2634 			/* This makes the buffer be freed by swsusp_free() */
2635 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2636 
2637 		if (!buffer)
2638 			return -ENOMEM;
2639 
2640 		handle->buffer = buffer;
2641 	} else if (handle->cur == 1) {
2642 		error = load_header(buffer);
2643 		if (error)
2644 			return error;
2645 
2646 		safe_pages_list = NULL;
2647 
2648 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2649 		if (error)
2650 			return error;
2651 
2652 		hibernate_restore_protection_begin();
2653 	} else if (handle->cur <= nr_meta_pages + 1) {
2654 		error = unpack_orig_pfns(buffer, &copy_bm);
2655 		if (error)
2656 			return error;
2657 
2658 		if (handle->cur == nr_meta_pages + 1) {
2659 			error = prepare_image(&orig_bm, &copy_bm);
2660 			if (error)
2661 				return error;
2662 
2663 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2664 			memory_bm_position_reset(&orig_bm);
2665 			restore_pblist = NULL;
2666 			handle->buffer = get_buffer(&orig_bm, &ca);
2667 			handle->sync_read = 0;
2668 			if (IS_ERR(handle->buffer))
2669 				return PTR_ERR(handle->buffer);
2670 		}
2671 	} else {
2672 		copy_last_highmem_page();
2673 		hibernate_restore_protect_page(handle->buffer);
2674 		handle->buffer = get_buffer(&orig_bm, &ca);
2675 		if (IS_ERR(handle->buffer))
2676 			return PTR_ERR(handle->buffer);
2677 		if (handle->buffer != buffer)
2678 			handle->sync_read = 0;
2679 	}
2680 	handle->cur++;
2681 	return PAGE_SIZE;
2682 }
2683 
2684 /**
2685  * snapshot_write_finalize - Complete the loading of a hibernation image.
2686  *
2687  * Must be called after the last call to snapshot_write_next() in case the last
2688  * page in the image happens to be a highmem page and its contents should be
2689  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2690  * necessary any more.
2691  */
2692 void snapshot_write_finalize(struct snapshot_handle *handle)
2693 {
2694 	copy_last_highmem_page();
2695 	hibernate_restore_protect_page(handle->buffer);
2696 	/* Do that only if we have loaded the image entirely */
2697 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2698 		memory_bm_recycle(&orig_bm);
2699 		free_highmem_data();
2700 	}
2701 }
2702 
2703 int snapshot_image_loaded(struct snapshot_handle *handle)
2704 {
2705 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2706 			handle->cur <= nr_meta_pages + nr_copy_pages);
2707 }
2708 
2709 #ifdef CONFIG_HIGHMEM
2710 /* Assumes that @buf is ready and points to a "safe" page */
2711 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2712 				       void *buf)
2713 {
2714 	void *kaddr1, *kaddr2;
2715 
2716 	kaddr1 = kmap_atomic(p1);
2717 	kaddr2 = kmap_atomic(p2);
2718 	copy_page(buf, kaddr1);
2719 	copy_page(kaddr1, kaddr2);
2720 	copy_page(kaddr2, buf);
2721 	kunmap_atomic(kaddr2);
2722 	kunmap_atomic(kaddr1);
2723 }
2724 
2725 /**
2726  * restore_highmem - Put highmem image pages into their original locations.
2727  *
2728  * For each highmem page that was in use before hibernation and is included in
2729  * the image, and also has been allocated by the "restore" kernel, swap its
2730  * current contents with the previous (ie. "before hibernation") ones.
2731  *
2732  * If the restore eventually fails, we can call this function once again and
2733  * restore the highmem state as seen by the restore kernel.
2734  */
2735 int restore_highmem(void)
2736 {
2737 	struct highmem_pbe *pbe = highmem_pblist;
2738 	void *buf;
2739 
2740 	if (!pbe)
2741 		return 0;
2742 
2743 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2744 	if (!buf)
2745 		return -ENOMEM;
2746 
2747 	while (pbe) {
2748 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2749 		pbe = pbe->next;
2750 	}
2751 	free_image_page(buf, PG_UNSAFE_CLEAR);
2752 	return 0;
2753 }
2754 #endif /* CONFIG_HIGHMEM */
2755