1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 34 #include <linux/uaccess.h> 35 #include <asm/mmu_context.h> 36 #include <asm/pgtable.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #ifdef CONFIG_STRICT_KERNEL_RWX 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline void hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 set_memory_ro((unsigned long)page_address, 1); 65 } 66 67 static inline void hibernate_restore_unprotect_page(void *page_address) 68 { 69 if (hibernate_restore_protection_active) 70 set_memory_rw((unsigned long)page_address, 1); 71 } 72 #else 73 static inline void hibernate_restore_protection_begin(void) {} 74 static inline void hibernate_restore_protection_end(void) {} 75 static inline void hibernate_restore_protect_page(void *page_address) {} 76 static inline void hibernate_restore_unprotect_page(void *page_address) {} 77 #endif /* CONFIG_STRICT_KERNEL_RWX */ 78 79 static int swsusp_page_is_free(struct page *); 80 static void swsusp_set_page_forbidden(struct page *); 81 static void swsusp_unset_page_forbidden(struct page *); 82 83 /* 84 * Number of bytes to reserve for memory allocations made by device drivers 85 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 86 * cause image creation to fail (tunable via /sys/power/reserved_size). 87 */ 88 unsigned long reserved_size; 89 90 void __init hibernate_reserved_size_init(void) 91 { 92 reserved_size = SPARE_PAGES * PAGE_SIZE; 93 } 94 95 /* 96 * Preferred image size in bytes (tunable via /sys/power/image_size). 97 * When it is set to N, swsusp will do its best to ensure the image 98 * size will not exceed N bytes, but if that is impossible, it will 99 * try to create the smallest image possible. 100 */ 101 unsigned long image_size; 102 103 void __init hibernate_image_size_init(void) 104 { 105 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 106 } 107 108 /* 109 * List of PBEs needed for restoring the pages that were allocated before 110 * the suspend and included in the suspend image, but have also been 111 * allocated by the "resume" kernel, so their contents cannot be written 112 * directly to their "original" page frames. 113 */ 114 struct pbe *restore_pblist; 115 116 /* struct linked_page is used to build chains of pages */ 117 118 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 119 120 struct linked_page { 121 struct linked_page *next; 122 char data[LINKED_PAGE_DATA_SIZE]; 123 } __packed; 124 125 /* 126 * List of "safe" pages (ie. pages that were not used by the image kernel 127 * before hibernation) that may be used as temporary storage for image kernel 128 * memory contents. 129 */ 130 static struct linked_page *safe_pages_list; 131 132 /* Pointer to an auxiliary buffer (1 page) */ 133 static void *buffer; 134 135 #define PG_ANY 0 136 #define PG_SAFE 1 137 #define PG_UNSAFE_CLEAR 1 138 #define PG_UNSAFE_KEEP 0 139 140 static unsigned int allocated_unsafe_pages; 141 142 /** 143 * get_image_page - Allocate a page for a hibernation image. 144 * @gfp_mask: GFP mask for the allocation. 145 * @safe_needed: Get pages that were not used before hibernation (restore only) 146 * 147 * During image restoration, for storing the PBE list and the image data, we can 148 * only use memory pages that do not conflict with the pages used before 149 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 150 * using allocated_unsafe_pages. 151 * 152 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 153 * swsusp_free() can release it. 154 */ 155 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 156 { 157 void *res; 158 159 res = (void *)get_zeroed_page(gfp_mask); 160 if (safe_needed) 161 while (res && swsusp_page_is_free(virt_to_page(res))) { 162 /* The page is unsafe, mark it for swsusp_free() */ 163 swsusp_set_page_forbidden(virt_to_page(res)); 164 allocated_unsafe_pages++; 165 res = (void *)get_zeroed_page(gfp_mask); 166 } 167 if (res) { 168 swsusp_set_page_forbidden(virt_to_page(res)); 169 swsusp_set_page_free(virt_to_page(res)); 170 } 171 return res; 172 } 173 174 static void *__get_safe_page(gfp_t gfp_mask) 175 { 176 if (safe_pages_list) { 177 void *ret = safe_pages_list; 178 179 safe_pages_list = safe_pages_list->next; 180 memset(ret, 0, PAGE_SIZE); 181 return ret; 182 } 183 return get_image_page(gfp_mask, PG_SAFE); 184 } 185 186 unsigned long get_safe_page(gfp_t gfp_mask) 187 { 188 return (unsigned long)__get_safe_page(gfp_mask); 189 } 190 191 static struct page *alloc_image_page(gfp_t gfp_mask) 192 { 193 struct page *page; 194 195 page = alloc_page(gfp_mask); 196 if (page) { 197 swsusp_set_page_forbidden(page); 198 swsusp_set_page_free(page); 199 } 200 return page; 201 } 202 203 static void recycle_safe_page(void *page_address) 204 { 205 struct linked_page *lp = page_address; 206 207 lp->next = safe_pages_list; 208 safe_pages_list = lp; 209 } 210 211 /** 212 * free_image_page - Free a page allocated for hibernation image. 213 * @addr: Address of the page to free. 214 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 215 * 216 * The page to free should have been allocated by get_image_page() (page flags 217 * set by it are affected). 218 */ 219 static inline void free_image_page(void *addr, int clear_nosave_free) 220 { 221 struct page *page; 222 223 BUG_ON(!virt_addr_valid(addr)); 224 225 page = virt_to_page(addr); 226 227 swsusp_unset_page_forbidden(page); 228 if (clear_nosave_free) 229 swsusp_unset_page_free(page); 230 231 __free_page(page); 232 } 233 234 static inline void free_list_of_pages(struct linked_page *list, 235 int clear_page_nosave) 236 { 237 while (list) { 238 struct linked_page *lp = list->next; 239 240 free_image_page(list, clear_page_nosave); 241 list = lp; 242 } 243 } 244 245 /* 246 * struct chain_allocator is used for allocating small objects out of 247 * a linked list of pages called 'the chain'. 248 * 249 * The chain grows each time when there is no room for a new object in 250 * the current page. The allocated objects cannot be freed individually. 251 * It is only possible to free them all at once, by freeing the entire 252 * chain. 253 * 254 * NOTE: The chain allocator may be inefficient if the allocated objects 255 * are not much smaller than PAGE_SIZE. 256 */ 257 struct chain_allocator { 258 struct linked_page *chain; /* the chain */ 259 unsigned int used_space; /* total size of objects allocated out 260 of the current page */ 261 gfp_t gfp_mask; /* mask for allocating pages */ 262 int safe_needed; /* if set, only "safe" pages are allocated */ 263 }; 264 265 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 266 int safe_needed) 267 { 268 ca->chain = NULL; 269 ca->used_space = LINKED_PAGE_DATA_SIZE; 270 ca->gfp_mask = gfp_mask; 271 ca->safe_needed = safe_needed; 272 } 273 274 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 275 { 276 void *ret; 277 278 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 279 struct linked_page *lp; 280 281 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 282 get_image_page(ca->gfp_mask, PG_ANY); 283 if (!lp) 284 return NULL; 285 286 lp->next = ca->chain; 287 ca->chain = lp; 288 ca->used_space = 0; 289 } 290 ret = ca->chain->data + ca->used_space; 291 ca->used_space += size; 292 return ret; 293 } 294 295 /** 296 * Data types related to memory bitmaps. 297 * 298 * Memory bitmap is a structure consiting of many linked lists of 299 * objects. The main list's elements are of type struct zone_bitmap 300 * and each of them corresonds to one zone. For each zone bitmap 301 * object there is a list of objects of type struct bm_block that 302 * represent each blocks of bitmap in which information is stored. 303 * 304 * struct memory_bitmap contains a pointer to the main list of zone 305 * bitmap objects, a struct bm_position used for browsing the bitmap, 306 * and a pointer to the list of pages used for allocating all of the 307 * zone bitmap objects and bitmap block objects. 308 * 309 * NOTE: It has to be possible to lay out the bitmap in memory 310 * using only allocations of order 0. Additionally, the bitmap is 311 * designed to work with arbitrary number of zones (this is over the 312 * top for now, but let's avoid making unnecessary assumptions ;-). 313 * 314 * struct zone_bitmap contains a pointer to a list of bitmap block 315 * objects and a pointer to the bitmap block object that has been 316 * most recently used for setting bits. Additionally, it contains the 317 * PFNs that correspond to the start and end of the represented zone. 318 * 319 * struct bm_block contains a pointer to the memory page in which 320 * information is stored (in the form of a block of bitmap) 321 * It also contains the pfns that correspond to the start and end of 322 * the represented memory area. 323 * 324 * The memory bitmap is organized as a radix tree to guarantee fast random 325 * access to the bits. There is one radix tree for each zone (as returned 326 * from create_mem_extents). 327 * 328 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 329 * two linked lists for the nodes of the tree, one for the inner nodes and 330 * one for the leave nodes. The linked leave nodes are used for fast linear 331 * access of the memory bitmap. 332 * 333 * The struct rtree_node represents one node of the radix tree. 334 */ 335 336 #define BM_END_OF_MAP (~0UL) 337 338 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 339 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 340 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 341 342 /* 343 * struct rtree_node is a wrapper struct to link the nodes 344 * of the rtree together for easy linear iteration over 345 * bits and easy freeing 346 */ 347 struct rtree_node { 348 struct list_head list; 349 unsigned long *data; 350 }; 351 352 /* 353 * struct mem_zone_bm_rtree represents a bitmap used for one 354 * populated memory zone. 355 */ 356 struct mem_zone_bm_rtree { 357 struct list_head list; /* Link Zones together */ 358 struct list_head nodes; /* Radix Tree inner nodes */ 359 struct list_head leaves; /* Radix Tree leaves */ 360 unsigned long start_pfn; /* Zone start page frame */ 361 unsigned long end_pfn; /* Zone end page frame + 1 */ 362 struct rtree_node *rtree; /* Radix Tree Root */ 363 int levels; /* Number of Radix Tree Levels */ 364 unsigned int blocks; /* Number of Bitmap Blocks */ 365 }; 366 367 /* strcut bm_position is used for browsing memory bitmaps */ 368 369 struct bm_position { 370 struct mem_zone_bm_rtree *zone; 371 struct rtree_node *node; 372 unsigned long node_pfn; 373 int node_bit; 374 }; 375 376 struct memory_bitmap { 377 struct list_head zones; 378 struct linked_page *p_list; /* list of pages used to store zone 379 bitmap objects and bitmap block 380 objects */ 381 struct bm_position cur; /* most recently used bit position */ 382 }; 383 384 /* Functions that operate on memory bitmaps */ 385 386 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 387 #if BITS_PER_LONG == 32 388 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 389 #else 390 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 391 #endif 392 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 393 394 /** 395 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 396 * 397 * This function is used to allocate inner nodes as well as the 398 * leave nodes of the radix tree. It also adds the node to the 399 * corresponding linked list passed in by the *list parameter. 400 */ 401 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 402 struct chain_allocator *ca, 403 struct list_head *list) 404 { 405 struct rtree_node *node; 406 407 node = chain_alloc(ca, sizeof(struct rtree_node)); 408 if (!node) 409 return NULL; 410 411 node->data = get_image_page(gfp_mask, safe_needed); 412 if (!node->data) 413 return NULL; 414 415 list_add_tail(&node->list, list); 416 417 return node; 418 } 419 420 /** 421 * add_rtree_block - Add a new leave node to the radix tree. 422 * 423 * The leave nodes need to be allocated in order to keep the leaves 424 * linked list in order. This is guaranteed by the zone->blocks 425 * counter. 426 */ 427 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 428 int safe_needed, struct chain_allocator *ca) 429 { 430 struct rtree_node *node, *block, **dst; 431 unsigned int levels_needed, block_nr; 432 int i; 433 434 block_nr = zone->blocks; 435 levels_needed = 0; 436 437 /* How many levels do we need for this block nr? */ 438 while (block_nr) { 439 levels_needed += 1; 440 block_nr >>= BM_RTREE_LEVEL_SHIFT; 441 } 442 443 /* Make sure the rtree has enough levels */ 444 for (i = zone->levels; i < levels_needed; i++) { 445 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 446 &zone->nodes); 447 if (!node) 448 return -ENOMEM; 449 450 node->data[0] = (unsigned long)zone->rtree; 451 zone->rtree = node; 452 zone->levels += 1; 453 } 454 455 /* Allocate new block */ 456 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 457 if (!block) 458 return -ENOMEM; 459 460 /* Now walk the rtree to insert the block */ 461 node = zone->rtree; 462 dst = &zone->rtree; 463 block_nr = zone->blocks; 464 for (i = zone->levels; i > 0; i--) { 465 int index; 466 467 if (!node) { 468 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 469 &zone->nodes); 470 if (!node) 471 return -ENOMEM; 472 *dst = node; 473 } 474 475 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 476 index &= BM_RTREE_LEVEL_MASK; 477 dst = (struct rtree_node **)&((*dst)->data[index]); 478 node = *dst; 479 } 480 481 zone->blocks += 1; 482 *dst = block; 483 484 return 0; 485 } 486 487 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 488 int clear_nosave_free); 489 490 /** 491 * create_zone_bm_rtree - Create a radix tree for one zone. 492 * 493 * Allocated the mem_zone_bm_rtree structure and initializes it. 494 * This function also allocated and builds the radix tree for the 495 * zone. 496 */ 497 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 498 int safe_needed, 499 struct chain_allocator *ca, 500 unsigned long start, 501 unsigned long end) 502 { 503 struct mem_zone_bm_rtree *zone; 504 unsigned int i, nr_blocks; 505 unsigned long pages; 506 507 pages = end - start; 508 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 509 if (!zone) 510 return NULL; 511 512 INIT_LIST_HEAD(&zone->nodes); 513 INIT_LIST_HEAD(&zone->leaves); 514 zone->start_pfn = start; 515 zone->end_pfn = end; 516 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 517 518 for (i = 0; i < nr_blocks; i++) { 519 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 520 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 521 return NULL; 522 } 523 } 524 525 return zone; 526 } 527 528 /** 529 * free_zone_bm_rtree - Free the memory of the radix tree. 530 * 531 * Free all node pages of the radix tree. The mem_zone_bm_rtree 532 * structure itself is not freed here nor are the rtree_node 533 * structs. 534 */ 535 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 536 int clear_nosave_free) 537 { 538 struct rtree_node *node; 539 540 list_for_each_entry(node, &zone->nodes, list) 541 free_image_page(node->data, clear_nosave_free); 542 543 list_for_each_entry(node, &zone->leaves, list) 544 free_image_page(node->data, clear_nosave_free); 545 } 546 547 static void memory_bm_position_reset(struct memory_bitmap *bm) 548 { 549 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 550 list); 551 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 552 struct rtree_node, list); 553 bm->cur.node_pfn = 0; 554 bm->cur.node_bit = 0; 555 } 556 557 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 558 559 struct mem_extent { 560 struct list_head hook; 561 unsigned long start; 562 unsigned long end; 563 }; 564 565 /** 566 * free_mem_extents - Free a list of memory extents. 567 * @list: List of extents to free. 568 */ 569 static void free_mem_extents(struct list_head *list) 570 { 571 struct mem_extent *ext, *aux; 572 573 list_for_each_entry_safe(ext, aux, list, hook) { 574 list_del(&ext->hook); 575 kfree(ext); 576 } 577 } 578 579 /** 580 * create_mem_extents - Create a list of memory extents. 581 * @list: List to put the extents into. 582 * @gfp_mask: Mask to use for memory allocations. 583 * 584 * The extents represent contiguous ranges of PFNs. 585 */ 586 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 587 { 588 struct zone *zone; 589 590 INIT_LIST_HEAD(list); 591 592 for_each_populated_zone(zone) { 593 unsigned long zone_start, zone_end; 594 struct mem_extent *ext, *cur, *aux; 595 596 zone_start = zone->zone_start_pfn; 597 zone_end = zone_end_pfn(zone); 598 599 list_for_each_entry(ext, list, hook) 600 if (zone_start <= ext->end) 601 break; 602 603 if (&ext->hook == list || zone_end < ext->start) { 604 /* New extent is necessary */ 605 struct mem_extent *new_ext; 606 607 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 608 if (!new_ext) { 609 free_mem_extents(list); 610 return -ENOMEM; 611 } 612 new_ext->start = zone_start; 613 new_ext->end = zone_end; 614 list_add_tail(&new_ext->hook, &ext->hook); 615 continue; 616 } 617 618 /* Merge this zone's range of PFNs with the existing one */ 619 if (zone_start < ext->start) 620 ext->start = zone_start; 621 if (zone_end > ext->end) 622 ext->end = zone_end; 623 624 /* More merging may be possible */ 625 cur = ext; 626 list_for_each_entry_safe_continue(cur, aux, list, hook) { 627 if (zone_end < cur->start) 628 break; 629 if (zone_end < cur->end) 630 ext->end = cur->end; 631 list_del(&cur->hook); 632 kfree(cur); 633 } 634 } 635 636 return 0; 637 } 638 639 /** 640 * memory_bm_create - Allocate memory for a memory bitmap. 641 */ 642 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 643 int safe_needed) 644 { 645 struct chain_allocator ca; 646 struct list_head mem_extents; 647 struct mem_extent *ext; 648 int error; 649 650 chain_init(&ca, gfp_mask, safe_needed); 651 INIT_LIST_HEAD(&bm->zones); 652 653 error = create_mem_extents(&mem_extents, gfp_mask); 654 if (error) 655 return error; 656 657 list_for_each_entry(ext, &mem_extents, hook) { 658 struct mem_zone_bm_rtree *zone; 659 660 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 661 ext->start, ext->end); 662 if (!zone) { 663 error = -ENOMEM; 664 goto Error; 665 } 666 list_add_tail(&zone->list, &bm->zones); 667 } 668 669 bm->p_list = ca.chain; 670 memory_bm_position_reset(bm); 671 Exit: 672 free_mem_extents(&mem_extents); 673 return error; 674 675 Error: 676 bm->p_list = ca.chain; 677 memory_bm_free(bm, PG_UNSAFE_CLEAR); 678 goto Exit; 679 } 680 681 /** 682 * memory_bm_free - Free memory occupied by the memory bitmap. 683 * @bm: Memory bitmap. 684 */ 685 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 686 { 687 struct mem_zone_bm_rtree *zone; 688 689 list_for_each_entry(zone, &bm->zones, list) 690 free_zone_bm_rtree(zone, clear_nosave_free); 691 692 free_list_of_pages(bm->p_list, clear_nosave_free); 693 694 INIT_LIST_HEAD(&bm->zones); 695 } 696 697 /** 698 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 699 * 700 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 701 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 702 * 703 * Walk the radix tree to find the page containing the bit that represents @pfn 704 * and return the position of the bit in @addr and @bit_nr. 705 */ 706 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 707 void **addr, unsigned int *bit_nr) 708 { 709 struct mem_zone_bm_rtree *curr, *zone; 710 struct rtree_node *node; 711 int i, block_nr; 712 713 zone = bm->cur.zone; 714 715 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 716 goto zone_found; 717 718 zone = NULL; 719 720 /* Find the right zone */ 721 list_for_each_entry(curr, &bm->zones, list) { 722 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 723 zone = curr; 724 break; 725 } 726 } 727 728 if (!zone) 729 return -EFAULT; 730 731 zone_found: 732 /* 733 * We have found the zone. Now walk the radix tree to find the leaf node 734 * for our PFN. 735 */ 736 node = bm->cur.node; 737 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 738 goto node_found; 739 740 node = zone->rtree; 741 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 742 743 for (i = zone->levels; i > 0; i--) { 744 int index; 745 746 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 747 index &= BM_RTREE_LEVEL_MASK; 748 BUG_ON(node->data[index] == 0); 749 node = (struct rtree_node *)node->data[index]; 750 } 751 752 node_found: 753 /* Update last position */ 754 bm->cur.zone = zone; 755 bm->cur.node = node; 756 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 757 758 /* Set return values */ 759 *addr = node->data; 760 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 761 762 return 0; 763 } 764 765 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 766 { 767 void *addr; 768 unsigned int bit; 769 int error; 770 771 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 772 BUG_ON(error); 773 set_bit(bit, addr); 774 } 775 776 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 777 { 778 void *addr; 779 unsigned int bit; 780 int error; 781 782 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 783 if (!error) 784 set_bit(bit, addr); 785 786 return error; 787 } 788 789 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 790 { 791 void *addr; 792 unsigned int bit; 793 int error; 794 795 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 796 BUG_ON(error); 797 clear_bit(bit, addr); 798 } 799 800 static void memory_bm_clear_current(struct memory_bitmap *bm) 801 { 802 int bit; 803 804 bit = max(bm->cur.node_bit - 1, 0); 805 clear_bit(bit, bm->cur.node->data); 806 } 807 808 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 809 { 810 void *addr; 811 unsigned int bit; 812 int error; 813 814 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 815 BUG_ON(error); 816 return test_bit(bit, addr); 817 } 818 819 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 820 { 821 void *addr; 822 unsigned int bit; 823 824 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 825 } 826 827 /* 828 * rtree_next_node - Jump to the next leaf node. 829 * 830 * Set the position to the beginning of the next node in the 831 * memory bitmap. This is either the next node in the current 832 * zone's radix tree or the first node in the radix tree of the 833 * next zone. 834 * 835 * Return true if there is a next node, false otherwise. 836 */ 837 static bool rtree_next_node(struct memory_bitmap *bm) 838 { 839 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 840 bm->cur.node = list_entry(bm->cur.node->list.next, 841 struct rtree_node, list); 842 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 843 bm->cur.node_bit = 0; 844 touch_softlockup_watchdog(); 845 return true; 846 } 847 848 /* No more nodes, goto next zone */ 849 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 850 bm->cur.zone = list_entry(bm->cur.zone->list.next, 851 struct mem_zone_bm_rtree, list); 852 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 853 struct rtree_node, list); 854 bm->cur.node_pfn = 0; 855 bm->cur.node_bit = 0; 856 return true; 857 } 858 859 /* No more zones */ 860 return false; 861 } 862 863 /** 864 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 865 * @bm: Memory bitmap. 866 * 867 * Starting from the last returned position this function searches for the next 868 * set bit in @bm and returns the PFN represented by it. If no more bits are 869 * set, BM_END_OF_MAP is returned. 870 * 871 * It is required to run memory_bm_position_reset() before the first call to 872 * this function for the given memory bitmap. 873 */ 874 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 875 { 876 unsigned long bits, pfn, pages; 877 int bit; 878 879 do { 880 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 881 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 882 bit = find_next_bit(bm->cur.node->data, bits, 883 bm->cur.node_bit); 884 if (bit < bits) { 885 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 886 bm->cur.node_bit = bit + 1; 887 return pfn; 888 } 889 } while (rtree_next_node(bm)); 890 891 return BM_END_OF_MAP; 892 } 893 894 /* 895 * This structure represents a range of page frames the contents of which 896 * should not be saved during hibernation. 897 */ 898 struct nosave_region { 899 struct list_head list; 900 unsigned long start_pfn; 901 unsigned long end_pfn; 902 }; 903 904 static LIST_HEAD(nosave_regions); 905 906 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 907 { 908 struct rtree_node *node; 909 910 list_for_each_entry(node, &zone->nodes, list) 911 recycle_safe_page(node->data); 912 913 list_for_each_entry(node, &zone->leaves, list) 914 recycle_safe_page(node->data); 915 } 916 917 static void memory_bm_recycle(struct memory_bitmap *bm) 918 { 919 struct mem_zone_bm_rtree *zone; 920 struct linked_page *p_list; 921 922 list_for_each_entry(zone, &bm->zones, list) 923 recycle_zone_bm_rtree(zone); 924 925 p_list = bm->p_list; 926 while (p_list) { 927 struct linked_page *lp = p_list; 928 929 p_list = lp->next; 930 recycle_safe_page(lp); 931 } 932 } 933 934 /** 935 * register_nosave_region - Register a region of unsaveable memory. 936 * 937 * Register a range of page frames the contents of which should not be saved 938 * during hibernation (to be used in the early initialization code). 939 */ 940 void __init __register_nosave_region(unsigned long start_pfn, 941 unsigned long end_pfn, int use_kmalloc) 942 { 943 struct nosave_region *region; 944 945 if (start_pfn >= end_pfn) 946 return; 947 948 if (!list_empty(&nosave_regions)) { 949 /* Try to extend the previous region (they should be sorted) */ 950 region = list_entry(nosave_regions.prev, 951 struct nosave_region, list); 952 if (region->end_pfn == start_pfn) { 953 region->end_pfn = end_pfn; 954 goto Report; 955 } 956 } 957 if (use_kmalloc) { 958 /* During init, this shouldn't fail */ 959 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 960 BUG_ON(!region); 961 } else { 962 /* This allocation cannot fail */ 963 region = memblock_virt_alloc(sizeof(struct nosave_region), 0); 964 } 965 region->start_pfn = start_pfn; 966 region->end_pfn = end_pfn; 967 list_add_tail(®ion->list, &nosave_regions); 968 Report: 969 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n", 970 (unsigned long long) start_pfn << PAGE_SHIFT, 971 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 972 } 973 974 /* 975 * Set bits in this map correspond to the page frames the contents of which 976 * should not be saved during the suspend. 977 */ 978 static struct memory_bitmap *forbidden_pages_map; 979 980 /* Set bits in this map correspond to free page frames. */ 981 static struct memory_bitmap *free_pages_map; 982 983 /* 984 * Each page frame allocated for creating the image is marked by setting the 985 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 986 */ 987 988 void swsusp_set_page_free(struct page *page) 989 { 990 if (free_pages_map) 991 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 992 } 993 994 static int swsusp_page_is_free(struct page *page) 995 { 996 return free_pages_map ? 997 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 998 } 999 1000 void swsusp_unset_page_free(struct page *page) 1001 { 1002 if (free_pages_map) 1003 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1004 } 1005 1006 static void swsusp_set_page_forbidden(struct page *page) 1007 { 1008 if (forbidden_pages_map) 1009 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1010 } 1011 1012 int swsusp_page_is_forbidden(struct page *page) 1013 { 1014 return forbidden_pages_map ? 1015 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1016 } 1017 1018 static void swsusp_unset_page_forbidden(struct page *page) 1019 { 1020 if (forbidden_pages_map) 1021 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1022 } 1023 1024 /** 1025 * mark_nosave_pages - Mark pages that should not be saved. 1026 * @bm: Memory bitmap. 1027 * 1028 * Set the bits in @bm that correspond to the page frames the contents of which 1029 * should not be saved. 1030 */ 1031 static void mark_nosave_pages(struct memory_bitmap *bm) 1032 { 1033 struct nosave_region *region; 1034 1035 if (list_empty(&nosave_regions)) 1036 return; 1037 1038 list_for_each_entry(region, &nosave_regions, list) { 1039 unsigned long pfn; 1040 1041 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 1042 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1043 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1044 - 1); 1045 1046 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1047 if (pfn_valid(pfn)) { 1048 /* 1049 * It is safe to ignore the result of 1050 * mem_bm_set_bit_check() here, since we won't 1051 * touch the PFNs for which the error is 1052 * returned anyway. 1053 */ 1054 mem_bm_set_bit_check(bm, pfn); 1055 } 1056 } 1057 } 1058 1059 /** 1060 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1061 * 1062 * Create bitmaps needed for marking page frames that should not be saved and 1063 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1064 * only modified if everything goes well, because we don't want the bits to be 1065 * touched before both bitmaps are set up. 1066 */ 1067 int create_basic_memory_bitmaps(void) 1068 { 1069 struct memory_bitmap *bm1, *bm2; 1070 int error = 0; 1071 1072 if (forbidden_pages_map && free_pages_map) 1073 return 0; 1074 else 1075 BUG_ON(forbidden_pages_map || free_pages_map); 1076 1077 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1078 if (!bm1) 1079 return -ENOMEM; 1080 1081 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1082 if (error) 1083 goto Free_first_object; 1084 1085 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1086 if (!bm2) 1087 goto Free_first_bitmap; 1088 1089 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1090 if (error) 1091 goto Free_second_object; 1092 1093 forbidden_pages_map = bm1; 1094 free_pages_map = bm2; 1095 mark_nosave_pages(forbidden_pages_map); 1096 1097 pr_debug("PM: Basic memory bitmaps created\n"); 1098 1099 return 0; 1100 1101 Free_second_object: 1102 kfree(bm2); 1103 Free_first_bitmap: 1104 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1105 Free_first_object: 1106 kfree(bm1); 1107 return -ENOMEM; 1108 } 1109 1110 /** 1111 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1112 * 1113 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1114 * auxiliary pointers are necessary so that the bitmaps themselves are not 1115 * referred to while they are being freed. 1116 */ 1117 void free_basic_memory_bitmaps(void) 1118 { 1119 struct memory_bitmap *bm1, *bm2; 1120 1121 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1122 return; 1123 1124 bm1 = forbidden_pages_map; 1125 bm2 = free_pages_map; 1126 forbidden_pages_map = NULL; 1127 free_pages_map = NULL; 1128 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1129 kfree(bm1); 1130 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1131 kfree(bm2); 1132 1133 pr_debug("PM: Basic memory bitmaps freed\n"); 1134 } 1135 1136 void clear_free_pages(void) 1137 { 1138 #ifdef CONFIG_PAGE_POISONING_ZERO 1139 struct memory_bitmap *bm = free_pages_map; 1140 unsigned long pfn; 1141 1142 if (WARN_ON(!(free_pages_map))) 1143 return; 1144 1145 memory_bm_position_reset(bm); 1146 pfn = memory_bm_next_pfn(bm); 1147 while (pfn != BM_END_OF_MAP) { 1148 if (pfn_valid(pfn)) 1149 clear_highpage(pfn_to_page(pfn)); 1150 1151 pfn = memory_bm_next_pfn(bm); 1152 } 1153 memory_bm_position_reset(bm); 1154 pr_info("PM: free pages cleared after restore\n"); 1155 #endif /* PAGE_POISONING_ZERO */ 1156 } 1157 1158 /** 1159 * snapshot_additional_pages - Estimate the number of extra pages needed. 1160 * @zone: Memory zone to carry out the computation for. 1161 * 1162 * Estimate the number of additional pages needed for setting up a hibernation 1163 * image data structures for @zone (usually, the returned value is greater than 1164 * the exact number). 1165 */ 1166 unsigned int snapshot_additional_pages(struct zone *zone) 1167 { 1168 unsigned int rtree, nodes; 1169 1170 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1171 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1172 LINKED_PAGE_DATA_SIZE); 1173 while (nodes > 1) { 1174 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1175 rtree += nodes; 1176 } 1177 1178 return 2 * rtree; 1179 } 1180 1181 #ifdef CONFIG_HIGHMEM 1182 /** 1183 * count_free_highmem_pages - Compute the total number of free highmem pages. 1184 * 1185 * The returned number is system-wide. 1186 */ 1187 static unsigned int count_free_highmem_pages(void) 1188 { 1189 struct zone *zone; 1190 unsigned int cnt = 0; 1191 1192 for_each_populated_zone(zone) 1193 if (is_highmem(zone)) 1194 cnt += zone_page_state(zone, NR_FREE_PAGES); 1195 1196 return cnt; 1197 } 1198 1199 /** 1200 * saveable_highmem_page - Check if a highmem page is saveable. 1201 * 1202 * Determine whether a highmem page should be included in a hibernation image. 1203 * 1204 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1205 * and it isn't part of a free chunk of pages. 1206 */ 1207 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1208 { 1209 struct page *page; 1210 1211 if (!pfn_valid(pfn)) 1212 return NULL; 1213 1214 page = pfn_to_page(pfn); 1215 if (page_zone(page) != zone) 1216 return NULL; 1217 1218 BUG_ON(!PageHighMem(page)); 1219 1220 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 1221 PageReserved(page)) 1222 return NULL; 1223 1224 if (page_is_guard(page)) 1225 return NULL; 1226 1227 return page; 1228 } 1229 1230 /** 1231 * count_highmem_pages - Compute the total number of saveable highmem pages. 1232 */ 1233 static unsigned int count_highmem_pages(void) 1234 { 1235 struct zone *zone; 1236 unsigned int n = 0; 1237 1238 for_each_populated_zone(zone) { 1239 unsigned long pfn, max_zone_pfn; 1240 1241 if (!is_highmem(zone)) 1242 continue; 1243 1244 mark_free_pages(zone); 1245 max_zone_pfn = zone_end_pfn(zone); 1246 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1247 if (saveable_highmem_page(zone, pfn)) 1248 n++; 1249 } 1250 return n; 1251 } 1252 #else 1253 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1254 { 1255 return NULL; 1256 } 1257 #endif /* CONFIG_HIGHMEM */ 1258 1259 /** 1260 * saveable_page - Check if the given page is saveable. 1261 * 1262 * Determine whether a non-highmem page should be included in a hibernation 1263 * image. 1264 * 1265 * We should save the page if it isn't Nosave, and is not in the range 1266 * of pages statically defined as 'unsaveable', and it isn't part of 1267 * a free chunk of pages. 1268 */ 1269 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1270 { 1271 struct page *page; 1272 1273 if (!pfn_valid(pfn)) 1274 return NULL; 1275 1276 page = pfn_to_page(pfn); 1277 if (page_zone(page) != zone) 1278 return NULL; 1279 1280 BUG_ON(PageHighMem(page)); 1281 1282 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1283 return NULL; 1284 1285 if (PageReserved(page) 1286 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1287 return NULL; 1288 1289 if (page_is_guard(page)) 1290 return NULL; 1291 1292 return page; 1293 } 1294 1295 /** 1296 * count_data_pages - Compute the total number of saveable non-highmem pages. 1297 */ 1298 static unsigned int count_data_pages(void) 1299 { 1300 struct zone *zone; 1301 unsigned long pfn, max_zone_pfn; 1302 unsigned int n = 0; 1303 1304 for_each_populated_zone(zone) { 1305 if (is_highmem(zone)) 1306 continue; 1307 1308 mark_free_pages(zone); 1309 max_zone_pfn = zone_end_pfn(zone); 1310 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1311 if (saveable_page(zone, pfn)) 1312 n++; 1313 } 1314 return n; 1315 } 1316 1317 /* 1318 * This is needed, because copy_page and memcpy are not usable for copying 1319 * task structs. 1320 */ 1321 static inline void do_copy_page(long *dst, long *src) 1322 { 1323 int n; 1324 1325 for (n = PAGE_SIZE / sizeof(long); n; n--) 1326 *dst++ = *src++; 1327 } 1328 1329 /** 1330 * safe_copy_page - Copy a page in a safe way. 1331 * 1332 * Check if the page we are going to copy is marked as present in the kernel 1333 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set 1334 * and in that case kernel_page_present() always returns 'true'). 1335 */ 1336 static void safe_copy_page(void *dst, struct page *s_page) 1337 { 1338 if (kernel_page_present(s_page)) { 1339 do_copy_page(dst, page_address(s_page)); 1340 } else { 1341 kernel_map_pages(s_page, 1, 1); 1342 do_copy_page(dst, page_address(s_page)); 1343 kernel_map_pages(s_page, 1, 0); 1344 } 1345 } 1346 1347 #ifdef CONFIG_HIGHMEM 1348 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1349 { 1350 return is_highmem(zone) ? 1351 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1352 } 1353 1354 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1355 { 1356 struct page *s_page, *d_page; 1357 void *src, *dst; 1358 1359 s_page = pfn_to_page(src_pfn); 1360 d_page = pfn_to_page(dst_pfn); 1361 if (PageHighMem(s_page)) { 1362 src = kmap_atomic(s_page); 1363 dst = kmap_atomic(d_page); 1364 do_copy_page(dst, src); 1365 kunmap_atomic(dst); 1366 kunmap_atomic(src); 1367 } else { 1368 if (PageHighMem(d_page)) { 1369 /* 1370 * The page pointed to by src may contain some kernel 1371 * data modified by kmap_atomic() 1372 */ 1373 safe_copy_page(buffer, s_page); 1374 dst = kmap_atomic(d_page); 1375 copy_page(dst, buffer); 1376 kunmap_atomic(dst); 1377 } else { 1378 safe_copy_page(page_address(d_page), s_page); 1379 } 1380 } 1381 } 1382 #else 1383 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1384 1385 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1386 { 1387 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1388 pfn_to_page(src_pfn)); 1389 } 1390 #endif /* CONFIG_HIGHMEM */ 1391 1392 static void copy_data_pages(struct memory_bitmap *copy_bm, 1393 struct memory_bitmap *orig_bm) 1394 { 1395 struct zone *zone; 1396 unsigned long pfn; 1397 1398 for_each_populated_zone(zone) { 1399 unsigned long max_zone_pfn; 1400 1401 mark_free_pages(zone); 1402 max_zone_pfn = zone_end_pfn(zone); 1403 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1404 if (page_is_saveable(zone, pfn)) 1405 memory_bm_set_bit(orig_bm, pfn); 1406 } 1407 memory_bm_position_reset(orig_bm); 1408 memory_bm_position_reset(copy_bm); 1409 for(;;) { 1410 pfn = memory_bm_next_pfn(orig_bm); 1411 if (unlikely(pfn == BM_END_OF_MAP)) 1412 break; 1413 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1414 } 1415 } 1416 1417 /* Total number of image pages */ 1418 static unsigned int nr_copy_pages; 1419 /* Number of pages needed for saving the original pfns of the image pages */ 1420 static unsigned int nr_meta_pages; 1421 /* 1422 * Numbers of normal and highmem page frames allocated for hibernation image 1423 * before suspending devices. 1424 */ 1425 unsigned int alloc_normal, alloc_highmem; 1426 /* 1427 * Memory bitmap used for marking saveable pages (during hibernation) or 1428 * hibernation image pages (during restore) 1429 */ 1430 static struct memory_bitmap orig_bm; 1431 /* 1432 * Memory bitmap used during hibernation for marking allocated page frames that 1433 * will contain copies of saveable pages. During restore it is initially used 1434 * for marking hibernation image pages, but then the set bits from it are 1435 * duplicated in @orig_bm and it is released. On highmem systems it is next 1436 * used for marking "safe" highmem pages, but it has to be reinitialized for 1437 * this purpose. 1438 */ 1439 static struct memory_bitmap copy_bm; 1440 1441 /** 1442 * swsusp_free - Free pages allocated for hibernation image. 1443 * 1444 * Image pages are alocated before snapshot creation, so they need to be 1445 * released after resume. 1446 */ 1447 void swsusp_free(void) 1448 { 1449 unsigned long fb_pfn, fr_pfn; 1450 1451 if (!forbidden_pages_map || !free_pages_map) 1452 goto out; 1453 1454 memory_bm_position_reset(forbidden_pages_map); 1455 memory_bm_position_reset(free_pages_map); 1456 1457 loop: 1458 fr_pfn = memory_bm_next_pfn(free_pages_map); 1459 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1460 1461 /* 1462 * Find the next bit set in both bitmaps. This is guaranteed to 1463 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1464 */ 1465 do { 1466 if (fb_pfn < fr_pfn) 1467 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1468 if (fr_pfn < fb_pfn) 1469 fr_pfn = memory_bm_next_pfn(free_pages_map); 1470 } while (fb_pfn != fr_pfn); 1471 1472 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1473 struct page *page = pfn_to_page(fr_pfn); 1474 1475 memory_bm_clear_current(forbidden_pages_map); 1476 memory_bm_clear_current(free_pages_map); 1477 hibernate_restore_unprotect_page(page_address(page)); 1478 __free_page(page); 1479 goto loop; 1480 } 1481 1482 out: 1483 nr_copy_pages = 0; 1484 nr_meta_pages = 0; 1485 restore_pblist = NULL; 1486 buffer = NULL; 1487 alloc_normal = 0; 1488 alloc_highmem = 0; 1489 hibernate_restore_protection_end(); 1490 } 1491 1492 /* Helper functions used for the shrinking of memory. */ 1493 1494 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1495 1496 /** 1497 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1498 * @nr_pages: Number of page frames to allocate. 1499 * @mask: GFP flags to use for the allocation. 1500 * 1501 * Return value: Number of page frames actually allocated 1502 */ 1503 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1504 { 1505 unsigned long nr_alloc = 0; 1506 1507 while (nr_pages > 0) { 1508 struct page *page; 1509 1510 page = alloc_image_page(mask); 1511 if (!page) 1512 break; 1513 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1514 if (PageHighMem(page)) 1515 alloc_highmem++; 1516 else 1517 alloc_normal++; 1518 nr_pages--; 1519 nr_alloc++; 1520 } 1521 1522 return nr_alloc; 1523 } 1524 1525 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1526 unsigned long avail_normal) 1527 { 1528 unsigned long alloc; 1529 1530 if (avail_normal <= alloc_normal) 1531 return 0; 1532 1533 alloc = avail_normal - alloc_normal; 1534 if (nr_pages < alloc) 1535 alloc = nr_pages; 1536 1537 return preallocate_image_pages(alloc, GFP_IMAGE); 1538 } 1539 1540 #ifdef CONFIG_HIGHMEM 1541 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1542 { 1543 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1544 } 1545 1546 /** 1547 * __fraction - Compute (an approximation of) x * (multiplier / base). 1548 */ 1549 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1550 { 1551 x *= multiplier; 1552 do_div(x, base); 1553 return (unsigned long)x; 1554 } 1555 1556 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1557 unsigned long highmem, 1558 unsigned long total) 1559 { 1560 unsigned long alloc = __fraction(nr_pages, highmem, total); 1561 1562 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1563 } 1564 #else /* CONFIG_HIGHMEM */ 1565 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1566 { 1567 return 0; 1568 } 1569 1570 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1571 unsigned long highmem, 1572 unsigned long total) 1573 { 1574 return 0; 1575 } 1576 #endif /* CONFIG_HIGHMEM */ 1577 1578 /** 1579 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1580 */ 1581 static unsigned long free_unnecessary_pages(void) 1582 { 1583 unsigned long save, to_free_normal, to_free_highmem, free; 1584 1585 save = count_data_pages(); 1586 if (alloc_normal >= save) { 1587 to_free_normal = alloc_normal - save; 1588 save = 0; 1589 } else { 1590 to_free_normal = 0; 1591 save -= alloc_normal; 1592 } 1593 save += count_highmem_pages(); 1594 if (alloc_highmem >= save) { 1595 to_free_highmem = alloc_highmem - save; 1596 } else { 1597 to_free_highmem = 0; 1598 save -= alloc_highmem; 1599 if (to_free_normal > save) 1600 to_free_normal -= save; 1601 else 1602 to_free_normal = 0; 1603 } 1604 free = to_free_normal + to_free_highmem; 1605 1606 memory_bm_position_reset(©_bm); 1607 1608 while (to_free_normal > 0 || to_free_highmem > 0) { 1609 unsigned long pfn = memory_bm_next_pfn(©_bm); 1610 struct page *page = pfn_to_page(pfn); 1611 1612 if (PageHighMem(page)) { 1613 if (!to_free_highmem) 1614 continue; 1615 to_free_highmem--; 1616 alloc_highmem--; 1617 } else { 1618 if (!to_free_normal) 1619 continue; 1620 to_free_normal--; 1621 alloc_normal--; 1622 } 1623 memory_bm_clear_bit(©_bm, pfn); 1624 swsusp_unset_page_forbidden(page); 1625 swsusp_unset_page_free(page); 1626 __free_page(page); 1627 } 1628 1629 return free; 1630 } 1631 1632 /** 1633 * minimum_image_size - Estimate the minimum acceptable size of an image. 1634 * @saveable: Number of saveable pages in the system. 1635 * 1636 * We want to avoid attempting to free too much memory too hard, so estimate the 1637 * minimum acceptable size of a hibernation image to use as the lower limit for 1638 * preallocating memory. 1639 * 1640 * We assume that the minimum image size should be proportional to 1641 * 1642 * [number of saveable pages] - [number of pages that can be freed in theory] 1643 * 1644 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1645 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages, 1646 * minus mapped file pages. 1647 */ 1648 static unsigned long minimum_image_size(unsigned long saveable) 1649 { 1650 unsigned long size; 1651 1652 size = global_page_state(NR_SLAB_RECLAIMABLE) 1653 + global_node_page_state(NR_ACTIVE_ANON) 1654 + global_node_page_state(NR_INACTIVE_ANON) 1655 + global_node_page_state(NR_ACTIVE_FILE) 1656 + global_node_page_state(NR_INACTIVE_FILE) 1657 - global_node_page_state(NR_FILE_MAPPED); 1658 1659 return saveable <= size ? 0 : saveable - size; 1660 } 1661 1662 /** 1663 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1664 * 1665 * To create a hibernation image it is necessary to make a copy of every page 1666 * frame in use. We also need a number of page frames to be free during 1667 * hibernation for allocations made while saving the image and for device 1668 * drivers, in case they need to allocate memory from their hibernation 1669 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1670 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1671 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1672 * total number of available page frames and allocate at least 1673 * 1674 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1675 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1676 * 1677 * of them, which corresponds to the maximum size of a hibernation image. 1678 * 1679 * If image_size is set below the number following from the above formula, 1680 * the preallocation of memory is continued until the total number of saveable 1681 * pages in the system is below the requested image size or the minimum 1682 * acceptable image size returned by minimum_image_size(), whichever is greater. 1683 */ 1684 int hibernate_preallocate_memory(void) 1685 { 1686 struct zone *zone; 1687 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1688 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1689 ktime_t start, stop; 1690 int error; 1691 1692 printk(KERN_INFO "PM: Preallocating image memory... "); 1693 start = ktime_get(); 1694 1695 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1696 if (error) 1697 goto err_out; 1698 1699 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1700 if (error) 1701 goto err_out; 1702 1703 alloc_normal = 0; 1704 alloc_highmem = 0; 1705 1706 /* Count the number of saveable data pages. */ 1707 save_highmem = count_highmem_pages(); 1708 saveable = count_data_pages(); 1709 1710 /* 1711 * Compute the total number of page frames we can use (count) and the 1712 * number of pages needed for image metadata (size). 1713 */ 1714 count = saveable; 1715 saveable += save_highmem; 1716 highmem = save_highmem; 1717 size = 0; 1718 for_each_populated_zone(zone) { 1719 size += snapshot_additional_pages(zone); 1720 if (is_highmem(zone)) 1721 highmem += zone_page_state(zone, NR_FREE_PAGES); 1722 else 1723 count += zone_page_state(zone, NR_FREE_PAGES); 1724 } 1725 avail_normal = count; 1726 count += highmem; 1727 count -= totalreserve_pages; 1728 1729 /* Add number of pages required for page keys (s390 only). */ 1730 size += page_key_additional_pages(saveable); 1731 1732 /* Compute the maximum number of saveable pages to leave in memory. */ 1733 max_size = (count - (size + PAGES_FOR_IO)) / 2 1734 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1735 /* Compute the desired number of image pages specified by image_size. */ 1736 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1737 if (size > max_size) 1738 size = max_size; 1739 /* 1740 * If the desired number of image pages is at least as large as the 1741 * current number of saveable pages in memory, allocate page frames for 1742 * the image and we're done. 1743 */ 1744 if (size >= saveable) { 1745 pages = preallocate_image_highmem(save_highmem); 1746 pages += preallocate_image_memory(saveable - pages, avail_normal); 1747 goto out; 1748 } 1749 1750 /* Estimate the minimum size of the image. */ 1751 pages = minimum_image_size(saveable); 1752 /* 1753 * To avoid excessive pressure on the normal zone, leave room in it to 1754 * accommodate an image of the minimum size (unless it's already too 1755 * small, in which case don't preallocate pages from it at all). 1756 */ 1757 if (avail_normal > pages) 1758 avail_normal -= pages; 1759 else 1760 avail_normal = 0; 1761 if (size < pages) 1762 size = min_t(unsigned long, pages, max_size); 1763 1764 /* 1765 * Let the memory management subsystem know that we're going to need a 1766 * large number of page frames to allocate and make it free some memory. 1767 * NOTE: If this is not done, performance will be hurt badly in some 1768 * test cases. 1769 */ 1770 shrink_all_memory(saveable - size); 1771 1772 /* 1773 * The number of saveable pages in memory was too high, so apply some 1774 * pressure to decrease it. First, make room for the largest possible 1775 * image and fail if that doesn't work. Next, try to decrease the size 1776 * of the image as much as indicated by 'size' using allocations from 1777 * highmem and non-highmem zones separately. 1778 */ 1779 pages_highmem = preallocate_image_highmem(highmem / 2); 1780 alloc = count - max_size; 1781 if (alloc > pages_highmem) 1782 alloc -= pages_highmem; 1783 else 1784 alloc = 0; 1785 pages = preallocate_image_memory(alloc, avail_normal); 1786 if (pages < alloc) { 1787 /* We have exhausted non-highmem pages, try highmem. */ 1788 alloc -= pages; 1789 pages += pages_highmem; 1790 pages_highmem = preallocate_image_highmem(alloc); 1791 if (pages_highmem < alloc) 1792 goto err_out; 1793 pages += pages_highmem; 1794 /* 1795 * size is the desired number of saveable pages to leave in 1796 * memory, so try to preallocate (all memory - size) pages. 1797 */ 1798 alloc = (count - pages) - size; 1799 pages += preallocate_image_highmem(alloc); 1800 } else { 1801 /* 1802 * There are approximately max_size saveable pages at this point 1803 * and we want to reduce this number down to size. 1804 */ 1805 alloc = max_size - size; 1806 size = preallocate_highmem_fraction(alloc, highmem, count); 1807 pages_highmem += size; 1808 alloc -= size; 1809 size = preallocate_image_memory(alloc, avail_normal); 1810 pages_highmem += preallocate_image_highmem(alloc - size); 1811 pages += pages_highmem + size; 1812 } 1813 1814 /* 1815 * We only need as many page frames for the image as there are saveable 1816 * pages in memory, but we have allocated more. Release the excessive 1817 * ones now. 1818 */ 1819 pages -= free_unnecessary_pages(); 1820 1821 out: 1822 stop = ktime_get(); 1823 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1824 swsusp_show_speed(start, stop, pages, "Allocated"); 1825 1826 return 0; 1827 1828 err_out: 1829 printk(KERN_CONT "\n"); 1830 swsusp_free(); 1831 return -ENOMEM; 1832 } 1833 1834 #ifdef CONFIG_HIGHMEM 1835 /** 1836 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1837 * 1838 * Compute the number of non-highmem pages that will be necessary for creating 1839 * copies of highmem pages. 1840 */ 1841 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1842 { 1843 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1844 1845 if (free_highmem >= nr_highmem) 1846 nr_highmem = 0; 1847 else 1848 nr_highmem -= free_highmem; 1849 1850 return nr_highmem; 1851 } 1852 #else 1853 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1854 #endif /* CONFIG_HIGHMEM */ 1855 1856 /** 1857 * enough_free_mem - Check if there is enough free memory for the image. 1858 */ 1859 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1860 { 1861 struct zone *zone; 1862 unsigned int free = alloc_normal; 1863 1864 for_each_populated_zone(zone) 1865 if (!is_highmem(zone)) 1866 free += zone_page_state(zone, NR_FREE_PAGES); 1867 1868 nr_pages += count_pages_for_highmem(nr_highmem); 1869 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1870 nr_pages, PAGES_FOR_IO, free); 1871 1872 return free > nr_pages + PAGES_FOR_IO; 1873 } 1874 1875 #ifdef CONFIG_HIGHMEM 1876 /** 1877 * get_highmem_buffer - Allocate a buffer for highmem pages. 1878 * 1879 * If there are some highmem pages in the hibernation image, we may need a 1880 * buffer to copy them and/or load their data. 1881 */ 1882 static inline int get_highmem_buffer(int safe_needed) 1883 { 1884 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1885 return buffer ? 0 : -ENOMEM; 1886 } 1887 1888 /** 1889 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1890 * 1891 * Try to allocate as many pages as needed, but if the number of free highmem 1892 * pages is less than that, allocate them all. 1893 */ 1894 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1895 unsigned int nr_highmem) 1896 { 1897 unsigned int to_alloc = count_free_highmem_pages(); 1898 1899 if (to_alloc > nr_highmem) 1900 to_alloc = nr_highmem; 1901 1902 nr_highmem -= to_alloc; 1903 while (to_alloc-- > 0) { 1904 struct page *page; 1905 1906 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1907 memory_bm_set_bit(bm, page_to_pfn(page)); 1908 } 1909 return nr_highmem; 1910 } 1911 #else 1912 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1913 1914 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1915 unsigned int n) { return 0; } 1916 #endif /* CONFIG_HIGHMEM */ 1917 1918 /** 1919 * swsusp_alloc - Allocate memory for hibernation image. 1920 * 1921 * We first try to allocate as many highmem pages as there are 1922 * saveable highmem pages in the system. If that fails, we allocate 1923 * non-highmem pages for the copies of the remaining highmem ones. 1924 * 1925 * In this approach it is likely that the copies of highmem pages will 1926 * also be located in the high memory, because of the way in which 1927 * copy_data_pages() works. 1928 */ 1929 static int swsusp_alloc(struct memory_bitmap *orig_bm, 1930 struct memory_bitmap *copy_bm, 1931 unsigned int nr_pages, unsigned int nr_highmem) 1932 { 1933 if (nr_highmem > 0) { 1934 if (get_highmem_buffer(PG_ANY)) 1935 goto err_out; 1936 if (nr_highmem > alloc_highmem) { 1937 nr_highmem -= alloc_highmem; 1938 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1939 } 1940 } 1941 if (nr_pages > alloc_normal) { 1942 nr_pages -= alloc_normal; 1943 while (nr_pages-- > 0) { 1944 struct page *page; 1945 1946 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1947 if (!page) 1948 goto err_out; 1949 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1950 } 1951 } 1952 1953 return 0; 1954 1955 err_out: 1956 swsusp_free(); 1957 return -ENOMEM; 1958 } 1959 1960 asmlinkage __visible int swsusp_save(void) 1961 { 1962 unsigned int nr_pages, nr_highmem; 1963 1964 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1965 1966 drain_local_pages(NULL); 1967 nr_pages = count_data_pages(); 1968 nr_highmem = count_highmem_pages(); 1969 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1970 1971 if (!enough_free_mem(nr_pages, nr_highmem)) { 1972 printk(KERN_ERR "PM: Not enough free memory\n"); 1973 return -ENOMEM; 1974 } 1975 1976 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1977 printk(KERN_ERR "PM: Memory allocation failed\n"); 1978 return -ENOMEM; 1979 } 1980 1981 /* 1982 * During allocating of suspend pagedir, new cold pages may appear. 1983 * Kill them. 1984 */ 1985 drain_local_pages(NULL); 1986 copy_data_pages(©_bm, &orig_bm); 1987 1988 /* 1989 * End of critical section. From now on, we can write to memory, 1990 * but we should not touch disk. This specially means we must _not_ 1991 * touch swap space! Except we must write out our image of course. 1992 */ 1993 1994 nr_pages += nr_highmem; 1995 nr_copy_pages = nr_pages; 1996 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1997 1998 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1999 nr_pages); 2000 2001 return 0; 2002 } 2003 2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2005 static int init_header_complete(struct swsusp_info *info) 2006 { 2007 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2008 info->version_code = LINUX_VERSION_CODE; 2009 return 0; 2010 } 2011 2012 static char *check_image_kernel(struct swsusp_info *info) 2013 { 2014 if (info->version_code != LINUX_VERSION_CODE) 2015 return "kernel version"; 2016 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2017 return "system type"; 2018 if (strcmp(info->uts.release,init_utsname()->release)) 2019 return "kernel release"; 2020 if (strcmp(info->uts.version,init_utsname()->version)) 2021 return "version"; 2022 if (strcmp(info->uts.machine,init_utsname()->machine)) 2023 return "machine"; 2024 return NULL; 2025 } 2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2027 2028 unsigned long snapshot_get_image_size(void) 2029 { 2030 return nr_copy_pages + nr_meta_pages + 1; 2031 } 2032 2033 static int init_header(struct swsusp_info *info) 2034 { 2035 memset(info, 0, sizeof(struct swsusp_info)); 2036 info->num_physpages = get_num_physpages(); 2037 info->image_pages = nr_copy_pages; 2038 info->pages = snapshot_get_image_size(); 2039 info->size = info->pages; 2040 info->size <<= PAGE_SHIFT; 2041 return init_header_complete(info); 2042 } 2043 2044 /** 2045 * pack_pfns - Prepare PFNs for saving. 2046 * @bm: Memory bitmap. 2047 * @buf: Memory buffer to store the PFNs in. 2048 * 2049 * PFNs corresponding to set bits in @bm are stored in the area of memory 2050 * pointed to by @buf (1 page at a time). 2051 */ 2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2053 { 2054 int j; 2055 2056 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2057 buf[j] = memory_bm_next_pfn(bm); 2058 if (unlikely(buf[j] == BM_END_OF_MAP)) 2059 break; 2060 /* Save page key for data page (s390 only). */ 2061 page_key_read(buf + j); 2062 } 2063 } 2064 2065 /** 2066 * snapshot_read_next - Get the address to read the next image page from. 2067 * @handle: Snapshot handle to be used for the reading. 2068 * 2069 * On the first call, @handle should point to a zeroed snapshot_handle 2070 * structure. The structure gets populated then and a pointer to it should be 2071 * passed to this function every next time. 2072 * 2073 * On success, the function returns a positive number. Then, the caller 2074 * is allowed to read up to the returned number of bytes from the memory 2075 * location computed by the data_of() macro. 2076 * 2077 * The function returns 0 to indicate the end of the data stream condition, 2078 * and negative numbers are returned on errors. If that happens, the structure 2079 * pointed to by @handle is not updated and should not be used any more. 2080 */ 2081 int snapshot_read_next(struct snapshot_handle *handle) 2082 { 2083 if (handle->cur > nr_meta_pages + nr_copy_pages) 2084 return 0; 2085 2086 if (!buffer) { 2087 /* This makes the buffer be freed by swsusp_free() */ 2088 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2089 if (!buffer) 2090 return -ENOMEM; 2091 } 2092 if (!handle->cur) { 2093 int error; 2094 2095 error = init_header((struct swsusp_info *)buffer); 2096 if (error) 2097 return error; 2098 handle->buffer = buffer; 2099 memory_bm_position_reset(&orig_bm); 2100 memory_bm_position_reset(©_bm); 2101 } else if (handle->cur <= nr_meta_pages) { 2102 clear_page(buffer); 2103 pack_pfns(buffer, &orig_bm); 2104 } else { 2105 struct page *page; 2106 2107 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2108 if (PageHighMem(page)) { 2109 /* 2110 * Highmem pages are copied to the buffer, 2111 * because we can't return with a kmapped 2112 * highmem page (we may not be called again). 2113 */ 2114 void *kaddr; 2115 2116 kaddr = kmap_atomic(page); 2117 copy_page(buffer, kaddr); 2118 kunmap_atomic(kaddr); 2119 handle->buffer = buffer; 2120 } else { 2121 handle->buffer = page_address(page); 2122 } 2123 } 2124 handle->cur++; 2125 return PAGE_SIZE; 2126 } 2127 2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2129 struct memory_bitmap *src) 2130 { 2131 unsigned long pfn; 2132 2133 memory_bm_position_reset(src); 2134 pfn = memory_bm_next_pfn(src); 2135 while (pfn != BM_END_OF_MAP) { 2136 memory_bm_set_bit(dst, pfn); 2137 pfn = memory_bm_next_pfn(src); 2138 } 2139 } 2140 2141 /** 2142 * mark_unsafe_pages - Mark pages that were used before hibernation. 2143 * 2144 * Mark the pages that cannot be used for storing the image during restoration, 2145 * because they conflict with the pages that had been used before hibernation. 2146 */ 2147 static void mark_unsafe_pages(struct memory_bitmap *bm) 2148 { 2149 unsigned long pfn; 2150 2151 /* Clear the "free"/"unsafe" bit for all PFNs */ 2152 memory_bm_position_reset(free_pages_map); 2153 pfn = memory_bm_next_pfn(free_pages_map); 2154 while (pfn != BM_END_OF_MAP) { 2155 memory_bm_clear_current(free_pages_map); 2156 pfn = memory_bm_next_pfn(free_pages_map); 2157 } 2158 2159 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2160 duplicate_memory_bitmap(free_pages_map, bm); 2161 2162 allocated_unsafe_pages = 0; 2163 } 2164 2165 static int check_header(struct swsusp_info *info) 2166 { 2167 char *reason; 2168 2169 reason = check_image_kernel(info); 2170 if (!reason && info->num_physpages != get_num_physpages()) 2171 reason = "memory size"; 2172 if (reason) { 2173 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 2174 return -EPERM; 2175 } 2176 return 0; 2177 } 2178 2179 /** 2180 * load header - Check the image header and copy the data from it. 2181 */ 2182 static int load_header(struct swsusp_info *info) 2183 { 2184 int error; 2185 2186 restore_pblist = NULL; 2187 error = check_header(info); 2188 if (!error) { 2189 nr_copy_pages = info->image_pages; 2190 nr_meta_pages = info->pages - info->image_pages - 1; 2191 } 2192 return error; 2193 } 2194 2195 /** 2196 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2197 * @bm: Memory bitmap. 2198 * @buf: Area of memory containing the PFNs. 2199 * 2200 * For each element of the array pointed to by @buf (1 page at a time), set the 2201 * corresponding bit in @bm. 2202 */ 2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2204 { 2205 int j; 2206 2207 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2208 if (unlikely(buf[j] == BM_END_OF_MAP)) 2209 break; 2210 2211 /* Extract and buffer page key for data page (s390 only). */ 2212 page_key_memorize(buf + j); 2213 2214 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2215 memory_bm_set_bit(bm, buf[j]); 2216 else 2217 return -EFAULT; 2218 } 2219 2220 return 0; 2221 } 2222 2223 #ifdef CONFIG_HIGHMEM 2224 /* 2225 * struct highmem_pbe is used for creating the list of highmem pages that 2226 * should be restored atomically during the resume from disk, because the page 2227 * frames they have occupied before the suspend are in use. 2228 */ 2229 struct highmem_pbe { 2230 struct page *copy_page; /* data is here now */ 2231 struct page *orig_page; /* data was here before the suspend */ 2232 struct highmem_pbe *next; 2233 }; 2234 2235 /* 2236 * List of highmem PBEs needed for restoring the highmem pages that were 2237 * allocated before the suspend and included in the suspend image, but have 2238 * also been allocated by the "resume" kernel, so their contents cannot be 2239 * written directly to their "original" page frames. 2240 */ 2241 static struct highmem_pbe *highmem_pblist; 2242 2243 /** 2244 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2245 * @bm: Memory bitmap. 2246 * 2247 * The bits in @bm that correspond to image pages are assumed to be set. 2248 */ 2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2250 { 2251 unsigned long pfn; 2252 unsigned int cnt = 0; 2253 2254 memory_bm_position_reset(bm); 2255 pfn = memory_bm_next_pfn(bm); 2256 while (pfn != BM_END_OF_MAP) { 2257 if (PageHighMem(pfn_to_page(pfn))) 2258 cnt++; 2259 2260 pfn = memory_bm_next_pfn(bm); 2261 } 2262 return cnt; 2263 } 2264 2265 static unsigned int safe_highmem_pages; 2266 2267 static struct memory_bitmap *safe_highmem_bm; 2268 2269 /** 2270 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2271 * @bm: Pointer to an uninitialized memory bitmap structure. 2272 * @nr_highmem_p: Pointer to the number of highmem image pages. 2273 * 2274 * Try to allocate as many highmem pages as there are highmem image pages 2275 * (@nr_highmem_p points to the variable containing the number of highmem image 2276 * pages). The pages that are "safe" (ie. will not be overwritten when the 2277 * hibernation image is restored entirely) have the corresponding bits set in 2278 * @bm (it must be unitialized). 2279 * 2280 * NOTE: This function should not be called if there are no highmem image pages. 2281 */ 2282 static int prepare_highmem_image(struct memory_bitmap *bm, 2283 unsigned int *nr_highmem_p) 2284 { 2285 unsigned int to_alloc; 2286 2287 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2288 return -ENOMEM; 2289 2290 if (get_highmem_buffer(PG_SAFE)) 2291 return -ENOMEM; 2292 2293 to_alloc = count_free_highmem_pages(); 2294 if (to_alloc > *nr_highmem_p) 2295 to_alloc = *nr_highmem_p; 2296 else 2297 *nr_highmem_p = to_alloc; 2298 2299 safe_highmem_pages = 0; 2300 while (to_alloc-- > 0) { 2301 struct page *page; 2302 2303 page = alloc_page(__GFP_HIGHMEM); 2304 if (!swsusp_page_is_free(page)) { 2305 /* The page is "safe", set its bit the bitmap */ 2306 memory_bm_set_bit(bm, page_to_pfn(page)); 2307 safe_highmem_pages++; 2308 } 2309 /* Mark the page as allocated */ 2310 swsusp_set_page_forbidden(page); 2311 swsusp_set_page_free(page); 2312 } 2313 memory_bm_position_reset(bm); 2314 safe_highmem_bm = bm; 2315 return 0; 2316 } 2317 2318 static struct page *last_highmem_page; 2319 2320 /** 2321 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2322 * 2323 * For a given highmem image page get a buffer that suspend_write_next() should 2324 * return to its caller to write to. 2325 * 2326 * If the page is to be saved to its "original" page frame or a copy of 2327 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2328 * the copy of the page is to be made in normal memory, so the address of 2329 * the copy is returned. 2330 * 2331 * If @buffer is returned, the caller of suspend_write_next() will write 2332 * the page's contents to @buffer, so they will have to be copied to the 2333 * right location on the next call to suspend_write_next() and it is done 2334 * with the help of copy_last_highmem_page(). For this purpose, if 2335 * @buffer is returned, @last_highmem_page is set to the page to which 2336 * the data will have to be copied from @buffer. 2337 */ 2338 static void *get_highmem_page_buffer(struct page *page, 2339 struct chain_allocator *ca) 2340 { 2341 struct highmem_pbe *pbe; 2342 void *kaddr; 2343 2344 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2345 /* 2346 * We have allocated the "original" page frame and we can 2347 * use it directly to store the loaded page. 2348 */ 2349 last_highmem_page = page; 2350 return buffer; 2351 } 2352 /* 2353 * The "original" page frame has not been allocated and we have to 2354 * use a "safe" page frame to store the loaded page. 2355 */ 2356 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2357 if (!pbe) { 2358 swsusp_free(); 2359 return ERR_PTR(-ENOMEM); 2360 } 2361 pbe->orig_page = page; 2362 if (safe_highmem_pages > 0) { 2363 struct page *tmp; 2364 2365 /* Copy of the page will be stored in high memory */ 2366 kaddr = buffer; 2367 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2368 safe_highmem_pages--; 2369 last_highmem_page = tmp; 2370 pbe->copy_page = tmp; 2371 } else { 2372 /* Copy of the page will be stored in normal memory */ 2373 kaddr = safe_pages_list; 2374 safe_pages_list = safe_pages_list->next; 2375 pbe->copy_page = virt_to_page(kaddr); 2376 } 2377 pbe->next = highmem_pblist; 2378 highmem_pblist = pbe; 2379 return kaddr; 2380 } 2381 2382 /** 2383 * copy_last_highmem_page - Copy most the most recent highmem image page. 2384 * 2385 * Copy the contents of a highmem image from @buffer, where the caller of 2386 * snapshot_write_next() has stored them, to the right location represented by 2387 * @last_highmem_page . 2388 */ 2389 static void copy_last_highmem_page(void) 2390 { 2391 if (last_highmem_page) { 2392 void *dst; 2393 2394 dst = kmap_atomic(last_highmem_page); 2395 copy_page(dst, buffer); 2396 kunmap_atomic(dst); 2397 last_highmem_page = NULL; 2398 } 2399 } 2400 2401 static inline int last_highmem_page_copied(void) 2402 { 2403 return !last_highmem_page; 2404 } 2405 2406 static inline void free_highmem_data(void) 2407 { 2408 if (safe_highmem_bm) 2409 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2410 2411 if (buffer) 2412 free_image_page(buffer, PG_UNSAFE_CLEAR); 2413 } 2414 #else 2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2416 2417 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2418 unsigned int *nr_highmem_p) { return 0; } 2419 2420 static inline void *get_highmem_page_buffer(struct page *page, 2421 struct chain_allocator *ca) 2422 { 2423 return ERR_PTR(-EINVAL); 2424 } 2425 2426 static inline void copy_last_highmem_page(void) {} 2427 static inline int last_highmem_page_copied(void) { return 1; } 2428 static inline void free_highmem_data(void) {} 2429 #endif /* CONFIG_HIGHMEM */ 2430 2431 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2432 2433 /** 2434 * prepare_image - Make room for loading hibernation image. 2435 * @new_bm: Unitialized memory bitmap structure. 2436 * @bm: Memory bitmap with unsafe pages marked. 2437 * 2438 * Use @bm to mark the pages that will be overwritten in the process of 2439 * restoring the system memory state from the suspend image ("unsafe" pages) 2440 * and allocate memory for the image. 2441 * 2442 * The idea is to allocate a new memory bitmap first and then allocate 2443 * as many pages as needed for image data, but without specifying what those 2444 * pages will be used for just yet. Instead, we mark them all as allocated and 2445 * create a lists of "safe" pages to be used later. On systems with high 2446 * memory a list of "safe" highmem pages is created too. 2447 */ 2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2449 { 2450 unsigned int nr_pages, nr_highmem; 2451 struct linked_page *lp; 2452 int error; 2453 2454 /* If there is no highmem, the buffer will not be necessary */ 2455 free_image_page(buffer, PG_UNSAFE_CLEAR); 2456 buffer = NULL; 2457 2458 nr_highmem = count_highmem_image_pages(bm); 2459 mark_unsafe_pages(bm); 2460 2461 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2462 if (error) 2463 goto Free; 2464 2465 duplicate_memory_bitmap(new_bm, bm); 2466 memory_bm_free(bm, PG_UNSAFE_KEEP); 2467 if (nr_highmem > 0) { 2468 error = prepare_highmem_image(bm, &nr_highmem); 2469 if (error) 2470 goto Free; 2471 } 2472 /* 2473 * Reserve some safe pages for potential later use. 2474 * 2475 * NOTE: This way we make sure there will be enough safe pages for the 2476 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2477 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2478 * 2479 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2480 */ 2481 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2482 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2483 while (nr_pages > 0) { 2484 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2485 if (!lp) { 2486 error = -ENOMEM; 2487 goto Free; 2488 } 2489 lp->next = safe_pages_list; 2490 safe_pages_list = lp; 2491 nr_pages--; 2492 } 2493 /* Preallocate memory for the image */ 2494 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2495 while (nr_pages > 0) { 2496 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2497 if (!lp) { 2498 error = -ENOMEM; 2499 goto Free; 2500 } 2501 if (!swsusp_page_is_free(virt_to_page(lp))) { 2502 /* The page is "safe", add it to the list */ 2503 lp->next = safe_pages_list; 2504 safe_pages_list = lp; 2505 } 2506 /* Mark the page as allocated */ 2507 swsusp_set_page_forbidden(virt_to_page(lp)); 2508 swsusp_set_page_free(virt_to_page(lp)); 2509 nr_pages--; 2510 } 2511 return 0; 2512 2513 Free: 2514 swsusp_free(); 2515 return error; 2516 } 2517 2518 /** 2519 * get_buffer - Get the address to store the next image data page. 2520 * 2521 * Get the address that snapshot_write_next() should return to its caller to 2522 * write to. 2523 */ 2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2525 { 2526 struct pbe *pbe; 2527 struct page *page; 2528 unsigned long pfn = memory_bm_next_pfn(bm); 2529 2530 if (pfn == BM_END_OF_MAP) 2531 return ERR_PTR(-EFAULT); 2532 2533 page = pfn_to_page(pfn); 2534 if (PageHighMem(page)) 2535 return get_highmem_page_buffer(page, ca); 2536 2537 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2538 /* 2539 * We have allocated the "original" page frame and we can 2540 * use it directly to store the loaded page. 2541 */ 2542 return page_address(page); 2543 2544 /* 2545 * The "original" page frame has not been allocated and we have to 2546 * use a "safe" page frame to store the loaded page. 2547 */ 2548 pbe = chain_alloc(ca, sizeof(struct pbe)); 2549 if (!pbe) { 2550 swsusp_free(); 2551 return ERR_PTR(-ENOMEM); 2552 } 2553 pbe->orig_address = page_address(page); 2554 pbe->address = safe_pages_list; 2555 safe_pages_list = safe_pages_list->next; 2556 pbe->next = restore_pblist; 2557 restore_pblist = pbe; 2558 return pbe->address; 2559 } 2560 2561 /** 2562 * snapshot_write_next - Get the address to store the next image page. 2563 * @handle: Snapshot handle structure to guide the writing. 2564 * 2565 * On the first call, @handle should point to a zeroed snapshot_handle 2566 * structure. The structure gets populated then and a pointer to it should be 2567 * passed to this function every next time. 2568 * 2569 * On success, the function returns a positive number. Then, the caller 2570 * is allowed to write up to the returned number of bytes to the memory 2571 * location computed by the data_of() macro. 2572 * 2573 * The function returns 0 to indicate the "end of file" condition. Negative 2574 * numbers are returned on errors, in which cases the structure pointed to by 2575 * @handle is not updated and should not be used any more. 2576 */ 2577 int snapshot_write_next(struct snapshot_handle *handle) 2578 { 2579 static struct chain_allocator ca; 2580 int error = 0; 2581 2582 /* Check if we have already loaded the entire image */ 2583 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2584 return 0; 2585 2586 handle->sync_read = 1; 2587 2588 if (!handle->cur) { 2589 if (!buffer) 2590 /* This makes the buffer be freed by swsusp_free() */ 2591 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2592 2593 if (!buffer) 2594 return -ENOMEM; 2595 2596 handle->buffer = buffer; 2597 } else if (handle->cur == 1) { 2598 error = load_header(buffer); 2599 if (error) 2600 return error; 2601 2602 safe_pages_list = NULL; 2603 2604 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2605 if (error) 2606 return error; 2607 2608 /* Allocate buffer for page keys. */ 2609 error = page_key_alloc(nr_copy_pages); 2610 if (error) 2611 return error; 2612 2613 hibernate_restore_protection_begin(); 2614 } else if (handle->cur <= nr_meta_pages + 1) { 2615 error = unpack_orig_pfns(buffer, ©_bm); 2616 if (error) 2617 return error; 2618 2619 if (handle->cur == nr_meta_pages + 1) { 2620 error = prepare_image(&orig_bm, ©_bm); 2621 if (error) 2622 return error; 2623 2624 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2625 memory_bm_position_reset(&orig_bm); 2626 restore_pblist = NULL; 2627 handle->buffer = get_buffer(&orig_bm, &ca); 2628 handle->sync_read = 0; 2629 if (IS_ERR(handle->buffer)) 2630 return PTR_ERR(handle->buffer); 2631 } 2632 } else { 2633 copy_last_highmem_page(); 2634 /* Restore page key for data page (s390 only). */ 2635 page_key_write(handle->buffer); 2636 hibernate_restore_protect_page(handle->buffer); 2637 handle->buffer = get_buffer(&orig_bm, &ca); 2638 if (IS_ERR(handle->buffer)) 2639 return PTR_ERR(handle->buffer); 2640 if (handle->buffer != buffer) 2641 handle->sync_read = 0; 2642 } 2643 handle->cur++; 2644 return PAGE_SIZE; 2645 } 2646 2647 /** 2648 * snapshot_write_finalize - Complete the loading of a hibernation image. 2649 * 2650 * Must be called after the last call to snapshot_write_next() in case the last 2651 * page in the image happens to be a highmem page and its contents should be 2652 * stored in highmem. Additionally, it recycles bitmap memory that's not 2653 * necessary any more. 2654 */ 2655 void snapshot_write_finalize(struct snapshot_handle *handle) 2656 { 2657 copy_last_highmem_page(); 2658 /* Restore page key for data page (s390 only). */ 2659 page_key_write(handle->buffer); 2660 page_key_free(); 2661 hibernate_restore_protect_page(handle->buffer); 2662 /* Do that only if we have loaded the image entirely */ 2663 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2664 memory_bm_recycle(&orig_bm); 2665 free_highmem_data(); 2666 } 2667 } 2668 2669 int snapshot_image_loaded(struct snapshot_handle *handle) 2670 { 2671 return !(!nr_copy_pages || !last_highmem_page_copied() || 2672 handle->cur <= nr_meta_pages + nr_copy_pages); 2673 } 2674 2675 #ifdef CONFIG_HIGHMEM 2676 /* Assumes that @buf is ready and points to a "safe" page */ 2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2678 void *buf) 2679 { 2680 void *kaddr1, *kaddr2; 2681 2682 kaddr1 = kmap_atomic(p1); 2683 kaddr2 = kmap_atomic(p2); 2684 copy_page(buf, kaddr1); 2685 copy_page(kaddr1, kaddr2); 2686 copy_page(kaddr2, buf); 2687 kunmap_atomic(kaddr2); 2688 kunmap_atomic(kaddr1); 2689 } 2690 2691 /** 2692 * restore_highmem - Put highmem image pages into their original locations. 2693 * 2694 * For each highmem page that was in use before hibernation and is included in 2695 * the image, and also has been allocated by the "restore" kernel, swap its 2696 * current contents with the previous (ie. "before hibernation") ones. 2697 * 2698 * If the restore eventually fails, we can call this function once again and 2699 * restore the highmem state as seen by the restore kernel. 2700 */ 2701 int restore_highmem(void) 2702 { 2703 struct highmem_pbe *pbe = highmem_pblist; 2704 void *buf; 2705 2706 if (!pbe) 2707 return 0; 2708 2709 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2710 if (!buf) 2711 return -ENOMEM; 2712 2713 while (pbe) { 2714 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2715 pbe = pbe->next; 2716 } 2717 free_image_page(buf, PG_UNSAFE_CLEAR); 2718 return 0; 2719 } 2720 #endif /* CONFIG_HIGHMEM */ 2721