1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone_end_pfn(zone); 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n", 646 (unsigned long long) start_pfn << PAGE_SHIFT, 647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 648 } 649 650 /* 651 * Set bits in this map correspond to the page frames the contents of which 652 * should not be saved during the suspend. 653 */ 654 static struct memory_bitmap *forbidden_pages_map; 655 656 /* Set bits in this map correspond to free page frames. */ 657 static struct memory_bitmap *free_pages_map; 658 659 /* 660 * Each page frame allocated for creating the image is marked by setting the 661 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 662 */ 663 664 void swsusp_set_page_free(struct page *page) 665 { 666 if (free_pages_map) 667 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 668 } 669 670 static int swsusp_page_is_free(struct page *page) 671 { 672 return free_pages_map ? 673 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 674 } 675 676 void swsusp_unset_page_free(struct page *page) 677 { 678 if (free_pages_map) 679 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 680 } 681 682 static void swsusp_set_page_forbidden(struct page *page) 683 { 684 if (forbidden_pages_map) 685 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 686 } 687 688 int swsusp_page_is_forbidden(struct page *page) 689 { 690 return forbidden_pages_map ? 691 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 692 } 693 694 static void swsusp_unset_page_forbidden(struct page *page) 695 { 696 if (forbidden_pages_map) 697 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 698 } 699 700 /** 701 * mark_nosave_pages - set bits corresponding to the page frames the 702 * contents of which should not be saved in a given bitmap. 703 */ 704 705 static void mark_nosave_pages(struct memory_bitmap *bm) 706 { 707 struct nosave_region *region; 708 709 if (list_empty(&nosave_regions)) 710 return; 711 712 list_for_each_entry(region, &nosave_regions, list) { 713 unsigned long pfn; 714 715 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 716 (unsigned long long) region->start_pfn << PAGE_SHIFT, 717 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 718 - 1); 719 720 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 721 if (pfn_valid(pfn)) { 722 /* 723 * It is safe to ignore the result of 724 * mem_bm_set_bit_check() here, since we won't 725 * touch the PFNs for which the error is 726 * returned anyway. 727 */ 728 mem_bm_set_bit_check(bm, pfn); 729 } 730 } 731 } 732 733 /** 734 * create_basic_memory_bitmaps - create bitmaps needed for marking page 735 * frames that should not be saved and free page frames. The pointers 736 * forbidden_pages_map and free_pages_map are only modified if everything 737 * goes well, because we don't want the bits to be used before both bitmaps 738 * are set up. 739 */ 740 741 int create_basic_memory_bitmaps(void) 742 { 743 struct memory_bitmap *bm1, *bm2; 744 int error = 0; 745 746 BUG_ON(forbidden_pages_map || free_pages_map); 747 748 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 749 if (!bm1) 750 return -ENOMEM; 751 752 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 753 if (error) 754 goto Free_first_object; 755 756 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 757 if (!bm2) 758 goto Free_first_bitmap; 759 760 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 761 if (error) 762 goto Free_second_object; 763 764 forbidden_pages_map = bm1; 765 free_pages_map = bm2; 766 mark_nosave_pages(forbidden_pages_map); 767 768 pr_debug("PM: Basic memory bitmaps created\n"); 769 770 return 0; 771 772 Free_second_object: 773 kfree(bm2); 774 Free_first_bitmap: 775 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 776 Free_first_object: 777 kfree(bm1); 778 return -ENOMEM; 779 } 780 781 /** 782 * free_basic_memory_bitmaps - free memory bitmaps allocated by 783 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 784 * so that the bitmaps themselves are not referred to while they are being 785 * freed. 786 */ 787 788 void free_basic_memory_bitmaps(void) 789 { 790 struct memory_bitmap *bm1, *bm2; 791 792 BUG_ON(!(forbidden_pages_map && free_pages_map)); 793 794 bm1 = forbidden_pages_map; 795 bm2 = free_pages_map; 796 forbidden_pages_map = NULL; 797 free_pages_map = NULL; 798 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 799 kfree(bm1); 800 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 801 kfree(bm2); 802 803 pr_debug("PM: Basic memory bitmaps freed\n"); 804 } 805 806 /** 807 * snapshot_additional_pages - estimate the number of additional pages 808 * be needed for setting up the suspend image data structures for given 809 * zone (usually the returned value is greater than the exact number) 810 */ 811 812 unsigned int snapshot_additional_pages(struct zone *zone) 813 { 814 unsigned int res; 815 816 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 817 res += DIV_ROUND_UP(res * sizeof(struct bm_block), 818 LINKED_PAGE_DATA_SIZE); 819 return 2 * res; 820 } 821 822 #ifdef CONFIG_HIGHMEM 823 /** 824 * count_free_highmem_pages - compute the total number of free highmem 825 * pages, system-wide. 826 */ 827 828 static unsigned int count_free_highmem_pages(void) 829 { 830 struct zone *zone; 831 unsigned int cnt = 0; 832 833 for_each_populated_zone(zone) 834 if (is_highmem(zone)) 835 cnt += zone_page_state(zone, NR_FREE_PAGES); 836 837 return cnt; 838 } 839 840 /** 841 * saveable_highmem_page - Determine whether a highmem page should be 842 * included in the suspend image. 843 * 844 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 845 * and it isn't a part of a free chunk of pages. 846 */ 847 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 848 { 849 struct page *page; 850 851 if (!pfn_valid(pfn)) 852 return NULL; 853 854 page = pfn_to_page(pfn); 855 if (page_zone(page) != zone) 856 return NULL; 857 858 BUG_ON(!PageHighMem(page)); 859 860 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 861 PageReserved(page)) 862 return NULL; 863 864 if (page_is_guard(page)) 865 return NULL; 866 867 return page; 868 } 869 870 /** 871 * count_highmem_pages - compute the total number of saveable highmem 872 * pages. 873 */ 874 875 static unsigned int count_highmem_pages(void) 876 { 877 struct zone *zone; 878 unsigned int n = 0; 879 880 for_each_populated_zone(zone) { 881 unsigned long pfn, max_zone_pfn; 882 883 if (!is_highmem(zone)) 884 continue; 885 886 mark_free_pages(zone); 887 max_zone_pfn = zone_end_pfn(zone); 888 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 889 if (saveable_highmem_page(zone, pfn)) 890 n++; 891 } 892 return n; 893 } 894 #else 895 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 896 { 897 return NULL; 898 } 899 #endif /* CONFIG_HIGHMEM */ 900 901 /** 902 * saveable_page - Determine whether a non-highmem page should be included 903 * in the suspend image. 904 * 905 * We should save the page if it isn't Nosave, and is not in the range 906 * of pages statically defined as 'unsaveable', and it isn't a part of 907 * a free chunk of pages. 908 */ 909 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 910 { 911 struct page *page; 912 913 if (!pfn_valid(pfn)) 914 return NULL; 915 916 page = pfn_to_page(pfn); 917 if (page_zone(page) != zone) 918 return NULL; 919 920 BUG_ON(PageHighMem(page)); 921 922 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 923 return NULL; 924 925 if (PageReserved(page) 926 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 927 return NULL; 928 929 if (page_is_guard(page)) 930 return NULL; 931 932 return page; 933 } 934 935 /** 936 * count_data_pages - compute the total number of saveable non-highmem 937 * pages. 938 */ 939 940 static unsigned int count_data_pages(void) 941 { 942 struct zone *zone; 943 unsigned long pfn, max_zone_pfn; 944 unsigned int n = 0; 945 946 for_each_populated_zone(zone) { 947 if (is_highmem(zone)) 948 continue; 949 950 mark_free_pages(zone); 951 max_zone_pfn = zone_end_pfn(zone); 952 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 953 if (saveable_page(zone, pfn)) 954 n++; 955 } 956 return n; 957 } 958 959 /* This is needed, because copy_page and memcpy are not usable for copying 960 * task structs. 961 */ 962 static inline void do_copy_page(long *dst, long *src) 963 { 964 int n; 965 966 for (n = PAGE_SIZE / sizeof(long); n; n--) 967 *dst++ = *src++; 968 } 969 970 971 /** 972 * safe_copy_page - check if the page we are going to copy is marked as 973 * present in the kernel page tables (this always is the case if 974 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 975 * kernel_page_present() always returns 'true'). 976 */ 977 static void safe_copy_page(void *dst, struct page *s_page) 978 { 979 if (kernel_page_present(s_page)) { 980 do_copy_page(dst, page_address(s_page)); 981 } else { 982 kernel_map_pages(s_page, 1, 1); 983 do_copy_page(dst, page_address(s_page)); 984 kernel_map_pages(s_page, 1, 0); 985 } 986 } 987 988 989 #ifdef CONFIG_HIGHMEM 990 static inline struct page * 991 page_is_saveable(struct zone *zone, unsigned long pfn) 992 { 993 return is_highmem(zone) ? 994 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 995 } 996 997 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 998 { 999 struct page *s_page, *d_page; 1000 void *src, *dst; 1001 1002 s_page = pfn_to_page(src_pfn); 1003 d_page = pfn_to_page(dst_pfn); 1004 if (PageHighMem(s_page)) { 1005 src = kmap_atomic(s_page); 1006 dst = kmap_atomic(d_page); 1007 do_copy_page(dst, src); 1008 kunmap_atomic(dst); 1009 kunmap_atomic(src); 1010 } else { 1011 if (PageHighMem(d_page)) { 1012 /* Page pointed to by src may contain some kernel 1013 * data modified by kmap_atomic() 1014 */ 1015 safe_copy_page(buffer, s_page); 1016 dst = kmap_atomic(d_page); 1017 copy_page(dst, buffer); 1018 kunmap_atomic(dst); 1019 } else { 1020 safe_copy_page(page_address(d_page), s_page); 1021 } 1022 } 1023 } 1024 #else 1025 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1026 1027 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1028 { 1029 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1030 pfn_to_page(src_pfn)); 1031 } 1032 #endif /* CONFIG_HIGHMEM */ 1033 1034 static void 1035 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1036 { 1037 struct zone *zone; 1038 unsigned long pfn; 1039 1040 for_each_populated_zone(zone) { 1041 unsigned long max_zone_pfn; 1042 1043 mark_free_pages(zone); 1044 max_zone_pfn = zone_end_pfn(zone); 1045 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1046 if (page_is_saveable(zone, pfn)) 1047 memory_bm_set_bit(orig_bm, pfn); 1048 } 1049 memory_bm_position_reset(orig_bm); 1050 memory_bm_position_reset(copy_bm); 1051 for(;;) { 1052 pfn = memory_bm_next_pfn(orig_bm); 1053 if (unlikely(pfn == BM_END_OF_MAP)) 1054 break; 1055 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1056 } 1057 } 1058 1059 /* Total number of image pages */ 1060 static unsigned int nr_copy_pages; 1061 /* Number of pages needed for saving the original pfns of the image pages */ 1062 static unsigned int nr_meta_pages; 1063 /* 1064 * Numbers of normal and highmem page frames allocated for hibernation image 1065 * before suspending devices. 1066 */ 1067 unsigned int alloc_normal, alloc_highmem; 1068 /* 1069 * Memory bitmap used for marking saveable pages (during hibernation) or 1070 * hibernation image pages (during restore) 1071 */ 1072 static struct memory_bitmap orig_bm; 1073 /* 1074 * Memory bitmap used during hibernation for marking allocated page frames that 1075 * will contain copies of saveable pages. During restore it is initially used 1076 * for marking hibernation image pages, but then the set bits from it are 1077 * duplicated in @orig_bm and it is released. On highmem systems it is next 1078 * used for marking "safe" highmem pages, but it has to be reinitialized for 1079 * this purpose. 1080 */ 1081 static struct memory_bitmap copy_bm; 1082 1083 /** 1084 * swsusp_free - free pages allocated for the suspend. 1085 * 1086 * Suspend pages are alocated before the atomic copy is made, so we 1087 * need to release them after the resume. 1088 */ 1089 1090 void swsusp_free(void) 1091 { 1092 struct zone *zone; 1093 unsigned long pfn, max_zone_pfn; 1094 1095 for_each_populated_zone(zone) { 1096 max_zone_pfn = zone_end_pfn(zone); 1097 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1098 if (pfn_valid(pfn)) { 1099 struct page *page = pfn_to_page(pfn); 1100 1101 if (swsusp_page_is_forbidden(page) && 1102 swsusp_page_is_free(page)) { 1103 swsusp_unset_page_forbidden(page); 1104 swsusp_unset_page_free(page); 1105 __free_page(page); 1106 } 1107 } 1108 } 1109 nr_copy_pages = 0; 1110 nr_meta_pages = 0; 1111 restore_pblist = NULL; 1112 buffer = NULL; 1113 alloc_normal = 0; 1114 alloc_highmem = 0; 1115 } 1116 1117 /* Helper functions used for the shrinking of memory. */ 1118 1119 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1120 1121 /** 1122 * preallocate_image_pages - Allocate a number of pages for hibernation image 1123 * @nr_pages: Number of page frames to allocate. 1124 * @mask: GFP flags to use for the allocation. 1125 * 1126 * Return value: Number of page frames actually allocated 1127 */ 1128 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1129 { 1130 unsigned long nr_alloc = 0; 1131 1132 while (nr_pages > 0) { 1133 struct page *page; 1134 1135 page = alloc_image_page(mask); 1136 if (!page) 1137 break; 1138 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1139 if (PageHighMem(page)) 1140 alloc_highmem++; 1141 else 1142 alloc_normal++; 1143 nr_pages--; 1144 nr_alloc++; 1145 } 1146 1147 return nr_alloc; 1148 } 1149 1150 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1151 unsigned long avail_normal) 1152 { 1153 unsigned long alloc; 1154 1155 if (avail_normal <= alloc_normal) 1156 return 0; 1157 1158 alloc = avail_normal - alloc_normal; 1159 if (nr_pages < alloc) 1160 alloc = nr_pages; 1161 1162 return preallocate_image_pages(alloc, GFP_IMAGE); 1163 } 1164 1165 #ifdef CONFIG_HIGHMEM 1166 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1167 { 1168 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1169 } 1170 1171 /** 1172 * __fraction - Compute (an approximation of) x * (multiplier / base) 1173 */ 1174 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1175 { 1176 x *= multiplier; 1177 do_div(x, base); 1178 return (unsigned long)x; 1179 } 1180 1181 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1182 unsigned long highmem, 1183 unsigned long total) 1184 { 1185 unsigned long alloc = __fraction(nr_pages, highmem, total); 1186 1187 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1188 } 1189 #else /* CONFIG_HIGHMEM */ 1190 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1191 { 1192 return 0; 1193 } 1194 1195 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1196 unsigned long highmem, 1197 unsigned long total) 1198 { 1199 return 0; 1200 } 1201 #endif /* CONFIG_HIGHMEM */ 1202 1203 /** 1204 * free_unnecessary_pages - Release preallocated pages not needed for the image 1205 */ 1206 static void free_unnecessary_pages(void) 1207 { 1208 unsigned long save, to_free_normal, to_free_highmem; 1209 1210 save = count_data_pages(); 1211 if (alloc_normal >= save) { 1212 to_free_normal = alloc_normal - save; 1213 save = 0; 1214 } else { 1215 to_free_normal = 0; 1216 save -= alloc_normal; 1217 } 1218 save += count_highmem_pages(); 1219 if (alloc_highmem >= save) { 1220 to_free_highmem = alloc_highmem - save; 1221 } else { 1222 to_free_highmem = 0; 1223 save -= alloc_highmem; 1224 if (to_free_normal > save) 1225 to_free_normal -= save; 1226 else 1227 to_free_normal = 0; 1228 } 1229 1230 memory_bm_position_reset(©_bm); 1231 1232 while (to_free_normal > 0 || to_free_highmem > 0) { 1233 unsigned long pfn = memory_bm_next_pfn(©_bm); 1234 struct page *page = pfn_to_page(pfn); 1235 1236 if (PageHighMem(page)) { 1237 if (!to_free_highmem) 1238 continue; 1239 to_free_highmem--; 1240 alloc_highmem--; 1241 } else { 1242 if (!to_free_normal) 1243 continue; 1244 to_free_normal--; 1245 alloc_normal--; 1246 } 1247 memory_bm_clear_bit(©_bm, pfn); 1248 swsusp_unset_page_forbidden(page); 1249 swsusp_unset_page_free(page); 1250 __free_page(page); 1251 } 1252 } 1253 1254 /** 1255 * minimum_image_size - Estimate the minimum acceptable size of an image 1256 * @saveable: Number of saveable pages in the system. 1257 * 1258 * We want to avoid attempting to free too much memory too hard, so estimate the 1259 * minimum acceptable size of a hibernation image to use as the lower limit for 1260 * preallocating memory. 1261 * 1262 * We assume that the minimum image size should be proportional to 1263 * 1264 * [number of saveable pages] - [number of pages that can be freed in theory] 1265 * 1266 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1267 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1268 * minus mapped file pages. 1269 */ 1270 static unsigned long minimum_image_size(unsigned long saveable) 1271 { 1272 unsigned long size; 1273 1274 size = global_page_state(NR_SLAB_RECLAIMABLE) 1275 + global_page_state(NR_ACTIVE_ANON) 1276 + global_page_state(NR_INACTIVE_ANON) 1277 + global_page_state(NR_ACTIVE_FILE) 1278 + global_page_state(NR_INACTIVE_FILE) 1279 - global_page_state(NR_FILE_MAPPED); 1280 1281 return saveable <= size ? 0 : saveable - size; 1282 } 1283 1284 /** 1285 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1286 * 1287 * To create a hibernation image it is necessary to make a copy of every page 1288 * frame in use. We also need a number of page frames to be free during 1289 * hibernation for allocations made while saving the image and for device 1290 * drivers, in case they need to allocate memory from their hibernation 1291 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1292 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1293 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1294 * total number of available page frames and allocate at least 1295 * 1296 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1297 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1298 * 1299 * of them, which corresponds to the maximum size of a hibernation image. 1300 * 1301 * If image_size is set below the number following from the above formula, 1302 * the preallocation of memory is continued until the total number of saveable 1303 * pages in the system is below the requested image size or the minimum 1304 * acceptable image size returned by minimum_image_size(), whichever is greater. 1305 */ 1306 int hibernate_preallocate_memory(void) 1307 { 1308 struct zone *zone; 1309 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1310 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1311 struct timeval start, stop; 1312 int error; 1313 1314 printk(KERN_INFO "PM: Preallocating image memory... "); 1315 do_gettimeofday(&start); 1316 1317 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1318 if (error) 1319 goto err_out; 1320 1321 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1322 if (error) 1323 goto err_out; 1324 1325 alloc_normal = 0; 1326 alloc_highmem = 0; 1327 1328 /* Count the number of saveable data pages. */ 1329 save_highmem = count_highmem_pages(); 1330 saveable = count_data_pages(); 1331 1332 /* 1333 * Compute the total number of page frames we can use (count) and the 1334 * number of pages needed for image metadata (size). 1335 */ 1336 count = saveable; 1337 saveable += save_highmem; 1338 highmem = save_highmem; 1339 size = 0; 1340 for_each_populated_zone(zone) { 1341 size += snapshot_additional_pages(zone); 1342 if (is_highmem(zone)) 1343 highmem += zone_page_state(zone, NR_FREE_PAGES); 1344 else 1345 count += zone_page_state(zone, NR_FREE_PAGES); 1346 } 1347 avail_normal = count; 1348 count += highmem; 1349 count -= totalreserve_pages; 1350 1351 /* Add number of pages required for page keys (s390 only). */ 1352 size += page_key_additional_pages(saveable); 1353 1354 /* Compute the maximum number of saveable pages to leave in memory. */ 1355 max_size = (count - (size + PAGES_FOR_IO)) / 2 1356 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1357 /* Compute the desired number of image pages specified by image_size. */ 1358 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1359 if (size > max_size) 1360 size = max_size; 1361 /* 1362 * If the desired number of image pages is at least as large as the 1363 * current number of saveable pages in memory, allocate page frames for 1364 * the image and we're done. 1365 */ 1366 if (size >= saveable) { 1367 pages = preallocate_image_highmem(save_highmem); 1368 pages += preallocate_image_memory(saveable - pages, avail_normal); 1369 goto out; 1370 } 1371 1372 /* Estimate the minimum size of the image. */ 1373 pages = minimum_image_size(saveable); 1374 /* 1375 * To avoid excessive pressure on the normal zone, leave room in it to 1376 * accommodate an image of the minimum size (unless it's already too 1377 * small, in which case don't preallocate pages from it at all). 1378 */ 1379 if (avail_normal > pages) 1380 avail_normal -= pages; 1381 else 1382 avail_normal = 0; 1383 if (size < pages) 1384 size = min_t(unsigned long, pages, max_size); 1385 1386 /* 1387 * Let the memory management subsystem know that we're going to need a 1388 * large number of page frames to allocate and make it free some memory. 1389 * NOTE: If this is not done, performance will be hurt badly in some 1390 * test cases. 1391 */ 1392 shrink_all_memory(saveable - size); 1393 1394 /* 1395 * The number of saveable pages in memory was too high, so apply some 1396 * pressure to decrease it. First, make room for the largest possible 1397 * image and fail if that doesn't work. Next, try to decrease the size 1398 * of the image as much as indicated by 'size' using allocations from 1399 * highmem and non-highmem zones separately. 1400 */ 1401 pages_highmem = preallocate_image_highmem(highmem / 2); 1402 alloc = (count - max_size) - pages_highmem; 1403 pages = preallocate_image_memory(alloc, avail_normal); 1404 if (pages < alloc) { 1405 /* We have exhausted non-highmem pages, try highmem. */ 1406 alloc -= pages; 1407 pages += pages_highmem; 1408 pages_highmem = preallocate_image_highmem(alloc); 1409 if (pages_highmem < alloc) 1410 goto err_out; 1411 pages += pages_highmem; 1412 /* 1413 * size is the desired number of saveable pages to leave in 1414 * memory, so try to preallocate (all memory - size) pages. 1415 */ 1416 alloc = (count - pages) - size; 1417 pages += preallocate_image_highmem(alloc); 1418 } else { 1419 /* 1420 * There are approximately max_size saveable pages at this point 1421 * and we want to reduce this number down to size. 1422 */ 1423 alloc = max_size - size; 1424 size = preallocate_highmem_fraction(alloc, highmem, count); 1425 pages_highmem += size; 1426 alloc -= size; 1427 size = preallocate_image_memory(alloc, avail_normal); 1428 pages_highmem += preallocate_image_highmem(alloc - size); 1429 pages += pages_highmem + size; 1430 } 1431 1432 /* 1433 * We only need as many page frames for the image as there are saveable 1434 * pages in memory, but we have allocated more. Release the excessive 1435 * ones now. 1436 */ 1437 free_unnecessary_pages(); 1438 1439 out: 1440 do_gettimeofday(&stop); 1441 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1442 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1443 1444 return 0; 1445 1446 err_out: 1447 printk(KERN_CONT "\n"); 1448 swsusp_free(); 1449 return -ENOMEM; 1450 } 1451 1452 #ifdef CONFIG_HIGHMEM 1453 /** 1454 * count_pages_for_highmem - compute the number of non-highmem pages 1455 * that will be necessary for creating copies of highmem pages. 1456 */ 1457 1458 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1459 { 1460 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1461 1462 if (free_highmem >= nr_highmem) 1463 nr_highmem = 0; 1464 else 1465 nr_highmem -= free_highmem; 1466 1467 return nr_highmem; 1468 } 1469 #else 1470 static unsigned int 1471 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1472 #endif /* CONFIG_HIGHMEM */ 1473 1474 /** 1475 * enough_free_mem - Make sure we have enough free memory for the 1476 * snapshot image. 1477 */ 1478 1479 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1480 { 1481 struct zone *zone; 1482 unsigned int free = alloc_normal; 1483 1484 for_each_populated_zone(zone) 1485 if (!is_highmem(zone)) 1486 free += zone_page_state(zone, NR_FREE_PAGES); 1487 1488 nr_pages += count_pages_for_highmem(nr_highmem); 1489 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1490 nr_pages, PAGES_FOR_IO, free); 1491 1492 return free > nr_pages + PAGES_FOR_IO; 1493 } 1494 1495 #ifdef CONFIG_HIGHMEM 1496 /** 1497 * get_highmem_buffer - if there are some highmem pages in the suspend 1498 * image, we may need the buffer to copy them and/or load their data. 1499 */ 1500 1501 static inline int get_highmem_buffer(int safe_needed) 1502 { 1503 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1504 return buffer ? 0 : -ENOMEM; 1505 } 1506 1507 /** 1508 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1509 * Try to allocate as many pages as needed, but if the number of free 1510 * highmem pages is lesser than that, allocate them all. 1511 */ 1512 1513 static inline unsigned int 1514 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1515 { 1516 unsigned int to_alloc = count_free_highmem_pages(); 1517 1518 if (to_alloc > nr_highmem) 1519 to_alloc = nr_highmem; 1520 1521 nr_highmem -= to_alloc; 1522 while (to_alloc-- > 0) { 1523 struct page *page; 1524 1525 page = alloc_image_page(__GFP_HIGHMEM); 1526 memory_bm_set_bit(bm, page_to_pfn(page)); 1527 } 1528 return nr_highmem; 1529 } 1530 #else 1531 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1532 1533 static inline unsigned int 1534 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1535 #endif /* CONFIG_HIGHMEM */ 1536 1537 /** 1538 * swsusp_alloc - allocate memory for the suspend image 1539 * 1540 * We first try to allocate as many highmem pages as there are 1541 * saveable highmem pages in the system. If that fails, we allocate 1542 * non-highmem pages for the copies of the remaining highmem ones. 1543 * 1544 * In this approach it is likely that the copies of highmem pages will 1545 * also be located in the high memory, because of the way in which 1546 * copy_data_pages() works. 1547 */ 1548 1549 static int 1550 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1551 unsigned int nr_pages, unsigned int nr_highmem) 1552 { 1553 if (nr_highmem > 0) { 1554 if (get_highmem_buffer(PG_ANY)) 1555 goto err_out; 1556 if (nr_highmem > alloc_highmem) { 1557 nr_highmem -= alloc_highmem; 1558 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1559 } 1560 } 1561 if (nr_pages > alloc_normal) { 1562 nr_pages -= alloc_normal; 1563 while (nr_pages-- > 0) { 1564 struct page *page; 1565 1566 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1567 if (!page) 1568 goto err_out; 1569 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1570 } 1571 } 1572 1573 return 0; 1574 1575 err_out: 1576 swsusp_free(); 1577 return -ENOMEM; 1578 } 1579 1580 asmlinkage int swsusp_save(void) 1581 { 1582 unsigned int nr_pages, nr_highmem; 1583 1584 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1585 1586 drain_local_pages(NULL); 1587 nr_pages = count_data_pages(); 1588 nr_highmem = count_highmem_pages(); 1589 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1590 1591 if (!enough_free_mem(nr_pages, nr_highmem)) { 1592 printk(KERN_ERR "PM: Not enough free memory\n"); 1593 return -ENOMEM; 1594 } 1595 1596 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1597 printk(KERN_ERR "PM: Memory allocation failed\n"); 1598 return -ENOMEM; 1599 } 1600 1601 /* During allocating of suspend pagedir, new cold pages may appear. 1602 * Kill them. 1603 */ 1604 drain_local_pages(NULL); 1605 copy_data_pages(©_bm, &orig_bm); 1606 1607 /* 1608 * End of critical section. From now on, we can write to memory, 1609 * but we should not touch disk. This specially means we must _not_ 1610 * touch swap space! Except we must write out our image of course. 1611 */ 1612 1613 nr_pages += nr_highmem; 1614 nr_copy_pages = nr_pages; 1615 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1616 1617 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1618 nr_pages); 1619 1620 return 0; 1621 } 1622 1623 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1624 static int init_header_complete(struct swsusp_info *info) 1625 { 1626 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1627 info->version_code = LINUX_VERSION_CODE; 1628 return 0; 1629 } 1630 1631 static char *check_image_kernel(struct swsusp_info *info) 1632 { 1633 if (info->version_code != LINUX_VERSION_CODE) 1634 return "kernel version"; 1635 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1636 return "system type"; 1637 if (strcmp(info->uts.release,init_utsname()->release)) 1638 return "kernel release"; 1639 if (strcmp(info->uts.version,init_utsname()->version)) 1640 return "version"; 1641 if (strcmp(info->uts.machine,init_utsname()->machine)) 1642 return "machine"; 1643 return NULL; 1644 } 1645 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1646 1647 unsigned long snapshot_get_image_size(void) 1648 { 1649 return nr_copy_pages + nr_meta_pages + 1; 1650 } 1651 1652 static int init_header(struct swsusp_info *info) 1653 { 1654 memset(info, 0, sizeof(struct swsusp_info)); 1655 info->num_physpages = get_num_physpages(); 1656 info->image_pages = nr_copy_pages; 1657 info->pages = snapshot_get_image_size(); 1658 info->size = info->pages; 1659 info->size <<= PAGE_SHIFT; 1660 return init_header_complete(info); 1661 } 1662 1663 /** 1664 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1665 * are stored in the array @buf[] (1 page at a time) 1666 */ 1667 1668 static inline void 1669 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1670 { 1671 int j; 1672 1673 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1674 buf[j] = memory_bm_next_pfn(bm); 1675 if (unlikely(buf[j] == BM_END_OF_MAP)) 1676 break; 1677 /* Save page key for data page (s390 only). */ 1678 page_key_read(buf + j); 1679 } 1680 } 1681 1682 /** 1683 * snapshot_read_next - used for reading the system memory snapshot. 1684 * 1685 * On the first call to it @handle should point to a zeroed 1686 * snapshot_handle structure. The structure gets updated and a pointer 1687 * to it should be passed to this function every next time. 1688 * 1689 * On success the function returns a positive number. Then, the caller 1690 * is allowed to read up to the returned number of bytes from the memory 1691 * location computed by the data_of() macro. 1692 * 1693 * The function returns 0 to indicate the end of data stream condition, 1694 * and a negative number is returned on error. In such cases the 1695 * structure pointed to by @handle is not updated and should not be used 1696 * any more. 1697 */ 1698 1699 int snapshot_read_next(struct snapshot_handle *handle) 1700 { 1701 if (handle->cur > nr_meta_pages + nr_copy_pages) 1702 return 0; 1703 1704 if (!buffer) { 1705 /* This makes the buffer be freed by swsusp_free() */ 1706 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1707 if (!buffer) 1708 return -ENOMEM; 1709 } 1710 if (!handle->cur) { 1711 int error; 1712 1713 error = init_header((struct swsusp_info *)buffer); 1714 if (error) 1715 return error; 1716 handle->buffer = buffer; 1717 memory_bm_position_reset(&orig_bm); 1718 memory_bm_position_reset(©_bm); 1719 } else if (handle->cur <= nr_meta_pages) { 1720 clear_page(buffer); 1721 pack_pfns(buffer, &orig_bm); 1722 } else { 1723 struct page *page; 1724 1725 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1726 if (PageHighMem(page)) { 1727 /* Highmem pages are copied to the buffer, 1728 * because we can't return with a kmapped 1729 * highmem page (we may not be called again). 1730 */ 1731 void *kaddr; 1732 1733 kaddr = kmap_atomic(page); 1734 copy_page(buffer, kaddr); 1735 kunmap_atomic(kaddr); 1736 handle->buffer = buffer; 1737 } else { 1738 handle->buffer = page_address(page); 1739 } 1740 } 1741 handle->cur++; 1742 return PAGE_SIZE; 1743 } 1744 1745 /** 1746 * mark_unsafe_pages - mark the pages that cannot be used for storing 1747 * the image during resume, because they conflict with the pages that 1748 * had been used before suspend 1749 */ 1750 1751 static int mark_unsafe_pages(struct memory_bitmap *bm) 1752 { 1753 struct zone *zone; 1754 unsigned long pfn, max_zone_pfn; 1755 1756 /* Clear page flags */ 1757 for_each_populated_zone(zone) { 1758 max_zone_pfn = zone_end_pfn(zone); 1759 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1760 if (pfn_valid(pfn)) 1761 swsusp_unset_page_free(pfn_to_page(pfn)); 1762 } 1763 1764 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1765 memory_bm_position_reset(bm); 1766 do { 1767 pfn = memory_bm_next_pfn(bm); 1768 if (likely(pfn != BM_END_OF_MAP)) { 1769 if (likely(pfn_valid(pfn))) 1770 swsusp_set_page_free(pfn_to_page(pfn)); 1771 else 1772 return -EFAULT; 1773 } 1774 } while (pfn != BM_END_OF_MAP); 1775 1776 allocated_unsafe_pages = 0; 1777 1778 return 0; 1779 } 1780 1781 static void 1782 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1783 { 1784 unsigned long pfn; 1785 1786 memory_bm_position_reset(src); 1787 pfn = memory_bm_next_pfn(src); 1788 while (pfn != BM_END_OF_MAP) { 1789 memory_bm_set_bit(dst, pfn); 1790 pfn = memory_bm_next_pfn(src); 1791 } 1792 } 1793 1794 static int check_header(struct swsusp_info *info) 1795 { 1796 char *reason; 1797 1798 reason = check_image_kernel(info); 1799 if (!reason && info->num_physpages != get_num_physpages()) 1800 reason = "memory size"; 1801 if (reason) { 1802 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1803 return -EPERM; 1804 } 1805 return 0; 1806 } 1807 1808 /** 1809 * load header - check the image header and copy data from it 1810 */ 1811 1812 static int 1813 load_header(struct swsusp_info *info) 1814 { 1815 int error; 1816 1817 restore_pblist = NULL; 1818 error = check_header(info); 1819 if (!error) { 1820 nr_copy_pages = info->image_pages; 1821 nr_meta_pages = info->pages - info->image_pages - 1; 1822 } 1823 return error; 1824 } 1825 1826 /** 1827 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1828 * the corresponding bit in the memory bitmap @bm 1829 */ 1830 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1831 { 1832 int j; 1833 1834 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1835 if (unlikely(buf[j] == BM_END_OF_MAP)) 1836 break; 1837 1838 /* Extract and buffer page key for data page (s390 only). */ 1839 page_key_memorize(buf + j); 1840 1841 if (memory_bm_pfn_present(bm, buf[j])) 1842 memory_bm_set_bit(bm, buf[j]); 1843 else 1844 return -EFAULT; 1845 } 1846 1847 return 0; 1848 } 1849 1850 /* List of "safe" pages that may be used to store data loaded from the suspend 1851 * image 1852 */ 1853 static struct linked_page *safe_pages_list; 1854 1855 #ifdef CONFIG_HIGHMEM 1856 /* struct highmem_pbe is used for creating the list of highmem pages that 1857 * should be restored atomically during the resume from disk, because the page 1858 * frames they have occupied before the suspend are in use. 1859 */ 1860 struct highmem_pbe { 1861 struct page *copy_page; /* data is here now */ 1862 struct page *orig_page; /* data was here before the suspend */ 1863 struct highmem_pbe *next; 1864 }; 1865 1866 /* List of highmem PBEs needed for restoring the highmem pages that were 1867 * allocated before the suspend and included in the suspend image, but have 1868 * also been allocated by the "resume" kernel, so their contents cannot be 1869 * written directly to their "original" page frames. 1870 */ 1871 static struct highmem_pbe *highmem_pblist; 1872 1873 /** 1874 * count_highmem_image_pages - compute the number of highmem pages in the 1875 * suspend image. The bits in the memory bitmap @bm that correspond to the 1876 * image pages are assumed to be set. 1877 */ 1878 1879 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1880 { 1881 unsigned long pfn; 1882 unsigned int cnt = 0; 1883 1884 memory_bm_position_reset(bm); 1885 pfn = memory_bm_next_pfn(bm); 1886 while (pfn != BM_END_OF_MAP) { 1887 if (PageHighMem(pfn_to_page(pfn))) 1888 cnt++; 1889 1890 pfn = memory_bm_next_pfn(bm); 1891 } 1892 return cnt; 1893 } 1894 1895 /** 1896 * prepare_highmem_image - try to allocate as many highmem pages as 1897 * there are highmem image pages (@nr_highmem_p points to the variable 1898 * containing the number of highmem image pages). The pages that are 1899 * "safe" (ie. will not be overwritten when the suspend image is 1900 * restored) have the corresponding bits set in @bm (it must be 1901 * unitialized). 1902 * 1903 * NOTE: This function should not be called if there are no highmem 1904 * image pages. 1905 */ 1906 1907 static unsigned int safe_highmem_pages; 1908 1909 static struct memory_bitmap *safe_highmem_bm; 1910 1911 static int 1912 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1913 { 1914 unsigned int to_alloc; 1915 1916 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1917 return -ENOMEM; 1918 1919 if (get_highmem_buffer(PG_SAFE)) 1920 return -ENOMEM; 1921 1922 to_alloc = count_free_highmem_pages(); 1923 if (to_alloc > *nr_highmem_p) 1924 to_alloc = *nr_highmem_p; 1925 else 1926 *nr_highmem_p = to_alloc; 1927 1928 safe_highmem_pages = 0; 1929 while (to_alloc-- > 0) { 1930 struct page *page; 1931 1932 page = alloc_page(__GFP_HIGHMEM); 1933 if (!swsusp_page_is_free(page)) { 1934 /* The page is "safe", set its bit the bitmap */ 1935 memory_bm_set_bit(bm, page_to_pfn(page)); 1936 safe_highmem_pages++; 1937 } 1938 /* Mark the page as allocated */ 1939 swsusp_set_page_forbidden(page); 1940 swsusp_set_page_free(page); 1941 } 1942 memory_bm_position_reset(bm); 1943 safe_highmem_bm = bm; 1944 return 0; 1945 } 1946 1947 /** 1948 * get_highmem_page_buffer - for given highmem image page find the buffer 1949 * that suspend_write_next() should set for its caller to write to. 1950 * 1951 * If the page is to be saved to its "original" page frame or a copy of 1952 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1953 * the copy of the page is to be made in normal memory, so the address of 1954 * the copy is returned. 1955 * 1956 * If @buffer is returned, the caller of suspend_write_next() will write 1957 * the page's contents to @buffer, so they will have to be copied to the 1958 * right location on the next call to suspend_write_next() and it is done 1959 * with the help of copy_last_highmem_page(). For this purpose, if 1960 * @buffer is returned, @last_highmem page is set to the page to which 1961 * the data will have to be copied from @buffer. 1962 */ 1963 1964 static struct page *last_highmem_page; 1965 1966 static void * 1967 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1968 { 1969 struct highmem_pbe *pbe; 1970 void *kaddr; 1971 1972 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1973 /* We have allocated the "original" page frame and we can 1974 * use it directly to store the loaded page. 1975 */ 1976 last_highmem_page = page; 1977 return buffer; 1978 } 1979 /* The "original" page frame has not been allocated and we have to 1980 * use a "safe" page frame to store the loaded page. 1981 */ 1982 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1983 if (!pbe) { 1984 swsusp_free(); 1985 return ERR_PTR(-ENOMEM); 1986 } 1987 pbe->orig_page = page; 1988 if (safe_highmem_pages > 0) { 1989 struct page *tmp; 1990 1991 /* Copy of the page will be stored in high memory */ 1992 kaddr = buffer; 1993 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1994 safe_highmem_pages--; 1995 last_highmem_page = tmp; 1996 pbe->copy_page = tmp; 1997 } else { 1998 /* Copy of the page will be stored in normal memory */ 1999 kaddr = safe_pages_list; 2000 safe_pages_list = safe_pages_list->next; 2001 pbe->copy_page = virt_to_page(kaddr); 2002 } 2003 pbe->next = highmem_pblist; 2004 highmem_pblist = pbe; 2005 return kaddr; 2006 } 2007 2008 /** 2009 * copy_last_highmem_page - copy the contents of a highmem image from 2010 * @buffer, where the caller of snapshot_write_next() has place them, 2011 * to the right location represented by @last_highmem_page . 2012 */ 2013 2014 static void copy_last_highmem_page(void) 2015 { 2016 if (last_highmem_page) { 2017 void *dst; 2018 2019 dst = kmap_atomic(last_highmem_page); 2020 copy_page(dst, buffer); 2021 kunmap_atomic(dst); 2022 last_highmem_page = NULL; 2023 } 2024 } 2025 2026 static inline int last_highmem_page_copied(void) 2027 { 2028 return !last_highmem_page; 2029 } 2030 2031 static inline void free_highmem_data(void) 2032 { 2033 if (safe_highmem_bm) 2034 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2035 2036 if (buffer) 2037 free_image_page(buffer, PG_UNSAFE_CLEAR); 2038 } 2039 #else 2040 static inline int get_safe_write_buffer(void) { return 0; } 2041 2042 static unsigned int 2043 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2044 2045 static inline int 2046 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2047 { 2048 return 0; 2049 } 2050 2051 static inline void * 2052 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2053 { 2054 return ERR_PTR(-EINVAL); 2055 } 2056 2057 static inline void copy_last_highmem_page(void) {} 2058 static inline int last_highmem_page_copied(void) { return 1; } 2059 static inline void free_highmem_data(void) {} 2060 #endif /* CONFIG_HIGHMEM */ 2061 2062 /** 2063 * prepare_image - use the memory bitmap @bm to mark the pages that will 2064 * be overwritten in the process of restoring the system memory state 2065 * from the suspend image ("unsafe" pages) and allocate memory for the 2066 * image. 2067 * 2068 * The idea is to allocate a new memory bitmap first and then allocate 2069 * as many pages as needed for the image data, but not to assign these 2070 * pages to specific tasks initially. Instead, we just mark them as 2071 * allocated and create a lists of "safe" pages that will be used 2072 * later. On systems with high memory a list of "safe" highmem pages is 2073 * also created. 2074 */ 2075 2076 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2077 2078 static int 2079 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2080 { 2081 unsigned int nr_pages, nr_highmem; 2082 struct linked_page *sp_list, *lp; 2083 int error; 2084 2085 /* If there is no highmem, the buffer will not be necessary */ 2086 free_image_page(buffer, PG_UNSAFE_CLEAR); 2087 buffer = NULL; 2088 2089 nr_highmem = count_highmem_image_pages(bm); 2090 error = mark_unsafe_pages(bm); 2091 if (error) 2092 goto Free; 2093 2094 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2095 if (error) 2096 goto Free; 2097 2098 duplicate_memory_bitmap(new_bm, bm); 2099 memory_bm_free(bm, PG_UNSAFE_KEEP); 2100 if (nr_highmem > 0) { 2101 error = prepare_highmem_image(bm, &nr_highmem); 2102 if (error) 2103 goto Free; 2104 } 2105 /* Reserve some safe pages for potential later use. 2106 * 2107 * NOTE: This way we make sure there will be enough safe pages for the 2108 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2109 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2110 */ 2111 sp_list = NULL; 2112 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2113 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2114 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2115 while (nr_pages > 0) { 2116 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2117 if (!lp) { 2118 error = -ENOMEM; 2119 goto Free; 2120 } 2121 lp->next = sp_list; 2122 sp_list = lp; 2123 nr_pages--; 2124 } 2125 /* Preallocate memory for the image */ 2126 safe_pages_list = NULL; 2127 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2128 while (nr_pages > 0) { 2129 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2130 if (!lp) { 2131 error = -ENOMEM; 2132 goto Free; 2133 } 2134 if (!swsusp_page_is_free(virt_to_page(lp))) { 2135 /* The page is "safe", add it to the list */ 2136 lp->next = safe_pages_list; 2137 safe_pages_list = lp; 2138 } 2139 /* Mark the page as allocated */ 2140 swsusp_set_page_forbidden(virt_to_page(lp)); 2141 swsusp_set_page_free(virt_to_page(lp)); 2142 nr_pages--; 2143 } 2144 /* Free the reserved safe pages so that chain_alloc() can use them */ 2145 while (sp_list) { 2146 lp = sp_list->next; 2147 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2148 sp_list = lp; 2149 } 2150 return 0; 2151 2152 Free: 2153 swsusp_free(); 2154 return error; 2155 } 2156 2157 /** 2158 * get_buffer - compute the address that snapshot_write_next() should 2159 * set for its caller to write to. 2160 */ 2161 2162 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2163 { 2164 struct pbe *pbe; 2165 struct page *page; 2166 unsigned long pfn = memory_bm_next_pfn(bm); 2167 2168 if (pfn == BM_END_OF_MAP) 2169 return ERR_PTR(-EFAULT); 2170 2171 page = pfn_to_page(pfn); 2172 if (PageHighMem(page)) 2173 return get_highmem_page_buffer(page, ca); 2174 2175 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2176 /* We have allocated the "original" page frame and we can 2177 * use it directly to store the loaded page. 2178 */ 2179 return page_address(page); 2180 2181 /* The "original" page frame has not been allocated and we have to 2182 * use a "safe" page frame to store the loaded page. 2183 */ 2184 pbe = chain_alloc(ca, sizeof(struct pbe)); 2185 if (!pbe) { 2186 swsusp_free(); 2187 return ERR_PTR(-ENOMEM); 2188 } 2189 pbe->orig_address = page_address(page); 2190 pbe->address = safe_pages_list; 2191 safe_pages_list = safe_pages_list->next; 2192 pbe->next = restore_pblist; 2193 restore_pblist = pbe; 2194 return pbe->address; 2195 } 2196 2197 /** 2198 * snapshot_write_next - used for writing the system memory snapshot. 2199 * 2200 * On the first call to it @handle should point to a zeroed 2201 * snapshot_handle structure. The structure gets updated and a pointer 2202 * to it should be passed to this function every next time. 2203 * 2204 * On success the function returns a positive number. Then, the caller 2205 * is allowed to write up to the returned number of bytes to the memory 2206 * location computed by the data_of() macro. 2207 * 2208 * The function returns 0 to indicate the "end of file" condition, 2209 * and a negative number is returned on error. In such cases the 2210 * structure pointed to by @handle is not updated and should not be used 2211 * any more. 2212 */ 2213 2214 int snapshot_write_next(struct snapshot_handle *handle) 2215 { 2216 static struct chain_allocator ca; 2217 int error = 0; 2218 2219 /* Check if we have already loaded the entire image */ 2220 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2221 return 0; 2222 2223 handle->sync_read = 1; 2224 2225 if (!handle->cur) { 2226 if (!buffer) 2227 /* This makes the buffer be freed by swsusp_free() */ 2228 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2229 2230 if (!buffer) 2231 return -ENOMEM; 2232 2233 handle->buffer = buffer; 2234 } else if (handle->cur == 1) { 2235 error = load_header(buffer); 2236 if (error) 2237 return error; 2238 2239 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2240 if (error) 2241 return error; 2242 2243 /* Allocate buffer for page keys. */ 2244 error = page_key_alloc(nr_copy_pages); 2245 if (error) 2246 return error; 2247 2248 } else if (handle->cur <= nr_meta_pages + 1) { 2249 error = unpack_orig_pfns(buffer, ©_bm); 2250 if (error) 2251 return error; 2252 2253 if (handle->cur == nr_meta_pages + 1) { 2254 error = prepare_image(&orig_bm, ©_bm); 2255 if (error) 2256 return error; 2257 2258 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2259 memory_bm_position_reset(&orig_bm); 2260 restore_pblist = NULL; 2261 handle->buffer = get_buffer(&orig_bm, &ca); 2262 handle->sync_read = 0; 2263 if (IS_ERR(handle->buffer)) 2264 return PTR_ERR(handle->buffer); 2265 } 2266 } else { 2267 copy_last_highmem_page(); 2268 /* Restore page key for data page (s390 only). */ 2269 page_key_write(handle->buffer); 2270 handle->buffer = get_buffer(&orig_bm, &ca); 2271 if (IS_ERR(handle->buffer)) 2272 return PTR_ERR(handle->buffer); 2273 if (handle->buffer != buffer) 2274 handle->sync_read = 0; 2275 } 2276 handle->cur++; 2277 return PAGE_SIZE; 2278 } 2279 2280 /** 2281 * snapshot_write_finalize - must be called after the last call to 2282 * snapshot_write_next() in case the last page in the image happens 2283 * to be a highmem page and its contents should be stored in the 2284 * highmem. Additionally, it releases the memory that will not be 2285 * used any more. 2286 */ 2287 2288 void snapshot_write_finalize(struct snapshot_handle *handle) 2289 { 2290 copy_last_highmem_page(); 2291 /* Restore page key for data page (s390 only). */ 2292 page_key_write(handle->buffer); 2293 page_key_free(); 2294 /* Free only if we have loaded the image entirely */ 2295 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2296 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2297 free_highmem_data(); 2298 } 2299 } 2300 2301 int snapshot_image_loaded(struct snapshot_handle *handle) 2302 { 2303 return !(!nr_copy_pages || !last_highmem_page_copied() || 2304 handle->cur <= nr_meta_pages + nr_copy_pages); 2305 } 2306 2307 #ifdef CONFIG_HIGHMEM 2308 /* Assumes that @buf is ready and points to a "safe" page */ 2309 static inline void 2310 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2311 { 2312 void *kaddr1, *kaddr2; 2313 2314 kaddr1 = kmap_atomic(p1); 2315 kaddr2 = kmap_atomic(p2); 2316 copy_page(buf, kaddr1); 2317 copy_page(kaddr1, kaddr2); 2318 copy_page(kaddr2, buf); 2319 kunmap_atomic(kaddr2); 2320 kunmap_atomic(kaddr1); 2321 } 2322 2323 /** 2324 * restore_highmem - for each highmem page that was allocated before 2325 * the suspend and included in the suspend image, and also has been 2326 * allocated by the "resume" kernel swap its current (ie. "before 2327 * resume") contents with the previous (ie. "before suspend") one. 2328 * 2329 * If the resume eventually fails, we can call this function once 2330 * again and restore the "before resume" highmem state. 2331 */ 2332 2333 int restore_highmem(void) 2334 { 2335 struct highmem_pbe *pbe = highmem_pblist; 2336 void *buf; 2337 2338 if (!pbe) 2339 return 0; 2340 2341 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2342 if (!buf) 2343 return -ENOMEM; 2344 2345 while (pbe) { 2346 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2347 pbe = pbe->next; 2348 } 2349 free_image_page(buf, PG_UNSAFE_CLEAR); 2350 return 0; 2351 } 2352 #endif /* CONFIG_HIGHMEM */ 2353