1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 30 #include <asm/uaccess.h> 31 #include <asm/mmu_context.h> 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <asm/io.h> 35 36 #include "power.h" 37 38 static int swsusp_page_is_free(struct page *); 39 static void swsusp_set_page_forbidden(struct page *); 40 static void swsusp_unset_page_forbidden(struct page *); 41 42 /* List of PBEs needed for restoring the pages that were allocated before 43 * the suspend and included in the suspend image, but have also been 44 * allocated by the "resume" kernel, so their contents cannot be written 45 * directly to their "original" page frames. 46 */ 47 struct pbe *restore_pblist; 48 49 /* Pointer to an auxiliary buffer (1 page) */ 50 static void *buffer; 51 52 /** 53 * @safe_needed - on resume, for storing the PBE list and the image, 54 * we can only use memory pages that do not conflict with the pages 55 * used before suspend. The unsafe pages have PageNosaveFree set 56 * and we count them using unsafe_pages. 57 * 58 * Each allocated image page is marked as PageNosave and PageNosaveFree 59 * so that swsusp_free() can release it. 60 */ 61 62 #define PG_ANY 0 63 #define PG_SAFE 1 64 #define PG_UNSAFE_CLEAR 1 65 #define PG_UNSAFE_KEEP 0 66 67 static unsigned int allocated_unsafe_pages; 68 69 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 70 { 71 void *res; 72 73 res = (void *)get_zeroed_page(gfp_mask); 74 if (safe_needed) 75 while (res && swsusp_page_is_free(virt_to_page(res))) { 76 /* The page is unsafe, mark it for swsusp_free() */ 77 swsusp_set_page_forbidden(virt_to_page(res)); 78 allocated_unsafe_pages++; 79 res = (void *)get_zeroed_page(gfp_mask); 80 } 81 if (res) { 82 swsusp_set_page_forbidden(virt_to_page(res)); 83 swsusp_set_page_free(virt_to_page(res)); 84 } 85 return res; 86 } 87 88 unsigned long get_safe_page(gfp_t gfp_mask) 89 { 90 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 91 } 92 93 static struct page *alloc_image_page(gfp_t gfp_mask) 94 { 95 struct page *page; 96 97 page = alloc_page(gfp_mask); 98 if (page) { 99 swsusp_set_page_forbidden(page); 100 swsusp_set_page_free(page); 101 } 102 return page; 103 } 104 105 /** 106 * free_image_page - free page represented by @addr, allocated with 107 * get_image_page (page flags set by it must be cleared) 108 */ 109 110 static inline void free_image_page(void *addr, int clear_nosave_free) 111 { 112 struct page *page; 113 114 BUG_ON(!virt_addr_valid(addr)); 115 116 page = virt_to_page(addr); 117 118 swsusp_unset_page_forbidden(page); 119 if (clear_nosave_free) 120 swsusp_unset_page_free(page); 121 122 __free_page(page); 123 } 124 125 /* struct linked_page is used to build chains of pages */ 126 127 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 128 129 struct linked_page { 130 struct linked_page *next; 131 char data[LINKED_PAGE_DATA_SIZE]; 132 } __attribute__((packed)); 133 134 static inline void 135 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 136 { 137 while (list) { 138 struct linked_page *lp = list->next; 139 140 free_image_page(list, clear_page_nosave); 141 list = lp; 142 } 143 } 144 145 /** 146 * struct chain_allocator is used for allocating small objects out of 147 * a linked list of pages called 'the chain'. 148 * 149 * The chain grows each time when there is no room for a new object in 150 * the current page. The allocated objects cannot be freed individually. 151 * It is only possible to free them all at once, by freeing the entire 152 * chain. 153 * 154 * NOTE: The chain allocator may be inefficient if the allocated objects 155 * are not much smaller than PAGE_SIZE. 156 */ 157 158 struct chain_allocator { 159 struct linked_page *chain; /* the chain */ 160 unsigned int used_space; /* total size of objects allocated out 161 * of the current page 162 */ 163 gfp_t gfp_mask; /* mask for allocating pages */ 164 int safe_needed; /* if set, only "safe" pages are allocated */ 165 }; 166 167 static void 168 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 169 { 170 ca->chain = NULL; 171 ca->used_space = LINKED_PAGE_DATA_SIZE; 172 ca->gfp_mask = gfp_mask; 173 ca->safe_needed = safe_needed; 174 } 175 176 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 177 { 178 void *ret; 179 180 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 181 struct linked_page *lp; 182 183 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 184 if (!lp) 185 return NULL; 186 187 lp->next = ca->chain; 188 ca->chain = lp; 189 ca->used_space = 0; 190 } 191 ret = ca->chain->data + ca->used_space; 192 ca->used_space += size; 193 return ret; 194 } 195 196 /** 197 * Data types related to memory bitmaps. 198 * 199 * Memory bitmap is a structure consiting of many linked lists of 200 * objects. The main list's elements are of type struct zone_bitmap 201 * and each of them corresonds to one zone. For each zone bitmap 202 * object there is a list of objects of type struct bm_block that 203 * represent each blocks of bitmap in which information is stored. 204 * 205 * struct memory_bitmap contains a pointer to the main list of zone 206 * bitmap objects, a struct bm_position used for browsing the bitmap, 207 * and a pointer to the list of pages used for allocating all of the 208 * zone bitmap objects and bitmap block objects. 209 * 210 * NOTE: It has to be possible to lay out the bitmap in memory 211 * using only allocations of order 0. Additionally, the bitmap is 212 * designed to work with arbitrary number of zones (this is over the 213 * top for now, but let's avoid making unnecessary assumptions ;-). 214 * 215 * struct zone_bitmap contains a pointer to a list of bitmap block 216 * objects and a pointer to the bitmap block object that has been 217 * most recently used for setting bits. Additionally, it contains the 218 * pfns that correspond to the start and end of the represented zone. 219 * 220 * struct bm_block contains a pointer to the memory page in which 221 * information is stored (in the form of a block of bitmap) 222 * It also contains the pfns that correspond to the start and end of 223 * the represented memory area. 224 */ 225 226 #define BM_END_OF_MAP (~0UL) 227 228 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 229 230 struct bm_block { 231 struct list_head hook; /* hook into a list of bitmap blocks */ 232 unsigned long start_pfn; /* pfn represented by the first bit */ 233 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 234 unsigned long *data; /* bitmap representing pages */ 235 }; 236 237 static inline unsigned long bm_block_bits(struct bm_block *bb) 238 { 239 return bb->end_pfn - bb->start_pfn; 240 } 241 242 /* strcut bm_position is used for browsing memory bitmaps */ 243 244 struct bm_position { 245 struct bm_block *block; 246 int bit; 247 }; 248 249 struct memory_bitmap { 250 struct list_head blocks; /* list of bitmap blocks */ 251 struct linked_page *p_list; /* list of pages used to store zone 252 * bitmap objects and bitmap block 253 * objects 254 */ 255 struct bm_position cur; /* most recently used bit position */ 256 }; 257 258 /* Functions that operate on memory bitmaps */ 259 260 static void memory_bm_position_reset(struct memory_bitmap *bm) 261 { 262 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 263 bm->cur.bit = 0; 264 } 265 266 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 267 268 /** 269 * create_bm_block_list - create a list of block bitmap objects 270 * @nr_blocks - number of blocks to allocate 271 * @list - list to put the allocated blocks into 272 * @ca - chain allocator to be used for allocating memory 273 */ 274 static int create_bm_block_list(unsigned long pages, 275 struct list_head *list, 276 struct chain_allocator *ca) 277 { 278 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 279 280 while (nr_blocks-- > 0) { 281 struct bm_block *bb; 282 283 bb = chain_alloc(ca, sizeof(struct bm_block)); 284 if (!bb) 285 return -ENOMEM; 286 list_add(&bb->hook, list); 287 } 288 289 return 0; 290 } 291 292 struct mem_extent { 293 struct list_head hook; 294 unsigned long start; 295 unsigned long end; 296 }; 297 298 /** 299 * free_mem_extents - free a list of memory extents 300 * @list - list of extents to empty 301 */ 302 static void free_mem_extents(struct list_head *list) 303 { 304 struct mem_extent *ext, *aux; 305 306 list_for_each_entry_safe(ext, aux, list, hook) { 307 list_del(&ext->hook); 308 kfree(ext); 309 } 310 } 311 312 /** 313 * create_mem_extents - create a list of memory extents representing 314 * contiguous ranges of PFNs 315 * @list - list to put the extents into 316 * @gfp_mask - mask to use for memory allocations 317 */ 318 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 319 { 320 struct zone *zone; 321 322 INIT_LIST_HEAD(list); 323 324 for_each_populated_zone(zone) { 325 unsigned long zone_start, zone_end; 326 struct mem_extent *ext, *cur, *aux; 327 328 zone_start = zone->zone_start_pfn; 329 zone_end = zone->zone_start_pfn + zone->spanned_pages; 330 331 list_for_each_entry(ext, list, hook) 332 if (zone_start <= ext->end) 333 break; 334 335 if (&ext->hook == list || zone_end < ext->start) { 336 /* New extent is necessary */ 337 struct mem_extent *new_ext; 338 339 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 340 if (!new_ext) { 341 free_mem_extents(list); 342 return -ENOMEM; 343 } 344 new_ext->start = zone_start; 345 new_ext->end = zone_end; 346 list_add_tail(&new_ext->hook, &ext->hook); 347 continue; 348 } 349 350 /* Merge this zone's range of PFNs with the existing one */ 351 if (zone_start < ext->start) 352 ext->start = zone_start; 353 if (zone_end > ext->end) 354 ext->end = zone_end; 355 356 /* More merging may be possible */ 357 cur = ext; 358 list_for_each_entry_safe_continue(cur, aux, list, hook) { 359 if (zone_end < cur->start) 360 break; 361 if (zone_end < cur->end) 362 ext->end = cur->end; 363 list_del(&cur->hook); 364 kfree(cur); 365 } 366 } 367 368 return 0; 369 } 370 371 /** 372 * memory_bm_create - allocate memory for a memory bitmap 373 */ 374 static int 375 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 376 { 377 struct chain_allocator ca; 378 struct list_head mem_extents; 379 struct mem_extent *ext; 380 int error; 381 382 chain_init(&ca, gfp_mask, safe_needed); 383 INIT_LIST_HEAD(&bm->blocks); 384 385 error = create_mem_extents(&mem_extents, gfp_mask); 386 if (error) 387 return error; 388 389 list_for_each_entry(ext, &mem_extents, hook) { 390 struct bm_block *bb; 391 unsigned long pfn = ext->start; 392 unsigned long pages = ext->end - ext->start; 393 394 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 395 396 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 397 if (error) 398 goto Error; 399 400 list_for_each_entry_continue(bb, &bm->blocks, hook) { 401 bb->data = get_image_page(gfp_mask, safe_needed); 402 if (!bb->data) { 403 error = -ENOMEM; 404 goto Error; 405 } 406 407 bb->start_pfn = pfn; 408 if (pages >= BM_BITS_PER_BLOCK) { 409 pfn += BM_BITS_PER_BLOCK; 410 pages -= BM_BITS_PER_BLOCK; 411 } else { 412 /* This is executed only once in the loop */ 413 pfn += pages; 414 } 415 bb->end_pfn = pfn; 416 } 417 } 418 419 bm->p_list = ca.chain; 420 memory_bm_position_reset(bm); 421 Exit: 422 free_mem_extents(&mem_extents); 423 return error; 424 425 Error: 426 bm->p_list = ca.chain; 427 memory_bm_free(bm, PG_UNSAFE_CLEAR); 428 goto Exit; 429 } 430 431 /** 432 * memory_bm_free - free memory occupied by the memory bitmap @bm 433 */ 434 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 435 { 436 struct bm_block *bb; 437 438 list_for_each_entry(bb, &bm->blocks, hook) 439 if (bb->data) 440 free_image_page(bb->data, clear_nosave_free); 441 442 free_list_of_pages(bm->p_list, clear_nosave_free); 443 444 INIT_LIST_HEAD(&bm->blocks); 445 } 446 447 /** 448 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 449 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 450 * of @bm->cur_zone_bm are updated. 451 */ 452 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 453 void **addr, unsigned int *bit_nr) 454 { 455 struct bm_block *bb; 456 457 /* 458 * Check if the pfn corresponds to the current bitmap block and find 459 * the block where it fits if this is not the case. 460 */ 461 bb = bm->cur.block; 462 if (pfn < bb->start_pfn) 463 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 464 if (pfn >= bb->start_pfn) 465 break; 466 467 if (pfn >= bb->end_pfn) 468 list_for_each_entry_continue(bb, &bm->blocks, hook) 469 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 470 break; 471 472 if (&bb->hook == &bm->blocks) 473 return -EFAULT; 474 475 /* The block has been found */ 476 bm->cur.block = bb; 477 pfn -= bb->start_pfn; 478 bm->cur.bit = pfn + 1; 479 *bit_nr = pfn; 480 *addr = bb->data; 481 return 0; 482 } 483 484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 485 { 486 void *addr; 487 unsigned int bit; 488 int error; 489 490 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 491 BUG_ON(error); 492 set_bit(bit, addr); 493 } 494 495 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 496 { 497 void *addr; 498 unsigned int bit; 499 int error; 500 501 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 502 if (!error) 503 set_bit(bit, addr); 504 return error; 505 } 506 507 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 508 { 509 void *addr; 510 unsigned int bit; 511 int error; 512 513 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 514 BUG_ON(error); 515 clear_bit(bit, addr); 516 } 517 518 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 519 { 520 void *addr; 521 unsigned int bit; 522 int error; 523 524 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 525 BUG_ON(error); 526 return test_bit(bit, addr); 527 } 528 529 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 530 { 531 void *addr; 532 unsigned int bit; 533 534 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 535 } 536 537 /** 538 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 539 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 540 * returned. 541 * 542 * It is required to run memory_bm_position_reset() before the first call to 543 * this function. 544 */ 545 546 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 547 { 548 struct bm_block *bb; 549 int bit; 550 551 bb = bm->cur.block; 552 do { 553 bit = bm->cur.bit; 554 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 555 if (bit < bm_block_bits(bb)) 556 goto Return_pfn; 557 558 bb = list_entry(bb->hook.next, struct bm_block, hook); 559 bm->cur.block = bb; 560 bm->cur.bit = 0; 561 } while (&bb->hook != &bm->blocks); 562 563 memory_bm_position_reset(bm); 564 return BM_END_OF_MAP; 565 566 Return_pfn: 567 bm->cur.bit = bit + 1; 568 return bb->start_pfn + bit; 569 } 570 571 /** 572 * This structure represents a range of page frames the contents of which 573 * should not be saved during the suspend. 574 */ 575 576 struct nosave_region { 577 struct list_head list; 578 unsigned long start_pfn; 579 unsigned long end_pfn; 580 }; 581 582 static LIST_HEAD(nosave_regions); 583 584 /** 585 * register_nosave_region - register a range of page frames the contents 586 * of which should not be saved during the suspend (to be used in the early 587 * initialization code) 588 */ 589 590 void __init 591 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 592 int use_kmalloc) 593 { 594 struct nosave_region *region; 595 596 if (start_pfn >= end_pfn) 597 return; 598 599 if (!list_empty(&nosave_regions)) { 600 /* Try to extend the previous region (they should be sorted) */ 601 region = list_entry(nosave_regions.prev, 602 struct nosave_region, list); 603 if (region->end_pfn == start_pfn) { 604 region->end_pfn = end_pfn; 605 goto Report; 606 } 607 } 608 if (use_kmalloc) { 609 /* during init, this shouldn't fail */ 610 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 611 BUG_ON(!region); 612 } else 613 /* This allocation cannot fail */ 614 region = alloc_bootmem_low(sizeof(struct nosave_region)); 615 region->start_pfn = start_pfn; 616 region->end_pfn = end_pfn; 617 list_add_tail(®ion->list, &nosave_regions); 618 Report: 619 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 620 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 621 } 622 623 /* 624 * Set bits in this map correspond to the page frames the contents of which 625 * should not be saved during the suspend. 626 */ 627 static struct memory_bitmap *forbidden_pages_map; 628 629 /* Set bits in this map correspond to free page frames. */ 630 static struct memory_bitmap *free_pages_map; 631 632 /* 633 * Each page frame allocated for creating the image is marked by setting the 634 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 635 */ 636 637 void swsusp_set_page_free(struct page *page) 638 { 639 if (free_pages_map) 640 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 641 } 642 643 static int swsusp_page_is_free(struct page *page) 644 { 645 return free_pages_map ? 646 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 647 } 648 649 void swsusp_unset_page_free(struct page *page) 650 { 651 if (free_pages_map) 652 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 653 } 654 655 static void swsusp_set_page_forbidden(struct page *page) 656 { 657 if (forbidden_pages_map) 658 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 659 } 660 661 int swsusp_page_is_forbidden(struct page *page) 662 { 663 return forbidden_pages_map ? 664 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 665 } 666 667 static void swsusp_unset_page_forbidden(struct page *page) 668 { 669 if (forbidden_pages_map) 670 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 671 } 672 673 /** 674 * mark_nosave_pages - set bits corresponding to the page frames the 675 * contents of which should not be saved in a given bitmap. 676 */ 677 678 static void mark_nosave_pages(struct memory_bitmap *bm) 679 { 680 struct nosave_region *region; 681 682 if (list_empty(&nosave_regions)) 683 return; 684 685 list_for_each_entry(region, &nosave_regions, list) { 686 unsigned long pfn; 687 688 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 689 region->start_pfn << PAGE_SHIFT, 690 region->end_pfn << PAGE_SHIFT); 691 692 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 693 if (pfn_valid(pfn)) { 694 /* 695 * It is safe to ignore the result of 696 * mem_bm_set_bit_check() here, since we won't 697 * touch the PFNs for which the error is 698 * returned anyway. 699 */ 700 mem_bm_set_bit_check(bm, pfn); 701 } 702 } 703 } 704 705 /** 706 * create_basic_memory_bitmaps - create bitmaps needed for marking page 707 * frames that should not be saved and free page frames. The pointers 708 * forbidden_pages_map and free_pages_map are only modified if everything 709 * goes well, because we don't want the bits to be used before both bitmaps 710 * are set up. 711 */ 712 713 int create_basic_memory_bitmaps(void) 714 { 715 struct memory_bitmap *bm1, *bm2; 716 int error = 0; 717 718 BUG_ON(forbidden_pages_map || free_pages_map); 719 720 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 721 if (!bm1) 722 return -ENOMEM; 723 724 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 725 if (error) 726 goto Free_first_object; 727 728 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 729 if (!bm2) 730 goto Free_first_bitmap; 731 732 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 733 if (error) 734 goto Free_second_object; 735 736 forbidden_pages_map = bm1; 737 free_pages_map = bm2; 738 mark_nosave_pages(forbidden_pages_map); 739 740 pr_debug("PM: Basic memory bitmaps created\n"); 741 742 return 0; 743 744 Free_second_object: 745 kfree(bm2); 746 Free_first_bitmap: 747 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 748 Free_first_object: 749 kfree(bm1); 750 return -ENOMEM; 751 } 752 753 /** 754 * free_basic_memory_bitmaps - free memory bitmaps allocated by 755 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 756 * so that the bitmaps themselves are not referred to while they are being 757 * freed. 758 */ 759 760 void free_basic_memory_bitmaps(void) 761 { 762 struct memory_bitmap *bm1, *bm2; 763 764 BUG_ON(!(forbidden_pages_map && free_pages_map)); 765 766 bm1 = forbidden_pages_map; 767 bm2 = free_pages_map; 768 forbidden_pages_map = NULL; 769 free_pages_map = NULL; 770 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 771 kfree(bm1); 772 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 773 kfree(bm2); 774 775 pr_debug("PM: Basic memory bitmaps freed\n"); 776 } 777 778 /** 779 * snapshot_additional_pages - estimate the number of additional pages 780 * be needed for setting up the suspend image data structures for given 781 * zone (usually the returned value is greater than the exact number) 782 */ 783 784 unsigned int snapshot_additional_pages(struct zone *zone) 785 { 786 unsigned int res; 787 788 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 789 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 790 return 2 * res; 791 } 792 793 #ifdef CONFIG_HIGHMEM 794 /** 795 * count_free_highmem_pages - compute the total number of free highmem 796 * pages, system-wide. 797 */ 798 799 static unsigned int count_free_highmem_pages(void) 800 { 801 struct zone *zone; 802 unsigned int cnt = 0; 803 804 for_each_populated_zone(zone) 805 if (is_highmem(zone)) 806 cnt += zone_page_state(zone, NR_FREE_PAGES); 807 808 return cnt; 809 } 810 811 /** 812 * saveable_highmem_page - Determine whether a highmem page should be 813 * included in the suspend image. 814 * 815 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 816 * and it isn't a part of a free chunk of pages. 817 */ 818 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 819 { 820 struct page *page; 821 822 if (!pfn_valid(pfn)) 823 return NULL; 824 825 page = pfn_to_page(pfn); 826 if (page_zone(page) != zone) 827 return NULL; 828 829 BUG_ON(!PageHighMem(page)); 830 831 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 832 PageReserved(page)) 833 return NULL; 834 835 return page; 836 } 837 838 /** 839 * count_highmem_pages - compute the total number of saveable highmem 840 * pages. 841 */ 842 843 unsigned int count_highmem_pages(void) 844 { 845 struct zone *zone; 846 unsigned int n = 0; 847 848 for_each_zone(zone) { 849 unsigned long pfn, max_zone_pfn; 850 851 if (!is_highmem(zone)) 852 continue; 853 854 mark_free_pages(zone); 855 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 856 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 857 if (saveable_highmem_page(zone, pfn)) 858 n++; 859 } 860 return n; 861 } 862 #else 863 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 864 { 865 return NULL; 866 } 867 #endif /* CONFIG_HIGHMEM */ 868 869 /** 870 * saveable_page - Determine whether a non-highmem page should be included 871 * in the suspend image. 872 * 873 * We should save the page if it isn't Nosave, and is not in the range 874 * of pages statically defined as 'unsaveable', and it isn't a part of 875 * a free chunk of pages. 876 */ 877 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 878 { 879 struct page *page; 880 881 if (!pfn_valid(pfn)) 882 return NULL; 883 884 page = pfn_to_page(pfn); 885 if (page_zone(page) != zone) 886 return NULL; 887 888 BUG_ON(PageHighMem(page)); 889 890 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 891 return NULL; 892 893 if (PageReserved(page) 894 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 895 return NULL; 896 897 return page; 898 } 899 900 /** 901 * count_data_pages - compute the total number of saveable non-highmem 902 * pages. 903 */ 904 905 unsigned int count_data_pages(void) 906 { 907 struct zone *zone; 908 unsigned long pfn, max_zone_pfn; 909 unsigned int n = 0; 910 911 for_each_zone(zone) { 912 if (is_highmem(zone)) 913 continue; 914 915 mark_free_pages(zone); 916 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 917 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 918 if (saveable_page(zone, pfn)) 919 n++; 920 } 921 return n; 922 } 923 924 /* This is needed, because copy_page and memcpy are not usable for copying 925 * task structs. 926 */ 927 static inline void do_copy_page(long *dst, long *src) 928 { 929 int n; 930 931 for (n = PAGE_SIZE / sizeof(long); n; n--) 932 *dst++ = *src++; 933 } 934 935 936 /** 937 * safe_copy_page - check if the page we are going to copy is marked as 938 * present in the kernel page tables (this always is the case if 939 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 940 * kernel_page_present() always returns 'true'). 941 */ 942 static void safe_copy_page(void *dst, struct page *s_page) 943 { 944 if (kernel_page_present(s_page)) { 945 do_copy_page(dst, page_address(s_page)); 946 } else { 947 kernel_map_pages(s_page, 1, 1); 948 do_copy_page(dst, page_address(s_page)); 949 kernel_map_pages(s_page, 1, 0); 950 } 951 } 952 953 954 #ifdef CONFIG_HIGHMEM 955 static inline struct page * 956 page_is_saveable(struct zone *zone, unsigned long pfn) 957 { 958 return is_highmem(zone) ? 959 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 960 } 961 962 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 963 { 964 struct page *s_page, *d_page; 965 void *src, *dst; 966 967 s_page = pfn_to_page(src_pfn); 968 d_page = pfn_to_page(dst_pfn); 969 if (PageHighMem(s_page)) { 970 src = kmap_atomic(s_page, KM_USER0); 971 dst = kmap_atomic(d_page, KM_USER1); 972 do_copy_page(dst, src); 973 kunmap_atomic(src, KM_USER0); 974 kunmap_atomic(dst, KM_USER1); 975 } else { 976 if (PageHighMem(d_page)) { 977 /* Page pointed to by src may contain some kernel 978 * data modified by kmap_atomic() 979 */ 980 safe_copy_page(buffer, s_page); 981 dst = kmap_atomic(d_page, KM_USER0); 982 memcpy(dst, buffer, PAGE_SIZE); 983 kunmap_atomic(dst, KM_USER0); 984 } else { 985 safe_copy_page(page_address(d_page), s_page); 986 } 987 } 988 } 989 #else 990 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 991 992 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 993 { 994 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 995 pfn_to_page(src_pfn)); 996 } 997 #endif /* CONFIG_HIGHMEM */ 998 999 static void 1000 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1001 { 1002 struct zone *zone; 1003 unsigned long pfn; 1004 1005 for_each_zone(zone) { 1006 unsigned long max_zone_pfn; 1007 1008 mark_free_pages(zone); 1009 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1010 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1011 if (page_is_saveable(zone, pfn)) 1012 memory_bm_set_bit(orig_bm, pfn); 1013 } 1014 memory_bm_position_reset(orig_bm); 1015 memory_bm_position_reset(copy_bm); 1016 for(;;) { 1017 pfn = memory_bm_next_pfn(orig_bm); 1018 if (unlikely(pfn == BM_END_OF_MAP)) 1019 break; 1020 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1021 } 1022 } 1023 1024 /* Total number of image pages */ 1025 static unsigned int nr_copy_pages; 1026 /* Number of pages needed for saving the original pfns of the image pages */ 1027 static unsigned int nr_meta_pages; 1028 1029 /** 1030 * swsusp_free - free pages allocated for the suspend. 1031 * 1032 * Suspend pages are alocated before the atomic copy is made, so we 1033 * need to release them after the resume. 1034 */ 1035 1036 void swsusp_free(void) 1037 { 1038 struct zone *zone; 1039 unsigned long pfn, max_zone_pfn; 1040 1041 for_each_zone(zone) { 1042 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1043 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1044 if (pfn_valid(pfn)) { 1045 struct page *page = pfn_to_page(pfn); 1046 1047 if (swsusp_page_is_forbidden(page) && 1048 swsusp_page_is_free(page)) { 1049 swsusp_unset_page_forbidden(page); 1050 swsusp_unset_page_free(page); 1051 __free_page(page); 1052 } 1053 } 1054 } 1055 nr_copy_pages = 0; 1056 nr_meta_pages = 0; 1057 restore_pblist = NULL; 1058 buffer = NULL; 1059 } 1060 1061 #ifdef CONFIG_HIGHMEM 1062 /** 1063 * count_pages_for_highmem - compute the number of non-highmem pages 1064 * that will be necessary for creating copies of highmem pages. 1065 */ 1066 1067 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1068 { 1069 unsigned int free_highmem = count_free_highmem_pages(); 1070 1071 if (free_highmem >= nr_highmem) 1072 nr_highmem = 0; 1073 else 1074 nr_highmem -= free_highmem; 1075 1076 return nr_highmem; 1077 } 1078 #else 1079 static unsigned int 1080 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1081 #endif /* CONFIG_HIGHMEM */ 1082 1083 /** 1084 * enough_free_mem - Make sure we have enough free memory for the 1085 * snapshot image. 1086 */ 1087 1088 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1089 { 1090 struct zone *zone; 1091 unsigned int free = 0, meta = 0; 1092 1093 for_each_zone(zone) { 1094 meta += snapshot_additional_pages(zone); 1095 if (!is_highmem(zone)) 1096 free += zone_page_state(zone, NR_FREE_PAGES); 1097 } 1098 1099 nr_pages += count_pages_for_highmem(nr_highmem); 1100 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1101 nr_pages, PAGES_FOR_IO, meta, free); 1102 1103 return free > nr_pages + PAGES_FOR_IO + meta; 1104 } 1105 1106 #ifdef CONFIG_HIGHMEM 1107 /** 1108 * get_highmem_buffer - if there are some highmem pages in the suspend 1109 * image, we may need the buffer to copy them and/or load their data. 1110 */ 1111 1112 static inline int get_highmem_buffer(int safe_needed) 1113 { 1114 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1115 return buffer ? 0 : -ENOMEM; 1116 } 1117 1118 /** 1119 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1120 * Try to allocate as many pages as needed, but if the number of free 1121 * highmem pages is lesser than that, allocate them all. 1122 */ 1123 1124 static inline unsigned int 1125 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1126 { 1127 unsigned int to_alloc = count_free_highmem_pages(); 1128 1129 if (to_alloc > nr_highmem) 1130 to_alloc = nr_highmem; 1131 1132 nr_highmem -= to_alloc; 1133 while (to_alloc-- > 0) { 1134 struct page *page; 1135 1136 page = alloc_image_page(__GFP_HIGHMEM); 1137 memory_bm_set_bit(bm, page_to_pfn(page)); 1138 } 1139 return nr_highmem; 1140 } 1141 #else 1142 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1143 1144 static inline unsigned int 1145 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1146 #endif /* CONFIG_HIGHMEM */ 1147 1148 /** 1149 * swsusp_alloc - allocate memory for the suspend image 1150 * 1151 * We first try to allocate as many highmem pages as there are 1152 * saveable highmem pages in the system. If that fails, we allocate 1153 * non-highmem pages for the copies of the remaining highmem ones. 1154 * 1155 * In this approach it is likely that the copies of highmem pages will 1156 * also be located in the high memory, because of the way in which 1157 * copy_data_pages() works. 1158 */ 1159 1160 static int 1161 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1162 unsigned int nr_pages, unsigned int nr_highmem) 1163 { 1164 int error; 1165 1166 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1167 if (error) 1168 goto Free; 1169 1170 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1171 if (error) 1172 goto Free; 1173 1174 if (nr_highmem > 0) { 1175 error = get_highmem_buffer(PG_ANY); 1176 if (error) 1177 goto Free; 1178 1179 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1180 } 1181 while (nr_pages-- > 0) { 1182 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1183 1184 if (!page) 1185 goto Free; 1186 1187 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1188 } 1189 return 0; 1190 1191 Free: 1192 swsusp_free(); 1193 return -ENOMEM; 1194 } 1195 1196 /* Memory bitmap used for marking saveable pages (during suspend) or the 1197 * suspend image pages (during resume) 1198 */ 1199 static struct memory_bitmap orig_bm; 1200 /* Memory bitmap used on suspend for marking allocated pages that will contain 1201 * the copies of saveable pages. During resume it is initially used for 1202 * marking the suspend image pages, but then its set bits are duplicated in 1203 * @orig_bm and it is released. Next, on systems with high memory, it may be 1204 * used for marking "safe" highmem pages, but it has to be reinitialized for 1205 * this purpose. 1206 */ 1207 static struct memory_bitmap copy_bm; 1208 1209 asmlinkage int swsusp_save(void) 1210 { 1211 unsigned int nr_pages, nr_highmem; 1212 1213 printk(KERN_INFO "PM: Creating hibernation image: \n"); 1214 1215 drain_local_pages(NULL); 1216 nr_pages = count_data_pages(); 1217 nr_highmem = count_highmem_pages(); 1218 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1219 1220 if (!enough_free_mem(nr_pages, nr_highmem)) { 1221 printk(KERN_ERR "PM: Not enough free memory\n"); 1222 return -ENOMEM; 1223 } 1224 1225 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1226 printk(KERN_ERR "PM: Memory allocation failed\n"); 1227 return -ENOMEM; 1228 } 1229 1230 /* During allocating of suspend pagedir, new cold pages may appear. 1231 * Kill them. 1232 */ 1233 drain_local_pages(NULL); 1234 copy_data_pages(©_bm, &orig_bm); 1235 1236 /* 1237 * End of critical section. From now on, we can write to memory, 1238 * but we should not touch disk. This specially means we must _not_ 1239 * touch swap space! Except we must write out our image of course. 1240 */ 1241 1242 nr_pages += nr_highmem; 1243 nr_copy_pages = nr_pages; 1244 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1245 1246 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1247 nr_pages); 1248 1249 return 0; 1250 } 1251 1252 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1253 static int init_header_complete(struct swsusp_info *info) 1254 { 1255 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1256 info->version_code = LINUX_VERSION_CODE; 1257 return 0; 1258 } 1259 1260 static char *check_image_kernel(struct swsusp_info *info) 1261 { 1262 if (info->version_code != LINUX_VERSION_CODE) 1263 return "kernel version"; 1264 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1265 return "system type"; 1266 if (strcmp(info->uts.release,init_utsname()->release)) 1267 return "kernel release"; 1268 if (strcmp(info->uts.version,init_utsname()->version)) 1269 return "version"; 1270 if (strcmp(info->uts.machine,init_utsname()->machine)) 1271 return "machine"; 1272 return NULL; 1273 } 1274 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1275 1276 unsigned long snapshot_get_image_size(void) 1277 { 1278 return nr_copy_pages + nr_meta_pages + 1; 1279 } 1280 1281 static int init_header(struct swsusp_info *info) 1282 { 1283 memset(info, 0, sizeof(struct swsusp_info)); 1284 info->num_physpages = num_physpages; 1285 info->image_pages = nr_copy_pages; 1286 info->pages = snapshot_get_image_size(); 1287 info->size = info->pages; 1288 info->size <<= PAGE_SHIFT; 1289 return init_header_complete(info); 1290 } 1291 1292 /** 1293 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1294 * are stored in the array @buf[] (1 page at a time) 1295 */ 1296 1297 static inline void 1298 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1299 { 1300 int j; 1301 1302 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1303 buf[j] = memory_bm_next_pfn(bm); 1304 if (unlikely(buf[j] == BM_END_OF_MAP)) 1305 break; 1306 } 1307 } 1308 1309 /** 1310 * snapshot_read_next - used for reading the system memory snapshot. 1311 * 1312 * On the first call to it @handle should point to a zeroed 1313 * snapshot_handle structure. The structure gets updated and a pointer 1314 * to it should be passed to this function every next time. 1315 * 1316 * The @count parameter should contain the number of bytes the caller 1317 * wants to read from the snapshot. It must not be zero. 1318 * 1319 * On success the function returns a positive number. Then, the caller 1320 * is allowed to read up to the returned number of bytes from the memory 1321 * location computed by the data_of() macro. The number returned 1322 * may be smaller than @count, but this only happens if the read would 1323 * cross a page boundary otherwise. 1324 * 1325 * The function returns 0 to indicate the end of data stream condition, 1326 * and a negative number is returned on error. In such cases the 1327 * structure pointed to by @handle is not updated and should not be used 1328 * any more. 1329 */ 1330 1331 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1332 { 1333 if (handle->cur > nr_meta_pages + nr_copy_pages) 1334 return 0; 1335 1336 if (!buffer) { 1337 /* This makes the buffer be freed by swsusp_free() */ 1338 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1339 if (!buffer) 1340 return -ENOMEM; 1341 } 1342 if (!handle->offset) { 1343 int error; 1344 1345 error = init_header((struct swsusp_info *)buffer); 1346 if (error) 1347 return error; 1348 handle->buffer = buffer; 1349 memory_bm_position_reset(&orig_bm); 1350 memory_bm_position_reset(©_bm); 1351 } 1352 if (handle->prev < handle->cur) { 1353 if (handle->cur <= nr_meta_pages) { 1354 memset(buffer, 0, PAGE_SIZE); 1355 pack_pfns(buffer, &orig_bm); 1356 } else { 1357 struct page *page; 1358 1359 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1360 if (PageHighMem(page)) { 1361 /* Highmem pages are copied to the buffer, 1362 * because we can't return with a kmapped 1363 * highmem page (we may not be called again). 1364 */ 1365 void *kaddr; 1366 1367 kaddr = kmap_atomic(page, KM_USER0); 1368 memcpy(buffer, kaddr, PAGE_SIZE); 1369 kunmap_atomic(kaddr, KM_USER0); 1370 handle->buffer = buffer; 1371 } else { 1372 handle->buffer = page_address(page); 1373 } 1374 } 1375 handle->prev = handle->cur; 1376 } 1377 handle->buf_offset = handle->cur_offset; 1378 if (handle->cur_offset + count >= PAGE_SIZE) { 1379 count = PAGE_SIZE - handle->cur_offset; 1380 handle->cur_offset = 0; 1381 handle->cur++; 1382 } else { 1383 handle->cur_offset += count; 1384 } 1385 handle->offset += count; 1386 return count; 1387 } 1388 1389 /** 1390 * mark_unsafe_pages - mark the pages that cannot be used for storing 1391 * the image during resume, because they conflict with the pages that 1392 * had been used before suspend 1393 */ 1394 1395 static int mark_unsafe_pages(struct memory_bitmap *bm) 1396 { 1397 struct zone *zone; 1398 unsigned long pfn, max_zone_pfn; 1399 1400 /* Clear page flags */ 1401 for_each_zone(zone) { 1402 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1403 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1404 if (pfn_valid(pfn)) 1405 swsusp_unset_page_free(pfn_to_page(pfn)); 1406 } 1407 1408 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1409 memory_bm_position_reset(bm); 1410 do { 1411 pfn = memory_bm_next_pfn(bm); 1412 if (likely(pfn != BM_END_OF_MAP)) { 1413 if (likely(pfn_valid(pfn))) 1414 swsusp_set_page_free(pfn_to_page(pfn)); 1415 else 1416 return -EFAULT; 1417 } 1418 } while (pfn != BM_END_OF_MAP); 1419 1420 allocated_unsafe_pages = 0; 1421 1422 return 0; 1423 } 1424 1425 static void 1426 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1427 { 1428 unsigned long pfn; 1429 1430 memory_bm_position_reset(src); 1431 pfn = memory_bm_next_pfn(src); 1432 while (pfn != BM_END_OF_MAP) { 1433 memory_bm_set_bit(dst, pfn); 1434 pfn = memory_bm_next_pfn(src); 1435 } 1436 } 1437 1438 static int check_header(struct swsusp_info *info) 1439 { 1440 char *reason; 1441 1442 reason = check_image_kernel(info); 1443 if (!reason && info->num_physpages != num_physpages) 1444 reason = "memory size"; 1445 if (reason) { 1446 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1447 return -EPERM; 1448 } 1449 return 0; 1450 } 1451 1452 /** 1453 * load header - check the image header and copy data from it 1454 */ 1455 1456 static int 1457 load_header(struct swsusp_info *info) 1458 { 1459 int error; 1460 1461 restore_pblist = NULL; 1462 error = check_header(info); 1463 if (!error) { 1464 nr_copy_pages = info->image_pages; 1465 nr_meta_pages = info->pages - info->image_pages - 1; 1466 } 1467 return error; 1468 } 1469 1470 /** 1471 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1472 * the corresponding bit in the memory bitmap @bm 1473 */ 1474 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1475 { 1476 int j; 1477 1478 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1479 if (unlikely(buf[j] == BM_END_OF_MAP)) 1480 break; 1481 1482 if (memory_bm_pfn_present(bm, buf[j])) 1483 memory_bm_set_bit(bm, buf[j]); 1484 else 1485 return -EFAULT; 1486 } 1487 1488 return 0; 1489 } 1490 1491 /* List of "safe" pages that may be used to store data loaded from the suspend 1492 * image 1493 */ 1494 static struct linked_page *safe_pages_list; 1495 1496 #ifdef CONFIG_HIGHMEM 1497 /* struct highmem_pbe is used for creating the list of highmem pages that 1498 * should be restored atomically during the resume from disk, because the page 1499 * frames they have occupied before the suspend are in use. 1500 */ 1501 struct highmem_pbe { 1502 struct page *copy_page; /* data is here now */ 1503 struct page *orig_page; /* data was here before the suspend */ 1504 struct highmem_pbe *next; 1505 }; 1506 1507 /* List of highmem PBEs needed for restoring the highmem pages that were 1508 * allocated before the suspend and included in the suspend image, but have 1509 * also been allocated by the "resume" kernel, so their contents cannot be 1510 * written directly to their "original" page frames. 1511 */ 1512 static struct highmem_pbe *highmem_pblist; 1513 1514 /** 1515 * count_highmem_image_pages - compute the number of highmem pages in the 1516 * suspend image. The bits in the memory bitmap @bm that correspond to the 1517 * image pages are assumed to be set. 1518 */ 1519 1520 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1521 { 1522 unsigned long pfn; 1523 unsigned int cnt = 0; 1524 1525 memory_bm_position_reset(bm); 1526 pfn = memory_bm_next_pfn(bm); 1527 while (pfn != BM_END_OF_MAP) { 1528 if (PageHighMem(pfn_to_page(pfn))) 1529 cnt++; 1530 1531 pfn = memory_bm_next_pfn(bm); 1532 } 1533 return cnt; 1534 } 1535 1536 /** 1537 * prepare_highmem_image - try to allocate as many highmem pages as 1538 * there are highmem image pages (@nr_highmem_p points to the variable 1539 * containing the number of highmem image pages). The pages that are 1540 * "safe" (ie. will not be overwritten when the suspend image is 1541 * restored) have the corresponding bits set in @bm (it must be 1542 * unitialized). 1543 * 1544 * NOTE: This function should not be called if there are no highmem 1545 * image pages. 1546 */ 1547 1548 static unsigned int safe_highmem_pages; 1549 1550 static struct memory_bitmap *safe_highmem_bm; 1551 1552 static int 1553 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1554 { 1555 unsigned int to_alloc; 1556 1557 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1558 return -ENOMEM; 1559 1560 if (get_highmem_buffer(PG_SAFE)) 1561 return -ENOMEM; 1562 1563 to_alloc = count_free_highmem_pages(); 1564 if (to_alloc > *nr_highmem_p) 1565 to_alloc = *nr_highmem_p; 1566 else 1567 *nr_highmem_p = to_alloc; 1568 1569 safe_highmem_pages = 0; 1570 while (to_alloc-- > 0) { 1571 struct page *page; 1572 1573 page = alloc_page(__GFP_HIGHMEM); 1574 if (!swsusp_page_is_free(page)) { 1575 /* The page is "safe", set its bit the bitmap */ 1576 memory_bm_set_bit(bm, page_to_pfn(page)); 1577 safe_highmem_pages++; 1578 } 1579 /* Mark the page as allocated */ 1580 swsusp_set_page_forbidden(page); 1581 swsusp_set_page_free(page); 1582 } 1583 memory_bm_position_reset(bm); 1584 safe_highmem_bm = bm; 1585 return 0; 1586 } 1587 1588 /** 1589 * get_highmem_page_buffer - for given highmem image page find the buffer 1590 * that suspend_write_next() should set for its caller to write to. 1591 * 1592 * If the page is to be saved to its "original" page frame or a copy of 1593 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1594 * the copy of the page is to be made in normal memory, so the address of 1595 * the copy is returned. 1596 * 1597 * If @buffer is returned, the caller of suspend_write_next() will write 1598 * the page's contents to @buffer, so they will have to be copied to the 1599 * right location on the next call to suspend_write_next() and it is done 1600 * with the help of copy_last_highmem_page(). For this purpose, if 1601 * @buffer is returned, @last_highmem page is set to the page to which 1602 * the data will have to be copied from @buffer. 1603 */ 1604 1605 static struct page *last_highmem_page; 1606 1607 static void * 1608 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1609 { 1610 struct highmem_pbe *pbe; 1611 void *kaddr; 1612 1613 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1614 /* We have allocated the "original" page frame and we can 1615 * use it directly to store the loaded page. 1616 */ 1617 last_highmem_page = page; 1618 return buffer; 1619 } 1620 /* The "original" page frame has not been allocated and we have to 1621 * use a "safe" page frame to store the loaded page. 1622 */ 1623 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1624 if (!pbe) { 1625 swsusp_free(); 1626 return ERR_PTR(-ENOMEM); 1627 } 1628 pbe->orig_page = page; 1629 if (safe_highmem_pages > 0) { 1630 struct page *tmp; 1631 1632 /* Copy of the page will be stored in high memory */ 1633 kaddr = buffer; 1634 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1635 safe_highmem_pages--; 1636 last_highmem_page = tmp; 1637 pbe->copy_page = tmp; 1638 } else { 1639 /* Copy of the page will be stored in normal memory */ 1640 kaddr = safe_pages_list; 1641 safe_pages_list = safe_pages_list->next; 1642 pbe->copy_page = virt_to_page(kaddr); 1643 } 1644 pbe->next = highmem_pblist; 1645 highmem_pblist = pbe; 1646 return kaddr; 1647 } 1648 1649 /** 1650 * copy_last_highmem_page - copy the contents of a highmem image from 1651 * @buffer, where the caller of snapshot_write_next() has place them, 1652 * to the right location represented by @last_highmem_page . 1653 */ 1654 1655 static void copy_last_highmem_page(void) 1656 { 1657 if (last_highmem_page) { 1658 void *dst; 1659 1660 dst = kmap_atomic(last_highmem_page, KM_USER0); 1661 memcpy(dst, buffer, PAGE_SIZE); 1662 kunmap_atomic(dst, KM_USER0); 1663 last_highmem_page = NULL; 1664 } 1665 } 1666 1667 static inline int last_highmem_page_copied(void) 1668 { 1669 return !last_highmem_page; 1670 } 1671 1672 static inline void free_highmem_data(void) 1673 { 1674 if (safe_highmem_bm) 1675 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1676 1677 if (buffer) 1678 free_image_page(buffer, PG_UNSAFE_CLEAR); 1679 } 1680 #else 1681 static inline int get_safe_write_buffer(void) { return 0; } 1682 1683 static unsigned int 1684 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1685 1686 static inline int 1687 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1688 { 1689 return 0; 1690 } 1691 1692 static inline void * 1693 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1694 { 1695 return ERR_PTR(-EINVAL); 1696 } 1697 1698 static inline void copy_last_highmem_page(void) {} 1699 static inline int last_highmem_page_copied(void) { return 1; } 1700 static inline void free_highmem_data(void) {} 1701 #endif /* CONFIG_HIGHMEM */ 1702 1703 /** 1704 * prepare_image - use the memory bitmap @bm to mark the pages that will 1705 * be overwritten in the process of restoring the system memory state 1706 * from the suspend image ("unsafe" pages) and allocate memory for the 1707 * image. 1708 * 1709 * The idea is to allocate a new memory bitmap first and then allocate 1710 * as many pages as needed for the image data, but not to assign these 1711 * pages to specific tasks initially. Instead, we just mark them as 1712 * allocated and create a lists of "safe" pages that will be used 1713 * later. On systems with high memory a list of "safe" highmem pages is 1714 * also created. 1715 */ 1716 1717 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1718 1719 static int 1720 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1721 { 1722 unsigned int nr_pages, nr_highmem; 1723 struct linked_page *sp_list, *lp; 1724 int error; 1725 1726 /* If there is no highmem, the buffer will not be necessary */ 1727 free_image_page(buffer, PG_UNSAFE_CLEAR); 1728 buffer = NULL; 1729 1730 nr_highmem = count_highmem_image_pages(bm); 1731 error = mark_unsafe_pages(bm); 1732 if (error) 1733 goto Free; 1734 1735 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1736 if (error) 1737 goto Free; 1738 1739 duplicate_memory_bitmap(new_bm, bm); 1740 memory_bm_free(bm, PG_UNSAFE_KEEP); 1741 if (nr_highmem > 0) { 1742 error = prepare_highmem_image(bm, &nr_highmem); 1743 if (error) 1744 goto Free; 1745 } 1746 /* Reserve some safe pages for potential later use. 1747 * 1748 * NOTE: This way we make sure there will be enough safe pages for the 1749 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1750 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1751 */ 1752 sp_list = NULL; 1753 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1754 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1755 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1756 while (nr_pages > 0) { 1757 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1758 if (!lp) { 1759 error = -ENOMEM; 1760 goto Free; 1761 } 1762 lp->next = sp_list; 1763 sp_list = lp; 1764 nr_pages--; 1765 } 1766 /* Preallocate memory for the image */ 1767 safe_pages_list = NULL; 1768 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1769 while (nr_pages > 0) { 1770 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1771 if (!lp) { 1772 error = -ENOMEM; 1773 goto Free; 1774 } 1775 if (!swsusp_page_is_free(virt_to_page(lp))) { 1776 /* The page is "safe", add it to the list */ 1777 lp->next = safe_pages_list; 1778 safe_pages_list = lp; 1779 } 1780 /* Mark the page as allocated */ 1781 swsusp_set_page_forbidden(virt_to_page(lp)); 1782 swsusp_set_page_free(virt_to_page(lp)); 1783 nr_pages--; 1784 } 1785 /* Free the reserved safe pages so that chain_alloc() can use them */ 1786 while (sp_list) { 1787 lp = sp_list->next; 1788 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1789 sp_list = lp; 1790 } 1791 return 0; 1792 1793 Free: 1794 swsusp_free(); 1795 return error; 1796 } 1797 1798 /** 1799 * get_buffer - compute the address that snapshot_write_next() should 1800 * set for its caller to write to. 1801 */ 1802 1803 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1804 { 1805 struct pbe *pbe; 1806 struct page *page; 1807 unsigned long pfn = memory_bm_next_pfn(bm); 1808 1809 if (pfn == BM_END_OF_MAP) 1810 return ERR_PTR(-EFAULT); 1811 1812 page = pfn_to_page(pfn); 1813 if (PageHighMem(page)) 1814 return get_highmem_page_buffer(page, ca); 1815 1816 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1817 /* We have allocated the "original" page frame and we can 1818 * use it directly to store the loaded page. 1819 */ 1820 return page_address(page); 1821 1822 /* The "original" page frame has not been allocated and we have to 1823 * use a "safe" page frame to store the loaded page. 1824 */ 1825 pbe = chain_alloc(ca, sizeof(struct pbe)); 1826 if (!pbe) { 1827 swsusp_free(); 1828 return ERR_PTR(-ENOMEM); 1829 } 1830 pbe->orig_address = page_address(page); 1831 pbe->address = safe_pages_list; 1832 safe_pages_list = safe_pages_list->next; 1833 pbe->next = restore_pblist; 1834 restore_pblist = pbe; 1835 return pbe->address; 1836 } 1837 1838 /** 1839 * snapshot_write_next - used for writing the system memory snapshot. 1840 * 1841 * On the first call to it @handle should point to a zeroed 1842 * snapshot_handle structure. The structure gets updated and a pointer 1843 * to it should be passed to this function every next time. 1844 * 1845 * The @count parameter should contain the number of bytes the caller 1846 * wants to write to the image. It must not be zero. 1847 * 1848 * On success the function returns a positive number. Then, the caller 1849 * is allowed to write up to the returned number of bytes to the memory 1850 * location computed by the data_of() macro. The number returned 1851 * may be smaller than @count, but this only happens if the write would 1852 * cross a page boundary otherwise. 1853 * 1854 * The function returns 0 to indicate the "end of file" condition, 1855 * and a negative number is returned on error. In such cases the 1856 * structure pointed to by @handle is not updated and should not be used 1857 * any more. 1858 */ 1859 1860 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1861 { 1862 static struct chain_allocator ca; 1863 int error = 0; 1864 1865 /* Check if we have already loaded the entire image */ 1866 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1867 return 0; 1868 1869 if (handle->offset == 0) { 1870 if (!buffer) 1871 /* This makes the buffer be freed by swsusp_free() */ 1872 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1873 1874 if (!buffer) 1875 return -ENOMEM; 1876 1877 handle->buffer = buffer; 1878 } 1879 handle->sync_read = 1; 1880 if (handle->prev < handle->cur) { 1881 if (handle->prev == 0) { 1882 error = load_header(buffer); 1883 if (error) 1884 return error; 1885 1886 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1887 if (error) 1888 return error; 1889 1890 } else if (handle->prev <= nr_meta_pages) { 1891 error = unpack_orig_pfns(buffer, ©_bm); 1892 if (error) 1893 return error; 1894 1895 if (handle->prev == nr_meta_pages) { 1896 error = prepare_image(&orig_bm, ©_bm); 1897 if (error) 1898 return error; 1899 1900 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1901 memory_bm_position_reset(&orig_bm); 1902 restore_pblist = NULL; 1903 handle->buffer = get_buffer(&orig_bm, &ca); 1904 handle->sync_read = 0; 1905 if (IS_ERR(handle->buffer)) 1906 return PTR_ERR(handle->buffer); 1907 } 1908 } else { 1909 copy_last_highmem_page(); 1910 handle->buffer = get_buffer(&orig_bm, &ca); 1911 if (IS_ERR(handle->buffer)) 1912 return PTR_ERR(handle->buffer); 1913 if (handle->buffer != buffer) 1914 handle->sync_read = 0; 1915 } 1916 handle->prev = handle->cur; 1917 } 1918 handle->buf_offset = handle->cur_offset; 1919 if (handle->cur_offset + count >= PAGE_SIZE) { 1920 count = PAGE_SIZE - handle->cur_offset; 1921 handle->cur_offset = 0; 1922 handle->cur++; 1923 } else { 1924 handle->cur_offset += count; 1925 } 1926 handle->offset += count; 1927 return count; 1928 } 1929 1930 /** 1931 * snapshot_write_finalize - must be called after the last call to 1932 * snapshot_write_next() in case the last page in the image happens 1933 * to be a highmem page and its contents should be stored in the 1934 * highmem. Additionally, it releases the memory that will not be 1935 * used any more. 1936 */ 1937 1938 void snapshot_write_finalize(struct snapshot_handle *handle) 1939 { 1940 copy_last_highmem_page(); 1941 /* Free only if we have loaded the image entirely */ 1942 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1943 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1944 free_highmem_data(); 1945 } 1946 } 1947 1948 int snapshot_image_loaded(struct snapshot_handle *handle) 1949 { 1950 return !(!nr_copy_pages || !last_highmem_page_copied() || 1951 handle->cur <= nr_meta_pages + nr_copy_pages); 1952 } 1953 1954 #ifdef CONFIG_HIGHMEM 1955 /* Assumes that @buf is ready and points to a "safe" page */ 1956 static inline void 1957 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1958 { 1959 void *kaddr1, *kaddr2; 1960 1961 kaddr1 = kmap_atomic(p1, KM_USER0); 1962 kaddr2 = kmap_atomic(p2, KM_USER1); 1963 memcpy(buf, kaddr1, PAGE_SIZE); 1964 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1965 memcpy(kaddr2, buf, PAGE_SIZE); 1966 kunmap_atomic(kaddr1, KM_USER0); 1967 kunmap_atomic(kaddr2, KM_USER1); 1968 } 1969 1970 /** 1971 * restore_highmem - for each highmem page that was allocated before 1972 * the suspend and included in the suspend image, and also has been 1973 * allocated by the "resume" kernel swap its current (ie. "before 1974 * resume") contents with the previous (ie. "before suspend") one. 1975 * 1976 * If the resume eventually fails, we can call this function once 1977 * again and restore the "before resume" highmem state. 1978 */ 1979 1980 int restore_highmem(void) 1981 { 1982 struct highmem_pbe *pbe = highmem_pblist; 1983 void *buf; 1984 1985 if (!pbe) 1986 return 0; 1987 1988 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1989 if (!buf) 1990 return -ENOMEM; 1991 1992 while (pbe) { 1993 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1994 pbe = pbe->next; 1995 } 1996 free_image_page(buf, PG_UNSAFE_CLEAR); 1997 return 0; 1998 } 1999 #endif /* CONFIG_HIGHMEM */ 2000