xref: /openbmc/linux/kernel/power/snapshot.c (revision c4c11dd1)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36 
37 #include "power.h"
38 
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42 
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49 
50 void __init hibernate_reserved_size_init(void)
51 {
52 	reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54 
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62 
63 void __init hibernate_image_size_init(void)
64 {
65 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67 
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74 
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77 
78 /**
79  *	@safe_needed - on resume, for storing the PBE list and the image,
80  *	we can only use memory pages that do not conflict with the pages
81  *	used before suspend.  The unsafe pages have PageNosaveFree set
82  *	and we count them using unsafe_pages.
83  *
84  *	Each allocated image page is marked as PageNosave and PageNosaveFree
85  *	so that swsusp_free() can release it.
86  */
87 
88 #define PG_ANY		0
89 #define PG_SAFE		1
90 #define PG_UNSAFE_CLEAR	1
91 #define PG_UNSAFE_KEEP	0
92 
93 static unsigned int allocated_unsafe_pages;
94 
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 	void *res;
98 
99 	res = (void *)get_zeroed_page(gfp_mask);
100 	if (safe_needed)
101 		while (res && swsusp_page_is_free(virt_to_page(res))) {
102 			/* The page is unsafe, mark it for swsusp_free() */
103 			swsusp_set_page_forbidden(virt_to_page(res));
104 			allocated_unsafe_pages++;
105 			res = (void *)get_zeroed_page(gfp_mask);
106 		}
107 	if (res) {
108 		swsusp_set_page_forbidden(virt_to_page(res));
109 		swsusp_set_page_free(virt_to_page(res));
110 	}
111 	return res;
112 }
113 
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118 
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 	struct page *page;
122 
123 	page = alloc_page(gfp_mask);
124 	if (page) {
125 		swsusp_set_page_forbidden(page);
126 		swsusp_set_page_free(page);
127 	}
128 	return page;
129 }
130 
131 /**
132  *	free_image_page - free page represented by @addr, allocated with
133  *	get_image_page (page flags set by it must be cleared)
134  */
135 
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 	struct page *page;
139 
140 	BUG_ON(!virt_addr_valid(addr));
141 
142 	page = virt_to_page(addr);
143 
144 	swsusp_unset_page_forbidden(page);
145 	if (clear_nosave_free)
146 		swsusp_unset_page_free(page);
147 
148 	__free_page(page);
149 }
150 
151 /* struct linked_page is used to build chains of pages */
152 
153 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
154 
155 struct linked_page {
156 	struct linked_page *next;
157 	char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159 
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 	while (list) {
164 		struct linked_page *lp = list->next;
165 
166 		free_image_page(list, clear_page_nosave);
167 		list = lp;
168 	}
169 }
170 
171 /**
172   *	struct chain_allocator is used for allocating small objects out of
173   *	a linked list of pages called 'the chain'.
174   *
175   *	The chain grows each time when there is no room for a new object in
176   *	the current page.  The allocated objects cannot be freed individually.
177   *	It is only possible to free them all at once, by freeing the entire
178   *	chain.
179   *
180   *	NOTE: The chain allocator may be inefficient if the allocated objects
181   *	are not much smaller than PAGE_SIZE.
182   */
183 
184 struct chain_allocator {
185 	struct linked_page *chain;	/* the chain */
186 	unsigned int used_space;	/* total size of objects allocated out
187 					 * of the current page
188 					 */
189 	gfp_t gfp_mask;		/* mask for allocating pages */
190 	int safe_needed;	/* if set, only "safe" pages are allocated */
191 };
192 
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 	ca->chain = NULL;
197 	ca->used_space = LINKED_PAGE_DATA_SIZE;
198 	ca->gfp_mask = gfp_mask;
199 	ca->safe_needed = safe_needed;
200 }
201 
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 	void *ret;
205 
206 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 		struct linked_page *lp;
208 
209 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 		if (!lp)
211 			return NULL;
212 
213 		lp->next = ca->chain;
214 		ca->chain = lp;
215 		ca->used_space = 0;
216 	}
217 	ret = ca->chain->data + ca->used_space;
218 	ca->used_space += size;
219 	return ret;
220 }
221 
222 /**
223  *	Data types related to memory bitmaps.
224  *
225  *	Memory bitmap is a structure consiting of many linked lists of
226  *	objects.  The main list's elements are of type struct zone_bitmap
227  *	and each of them corresonds to one zone.  For each zone bitmap
228  *	object there is a list of objects of type struct bm_block that
229  *	represent each blocks of bitmap in which information is stored.
230  *
231  *	struct memory_bitmap contains a pointer to the main list of zone
232  *	bitmap objects, a struct bm_position used for browsing the bitmap,
233  *	and a pointer to the list of pages used for allocating all of the
234  *	zone bitmap objects and bitmap block objects.
235  *
236  *	NOTE: It has to be possible to lay out the bitmap in memory
237  *	using only allocations of order 0.  Additionally, the bitmap is
238  *	designed to work with arbitrary number of zones (this is over the
239  *	top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *	struct zone_bitmap contains a pointer to a list of bitmap block
242  *	objects and a pointer to the bitmap block object that has been
243  *	most recently used for setting bits.  Additionally, it contains the
244  *	pfns that correspond to the start and end of the represented zone.
245  *
246  *	struct bm_block contains a pointer to the memory page in which
247  *	information is stored (in the form of a block of bitmap)
248  *	It also contains the pfns that correspond to the start and end of
249  *	the represented memory area.
250  */
251 
252 #define BM_END_OF_MAP	(~0UL)
253 
254 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 
256 struct bm_block {
257 	struct list_head hook;	/* hook into a list of bitmap blocks */
258 	unsigned long start_pfn;	/* pfn represented by the first bit */
259 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260 	unsigned long *data;	/* bitmap representing pages */
261 };
262 
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 	return bb->end_pfn - bb->start_pfn;
266 }
267 
268 /* strcut bm_position is used for browsing memory bitmaps */
269 
270 struct bm_position {
271 	struct bm_block *block;
272 	int bit;
273 };
274 
275 struct memory_bitmap {
276 	struct list_head blocks;	/* list of bitmap blocks */
277 	struct linked_page *p_list;	/* list of pages used to store zone
278 					 * bitmap objects and bitmap block
279 					 * objects
280 					 */
281 	struct bm_position cur;	/* most recently used bit position */
282 };
283 
284 /* Functions that operate on memory bitmaps */
285 
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 	bm->cur.bit = 0;
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  *	@pages - number of pages to track
297  *	@list - list to put the allocated blocks into
298  *	@ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301 				struct list_head *list,
302 				struct chain_allocator *ca)
303 {
304 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 
306 	while (nr_blocks-- > 0) {
307 		struct bm_block *bb;
308 
309 		bb = chain_alloc(ca, sizeof(struct bm_block));
310 		if (!bb)
311 			return -ENOMEM;
312 		list_add(&bb->hook, list);
313 	}
314 
315 	return 0;
316 }
317 
318 struct mem_extent {
319 	struct list_head hook;
320 	unsigned long start;
321 	unsigned long end;
322 };
323 
324 /**
325  *	free_mem_extents - free a list of memory extents
326  *	@list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330 	struct mem_extent *ext, *aux;
331 
332 	list_for_each_entry_safe(ext, aux, list, hook) {
333 		list_del(&ext->hook);
334 		kfree(ext);
335 	}
336 }
337 
338 /**
339  *	create_mem_extents - create a list of memory extents representing
340  *	                     contiguous ranges of PFNs
341  *	@list - list to put the extents into
342  *	@gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 	struct zone *zone;
347 
348 	INIT_LIST_HEAD(list);
349 
350 	for_each_populated_zone(zone) {
351 		unsigned long zone_start, zone_end;
352 		struct mem_extent *ext, *cur, *aux;
353 
354 		zone_start = zone->zone_start_pfn;
355 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
356 
357 		list_for_each_entry(ext, list, hook)
358 			if (zone_start <= ext->end)
359 				break;
360 
361 		if (&ext->hook == list || zone_end < ext->start) {
362 			/* New extent is necessary */
363 			struct mem_extent *new_ext;
364 
365 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 			if (!new_ext) {
367 				free_mem_extents(list);
368 				return -ENOMEM;
369 			}
370 			new_ext->start = zone_start;
371 			new_ext->end = zone_end;
372 			list_add_tail(&new_ext->hook, &ext->hook);
373 			continue;
374 		}
375 
376 		/* Merge this zone's range of PFNs with the existing one */
377 		if (zone_start < ext->start)
378 			ext->start = zone_start;
379 		if (zone_end > ext->end)
380 			ext->end = zone_end;
381 
382 		/* More merging may be possible */
383 		cur = ext;
384 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 			if (zone_end < cur->start)
386 				break;
387 			if (zone_end < cur->end)
388 				ext->end = cur->end;
389 			list_del(&cur->hook);
390 			kfree(cur);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 /**
398   *	memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 	struct chain_allocator ca;
404 	struct list_head mem_extents;
405 	struct mem_extent *ext;
406 	int error;
407 
408 	chain_init(&ca, gfp_mask, safe_needed);
409 	INIT_LIST_HEAD(&bm->blocks);
410 
411 	error = create_mem_extents(&mem_extents, gfp_mask);
412 	if (error)
413 		return error;
414 
415 	list_for_each_entry(ext, &mem_extents, hook) {
416 		struct bm_block *bb;
417 		unsigned long pfn = ext->start;
418 		unsigned long pages = ext->end - ext->start;
419 
420 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421 
422 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 		if (error)
424 			goto Error;
425 
426 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 			bb->data = get_image_page(gfp_mask, safe_needed);
428 			if (!bb->data) {
429 				error = -ENOMEM;
430 				goto Error;
431 			}
432 
433 			bb->start_pfn = pfn;
434 			if (pages >= BM_BITS_PER_BLOCK) {
435 				pfn += BM_BITS_PER_BLOCK;
436 				pages -= BM_BITS_PER_BLOCK;
437 			} else {
438 				/* This is executed only once in the loop */
439 				pfn += pages;
440 			}
441 			bb->end_pfn = pfn;
442 		}
443 	}
444 
445 	bm->p_list = ca.chain;
446 	memory_bm_position_reset(bm);
447  Exit:
448 	free_mem_extents(&mem_extents);
449 	return error;
450 
451  Error:
452 	bm->p_list = ca.chain;
453 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 	goto Exit;
455 }
456 
457 /**
458   *	memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 	struct bm_block *bb;
463 
464 	list_for_each_entry(bb, &bm->blocks, hook)
465 		if (bb->data)
466 			free_image_page(bb->data, clear_nosave_free);
467 
468 	free_list_of_pages(bm->p_list, clear_nosave_free);
469 
470 	INIT_LIST_HEAD(&bm->blocks);
471 }
472 
473 /**
474  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *	of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 				void **addr, unsigned int *bit_nr)
480 {
481 	struct bm_block *bb;
482 
483 	/*
484 	 * Check if the pfn corresponds to the current bitmap block and find
485 	 * the block where it fits if this is not the case.
486 	 */
487 	bb = bm->cur.block;
488 	if (pfn < bb->start_pfn)
489 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 			if (pfn >= bb->start_pfn)
491 				break;
492 
493 	if (pfn >= bb->end_pfn)
494 		list_for_each_entry_continue(bb, &bm->blocks, hook)
495 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 				break;
497 
498 	if (&bb->hook == &bm->blocks)
499 		return -EFAULT;
500 
501 	/* The block has been found */
502 	bm->cur.block = bb;
503 	pfn -= bb->start_pfn;
504 	bm->cur.bit = pfn + 1;
505 	*bit_nr = pfn;
506 	*addr = bb->data;
507 	return 0;
508 }
509 
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 	void *addr;
513 	unsigned int bit;
514 	int error;
515 
516 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 	BUG_ON(error);
518 	set_bit(bit, addr);
519 }
520 
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 	void *addr;
524 	unsigned int bit;
525 	int error;
526 
527 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 	if (!error)
529 		set_bit(bit, addr);
530 	return error;
531 }
532 
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 	void *addr;
536 	unsigned int bit;
537 	int error;
538 
539 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 	BUG_ON(error);
541 	clear_bit(bit, addr);
542 }
543 
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 	void *addr;
547 	unsigned int bit;
548 	int error;
549 
550 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 	BUG_ON(error);
552 	return test_bit(bit, addr);
553 }
554 
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 	void *addr;
558 	unsigned int bit;
559 
560 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562 
563 /**
564  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *	returned.
567  *
568  *	It is required to run memory_bm_position_reset() before the first call to
569  *	this function.
570  */
571 
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 	struct bm_block *bb;
575 	int bit;
576 
577 	bb = bm->cur.block;
578 	do {
579 		bit = bm->cur.bit;
580 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 		if (bit < bm_block_bits(bb))
582 			goto Return_pfn;
583 
584 		bb = list_entry(bb->hook.next, struct bm_block, hook);
585 		bm->cur.block = bb;
586 		bm->cur.bit = 0;
587 	} while (&bb->hook != &bm->blocks);
588 
589 	memory_bm_position_reset(bm);
590 	return BM_END_OF_MAP;
591 
592  Return_pfn:
593 	bm->cur.bit = bit + 1;
594 	return bb->start_pfn + bit;
595 }
596 
597 /**
598  *	This structure represents a range of page frames the contents of which
599  *	should not be saved during the suspend.
600  */
601 
602 struct nosave_region {
603 	struct list_head list;
604 	unsigned long start_pfn;
605 	unsigned long end_pfn;
606 };
607 
608 static LIST_HEAD(nosave_regions);
609 
610 /**
611  *	register_nosave_region - register a range of page frames the contents
612  *	of which should not be saved during the suspend (to be used in the early
613  *	initialization code)
614  */
615 
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 			 int use_kmalloc)
619 {
620 	struct nosave_region *region;
621 
622 	if (start_pfn >= end_pfn)
623 		return;
624 
625 	if (!list_empty(&nosave_regions)) {
626 		/* Try to extend the previous region (they should be sorted) */
627 		region = list_entry(nosave_regions.prev,
628 					struct nosave_region, list);
629 		if (region->end_pfn == start_pfn) {
630 			region->end_pfn = end_pfn;
631 			goto Report;
632 		}
633 	}
634 	if (use_kmalloc) {
635 		/* during init, this shouldn't fail */
636 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 		BUG_ON(!region);
638 	} else
639 		/* This allocation cannot fail */
640 		region = alloc_bootmem(sizeof(struct nosave_region));
641 	region->start_pfn = start_pfn;
642 	region->end_pfn = end_pfn;
643 	list_add_tail(&region->list, &nosave_regions);
644  Report:
645 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646 		(unsigned long long) start_pfn << PAGE_SHIFT,
647 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
648 }
649 
650 /*
651  * Set bits in this map correspond to the page frames the contents of which
652  * should not be saved during the suspend.
653  */
654 static struct memory_bitmap *forbidden_pages_map;
655 
656 /* Set bits in this map correspond to free page frames. */
657 static struct memory_bitmap *free_pages_map;
658 
659 /*
660  * Each page frame allocated for creating the image is marked by setting the
661  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662  */
663 
664 void swsusp_set_page_free(struct page *page)
665 {
666 	if (free_pages_map)
667 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668 }
669 
670 static int swsusp_page_is_free(struct page *page)
671 {
672 	return free_pages_map ?
673 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674 }
675 
676 void swsusp_unset_page_free(struct page *page)
677 {
678 	if (free_pages_map)
679 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680 }
681 
682 static void swsusp_set_page_forbidden(struct page *page)
683 {
684 	if (forbidden_pages_map)
685 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686 }
687 
688 int swsusp_page_is_forbidden(struct page *page)
689 {
690 	return forbidden_pages_map ?
691 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692 }
693 
694 static void swsusp_unset_page_forbidden(struct page *page)
695 {
696 	if (forbidden_pages_map)
697 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699 
700 /**
701  *	mark_nosave_pages - set bits corresponding to the page frames the
702  *	contents of which should not be saved in a given bitmap.
703  */
704 
705 static void mark_nosave_pages(struct memory_bitmap *bm)
706 {
707 	struct nosave_region *region;
708 
709 	if (list_empty(&nosave_regions))
710 		return;
711 
712 	list_for_each_entry(region, &nosave_regions, list) {
713 		unsigned long pfn;
714 
715 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
717 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718 				- 1);
719 
720 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
721 			if (pfn_valid(pfn)) {
722 				/*
723 				 * It is safe to ignore the result of
724 				 * mem_bm_set_bit_check() here, since we won't
725 				 * touch the PFNs for which the error is
726 				 * returned anyway.
727 				 */
728 				mem_bm_set_bit_check(bm, pfn);
729 			}
730 	}
731 }
732 
733 /**
734  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
735  *	frames that should not be saved and free page frames.  The pointers
736  *	forbidden_pages_map and free_pages_map are only modified if everything
737  *	goes well, because we don't want the bits to be used before both bitmaps
738  *	are set up.
739  */
740 
741 int create_basic_memory_bitmaps(void)
742 {
743 	struct memory_bitmap *bm1, *bm2;
744 	int error = 0;
745 
746 	BUG_ON(forbidden_pages_map || free_pages_map);
747 
748 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
749 	if (!bm1)
750 		return -ENOMEM;
751 
752 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
753 	if (error)
754 		goto Free_first_object;
755 
756 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
757 	if (!bm2)
758 		goto Free_first_bitmap;
759 
760 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
761 	if (error)
762 		goto Free_second_object;
763 
764 	forbidden_pages_map = bm1;
765 	free_pages_map = bm2;
766 	mark_nosave_pages(forbidden_pages_map);
767 
768 	pr_debug("PM: Basic memory bitmaps created\n");
769 
770 	return 0;
771 
772  Free_second_object:
773 	kfree(bm2);
774  Free_first_bitmap:
775  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
776  Free_first_object:
777 	kfree(bm1);
778 	return -ENOMEM;
779 }
780 
781 /**
782  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
783  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
784  *	so that the bitmaps themselves are not referred to while they are being
785  *	freed.
786  */
787 
788 void free_basic_memory_bitmaps(void)
789 {
790 	struct memory_bitmap *bm1, *bm2;
791 
792 	BUG_ON(!(forbidden_pages_map && free_pages_map));
793 
794 	bm1 = forbidden_pages_map;
795 	bm2 = free_pages_map;
796 	forbidden_pages_map = NULL;
797 	free_pages_map = NULL;
798 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
799 	kfree(bm1);
800 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
801 	kfree(bm2);
802 
803 	pr_debug("PM: Basic memory bitmaps freed\n");
804 }
805 
806 /**
807  *	snapshot_additional_pages - estimate the number of additional pages
808  *	be needed for setting up the suspend image data structures for given
809  *	zone (usually the returned value is greater than the exact number)
810  */
811 
812 unsigned int snapshot_additional_pages(struct zone *zone)
813 {
814 	unsigned int res;
815 
816 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
817 	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
818 			    LINKED_PAGE_DATA_SIZE);
819 	return 2 * res;
820 }
821 
822 #ifdef CONFIG_HIGHMEM
823 /**
824  *	count_free_highmem_pages - compute the total number of free highmem
825  *	pages, system-wide.
826  */
827 
828 static unsigned int count_free_highmem_pages(void)
829 {
830 	struct zone *zone;
831 	unsigned int cnt = 0;
832 
833 	for_each_populated_zone(zone)
834 		if (is_highmem(zone))
835 			cnt += zone_page_state(zone, NR_FREE_PAGES);
836 
837 	return cnt;
838 }
839 
840 /**
841  *	saveable_highmem_page - Determine whether a highmem page should be
842  *	included in the suspend image.
843  *
844  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
845  *	and it isn't a part of a free chunk of pages.
846  */
847 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
848 {
849 	struct page *page;
850 
851 	if (!pfn_valid(pfn))
852 		return NULL;
853 
854 	page = pfn_to_page(pfn);
855 	if (page_zone(page) != zone)
856 		return NULL;
857 
858 	BUG_ON(!PageHighMem(page));
859 
860 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
861 	    PageReserved(page))
862 		return NULL;
863 
864 	if (page_is_guard(page))
865 		return NULL;
866 
867 	return page;
868 }
869 
870 /**
871  *	count_highmem_pages - compute the total number of saveable highmem
872  *	pages.
873  */
874 
875 static unsigned int count_highmem_pages(void)
876 {
877 	struct zone *zone;
878 	unsigned int n = 0;
879 
880 	for_each_populated_zone(zone) {
881 		unsigned long pfn, max_zone_pfn;
882 
883 		if (!is_highmem(zone))
884 			continue;
885 
886 		mark_free_pages(zone);
887 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
888 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
889 			if (saveable_highmem_page(zone, pfn))
890 				n++;
891 	}
892 	return n;
893 }
894 #else
895 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
896 {
897 	return NULL;
898 }
899 #endif /* CONFIG_HIGHMEM */
900 
901 /**
902  *	saveable_page - Determine whether a non-highmem page should be included
903  *	in the suspend image.
904  *
905  *	We should save the page if it isn't Nosave, and is not in the range
906  *	of pages statically defined as 'unsaveable', and it isn't a part of
907  *	a free chunk of pages.
908  */
909 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
910 {
911 	struct page *page;
912 
913 	if (!pfn_valid(pfn))
914 		return NULL;
915 
916 	page = pfn_to_page(pfn);
917 	if (page_zone(page) != zone)
918 		return NULL;
919 
920 	BUG_ON(PageHighMem(page));
921 
922 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
923 		return NULL;
924 
925 	if (PageReserved(page)
926 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
927 		return NULL;
928 
929 	if (page_is_guard(page))
930 		return NULL;
931 
932 	return page;
933 }
934 
935 /**
936  *	count_data_pages - compute the total number of saveable non-highmem
937  *	pages.
938  */
939 
940 static unsigned int count_data_pages(void)
941 {
942 	struct zone *zone;
943 	unsigned long pfn, max_zone_pfn;
944 	unsigned int n = 0;
945 
946 	for_each_populated_zone(zone) {
947 		if (is_highmem(zone))
948 			continue;
949 
950 		mark_free_pages(zone);
951 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
952 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
953 			if (saveable_page(zone, pfn))
954 				n++;
955 	}
956 	return n;
957 }
958 
959 /* This is needed, because copy_page and memcpy are not usable for copying
960  * task structs.
961  */
962 static inline void do_copy_page(long *dst, long *src)
963 {
964 	int n;
965 
966 	for (n = PAGE_SIZE / sizeof(long); n; n--)
967 		*dst++ = *src++;
968 }
969 
970 
971 /**
972  *	safe_copy_page - check if the page we are going to copy is marked as
973  *		present in the kernel page tables (this always is the case if
974  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
975  *		kernel_page_present() always returns 'true').
976  */
977 static void safe_copy_page(void *dst, struct page *s_page)
978 {
979 	if (kernel_page_present(s_page)) {
980 		do_copy_page(dst, page_address(s_page));
981 	} else {
982 		kernel_map_pages(s_page, 1, 1);
983 		do_copy_page(dst, page_address(s_page));
984 		kernel_map_pages(s_page, 1, 0);
985 	}
986 }
987 
988 
989 #ifdef CONFIG_HIGHMEM
990 static inline struct page *
991 page_is_saveable(struct zone *zone, unsigned long pfn)
992 {
993 	return is_highmem(zone) ?
994 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
995 }
996 
997 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
998 {
999 	struct page *s_page, *d_page;
1000 	void *src, *dst;
1001 
1002 	s_page = pfn_to_page(src_pfn);
1003 	d_page = pfn_to_page(dst_pfn);
1004 	if (PageHighMem(s_page)) {
1005 		src = kmap_atomic(s_page);
1006 		dst = kmap_atomic(d_page);
1007 		do_copy_page(dst, src);
1008 		kunmap_atomic(dst);
1009 		kunmap_atomic(src);
1010 	} else {
1011 		if (PageHighMem(d_page)) {
1012 			/* Page pointed to by src may contain some kernel
1013 			 * data modified by kmap_atomic()
1014 			 */
1015 			safe_copy_page(buffer, s_page);
1016 			dst = kmap_atomic(d_page);
1017 			copy_page(dst, buffer);
1018 			kunmap_atomic(dst);
1019 		} else {
1020 			safe_copy_page(page_address(d_page), s_page);
1021 		}
1022 	}
1023 }
1024 #else
1025 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1026 
1027 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1028 {
1029 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1030 				pfn_to_page(src_pfn));
1031 }
1032 #endif /* CONFIG_HIGHMEM */
1033 
1034 static void
1035 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1036 {
1037 	struct zone *zone;
1038 	unsigned long pfn;
1039 
1040 	for_each_populated_zone(zone) {
1041 		unsigned long max_zone_pfn;
1042 
1043 		mark_free_pages(zone);
1044 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1045 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1046 			if (page_is_saveable(zone, pfn))
1047 				memory_bm_set_bit(orig_bm, pfn);
1048 	}
1049 	memory_bm_position_reset(orig_bm);
1050 	memory_bm_position_reset(copy_bm);
1051 	for(;;) {
1052 		pfn = memory_bm_next_pfn(orig_bm);
1053 		if (unlikely(pfn == BM_END_OF_MAP))
1054 			break;
1055 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1056 	}
1057 }
1058 
1059 /* Total number of image pages */
1060 static unsigned int nr_copy_pages;
1061 /* Number of pages needed for saving the original pfns of the image pages */
1062 static unsigned int nr_meta_pages;
1063 /*
1064  * Numbers of normal and highmem page frames allocated for hibernation image
1065  * before suspending devices.
1066  */
1067 unsigned int alloc_normal, alloc_highmem;
1068 /*
1069  * Memory bitmap used for marking saveable pages (during hibernation) or
1070  * hibernation image pages (during restore)
1071  */
1072 static struct memory_bitmap orig_bm;
1073 /*
1074  * Memory bitmap used during hibernation for marking allocated page frames that
1075  * will contain copies of saveable pages.  During restore it is initially used
1076  * for marking hibernation image pages, but then the set bits from it are
1077  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1078  * used for marking "safe" highmem pages, but it has to be reinitialized for
1079  * this purpose.
1080  */
1081 static struct memory_bitmap copy_bm;
1082 
1083 /**
1084  *	swsusp_free - free pages allocated for the suspend.
1085  *
1086  *	Suspend pages are alocated before the atomic copy is made, so we
1087  *	need to release them after the resume.
1088  */
1089 
1090 void swsusp_free(void)
1091 {
1092 	struct zone *zone;
1093 	unsigned long pfn, max_zone_pfn;
1094 
1095 	for_each_populated_zone(zone) {
1096 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1097 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1098 			if (pfn_valid(pfn)) {
1099 				struct page *page = pfn_to_page(pfn);
1100 
1101 				if (swsusp_page_is_forbidden(page) &&
1102 				    swsusp_page_is_free(page)) {
1103 					swsusp_unset_page_forbidden(page);
1104 					swsusp_unset_page_free(page);
1105 					__free_page(page);
1106 				}
1107 			}
1108 	}
1109 	nr_copy_pages = 0;
1110 	nr_meta_pages = 0;
1111 	restore_pblist = NULL;
1112 	buffer = NULL;
1113 	alloc_normal = 0;
1114 	alloc_highmem = 0;
1115 }
1116 
1117 /* Helper functions used for the shrinking of memory. */
1118 
1119 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1120 
1121 /**
1122  * preallocate_image_pages - Allocate a number of pages for hibernation image
1123  * @nr_pages: Number of page frames to allocate.
1124  * @mask: GFP flags to use for the allocation.
1125  *
1126  * Return value: Number of page frames actually allocated
1127  */
1128 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1129 {
1130 	unsigned long nr_alloc = 0;
1131 
1132 	while (nr_pages > 0) {
1133 		struct page *page;
1134 
1135 		page = alloc_image_page(mask);
1136 		if (!page)
1137 			break;
1138 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1139 		if (PageHighMem(page))
1140 			alloc_highmem++;
1141 		else
1142 			alloc_normal++;
1143 		nr_pages--;
1144 		nr_alloc++;
1145 	}
1146 
1147 	return nr_alloc;
1148 }
1149 
1150 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1151 					      unsigned long avail_normal)
1152 {
1153 	unsigned long alloc;
1154 
1155 	if (avail_normal <= alloc_normal)
1156 		return 0;
1157 
1158 	alloc = avail_normal - alloc_normal;
1159 	if (nr_pages < alloc)
1160 		alloc = nr_pages;
1161 
1162 	return preallocate_image_pages(alloc, GFP_IMAGE);
1163 }
1164 
1165 #ifdef CONFIG_HIGHMEM
1166 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1167 {
1168 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1169 }
1170 
1171 /**
1172  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1173  */
1174 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1175 {
1176 	x *= multiplier;
1177 	do_div(x, base);
1178 	return (unsigned long)x;
1179 }
1180 
1181 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1182 						unsigned long highmem,
1183 						unsigned long total)
1184 {
1185 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1186 
1187 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1188 }
1189 #else /* CONFIG_HIGHMEM */
1190 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1191 {
1192 	return 0;
1193 }
1194 
1195 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1196 						unsigned long highmem,
1197 						unsigned long total)
1198 {
1199 	return 0;
1200 }
1201 #endif /* CONFIG_HIGHMEM */
1202 
1203 /**
1204  * free_unnecessary_pages - Release preallocated pages not needed for the image
1205  */
1206 static void free_unnecessary_pages(void)
1207 {
1208 	unsigned long save, to_free_normal, to_free_highmem;
1209 
1210 	save = count_data_pages();
1211 	if (alloc_normal >= save) {
1212 		to_free_normal = alloc_normal - save;
1213 		save = 0;
1214 	} else {
1215 		to_free_normal = 0;
1216 		save -= alloc_normal;
1217 	}
1218 	save += count_highmem_pages();
1219 	if (alloc_highmem >= save) {
1220 		to_free_highmem = alloc_highmem - save;
1221 	} else {
1222 		to_free_highmem = 0;
1223 		save -= alloc_highmem;
1224 		if (to_free_normal > save)
1225 			to_free_normal -= save;
1226 		else
1227 			to_free_normal = 0;
1228 	}
1229 
1230 	memory_bm_position_reset(&copy_bm);
1231 
1232 	while (to_free_normal > 0 || to_free_highmem > 0) {
1233 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1234 		struct page *page = pfn_to_page(pfn);
1235 
1236 		if (PageHighMem(page)) {
1237 			if (!to_free_highmem)
1238 				continue;
1239 			to_free_highmem--;
1240 			alloc_highmem--;
1241 		} else {
1242 			if (!to_free_normal)
1243 				continue;
1244 			to_free_normal--;
1245 			alloc_normal--;
1246 		}
1247 		memory_bm_clear_bit(&copy_bm, pfn);
1248 		swsusp_unset_page_forbidden(page);
1249 		swsusp_unset_page_free(page);
1250 		__free_page(page);
1251 	}
1252 }
1253 
1254 /**
1255  * minimum_image_size - Estimate the minimum acceptable size of an image
1256  * @saveable: Number of saveable pages in the system.
1257  *
1258  * We want to avoid attempting to free too much memory too hard, so estimate the
1259  * minimum acceptable size of a hibernation image to use as the lower limit for
1260  * preallocating memory.
1261  *
1262  * We assume that the minimum image size should be proportional to
1263  *
1264  * [number of saveable pages] - [number of pages that can be freed in theory]
1265  *
1266  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1267  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1268  * minus mapped file pages.
1269  */
1270 static unsigned long minimum_image_size(unsigned long saveable)
1271 {
1272 	unsigned long size;
1273 
1274 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1275 		+ global_page_state(NR_ACTIVE_ANON)
1276 		+ global_page_state(NR_INACTIVE_ANON)
1277 		+ global_page_state(NR_ACTIVE_FILE)
1278 		+ global_page_state(NR_INACTIVE_FILE)
1279 		- global_page_state(NR_FILE_MAPPED);
1280 
1281 	return saveable <= size ? 0 : saveable - size;
1282 }
1283 
1284 /**
1285  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1286  *
1287  * To create a hibernation image it is necessary to make a copy of every page
1288  * frame in use.  We also need a number of page frames to be free during
1289  * hibernation for allocations made while saving the image and for device
1290  * drivers, in case they need to allocate memory from their hibernation
1291  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1292  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1293  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1294  * total number of available page frames and allocate at least
1295  *
1296  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1297  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1298  *
1299  * of them, which corresponds to the maximum size of a hibernation image.
1300  *
1301  * If image_size is set below the number following from the above formula,
1302  * the preallocation of memory is continued until the total number of saveable
1303  * pages in the system is below the requested image size or the minimum
1304  * acceptable image size returned by minimum_image_size(), whichever is greater.
1305  */
1306 int hibernate_preallocate_memory(void)
1307 {
1308 	struct zone *zone;
1309 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1310 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1311 	struct timeval start, stop;
1312 	int error;
1313 
1314 	printk(KERN_INFO "PM: Preallocating image memory... ");
1315 	do_gettimeofday(&start);
1316 
1317 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1318 	if (error)
1319 		goto err_out;
1320 
1321 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1322 	if (error)
1323 		goto err_out;
1324 
1325 	alloc_normal = 0;
1326 	alloc_highmem = 0;
1327 
1328 	/* Count the number of saveable data pages. */
1329 	save_highmem = count_highmem_pages();
1330 	saveable = count_data_pages();
1331 
1332 	/*
1333 	 * Compute the total number of page frames we can use (count) and the
1334 	 * number of pages needed for image metadata (size).
1335 	 */
1336 	count = saveable;
1337 	saveable += save_highmem;
1338 	highmem = save_highmem;
1339 	size = 0;
1340 	for_each_populated_zone(zone) {
1341 		size += snapshot_additional_pages(zone);
1342 		if (is_highmem(zone))
1343 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1344 		else
1345 			count += zone_page_state(zone, NR_FREE_PAGES);
1346 	}
1347 	avail_normal = count;
1348 	count += highmem;
1349 	count -= totalreserve_pages;
1350 
1351 	/* Add number of pages required for page keys (s390 only). */
1352 	size += page_key_additional_pages(saveable);
1353 
1354 	/* Compute the maximum number of saveable pages to leave in memory. */
1355 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1356 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1357 	/* Compute the desired number of image pages specified by image_size. */
1358 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1359 	if (size > max_size)
1360 		size = max_size;
1361 	/*
1362 	 * If the desired number of image pages is at least as large as the
1363 	 * current number of saveable pages in memory, allocate page frames for
1364 	 * the image and we're done.
1365 	 */
1366 	if (size >= saveable) {
1367 		pages = preallocate_image_highmem(save_highmem);
1368 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1369 		goto out;
1370 	}
1371 
1372 	/* Estimate the minimum size of the image. */
1373 	pages = minimum_image_size(saveable);
1374 	/*
1375 	 * To avoid excessive pressure on the normal zone, leave room in it to
1376 	 * accommodate an image of the minimum size (unless it's already too
1377 	 * small, in which case don't preallocate pages from it at all).
1378 	 */
1379 	if (avail_normal > pages)
1380 		avail_normal -= pages;
1381 	else
1382 		avail_normal = 0;
1383 	if (size < pages)
1384 		size = min_t(unsigned long, pages, max_size);
1385 
1386 	/*
1387 	 * Let the memory management subsystem know that we're going to need a
1388 	 * large number of page frames to allocate and make it free some memory.
1389 	 * NOTE: If this is not done, performance will be hurt badly in some
1390 	 * test cases.
1391 	 */
1392 	shrink_all_memory(saveable - size);
1393 
1394 	/*
1395 	 * The number of saveable pages in memory was too high, so apply some
1396 	 * pressure to decrease it.  First, make room for the largest possible
1397 	 * image and fail if that doesn't work.  Next, try to decrease the size
1398 	 * of the image as much as indicated by 'size' using allocations from
1399 	 * highmem and non-highmem zones separately.
1400 	 */
1401 	pages_highmem = preallocate_image_highmem(highmem / 2);
1402 	alloc = (count - max_size) - pages_highmem;
1403 	pages = preallocate_image_memory(alloc, avail_normal);
1404 	if (pages < alloc) {
1405 		/* We have exhausted non-highmem pages, try highmem. */
1406 		alloc -= pages;
1407 		pages += pages_highmem;
1408 		pages_highmem = preallocate_image_highmem(alloc);
1409 		if (pages_highmem < alloc)
1410 			goto err_out;
1411 		pages += pages_highmem;
1412 		/*
1413 		 * size is the desired number of saveable pages to leave in
1414 		 * memory, so try to preallocate (all memory - size) pages.
1415 		 */
1416 		alloc = (count - pages) - size;
1417 		pages += preallocate_image_highmem(alloc);
1418 	} else {
1419 		/*
1420 		 * There are approximately max_size saveable pages at this point
1421 		 * and we want to reduce this number down to size.
1422 		 */
1423 		alloc = max_size - size;
1424 		size = preallocate_highmem_fraction(alloc, highmem, count);
1425 		pages_highmem += size;
1426 		alloc -= size;
1427 		size = preallocate_image_memory(alloc, avail_normal);
1428 		pages_highmem += preallocate_image_highmem(alloc - size);
1429 		pages += pages_highmem + size;
1430 	}
1431 
1432 	/*
1433 	 * We only need as many page frames for the image as there are saveable
1434 	 * pages in memory, but we have allocated more.  Release the excessive
1435 	 * ones now.
1436 	 */
1437 	free_unnecessary_pages();
1438 
1439  out:
1440 	do_gettimeofday(&stop);
1441 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1442 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1443 
1444 	return 0;
1445 
1446  err_out:
1447 	printk(KERN_CONT "\n");
1448 	swsusp_free();
1449 	return -ENOMEM;
1450 }
1451 
1452 #ifdef CONFIG_HIGHMEM
1453 /**
1454   *	count_pages_for_highmem - compute the number of non-highmem pages
1455   *	that will be necessary for creating copies of highmem pages.
1456   */
1457 
1458 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1459 {
1460 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1461 
1462 	if (free_highmem >= nr_highmem)
1463 		nr_highmem = 0;
1464 	else
1465 		nr_highmem -= free_highmem;
1466 
1467 	return nr_highmem;
1468 }
1469 #else
1470 static unsigned int
1471 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1472 #endif /* CONFIG_HIGHMEM */
1473 
1474 /**
1475  *	enough_free_mem - Make sure we have enough free memory for the
1476  *	snapshot image.
1477  */
1478 
1479 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1480 {
1481 	struct zone *zone;
1482 	unsigned int free = alloc_normal;
1483 
1484 	for_each_populated_zone(zone)
1485 		if (!is_highmem(zone))
1486 			free += zone_page_state(zone, NR_FREE_PAGES);
1487 
1488 	nr_pages += count_pages_for_highmem(nr_highmem);
1489 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1490 		nr_pages, PAGES_FOR_IO, free);
1491 
1492 	return free > nr_pages + PAGES_FOR_IO;
1493 }
1494 
1495 #ifdef CONFIG_HIGHMEM
1496 /**
1497  *	get_highmem_buffer - if there are some highmem pages in the suspend
1498  *	image, we may need the buffer to copy them and/or load their data.
1499  */
1500 
1501 static inline int get_highmem_buffer(int safe_needed)
1502 {
1503 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1504 	return buffer ? 0 : -ENOMEM;
1505 }
1506 
1507 /**
1508  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1509  *	Try to allocate as many pages as needed, but if the number of free
1510  *	highmem pages is lesser than that, allocate them all.
1511  */
1512 
1513 static inline unsigned int
1514 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1515 {
1516 	unsigned int to_alloc = count_free_highmem_pages();
1517 
1518 	if (to_alloc > nr_highmem)
1519 		to_alloc = nr_highmem;
1520 
1521 	nr_highmem -= to_alloc;
1522 	while (to_alloc-- > 0) {
1523 		struct page *page;
1524 
1525 		page = alloc_image_page(__GFP_HIGHMEM);
1526 		memory_bm_set_bit(bm, page_to_pfn(page));
1527 	}
1528 	return nr_highmem;
1529 }
1530 #else
1531 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1532 
1533 static inline unsigned int
1534 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1535 #endif /* CONFIG_HIGHMEM */
1536 
1537 /**
1538  *	swsusp_alloc - allocate memory for the suspend image
1539  *
1540  *	We first try to allocate as many highmem pages as there are
1541  *	saveable highmem pages in the system.  If that fails, we allocate
1542  *	non-highmem pages for the copies of the remaining highmem ones.
1543  *
1544  *	In this approach it is likely that the copies of highmem pages will
1545  *	also be located in the high memory, because of the way in which
1546  *	copy_data_pages() works.
1547  */
1548 
1549 static int
1550 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1551 		unsigned int nr_pages, unsigned int nr_highmem)
1552 {
1553 	if (nr_highmem > 0) {
1554 		if (get_highmem_buffer(PG_ANY))
1555 			goto err_out;
1556 		if (nr_highmem > alloc_highmem) {
1557 			nr_highmem -= alloc_highmem;
1558 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1559 		}
1560 	}
1561 	if (nr_pages > alloc_normal) {
1562 		nr_pages -= alloc_normal;
1563 		while (nr_pages-- > 0) {
1564 			struct page *page;
1565 
1566 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1567 			if (!page)
1568 				goto err_out;
1569 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1570 		}
1571 	}
1572 
1573 	return 0;
1574 
1575  err_out:
1576 	swsusp_free();
1577 	return -ENOMEM;
1578 }
1579 
1580 asmlinkage int swsusp_save(void)
1581 {
1582 	unsigned int nr_pages, nr_highmem;
1583 
1584 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1585 
1586 	drain_local_pages(NULL);
1587 	nr_pages = count_data_pages();
1588 	nr_highmem = count_highmem_pages();
1589 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1590 
1591 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1592 		printk(KERN_ERR "PM: Not enough free memory\n");
1593 		return -ENOMEM;
1594 	}
1595 
1596 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1597 		printk(KERN_ERR "PM: Memory allocation failed\n");
1598 		return -ENOMEM;
1599 	}
1600 
1601 	/* During allocating of suspend pagedir, new cold pages may appear.
1602 	 * Kill them.
1603 	 */
1604 	drain_local_pages(NULL);
1605 	copy_data_pages(&copy_bm, &orig_bm);
1606 
1607 	/*
1608 	 * End of critical section. From now on, we can write to memory,
1609 	 * but we should not touch disk. This specially means we must _not_
1610 	 * touch swap space! Except we must write out our image of course.
1611 	 */
1612 
1613 	nr_pages += nr_highmem;
1614 	nr_copy_pages = nr_pages;
1615 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1616 
1617 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1618 		nr_pages);
1619 
1620 	return 0;
1621 }
1622 
1623 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1624 static int init_header_complete(struct swsusp_info *info)
1625 {
1626 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1627 	info->version_code = LINUX_VERSION_CODE;
1628 	return 0;
1629 }
1630 
1631 static char *check_image_kernel(struct swsusp_info *info)
1632 {
1633 	if (info->version_code != LINUX_VERSION_CODE)
1634 		return "kernel version";
1635 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1636 		return "system type";
1637 	if (strcmp(info->uts.release,init_utsname()->release))
1638 		return "kernel release";
1639 	if (strcmp(info->uts.version,init_utsname()->version))
1640 		return "version";
1641 	if (strcmp(info->uts.machine,init_utsname()->machine))
1642 		return "machine";
1643 	return NULL;
1644 }
1645 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1646 
1647 unsigned long snapshot_get_image_size(void)
1648 {
1649 	return nr_copy_pages + nr_meta_pages + 1;
1650 }
1651 
1652 static int init_header(struct swsusp_info *info)
1653 {
1654 	memset(info, 0, sizeof(struct swsusp_info));
1655 	info->num_physpages = get_num_physpages();
1656 	info->image_pages = nr_copy_pages;
1657 	info->pages = snapshot_get_image_size();
1658 	info->size = info->pages;
1659 	info->size <<= PAGE_SHIFT;
1660 	return init_header_complete(info);
1661 }
1662 
1663 /**
1664  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1665  *	are stored in the array @buf[] (1 page at a time)
1666  */
1667 
1668 static inline void
1669 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1670 {
1671 	int j;
1672 
1673 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1674 		buf[j] = memory_bm_next_pfn(bm);
1675 		if (unlikely(buf[j] == BM_END_OF_MAP))
1676 			break;
1677 		/* Save page key for data page (s390 only). */
1678 		page_key_read(buf + j);
1679 	}
1680 }
1681 
1682 /**
1683  *	snapshot_read_next - used for reading the system memory snapshot.
1684  *
1685  *	On the first call to it @handle should point to a zeroed
1686  *	snapshot_handle structure.  The structure gets updated and a pointer
1687  *	to it should be passed to this function every next time.
1688  *
1689  *	On success the function returns a positive number.  Then, the caller
1690  *	is allowed to read up to the returned number of bytes from the memory
1691  *	location computed by the data_of() macro.
1692  *
1693  *	The function returns 0 to indicate the end of data stream condition,
1694  *	and a negative number is returned on error.  In such cases the
1695  *	structure pointed to by @handle is not updated and should not be used
1696  *	any more.
1697  */
1698 
1699 int snapshot_read_next(struct snapshot_handle *handle)
1700 {
1701 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1702 		return 0;
1703 
1704 	if (!buffer) {
1705 		/* This makes the buffer be freed by swsusp_free() */
1706 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1707 		if (!buffer)
1708 			return -ENOMEM;
1709 	}
1710 	if (!handle->cur) {
1711 		int error;
1712 
1713 		error = init_header((struct swsusp_info *)buffer);
1714 		if (error)
1715 			return error;
1716 		handle->buffer = buffer;
1717 		memory_bm_position_reset(&orig_bm);
1718 		memory_bm_position_reset(&copy_bm);
1719 	} else if (handle->cur <= nr_meta_pages) {
1720 		clear_page(buffer);
1721 		pack_pfns(buffer, &orig_bm);
1722 	} else {
1723 		struct page *page;
1724 
1725 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1726 		if (PageHighMem(page)) {
1727 			/* Highmem pages are copied to the buffer,
1728 			 * because we can't return with a kmapped
1729 			 * highmem page (we may not be called again).
1730 			 */
1731 			void *kaddr;
1732 
1733 			kaddr = kmap_atomic(page);
1734 			copy_page(buffer, kaddr);
1735 			kunmap_atomic(kaddr);
1736 			handle->buffer = buffer;
1737 		} else {
1738 			handle->buffer = page_address(page);
1739 		}
1740 	}
1741 	handle->cur++;
1742 	return PAGE_SIZE;
1743 }
1744 
1745 /**
1746  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1747  *	the image during resume, because they conflict with the pages that
1748  *	had been used before suspend
1749  */
1750 
1751 static int mark_unsafe_pages(struct memory_bitmap *bm)
1752 {
1753 	struct zone *zone;
1754 	unsigned long pfn, max_zone_pfn;
1755 
1756 	/* Clear page flags */
1757 	for_each_populated_zone(zone) {
1758 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1759 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1760 			if (pfn_valid(pfn))
1761 				swsusp_unset_page_free(pfn_to_page(pfn));
1762 	}
1763 
1764 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1765 	memory_bm_position_reset(bm);
1766 	do {
1767 		pfn = memory_bm_next_pfn(bm);
1768 		if (likely(pfn != BM_END_OF_MAP)) {
1769 			if (likely(pfn_valid(pfn)))
1770 				swsusp_set_page_free(pfn_to_page(pfn));
1771 			else
1772 				return -EFAULT;
1773 		}
1774 	} while (pfn != BM_END_OF_MAP);
1775 
1776 	allocated_unsafe_pages = 0;
1777 
1778 	return 0;
1779 }
1780 
1781 static void
1782 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1783 {
1784 	unsigned long pfn;
1785 
1786 	memory_bm_position_reset(src);
1787 	pfn = memory_bm_next_pfn(src);
1788 	while (pfn != BM_END_OF_MAP) {
1789 		memory_bm_set_bit(dst, pfn);
1790 		pfn = memory_bm_next_pfn(src);
1791 	}
1792 }
1793 
1794 static int check_header(struct swsusp_info *info)
1795 {
1796 	char *reason;
1797 
1798 	reason = check_image_kernel(info);
1799 	if (!reason && info->num_physpages != get_num_physpages())
1800 		reason = "memory size";
1801 	if (reason) {
1802 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1803 		return -EPERM;
1804 	}
1805 	return 0;
1806 }
1807 
1808 /**
1809  *	load header - check the image header and copy data from it
1810  */
1811 
1812 static int
1813 load_header(struct swsusp_info *info)
1814 {
1815 	int error;
1816 
1817 	restore_pblist = NULL;
1818 	error = check_header(info);
1819 	if (!error) {
1820 		nr_copy_pages = info->image_pages;
1821 		nr_meta_pages = info->pages - info->image_pages - 1;
1822 	}
1823 	return error;
1824 }
1825 
1826 /**
1827  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1828  *	the corresponding bit in the memory bitmap @bm
1829  */
1830 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1831 {
1832 	int j;
1833 
1834 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1835 		if (unlikely(buf[j] == BM_END_OF_MAP))
1836 			break;
1837 
1838 		/* Extract and buffer page key for data page (s390 only). */
1839 		page_key_memorize(buf + j);
1840 
1841 		if (memory_bm_pfn_present(bm, buf[j]))
1842 			memory_bm_set_bit(bm, buf[j]);
1843 		else
1844 			return -EFAULT;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 /* List of "safe" pages that may be used to store data loaded from the suspend
1851  * image
1852  */
1853 static struct linked_page *safe_pages_list;
1854 
1855 #ifdef CONFIG_HIGHMEM
1856 /* struct highmem_pbe is used for creating the list of highmem pages that
1857  * should be restored atomically during the resume from disk, because the page
1858  * frames they have occupied before the suspend are in use.
1859  */
1860 struct highmem_pbe {
1861 	struct page *copy_page;	/* data is here now */
1862 	struct page *orig_page;	/* data was here before the suspend */
1863 	struct highmem_pbe *next;
1864 };
1865 
1866 /* List of highmem PBEs needed for restoring the highmem pages that were
1867  * allocated before the suspend and included in the suspend image, but have
1868  * also been allocated by the "resume" kernel, so their contents cannot be
1869  * written directly to their "original" page frames.
1870  */
1871 static struct highmem_pbe *highmem_pblist;
1872 
1873 /**
1874  *	count_highmem_image_pages - compute the number of highmem pages in the
1875  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1876  *	image pages are assumed to be set.
1877  */
1878 
1879 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1880 {
1881 	unsigned long pfn;
1882 	unsigned int cnt = 0;
1883 
1884 	memory_bm_position_reset(bm);
1885 	pfn = memory_bm_next_pfn(bm);
1886 	while (pfn != BM_END_OF_MAP) {
1887 		if (PageHighMem(pfn_to_page(pfn)))
1888 			cnt++;
1889 
1890 		pfn = memory_bm_next_pfn(bm);
1891 	}
1892 	return cnt;
1893 }
1894 
1895 /**
1896  *	prepare_highmem_image - try to allocate as many highmem pages as
1897  *	there are highmem image pages (@nr_highmem_p points to the variable
1898  *	containing the number of highmem image pages).  The pages that are
1899  *	"safe" (ie. will not be overwritten when the suspend image is
1900  *	restored) have the corresponding bits set in @bm (it must be
1901  *	unitialized).
1902  *
1903  *	NOTE: This function should not be called if there are no highmem
1904  *	image pages.
1905  */
1906 
1907 static unsigned int safe_highmem_pages;
1908 
1909 static struct memory_bitmap *safe_highmem_bm;
1910 
1911 static int
1912 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1913 {
1914 	unsigned int to_alloc;
1915 
1916 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1917 		return -ENOMEM;
1918 
1919 	if (get_highmem_buffer(PG_SAFE))
1920 		return -ENOMEM;
1921 
1922 	to_alloc = count_free_highmem_pages();
1923 	if (to_alloc > *nr_highmem_p)
1924 		to_alloc = *nr_highmem_p;
1925 	else
1926 		*nr_highmem_p = to_alloc;
1927 
1928 	safe_highmem_pages = 0;
1929 	while (to_alloc-- > 0) {
1930 		struct page *page;
1931 
1932 		page = alloc_page(__GFP_HIGHMEM);
1933 		if (!swsusp_page_is_free(page)) {
1934 			/* The page is "safe", set its bit the bitmap */
1935 			memory_bm_set_bit(bm, page_to_pfn(page));
1936 			safe_highmem_pages++;
1937 		}
1938 		/* Mark the page as allocated */
1939 		swsusp_set_page_forbidden(page);
1940 		swsusp_set_page_free(page);
1941 	}
1942 	memory_bm_position_reset(bm);
1943 	safe_highmem_bm = bm;
1944 	return 0;
1945 }
1946 
1947 /**
1948  *	get_highmem_page_buffer - for given highmem image page find the buffer
1949  *	that suspend_write_next() should set for its caller to write to.
1950  *
1951  *	If the page is to be saved to its "original" page frame or a copy of
1952  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1953  *	the copy of the page is to be made in normal memory, so the address of
1954  *	the copy is returned.
1955  *
1956  *	If @buffer is returned, the caller of suspend_write_next() will write
1957  *	the page's contents to @buffer, so they will have to be copied to the
1958  *	right location on the next call to suspend_write_next() and it is done
1959  *	with the help of copy_last_highmem_page().  For this purpose, if
1960  *	@buffer is returned, @last_highmem page is set to the page to which
1961  *	the data will have to be copied from @buffer.
1962  */
1963 
1964 static struct page *last_highmem_page;
1965 
1966 static void *
1967 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1968 {
1969 	struct highmem_pbe *pbe;
1970 	void *kaddr;
1971 
1972 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1973 		/* We have allocated the "original" page frame and we can
1974 		 * use it directly to store the loaded page.
1975 		 */
1976 		last_highmem_page = page;
1977 		return buffer;
1978 	}
1979 	/* The "original" page frame has not been allocated and we have to
1980 	 * use a "safe" page frame to store the loaded page.
1981 	 */
1982 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1983 	if (!pbe) {
1984 		swsusp_free();
1985 		return ERR_PTR(-ENOMEM);
1986 	}
1987 	pbe->orig_page = page;
1988 	if (safe_highmem_pages > 0) {
1989 		struct page *tmp;
1990 
1991 		/* Copy of the page will be stored in high memory */
1992 		kaddr = buffer;
1993 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1994 		safe_highmem_pages--;
1995 		last_highmem_page = tmp;
1996 		pbe->copy_page = tmp;
1997 	} else {
1998 		/* Copy of the page will be stored in normal memory */
1999 		kaddr = safe_pages_list;
2000 		safe_pages_list = safe_pages_list->next;
2001 		pbe->copy_page = virt_to_page(kaddr);
2002 	}
2003 	pbe->next = highmem_pblist;
2004 	highmem_pblist = pbe;
2005 	return kaddr;
2006 }
2007 
2008 /**
2009  *	copy_last_highmem_page - copy the contents of a highmem image from
2010  *	@buffer, where the caller of snapshot_write_next() has place them,
2011  *	to the right location represented by @last_highmem_page .
2012  */
2013 
2014 static void copy_last_highmem_page(void)
2015 {
2016 	if (last_highmem_page) {
2017 		void *dst;
2018 
2019 		dst = kmap_atomic(last_highmem_page);
2020 		copy_page(dst, buffer);
2021 		kunmap_atomic(dst);
2022 		last_highmem_page = NULL;
2023 	}
2024 }
2025 
2026 static inline int last_highmem_page_copied(void)
2027 {
2028 	return !last_highmem_page;
2029 }
2030 
2031 static inline void free_highmem_data(void)
2032 {
2033 	if (safe_highmem_bm)
2034 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2035 
2036 	if (buffer)
2037 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2038 }
2039 #else
2040 static inline int get_safe_write_buffer(void) { return 0; }
2041 
2042 static unsigned int
2043 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2044 
2045 static inline int
2046 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2047 {
2048 	return 0;
2049 }
2050 
2051 static inline void *
2052 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2053 {
2054 	return ERR_PTR(-EINVAL);
2055 }
2056 
2057 static inline void copy_last_highmem_page(void) {}
2058 static inline int last_highmem_page_copied(void) { return 1; }
2059 static inline void free_highmem_data(void) {}
2060 #endif /* CONFIG_HIGHMEM */
2061 
2062 /**
2063  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2064  *	be overwritten in the process of restoring the system memory state
2065  *	from the suspend image ("unsafe" pages) and allocate memory for the
2066  *	image.
2067  *
2068  *	The idea is to allocate a new memory bitmap first and then allocate
2069  *	as many pages as needed for the image data, but not to assign these
2070  *	pages to specific tasks initially.  Instead, we just mark them as
2071  *	allocated and create a lists of "safe" pages that will be used
2072  *	later.  On systems with high memory a list of "safe" highmem pages is
2073  *	also created.
2074  */
2075 
2076 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2077 
2078 static int
2079 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2080 {
2081 	unsigned int nr_pages, nr_highmem;
2082 	struct linked_page *sp_list, *lp;
2083 	int error;
2084 
2085 	/* If there is no highmem, the buffer will not be necessary */
2086 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2087 	buffer = NULL;
2088 
2089 	nr_highmem = count_highmem_image_pages(bm);
2090 	error = mark_unsafe_pages(bm);
2091 	if (error)
2092 		goto Free;
2093 
2094 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2095 	if (error)
2096 		goto Free;
2097 
2098 	duplicate_memory_bitmap(new_bm, bm);
2099 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2100 	if (nr_highmem > 0) {
2101 		error = prepare_highmem_image(bm, &nr_highmem);
2102 		if (error)
2103 			goto Free;
2104 	}
2105 	/* Reserve some safe pages for potential later use.
2106 	 *
2107 	 * NOTE: This way we make sure there will be enough safe pages for the
2108 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2109 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2110 	 */
2111 	sp_list = NULL;
2112 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2113 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2114 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2115 	while (nr_pages > 0) {
2116 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2117 		if (!lp) {
2118 			error = -ENOMEM;
2119 			goto Free;
2120 		}
2121 		lp->next = sp_list;
2122 		sp_list = lp;
2123 		nr_pages--;
2124 	}
2125 	/* Preallocate memory for the image */
2126 	safe_pages_list = NULL;
2127 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2128 	while (nr_pages > 0) {
2129 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2130 		if (!lp) {
2131 			error = -ENOMEM;
2132 			goto Free;
2133 		}
2134 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2135 			/* The page is "safe", add it to the list */
2136 			lp->next = safe_pages_list;
2137 			safe_pages_list = lp;
2138 		}
2139 		/* Mark the page as allocated */
2140 		swsusp_set_page_forbidden(virt_to_page(lp));
2141 		swsusp_set_page_free(virt_to_page(lp));
2142 		nr_pages--;
2143 	}
2144 	/* Free the reserved safe pages so that chain_alloc() can use them */
2145 	while (sp_list) {
2146 		lp = sp_list->next;
2147 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2148 		sp_list = lp;
2149 	}
2150 	return 0;
2151 
2152  Free:
2153 	swsusp_free();
2154 	return error;
2155 }
2156 
2157 /**
2158  *	get_buffer - compute the address that snapshot_write_next() should
2159  *	set for its caller to write to.
2160  */
2161 
2162 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2163 {
2164 	struct pbe *pbe;
2165 	struct page *page;
2166 	unsigned long pfn = memory_bm_next_pfn(bm);
2167 
2168 	if (pfn == BM_END_OF_MAP)
2169 		return ERR_PTR(-EFAULT);
2170 
2171 	page = pfn_to_page(pfn);
2172 	if (PageHighMem(page))
2173 		return get_highmem_page_buffer(page, ca);
2174 
2175 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2176 		/* We have allocated the "original" page frame and we can
2177 		 * use it directly to store the loaded page.
2178 		 */
2179 		return page_address(page);
2180 
2181 	/* The "original" page frame has not been allocated and we have to
2182 	 * use a "safe" page frame to store the loaded page.
2183 	 */
2184 	pbe = chain_alloc(ca, sizeof(struct pbe));
2185 	if (!pbe) {
2186 		swsusp_free();
2187 		return ERR_PTR(-ENOMEM);
2188 	}
2189 	pbe->orig_address = page_address(page);
2190 	pbe->address = safe_pages_list;
2191 	safe_pages_list = safe_pages_list->next;
2192 	pbe->next = restore_pblist;
2193 	restore_pblist = pbe;
2194 	return pbe->address;
2195 }
2196 
2197 /**
2198  *	snapshot_write_next - used for writing the system memory snapshot.
2199  *
2200  *	On the first call to it @handle should point to a zeroed
2201  *	snapshot_handle structure.  The structure gets updated and a pointer
2202  *	to it should be passed to this function every next time.
2203  *
2204  *	On success the function returns a positive number.  Then, the caller
2205  *	is allowed to write up to the returned number of bytes to the memory
2206  *	location computed by the data_of() macro.
2207  *
2208  *	The function returns 0 to indicate the "end of file" condition,
2209  *	and a negative number is returned on error.  In such cases the
2210  *	structure pointed to by @handle is not updated and should not be used
2211  *	any more.
2212  */
2213 
2214 int snapshot_write_next(struct snapshot_handle *handle)
2215 {
2216 	static struct chain_allocator ca;
2217 	int error = 0;
2218 
2219 	/* Check if we have already loaded the entire image */
2220 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2221 		return 0;
2222 
2223 	handle->sync_read = 1;
2224 
2225 	if (!handle->cur) {
2226 		if (!buffer)
2227 			/* This makes the buffer be freed by swsusp_free() */
2228 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2229 
2230 		if (!buffer)
2231 			return -ENOMEM;
2232 
2233 		handle->buffer = buffer;
2234 	} else if (handle->cur == 1) {
2235 		error = load_header(buffer);
2236 		if (error)
2237 			return error;
2238 
2239 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2240 		if (error)
2241 			return error;
2242 
2243 		/* Allocate buffer for page keys. */
2244 		error = page_key_alloc(nr_copy_pages);
2245 		if (error)
2246 			return error;
2247 
2248 	} else if (handle->cur <= nr_meta_pages + 1) {
2249 		error = unpack_orig_pfns(buffer, &copy_bm);
2250 		if (error)
2251 			return error;
2252 
2253 		if (handle->cur == nr_meta_pages + 1) {
2254 			error = prepare_image(&orig_bm, &copy_bm);
2255 			if (error)
2256 				return error;
2257 
2258 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2259 			memory_bm_position_reset(&orig_bm);
2260 			restore_pblist = NULL;
2261 			handle->buffer = get_buffer(&orig_bm, &ca);
2262 			handle->sync_read = 0;
2263 			if (IS_ERR(handle->buffer))
2264 				return PTR_ERR(handle->buffer);
2265 		}
2266 	} else {
2267 		copy_last_highmem_page();
2268 		/* Restore page key for data page (s390 only). */
2269 		page_key_write(handle->buffer);
2270 		handle->buffer = get_buffer(&orig_bm, &ca);
2271 		if (IS_ERR(handle->buffer))
2272 			return PTR_ERR(handle->buffer);
2273 		if (handle->buffer != buffer)
2274 			handle->sync_read = 0;
2275 	}
2276 	handle->cur++;
2277 	return PAGE_SIZE;
2278 }
2279 
2280 /**
2281  *	snapshot_write_finalize - must be called after the last call to
2282  *	snapshot_write_next() in case the last page in the image happens
2283  *	to be a highmem page and its contents should be stored in the
2284  *	highmem.  Additionally, it releases the memory that will not be
2285  *	used any more.
2286  */
2287 
2288 void snapshot_write_finalize(struct snapshot_handle *handle)
2289 {
2290 	copy_last_highmem_page();
2291 	/* Restore page key for data page (s390 only). */
2292 	page_key_write(handle->buffer);
2293 	page_key_free();
2294 	/* Free only if we have loaded the image entirely */
2295 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2296 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2297 		free_highmem_data();
2298 	}
2299 }
2300 
2301 int snapshot_image_loaded(struct snapshot_handle *handle)
2302 {
2303 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2304 			handle->cur <= nr_meta_pages + nr_copy_pages);
2305 }
2306 
2307 #ifdef CONFIG_HIGHMEM
2308 /* Assumes that @buf is ready and points to a "safe" page */
2309 static inline void
2310 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2311 {
2312 	void *kaddr1, *kaddr2;
2313 
2314 	kaddr1 = kmap_atomic(p1);
2315 	kaddr2 = kmap_atomic(p2);
2316 	copy_page(buf, kaddr1);
2317 	copy_page(kaddr1, kaddr2);
2318 	copy_page(kaddr2, buf);
2319 	kunmap_atomic(kaddr2);
2320 	kunmap_atomic(kaddr1);
2321 }
2322 
2323 /**
2324  *	restore_highmem - for each highmem page that was allocated before
2325  *	the suspend and included in the suspend image, and also has been
2326  *	allocated by the "resume" kernel swap its current (ie. "before
2327  *	resume") contents with the previous (ie. "before suspend") one.
2328  *
2329  *	If the resume eventually fails, we can call this function once
2330  *	again and restore the "before resume" highmem state.
2331  */
2332 
2333 int restore_highmem(void)
2334 {
2335 	struct highmem_pbe *pbe = highmem_pblist;
2336 	void *buf;
2337 
2338 	if (!pbe)
2339 		return 0;
2340 
2341 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2342 	if (!buf)
2343 		return -ENOMEM;
2344 
2345 	while (pbe) {
2346 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2347 		pbe = pbe->next;
2348 	}
2349 	free_image_page(buf, PG_UNSAFE_CLEAR);
2350 	return 0;
2351 }
2352 #endif /* CONFIG_HIGHMEM */
2353