1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 static int swsusp_page_is_free(struct page *); 38 static void swsusp_set_page_forbidden(struct page *); 39 static void swsusp_unset_page_forbidden(struct page *); 40 41 /* List of PBEs needed for restoring the pages that were allocated before 42 * the suspend and included in the suspend image, but have also been 43 * allocated by the "resume" kernel, so their contents cannot be written 44 * directly to their "original" page frames. 45 */ 46 struct pbe *restore_pblist; 47 48 /* Pointer to an auxiliary buffer (1 page) */ 49 static void *buffer; 50 51 /** 52 * @safe_needed - on resume, for storing the PBE list and the image, 53 * we can only use memory pages that do not conflict with the pages 54 * used before suspend. The unsafe pages have PageNosaveFree set 55 * and we count them using unsafe_pages. 56 * 57 * Each allocated image page is marked as PageNosave and PageNosaveFree 58 * so that swsusp_free() can release it. 59 */ 60 61 #define PG_ANY 0 62 #define PG_SAFE 1 63 #define PG_UNSAFE_CLEAR 1 64 #define PG_UNSAFE_KEEP 0 65 66 static unsigned int allocated_unsafe_pages; 67 68 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 69 { 70 void *res; 71 72 res = (void *)get_zeroed_page(gfp_mask); 73 if (safe_needed) 74 while (res && swsusp_page_is_free(virt_to_page(res))) { 75 /* The page is unsafe, mark it for swsusp_free() */ 76 swsusp_set_page_forbidden(virt_to_page(res)); 77 allocated_unsafe_pages++; 78 res = (void *)get_zeroed_page(gfp_mask); 79 } 80 if (res) { 81 swsusp_set_page_forbidden(virt_to_page(res)); 82 swsusp_set_page_free(virt_to_page(res)); 83 } 84 return res; 85 } 86 87 unsigned long get_safe_page(gfp_t gfp_mask) 88 { 89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 90 } 91 92 static struct page *alloc_image_page(gfp_t gfp_mask) 93 { 94 struct page *page; 95 96 page = alloc_page(gfp_mask); 97 if (page) { 98 swsusp_set_page_forbidden(page); 99 swsusp_set_page_free(page); 100 } 101 return page; 102 } 103 104 /** 105 * free_image_page - free page represented by @addr, allocated with 106 * get_image_page (page flags set by it must be cleared) 107 */ 108 109 static inline void free_image_page(void *addr, int clear_nosave_free) 110 { 111 struct page *page; 112 113 BUG_ON(!virt_addr_valid(addr)); 114 115 page = virt_to_page(addr); 116 117 swsusp_unset_page_forbidden(page); 118 if (clear_nosave_free) 119 swsusp_unset_page_free(page); 120 121 __free_page(page); 122 } 123 124 /* struct linked_page is used to build chains of pages */ 125 126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 127 128 struct linked_page { 129 struct linked_page *next; 130 char data[LINKED_PAGE_DATA_SIZE]; 131 } __attribute__((packed)); 132 133 static inline void 134 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 135 { 136 while (list) { 137 struct linked_page *lp = list->next; 138 139 free_image_page(list, clear_page_nosave); 140 list = lp; 141 } 142 } 143 144 /** 145 * struct chain_allocator is used for allocating small objects out of 146 * a linked list of pages called 'the chain'. 147 * 148 * The chain grows each time when there is no room for a new object in 149 * the current page. The allocated objects cannot be freed individually. 150 * It is only possible to free them all at once, by freeing the entire 151 * chain. 152 * 153 * NOTE: The chain allocator may be inefficient if the allocated objects 154 * are not much smaller than PAGE_SIZE. 155 */ 156 157 struct chain_allocator { 158 struct linked_page *chain; /* the chain */ 159 unsigned int used_space; /* total size of objects allocated out 160 * of the current page 161 */ 162 gfp_t gfp_mask; /* mask for allocating pages */ 163 int safe_needed; /* if set, only "safe" pages are allocated */ 164 }; 165 166 static void 167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 168 { 169 ca->chain = NULL; 170 ca->used_space = LINKED_PAGE_DATA_SIZE; 171 ca->gfp_mask = gfp_mask; 172 ca->safe_needed = safe_needed; 173 } 174 175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 176 { 177 void *ret; 178 179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 180 struct linked_page *lp; 181 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 183 if (!lp) 184 return NULL; 185 186 lp->next = ca->chain; 187 ca->chain = lp; 188 ca->used_space = 0; 189 } 190 ret = ca->chain->data + ca->used_space; 191 ca->used_space += size; 192 return ret; 193 } 194 195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 196 { 197 free_list_of_pages(ca->chain, clear_page_nosave); 198 memset(ca, 0, sizeof(struct chain_allocator)); 199 } 200 201 /** 202 * Data types related to memory bitmaps. 203 * 204 * Memory bitmap is a structure consiting of many linked lists of 205 * objects. The main list's elements are of type struct zone_bitmap 206 * and each of them corresonds to one zone. For each zone bitmap 207 * object there is a list of objects of type struct bm_block that 208 * represent each blocks of bit chunks in which information is 209 * stored. 210 * 211 * struct memory_bitmap contains a pointer to the main list of zone 212 * bitmap objects, a struct bm_position used for browsing the bitmap, 213 * and a pointer to the list of pages used for allocating all of the 214 * zone bitmap objects and bitmap block objects. 215 * 216 * NOTE: It has to be possible to lay out the bitmap in memory 217 * using only allocations of order 0. Additionally, the bitmap is 218 * designed to work with arbitrary number of zones (this is over the 219 * top for now, but let's avoid making unnecessary assumptions ;-). 220 * 221 * struct zone_bitmap contains a pointer to a list of bitmap block 222 * objects and a pointer to the bitmap block object that has been 223 * most recently used for setting bits. Additionally, it contains the 224 * pfns that correspond to the start and end of the represented zone. 225 * 226 * struct bm_block contains a pointer to the memory page in which 227 * information is stored (in the form of a block of bit chunks 228 * of type unsigned long each). It also contains the pfns that 229 * correspond to the start and end of the represented memory area and 230 * the number of bit chunks in the block. 231 */ 232 233 #define BM_END_OF_MAP (~0UL) 234 235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 238 239 struct bm_block { 240 struct bm_block *next; /* next element of the list */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned int size; /* number of bit chunks */ 244 unsigned long *data; /* chunks of bits representing pages */ 245 }; 246 247 struct zone_bitmap { 248 struct zone_bitmap *next; /* next element of the list */ 249 unsigned long start_pfn; /* minimal pfn in this zone */ 250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 251 struct bm_block *bm_blocks; /* list of bitmap blocks */ 252 struct bm_block *cur_block; /* recently used bitmap block */ 253 }; 254 255 /* strcut bm_position is used for browsing memory bitmaps */ 256 257 struct bm_position { 258 struct zone_bitmap *zone_bm; 259 struct bm_block *block; 260 int chunk; 261 int bit; 262 }; 263 264 struct memory_bitmap { 265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 266 struct linked_page *p_list; /* list of pages used to store zone 267 * bitmap objects and bitmap block 268 * objects 269 */ 270 struct bm_position cur; /* most recently used bit position */ 271 }; 272 273 /* Functions that operate on memory bitmaps */ 274 275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 276 { 277 bm->cur.chunk = 0; 278 bm->cur.bit = -1; 279 } 280 281 static void memory_bm_position_reset(struct memory_bitmap *bm) 282 { 283 struct zone_bitmap *zone_bm; 284 285 zone_bm = bm->zone_bm_list; 286 bm->cur.zone_bm = zone_bm; 287 bm->cur.block = zone_bm->bm_blocks; 288 memory_bm_reset_chunk(bm); 289 } 290 291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 292 293 /** 294 * create_bm_block_list - create a list of block bitmap objects 295 */ 296 297 static inline struct bm_block * 298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 299 { 300 struct bm_block *bblist = NULL; 301 302 while (nr_blocks-- > 0) { 303 struct bm_block *bb; 304 305 bb = chain_alloc(ca, sizeof(struct bm_block)); 306 if (!bb) 307 return NULL; 308 309 bb->next = bblist; 310 bblist = bb; 311 } 312 return bblist; 313 } 314 315 /** 316 * create_zone_bm_list - create a list of zone bitmap objects 317 */ 318 319 static inline struct zone_bitmap * 320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 321 { 322 struct zone_bitmap *zbmlist = NULL; 323 324 while (nr_zones-- > 0) { 325 struct zone_bitmap *zbm; 326 327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 328 if (!zbm) 329 return NULL; 330 331 zbm->next = zbmlist; 332 zbmlist = zbm; 333 } 334 return zbmlist; 335 } 336 337 /** 338 * memory_bm_create - allocate memory for a memory bitmap 339 */ 340 341 static int 342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 343 { 344 struct chain_allocator ca; 345 struct zone *zone; 346 struct zone_bitmap *zone_bm; 347 struct bm_block *bb; 348 unsigned int nr; 349 350 chain_init(&ca, gfp_mask, safe_needed); 351 352 /* Compute the number of zones */ 353 nr = 0; 354 for_each_zone(zone) 355 if (populated_zone(zone)) 356 nr++; 357 358 /* Allocate the list of zones bitmap objects */ 359 zone_bm = create_zone_bm_list(nr, &ca); 360 bm->zone_bm_list = zone_bm; 361 if (!zone_bm) { 362 chain_free(&ca, PG_UNSAFE_CLEAR); 363 return -ENOMEM; 364 } 365 366 /* Initialize the zone bitmap objects */ 367 for_each_zone(zone) { 368 unsigned long pfn; 369 370 if (!populated_zone(zone)) 371 continue; 372 373 zone_bm->start_pfn = zone->zone_start_pfn; 374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 375 /* Allocate the list of bitmap block objects */ 376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 377 bb = create_bm_block_list(nr, &ca); 378 zone_bm->bm_blocks = bb; 379 zone_bm->cur_block = bb; 380 if (!bb) 381 goto Free; 382 383 nr = zone->spanned_pages; 384 pfn = zone->zone_start_pfn; 385 /* Initialize the bitmap block objects */ 386 while (bb) { 387 unsigned long *ptr; 388 389 ptr = get_image_page(gfp_mask, safe_needed); 390 bb->data = ptr; 391 if (!ptr) 392 goto Free; 393 394 bb->start_pfn = pfn; 395 if (nr >= BM_BITS_PER_BLOCK) { 396 pfn += BM_BITS_PER_BLOCK; 397 bb->size = BM_CHUNKS_PER_BLOCK; 398 nr -= BM_BITS_PER_BLOCK; 399 } else { 400 /* This is executed only once in the loop */ 401 pfn += nr; 402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 403 } 404 bb->end_pfn = pfn; 405 bb = bb->next; 406 } 407 zone_bm = zone_bm->next; 408 } 409 bm->p_list = ca.chain; 410 memory_bm_position_reset(bm); 411 return 0; 412 413 Free: 414 bm->p_list = ca.chain; 415 memory_bm_free(bm, PG_UNSAFE_CLEAR); 416 return -ENOMEM; 417 } 418 419 /** 420 * memory_bm_free - free memory occupied by the memory bitmap @bm 421 */ 422 423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 424 { 425 struct zone_bitmap *zone_bm; 426 427 /* Free the list of bit blocks for each zone_bitmap object */ 428 zone_bm = bm->zone_bm_list; 429 while (zone_bm) { 430 struct bm_block *bb; 431 432 bb = zone_bm->bm_blocks; 433 while (bb) { 434 if (bb->data) 435 free_image_page(bb->data, clear_nosave_free); 436 bb = bb->next; 437 } 438 zone_bm = zone_bm->next; 439 } 440 free_list_of_pages(bm->p_list, clear_nosave_free); 441 bm->zone_bm_list = NULL; 442 } 443 444 /** 445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 447 * of @bm->cur_zone_bm are updated. 448 */ 449 450 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 451 void **addr, unsigned int *bit_nr) 452 { 453 struct zone_bitmap *zone_bm; 454 struct bm_block *bb; 455 456 /* Check if the pfn is from the current zone */ 457 zone_bm = bm->cur.zone_bm; 458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 459 zone_bm = bm->zone_bm_list; 460 /* We don't assume that the zones are sorted by pfns */ 461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = zone_bm->next; 463 464 if (!zone_bm) 465 return -EFAULT; 466 } 467 bm->cur.zone_bm = zone_bm; 468 } 469 /* Check if the pfn corresponds to the current bitmap block */ 470 bb = zone_bm->cur_block; 471 if (pfn < bb->start_pfn) 472 bb = zone_bm->bm_blocks; 473 474 while (pfn >= bb->end_pfn) { 475 bb = bb->next; 476 477 BUG_ON(!bb); 478 } 479 zone_bm->cur_block = bb; 480 pfn -= bb->start_pfn; 481 *bit_nr = pfn % BM_BITS_PER_CHUNK; 482 *addr = bb->data + pfn / BM_BITS_PER_CHUNK; 483 return 0; 484 } 485 486 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 487 { 488 void *addr; 489 unsigned int bit; 490 int error; 491 492 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 493 BUG_ON(error); 494 set_bit(bit, addr); 495 } 496 497 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 498 { 499 void *addr; 500 unsigned int bit; 501 int error; 502 503 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 504 if (!error) 505 set_bit(bit, addr); 506 return error; 507 } 508 509 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 510 { 511 void *addr; 512 unsigned int bit; 513 int error; 514 515 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 516 BUG_ON(error); 517 clear_bit(bit, addr); 518 } 519 520 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 521 { 522 void *addr; 523 unsigned int bit; 524 int error; 525 526 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 527 BUG_ON(error); 528 return test_bit(bit, addr); 529 } 530 531 /* Two auxiliary functions for memory_bm_next_pfn */ 532 533 /* Find the first set bit in the given chunk, if there is one */ 534 535 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 536 { 537 bit++; 538 while (bit < BM_BITS_PER_CHUNK) { 539 if (test_bit(bit, chunk_p)) 540 return bit; 541 542 bit++; 543 } 544 return -1; 545 } 546 547 /* Find a chunk containing some bits set in given block of bits */ 548 549 static inline int next_chunk_in_block(int n, struct bm_block *bb) 550 { 551 n++; 552 while (n < bb->size) { 553 if (bb->data[n]) 554 return n; 555 556 n++; 557 } 558 return -1; 559 } 560 561 /** 562 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 563 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 564 * returned. 565 * 566 * It is required to run memory_bm_position_reset() before the first call to 567 * this function. 568 */ 569 570 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 571 { 572 struct zone_bitmap *zone_bm; 573 struct bm_block *bb; 574 int chunk; 575 int bit; 576 577 do { 578 bb = bm->cur.block; 579 do { 580 chunk = bm->cur.chunk; 581 bit = bm->cur.bit; 582 do { 583 bit = next_bit_in_chunk(bit, bb->data + chunk); 584 if (bit >= 0) 585 goto Return_pfn; 586 587 chunk = next_chunk_in_block(chunk, bb); 588 bit = -1; 589 } while (chunk >= 0); 590 bb = bb->next; 591 bm->cur.block = bb; 592 memory_bm_reset_chunk(bm); 593 } while (bb); 594 zone_bm = bm->cur.zone_bm->next; 595 if (zone_bm) { 596 bm->cur.zone_bm = zone_bm; 597 bm->cur.block = zone_bm->bm_blocks; 598 memory_bm_reset_chunk(bm); 599 } 600 } while (zone_bm); 601 memory_bm_position_reset(bm); 602 return BM_END_OF_MAP; 603 604 Return_pfn: 605 bm->cur.chunk = chunk; 606 bm->cur.bit = bit; 607 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 608 } 609 610 /** 611 * This structure represents a range of page frames the contents of which 612 * should not be saved during the suspend. 613 */ 614 615 struct nosave_region { 616 struct list_head list; 617 unsigned long start_pfn; 618 unsigned long end_pfn; 619 }; 620 621 static LIST_HEAD(nosave_regions); 622 623 /** 624 * register_nosave_region - register a range of page frames the contents 625 * of which should not be saved during the suspend (to be used in the early 626 * initialization code) 627 */ 628 629 void __init 630 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 631 int use_kmalloc) 632 { 633 struct nosave_region *region; 634 635 if (start_pfn >= end_pfn) 636 return; 637 638 if (!list_empty(&nosave_regions)) { 639 /* Try to extend the previous region (they should be sorted) */ 640 region = list_entry(nosave_regions.prev, 641 struct nosave_region, list); 642 if (region->end_pfn == start_pfn) { 643 region->end_pfn = end_pfn; 644 goto Report; 645 } 646 } 647 if (use_kmalloc) { 648 /* during init, this shouldn't fail */ 649 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 650 BUG_ON(!region); 651 } else 652 /* This allocation cannot fail */ 653 region = alloc_bootmem_low(sizeof(struct nosave_region)); 654 region->start_pfn = start_pfn; 655 region->end_pfn = end_pfn; 656 list_add_tail(®ion->list, &nosave_regions); 657 Report: 658 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 659 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 660 } 661 662 /* 663 * Set bits in this map correspond to the page frames the contents of which 664 * should not be saved during the suspend. 665 */ 666 static struct memory_bitmap *forbidden_pages_map; 667 668 /* Set bits in this map correspond to free page frames. */ 669 static struct memory_bitmap *free_pages_map; 670 671 /* 672 * Each page frame allocated for creating the image is marked by setting the 673 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 674 */ 675 676 void swsusp_set_page_free(struct page *page) 677 { 678 if (free_pages_map) 679 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 680 } 681 682 static int swsusp_page_is_free(struct page *page) 683 { 684 return free_pages_map ? 685 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 686 } 687 688 void swsusp_unset_page_free(struct page *page) 689 { 690 if (free_pages_map) 691 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 692 } 693 694 static void swsusp_set_page_forbidden(struct page *page) 695 { 696 if (forbidden_pages_map) 697 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 698 } 699 700 int swsusp_page_is_forbidden(struct page *page) 701 { 702 return forbidden_pages_map ? 703 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 704 } 705 706 static void swsusp_unset_page_forbidden(struct page *page) 707 { 708 if (forbidden_pages_map) 709 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 710 } 711 712 /** 713 * mark_nosave_pages - set bits corresponding to the page frames the 714 * contents of which should not be saved in a given bitmap. 715 */ 716 717 static void mark_nosave_pages(struct memory_bitmap *bm) 718 { 719 struct nosave_region *region; 720 721 if (list_empty(&nosave_regions)) 722 return; 723 724 list_for_each_entry(region, &nosave_regions, list) { 725 unsigned long pfn; 726 727 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 728 region->start_pfn << PAGE_SHIFT, 729 region->end_pfn << PAGE_SHIFT); 730 731 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 732 if (pfn_valid(pfn)) { 733 /* 734 * It is safe to ignore the result of 735 * mem_bm_set_bit_check() here, since we won't 736 * touch the PFNs for which the error is 737 * returned anyway. 738 */ 739 mem_bm_set_bit_check(bm, pfn); 740 } 741 } 742 } 743 744 /** 745 * create_basic_memory_bitmaps - create bitmaps needed for marking page 746 * frames that should not be saved and free page frames. The pointers 747 * forbidden_pages_map and free_pages_map are only modified if everything 748 * goes well, because we don't want the bits to be used before both bitmaps 749 * are set up. 750 */ 751 752 int create_basic_memory_bitmaps(void) 753 { 754 struct memory_bitmap *bm1, *bm2; 755 int error = 0; 756 757 BUG_ON(forbidden_pages_map || free_pages_map); 758 759 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 760 if (!bm1) 761 return -ENOMEM; 762 763 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 764 if (error) 765 goto Free_first_object; 766 767 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 768 if (!bm2) 769 goto Free_first_bitmap; 770 771 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 772 if (error) 773 goto Free_second_object; 774 775 forbidden_pages_map = bm1; 776 free_pages_map = bm2; 777 mark_nosave_pages(forbidden_pages_map); 778 779 pr_debug("PM: Basic memory bitmaps created\n"); 780 781 return 0; 782 783 Free_second_object: 784 kfree(bm2); 785 Free_first_bitmap: 786 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 787 Free_first_object: 788 kfree(bm1); 789 return -ENOMEM; 790 } 791 792 /** 793 * free_basic_memory_bitmaps - free memory bitmaps allocated by 794 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 795 * so that the bitmaps themselves are not referred to while they are being 796 * freed. 797 */ 798 799 void free_basic_memory_bitmaps(void) 800 { 801 struct memory_bitmap *bm1, *bm2; 802 803 BUG_ON(!(forbidden_pages_map && free_pages_map)); 804 805 bm1 = forbidden_pages_map; 806 bm2 = free_pages_map; 807 forbidden_pages_map = NULL; 808 free_pages_map = NULL; 809 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 810 kfree(bm1); 811 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 812 kfree(bm2); 813 814 pr_debug("PM: Basic memory bitmaps freed\n"); 815 } 816 817 /** 818 * snapshot_additional_pages - estimate the number of additional pages 819 * be needed for setting up the suspend image data structures for given 820 * zone (usually the returned value is greater than the exact number) 821 */ 822 823 unsigned int snapshot_additional_pages(struct zone *zone) 824 { 825 unsigned int res; 826 827 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 828 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 829 return 2 * res; 830 } 831 832 #ifdef CONFIG_HIGHMEM 833 /** 834 * count_free_highmem_pages - compute the total number of free highmem 835 * pages, system-wide. 836 */ 837 838 static unsigned int count_free_highmem_pages(void) 839 { 840 struct zone *zone; 841 unsigned int cnt = 0; 842 843 for_each_zone(zone) 844 if (populated_zone(zone) && is_highmem(zone)) 845 cnt += zone_page_state(zone, NR_FREE_PAGES); 846 847 return cnt; 848 } 849 850 /** 851 * saveable_highmem_page - Determine whether a highmem page should be 852 * included in the suspend image. 853 * 854 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 855 * and it isn't a part of a free chunk of pages. 856 */ 857 858 static struct page *saveable_highmem_page(unsigned long pfn) 859 { 860 struct page *page; 861 862 if (!pfn_valid(pfn)) 863 return NULL; 864 865 page = pfn_to_page(pfn); 866 867 BUG_ON(!PageHighMem(page)); 868 869 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 870 PageReserved(page)) 871 return NULL; 872 873 return page; 874 } 875 876 /** 877 * count_highmem_pages - compute the total number of saveable highmem 878 * pages. 879 */ 880 881 unsigned int count_highmem_pages(void) 882 { 883 struct zone *zone; 884 unsigned int n = 0; 885 886 for_each_zone(zone) { 887 unsigned long pfn, max_zone_pfn; 888 889 if (!is_highmem(zone)) 890 continue; 891 892 mark_free_pages(zone); 893 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 894 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 895 if (saveable_highmem_page(pfn)) 896 n++; 897 } 898 return n; 899 } 900 #else 901 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 902 #endif /* CONFIG_HIGHMEM */ 903 904 /** 905 * saveable_page - Determine whether a non-highmem page should be included 906 * in the suspend image. 907 * 908 * We should save the page if it isn't Nosave, and is not in the range 909 * of pages statically defined as 'unsaveable', and it isn't a part of 910 * a free chunk of pages. 911 */ 912 913 static struct page *saveable_page(unsigned long pfn) 914 { 915 struct page *page; 916 917 if (!pfn_valid(pfn)) 918 return NULL; 919 920 page = pfn_to_page(pfn); 921 922 BUG_ON(PageHighMem(page)); 923 924 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 925 return NULL; 926 927 if (PageReserved(page) 928 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 929 return NULL; 930 931 return page; 932 } 933 934 /** 935 * count_data_pages - compute the total number of saveable non-highmem 936 * pages. 937 */ 938 939 unsigned int count_data_pages(void) 940 { 941 struct zone *zone; 942 unsigned long pfn, max_zone_pfn; 943 unsigned int n = 0; 944 945 for_each_zone(zone) { 946 if (is_highmem(zone)) 947 continue; 948 949 mark_free_pages(zone); 950 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 952 if(saveable_page(pfn)) 953 n++; 954 } 955 return n; 956 } 957 958 /* This is needed, because copy_page and memcpy are not usable for copying 959 * task structs. 960 */ 961 static inline void do_copy_page(long *dst, long *src) 962 { 963 int n; 964 965 for (n = PAGE_SIZE / sizeof(long); n; n--) 966 *dst++ = *src++; 967 } 968 969 970 /** 971 * safe_copy_page - check if the page we are going to copy is marked as 972 * present in the kernel page tables (this always is the case if 973 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 974 * kernel_page_present() always returns 'true'). 975 */ 976 static void safe_copy_page(void *dst, struct page *s_page) 977 { 978 if (kernel_page_present(s_page)) { 979 do_copy_page(dst, page_address(s_page)); 980 } else { 981 kernel_map_pages(s_page, 1, 1); 982 do_copy_page(dst, page_address(s_page)); 983 kernel_map_pages(s_page, 1, 0); 984 } 985 } 986 987 988 #ifdef CONFIG_HIGHMEM 989 static inline struct page * 990 page_is_saveable(struct zone *zone, unsigned long pfn) 991 { 992 return is_highmem(zone) ? 993 saveable_highmem_page(pfn) : saveable_page(pfn); 994 } 995 996 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 997 { 998 struct page *s_page, *d_page; 999 void *src, *dst; 1000 1001 s_page = pfn_to_page(src_pfn); 1002 d_page = pfn_to_page(dst_pfn); 1003 if (PageHighMem(s_page)) { 1004 src = kmap_atomic(s_page, KM_USER0); 1005 dst = kmap_atomic(d_page, KM_USER1); 1006 do_copy_page(dst, src); 1007 kunmap_atomic(src, KM_USER0); 1008 kunmap_atomic(dst, KM_USER1); 1009 } else { 1010 if (PageHighMem(d_page)) { 1011 /* Page pointed to by src may contain some kernel 1012 * data modified by kmap_atomic() 1013 */ 1014 safe_copy_page(buffer, s_page); 1015 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 1016 memcpy(dst, buffer, PAGE_SIZE); 1017 kunmap_atomic(dst, KM_USER0); 1018 } else { 1019 safe_copy_page(page_address(d_page), s_page); 1020 } 1021 } 1022 } 1023 #else 1024 #define page_is_saveable(zone, pfn) saveable_page(pfn) 1025 1026 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1027 { 1028 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1029 pfn_to_page(src_pfn)); 1030 } 1031 #endif /* CONFIG_HIGHMEM */ 1032 1033 static void 1034 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1035 { 1036 struct zone *zone; 1037 unsigned long pfn; 1038 1039 for_each_zone(zone) { 1040 unsigned long max_zone_pfn; 1041 1042 mark_free_pages(zone); 1043 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1044 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1045 if (page_is_saveable(zone, pfn)) 1046 memory_bm_set_bit(orig_bm, pfn); 1047 } 1048 memory_bm_position_reset(orig_bm); 1049 memory_bm_position_reset(copy_bm); 1050 for(;;) { 1051 pfn = memory_bm_next_pfn(orig_bm); 1052 if (unlikely(pfn == BM_END_OF_MAP)) 1053 break; 1054 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1055 } 1056 } 1057 1058 /* Total number of image pages */ 1059 static unsigned int nr_copy_pages; 1060 /* Number of pages needed for saving the original pfns of the image pages */ 1061 static unsigned int nr_meta_pages; 1062 1063 /** 1064 * swsusp_free - free pages allocated for the suspend. 1065 * 1066 * Suspend pages are alocated before the atomic copy is made, so we 1067 * need to release them after the resume. 1068 */ 1069 1070 void swsusp_free(void) 1071 { 1072 struct zone *zone; 1073 unsigned long pfn, max_zone_pfn; 1074 1075 for_each_zone(zone) { 1076 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1077 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1078 if (pfn_valid(pfn)) { 1079 struct page *page = pfn_to_page(pfn); 1080 1081 if (swsusp_page_is_forbidden(page) && 1082 swsusp_page_is_free(page)) { 1083 swsusp_unset_page_forbidden(page); 1084 swsusp_unset_page_free(page); 1085 __free_page(page); 1086 } 1087 } 1088 } 1089 nr_copy_pages = 0; 1090 nr_meta_pages = 0; 1091 restore_pblist = NULL; 1092 buffer = NULL; 1093 } 1094 1095 #ifdef CONFIG_HIGHMEM 1096 /** 1097 * count_pages_for_highmem - compute the number of non-highmem pages 1098 * that will be necessary for creating copies of highmem pages. 1099 */ 1100 1101 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1102 { 1103 unsigned int free_highmem = count_free_highmem_pages(); 1104 1105 if (free_highmem >= nr_highmem) 1106 nr_highmem = 0; 1107 else 1108 nr_highmem -= free_highmem; 1109 1110 return nr_highmem; 1111 } 1112 #else 1113 static unsigned int 1114 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1115 #endif /* CONFIG_HIGHMEM */ 1116 1117 /** 1118 * enough_free_mem - Make sure we have enough free memory for the 1119 * snapshot image. 1120 */ 1121 1122 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1123 { 1124 struct zone *zone; 1125 unsigned int free = 0, meta = 0; 1126 1127 for_each_zone(zone) { 1128 meta += snapshot_additional_pages(zone); 1129 if (!is_highmem(zone)) 1130 free += zone_page_state(zone, NR_FREE_PAGES); 1131 } 1132 1133 nr_pages += count_pages_for_highmem(nr_highmem); 1134 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1135 nr_pages, PAGES_FOR_IO, meta, free); 1136 1137 return free > nr_pages + PAGES_FOR_IO + meta; 1138 } 1139 1140 #ifdef CONFIG_HIGHMEM 1141 /** 1142 * get_highmem_buffer - if there are some highmem pages in the suspend 1143 * image, we may need the buffer to copy them and/or load their data. 1144 */ 1145 1146 static inline int get_highmem_buffer(int safe_needed) 1147 { 1148 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1149 return buffer ? 0 : -ENOMEM; 1150 } 1151 1152 /** 1153 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1154 * Try to allocate as many pages as needed, but if the number of free 1155 * highmem pages is lesser than that, allocate them all. 1156 */ 1157 1158 static inline unsigned int 1159 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1160 { 1161 unsigned int to_alloc = count_free_highmem_pages(); 1162 1163 if (to_alloc > nr_highmem) 1164 to_alloc = nr_highmem; 1165 1166 nr_highmem -= to_alloc; 1167 while (to_alloc-- > 0) { 1168 struct page *page; 1169 1170 page = alloc_image_page(__GFP_HIGHMEM); 1171 memory_bm_set_bit(bm, page_to_pfn(page)); 1172 } 1173 return nr_highmem; 1174 } 1175 #else 1176 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1177 1178 static inline unsigned int 1179 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1180 #endif /* CONFIG_HIGHMEM */ 1181 1182 /** 1183 * swsusp_alloc - allocate memory for the suspend image 1184 * 1185 * We first try to allocate as many highmem pages as there are 1186 * saveable highmem pages in the system. If that fails, we allocate 1187 * non-highmem pages for the copies of the remaining highmem ones. 1188 * 1189 * In this approach it is likely that the copies of highmem pages will 1190 * also be located in the high memory, because of the way in which 1191 * copy_data_pages() works. 1192 */ 1193 1194 static int 1195 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1196 unsigned int nr_pages, unsigned int nr_highmem) 1197 { 1198 int error; 1199 1200 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1201 if (error) 1202 goto Free; 1203 1204 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1205 if (error) 1206 goto Free; 1207 1208 if (nr_highmem > 0) { 1209 error = get_highmem_buffer(PG_ANY); 1210 if (error) 1211 goto Free; 1212 1213 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1214 } 1215 while (nr_pages-- > 0) { 1216 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1217 1218 if (!page) 1219 goto Free; 1220 1221 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1222 } 1223 return 0; 1224 1225 Free: 1226 swsusp_free(); 1227 return -ENOMEM; 1228 } 1229 1230 /* Memory bitmap used for marking saveable pages (during suspend) or the 1231 * suspend image pages (during resume) 1232 */ 1233 static struct memory_bitmap orig_bm; 1234 /* Memory bitmap used on suspend for marking allocated pages that will contain 1235 * the copies of saveable pages. During resume it is initially used for 1236 * marking the suspend image pages, but then its set bits are duplicated in 1237 * @orig_bm and it is released. Next, on systems with high memory, it may be 1238 * used for marking "safe" highmem pages, but it has to be reinitialized for 1239 * this purpose. 1240 */ 1241 static struct memory_bitmap copy_bm; 1242 1243 asmlinkage int swsusp_save(void) 1244 { 1245 unsigned int nr_pages, nr_highmem; 1246 1247 printk(KERN_INFO "PM: Creating hibernation image: \n"); 1248 1249 drain_local_pages(NULL); 1250 nr_pages = count_data_pages(); 1251 nr_highmem = count_highmem_pages(); 1252 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1253 1254 if (!enough_free_mem(nr_pages, nr_highmem)) { 1255 printk(KERN_ERR "PM: Not enough free memory\n"); 1256 return -ENOMEM; 1257 } 1258 1259 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1260 printk(KERN_ERR "PM: Memory allocation failed\n"); 1261 return -ENOMEM; 1262 } 1263 1264 /* During allocating of suspend pagedir, new cold pages may appear. 1265 * Kill them. 1266 */ 1267 drain_local_pages(NULL); 1268 copy_data_pages(©_bm, &orig_bm); 1269 1270 /* 1271 * End of critical section. From now on, we can write to memory, 1272 * but we should not touch disk. This specially means we must _not_ 1273 * touch swap space! Except we must write out our image of course. 1274 */ 1275 1276 nr_pages += nr_highmem; 1277 nr_copy_pages = nr_pages; 1278 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1279 1280 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1281 nr_pages); 1282 1283 return 0; 1284 } 1285 1286 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1287 static int init_header_complete(struct swsusp_info *info) 1288 { 1289 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1290 info->version_code = LINUX_VERSION_CODE; 1291 return 0; 1292 } 1293 1294 static char *check_image_kernel(struct swsusp_info *info) 1295 { 1296 if (info->version_code != LINUX_VERSION_CODE) 1297 return "kernel version"; 1298 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1299 return "system type"; 1300 if (strcmp(info->uts.release,init_utsname()->release)) 1301 return "kernel release"; 1302 if (strcmp(info->uts.version,init_utsname()->version)) 1303 return "version"; 1304 if (strcmp(info->uts.machine,init_utsname()->machine)) 1305 return "machine"; 1306 return NULL; 1307 } 1308 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1309 1310 unsigned long snapshot_get_image_size(void) 1311 { 1312 return nr_copy_pages + nr_meta_pages + 1; 1313 } 1314 1315 static int init_header(struct swsusp_info *info) 1316 { 1317 memset(info, 0, sizeof(struct swsusp_info)); 1318 info->num_physpages = num_physpages; 1319 info->image_pages = nr_copy_pages; 1320 info->pages = snapshot_get_image_size(); 1321 info->size = info->pages; 1322 info->size <<= PAGE_SHIFT; 1323 return init_header_complete(info); 1324 } 1325 1326 /** 1327 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1328 * are stored in the array @buf[] (1 page at a time) 1329 */ 1330 1331 static inline void 1332 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1333 { 1334 int j; 1335 1336 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1337 buf[j] = memory_bm_next_pfn(bm); 1338 if (unlikely(buf[j] == BM_END_OF_MAP)) 1339 break; 1340 } 1341 } 1342 1343 /** 1344 * snapshot_read_next - used for reading the system memory snapshot. 1345 * 1346 * On the first call to it @handle should point to a zeroed 1347 * snapshot_handle structure. The structure gets updated and a pointer 1348 * to it should be passed to this function every next time. 1349 * 1350 * The @count parameter should contain the number of bytes the caller 1351 * wants to read from the snapshot. It must not be zero. 1352 * 1353 * On success the function returns a positive number. Then, the caller 1354 * is allowed to read up to the returned number of bytes from the memory 1355 * location computed by the data_of() macro. The number returned 1356 * may be smaller than @count, but this only happens if the read would 1357 * cross a page boundary otherwise. 1358 * 1359 * The function returns 0 to indicate the end of data stream condition, 1360 * and a negative number is returned on error. In such cases the 1361 * structure pointed to by @handle is not updated and should not be used 1362 * any more. 1363 */ 1364 1365 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1366 { 1367 if (handle->cur > nr_meta_pages + nr_copy_pages) 1368 return 0; 1369 1370 if (!buffer) { 1371 /* This makes the buffer be freed by swsusp_free() */ 1372 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1373 if (!buffer) 1374 return -ENOMEM; 1375 } 1376 if (!handle->offset) { 1377 int error; 1378 1379 error = init_header((struct swsusp_info *)buffer); 1380 if (error) 1381 return error; 1382 handle->buffer = buffer; 1383 memory_bm_position_reset(&orig_bm); 1384 memory_bm_position_reset(©_bm); 1385 } 1386 if (handle->prev < handle->cur) { 1387 if (handle->cur <= nr_meta_pages) { 1388 memset(buffer, 0, PAGE_SIZE); 1389 pack_pfns(buffer, &orig_bm); 1390 } else { 1391 struct page *page; 1392 1393 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1394 if (PageHighMem(page)) { 1395 /* Highmem pages are copied to the buffer, 1396 * because we can't return with a kmapped 1397 * highmem page (we may not be called again). 1398 */ 1399 void *kaddr; 1400 1401 kaddr = kmap_atomic(page, KM_USER0); 1402 memcpy(buffer, kaddr, PAGE_SIZE); 1403 kunmap_atomic(kaddr, KM_USER0); 1404 handle->buffer = buffer; 1405 } else { 1406 handle->buffer = page_address(page); 1407 } 1408 } 1409 handle->prev = handle->cur; 1410 } 1411 handle->buf_offset = handle->cur_offset; 1412 if (handle->cur_offset + count >= PAGE_SIZE) { 1413 count = PAGE_SIZE - handle->cur_offset; 1414 handle->cur_offset = 0; 1415 handle->cur++; 1416 } else { 1417 handle->cur_offset += count; 1418 } 1419 handle->offset += count; 1420 return count; 1421 } 1422 1423 /** 1424 * mark_unsafe_pages - mark the pages that cannot be used for storing 1425 * the image during resume, because they conflict with the pages that 1426 * had been used before suspend 1427 */ 1428 1429 static int mark_unsafe_pages(struct memory_bitmap *bm) 1430 { 1431 struct zone *zone; 1432 unsigned long pfn, max_zone_pfn; 1433 1434 /* Clear page flags */ 1435 for_each_zone(zone) { 1436 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1437 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1438 if (pfn_valid(pfn)) 1439 swsusp_unset_page_free(pfn_to_page(pfn)); 1440 } 1441 1442 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1443 memory_bm_position_reset(bm); 1444 do { 1445 pfn = memory_bm_next_pfn(bm); 1446 if (likely(pfn != BM_END_OF_MAP)) { 1447 if (likely(pfn_valid(pfn))) 1448 swsusp_set_page_free(pfn_to_page(pfn)); 1449 else 1450 return -EFAULT; 1451 } 1452 } while (pfn != BM_END_OF_MAP); 1453 1454 allocated_unsafe_pages = 0; 1455 1456 return 0; 1457 } 1458 1459 static void 1460 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1461 { 1462 unsigned long pfn; 1463 1464 memory_bm_position_reset(src); 1465 pfn = memory_bm_next_pfn(src); 1466 while (pfn != BM_END_OF_MAP) { 1467 memory_bm_set_bit(dst, pfn); 1468 pfn = memory_bm_next_pfn(src); 1469 } 1470 } 1471 1472 static int check_header(struct swsusp_info *info) 1473 { 1474 char *reason; 1475 1476 reason = check_image_kernel(info); 1477 if (!reason && info->num_physpages != num_physpages) 1478 reason = "memory size"; 1479 if (reason) { 1480 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1481 return -EPERM; 1482 } 1483 return 0; 1484 } 1485 1486 /** 1487 * load header - check the image header and copy data from it 1488 */ 1489 1490 static int 1491 load_header(struct swsusp_info *info) 1492 { 1493 int error; 1494 1495 restore_pblist = NULL; 1496 error = check_header(info); 1497 if (!error) { 1498 nr_copy_pages = info->image_pages; 1499 nr_meta_pages = info->pages - info->image_pages - 1; 1500 } 1501 return error; 1502 } 1503 1504 /** 1505 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1506 * the corresponding bit in the memory bitmap @bm 1507 */ 1508 1509 static inline void 1510 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1511 { 1512 int j; 1513 1514 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1515 if (unlikely(buf[j] == BM_END_OF_MAP)) 1516 break; 1517 1518 memory_bm_set_bit(bm, buf[j]); 1519 } 1520 } 1521 1522 /* List of "safe" pages that may be used to store data loaded from the suspend 1523 * image 1524 */ 1525 static struct linked_page *safe_pages_list; 1526 1527 #ifdef CONFIG_HIGHMEM 1528 /* struct highmem_pbe is used for creating the list of highmem pages that 1529 * should be restored atomically during the resume from disk, because the page 1530 * frames they have occupied before the suspend are in use. 1531 */ 1532 struct highmem_pbe { 1533 struct page *copy_page; /* data is here now */ 1534 struct page *orig_page; /* data was here before the suspend */ 1535 struct highmem_pbe *next; 1536 }; 1537 1538 /* List of highmem PBEs needed for restoring the highmem pages that were 1539 * allocated before the suspend and included in the suspend image, but have 1540 * also been allocated by the "resume" kernel, so their contents cannot be 1541 * written directly to their "original" page frames. 1542 */ 1543 static struct highmem_pbe *highmem_pblist; 1544 1545 /** 1546 * count_highmem_image_pages - compute the number of highmem pages in the 1547 * suspend image. The bits in the memory bitmap @bm that correspond to the 1548 * image pages are assumed to be set. 1549 */ 1550 1551 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1552 { 1553 unsigned long pfn; 1554 unsigned int cnt = 0; 1555 1556 memory_bm_position_reset(bm); 1557 pfn = memory_bm_next_pfn(bm); 1558 while (pfn != BM_END_OF_MAP) { 1559 if (PageHighMem(pfn_to_page(pfn))) 1560 cnt++; 1561 1562 pfn = memory_bm_next_pfn(bm); 1563 } 1564 return cnt; 1565 } 1566 1567 /** 1568 * prepare_highmem_image - try to allocate as many highmem pages as 1569 * there are highmem image pages (@nr_highmem_p points to the variable 1570 * containing the number of highmem image pages). The pages that are 1571 * "safe" (ie. will not be overwritten when the suspend image is 1572 * restored) have the corresponding bits set in @bm (it must be 1573 * unitialized). 1574 * 1575 * NOTE: This function should not be called if there are no highmem 1576 * image pages. 1577 */ 1578 1579 static unsigned int safe_highmem_pages; 1580 1581 static struct memory_bitmap *safe_highmem_bm; 1582 1583 static int 1584 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1585 { 1586 unsigned int to_alloc; 1587 1588 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1589 return -ENOMEM; 1590 1591 if (get_highmem_buffer(PG_SAFE)) 1592 return -ENOMEM; 1593 1594 to_alloc = count_free_highmem_pages(); 1595 if (to_alloc > *nr_highmem_p) 1596 to_alloc = *nr_highmem_p; 1597 else 1598 *nr_highmem_p = to_alloc; 1599 1600 safe_highmem_pages = 0; 1601 while (to_alloc-- > 0) { 1602 struct page *page; 1603 1604 page = alloc_page(__GFP_HIGHMEM); 1605 if (!swsusp_page_is_free(page)) { 1606 /* The page is "safe", set its bit the bitmap */ 1607 memory_bm_set_bit(bm, page_to_pfn(page)); 1608 safe_highmem_pages++; 1609 } 1610 /* Mark the page as allocated */ 1611 swsusp_set_page_forbidden(page); 1612 swsusp_set_page_free(page); 1613 } 1614 memory_bm_position_reset(bm); 1615 safe_highmem_bm = bm; 1616 return 0; 1617 } 1618 1619 /** 1620 * get_highmem_page_buffer - for given highmem image page find the buffer 1621 * that suspend_write_next() should set for its caller to write to. 1622 * 1623 * If the page is to be saved to its "original" page frame or a copy of 1624 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1625 * the copy of the page is to be made in normal memory, so the address of 1626 * the copy is returned. 1627 * 1628 * If @buffer is returned, the caller of suspend_write_next() will write 1629 * the page's contents to @buffer, so they will have to be copied to the 1630 * right location on the next call to suspend_write_next() and it is done 1631 * with the help of copy_last_highmem_page(). For this purpose, if 1632 * @buffer is returned, @last_highmem page is set to the page to which 1633 * the data will have to be copied from @buffer. 1634 */ 1635 1636 static struct page *last_highmem_page; 1637 1638 static void * 1639 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1640 { 1641 struct highmem_pbe *pbe; 1642 void *kaddr; 1643 1644 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1645 /* We have allocated the "original" page frame and we can 1646 * use it directly to store the loaded page. 1647 */ 1648 last_highmem_page = page; 1649 return buffer; 1650 } 1651 /* The "original" page frame has not been allocated and we have to 1652 * use a "safe" page frame to store the loaded page. 1653 */ 1654 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1655 if (!pbe) { 1656 swsusp_free(); 1657 return NULL; 1658 } 1659 pbe->orig_page = page; 1660 if (safe_highmem_pages > 0) { 1661 struct page *tmp; 1662 1663 /* Copy of the page will be stored in high memory */ 1664 kaddr = buffer; 1665 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1666 safe_highmem_pages--; 1667 last_highmem_page = tmp; 1668 pbe->copy_page = tmp; 1669 } else { 1670 /* Copy of the page will be stored in normal memory */ 1671 kaddr = safe_pages_list; 1672 safe_pages_list = safe_pages_list->next; 1673 pbe->copy_page = virt_to_page(kaddr); 1674 } 1675 pbe->next = highmem_pblist; 1676 highmem_pblist = pbe; 1677 return kaddr; 1678 } 1679 1680 /** 1681 * copy_last_highmem_page - copy the contents of a highmem image from 1682 * @buffer, where the caller of snapshot_write_next() has place them, 1683 * to the right location represented by @last_highmem_page . 1684 */ 1685 1686 static void copy_last_highmem_page(void) 1687 { 1688 if (last_highmem_page) { 1689 void *dst; 1690 1691 dst = kmap_atomic(last_highmem_page, KM_USER0); 1692 memcpy(dst, buffer, PAGE_SIZE); 1693 kunmap_atomic(dst, KM_USER0); 1694 last_highmem_page = NULL; 1695 } 1696 } 1697 1698 static inline int last_highmem_page_copied(void) 1699 { 1700 return !last_highmem_page; 1701 } 1702 1703 static inline void free_highmem_data(void) 1704 { 1705 if (safe_highmem_bm) 1706 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1707 1708 if (buffer) 1709 free_image_page(buffer, PG_UNSAFE_CLEAR); 1710 } 1711 #else 1712 static inline int get_safe_write_buffer(void) { return 0; } 1713 1714 static unsigned int 1715 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1716 1717 static inline int 1718 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1719 { 1720 return 0; 1721 } 1722 1723 static inline void * 1724 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1725 { 1726 return NULL; 1727 } 1728 1729 static inline void copy_last_highmem_page(void) {} 1730 static inline int last_highmem_page_copied(void) { return 1; } 1731 static inline void free_highmem_data(void) {} 1732 #endif /* CONFIG_HIGHMEM */ 1733 1734 /** 1735 * prepare_image - use the memory bitmap @bm to mark the pages that will 1736 * be overwritten in the process of restoring the system memory state 1737 * from the suspend image ("unsafe" pages) and allocate memory for the 1738 * image. 1739 * 1740 * The idea is to allocate a new memory bitmap first and then allocate 1741 * as many pages as needed for the image data, but not to assign these 1742 * pages to specific tasks initially. Instead, we just mark them as 1743 * allocated and create a lists of "safe" pages that will be used 1744 * later. On systems with high memory a list of "safe" highmem pages is 1745 * also created. 1746 */ 1747 1748 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1749 1750 static int 1751 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1752 { 1753 unsigned int nr_pages, nr_highmem; 1754 struct linked_page *sp_list, *lp; 1755 int error; 1756 1757 /* If there is no highmem, the buffer will not be necessary */ 1758 free_image_page(buffer, PG_UNSAFE_CLEAR); 1759 buffer = NULL; 1760 1761 nr_highmem = count_highmem_image_pages(bm); 1762 error = mark_unsafe_pages(bm); 1763 if (error) 1764 goto Free; 1765 1766 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1767 if (error) 1768 goto Free; 1769 1770 duplicate_memory_bitmap(new_bm, bm); 1771 memory_bm_free(bm, PG_UNSAFE_KEEP); 1772 if (nr_highmem > 0) { 1773 error = prepare_highmem_image(bm, &nr_highmem); 1774 if (error) 1775 goto Free; 1776 } 1777 /* Reserve some safe pages for potential later use. 1778 * 1779 * NOTE: This way we make sure there will be enough safe pages for the 1780 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1781 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1782 */ 1783 sp_list = NULL; 1784 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1785 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1786 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1787 while (nr_pages > 0) { 1788 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1789 if (!lp) { 1790 error = -ENOMEM; 1791 goto Free; 1792 } 1793 lp->next = sp_list; 1794 sp_list = lp; 1795 nr_pages--; 1796 } 1797 /* Preallocate memory for the image */ 1798 safe_pages_list = NULL; 1799 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1800 while (nr_pages > 0) { 1801 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1802 if (!lp) { 1803 error = -ENOMEM; 1804 goto Free; 1805 } 1806 if (!swsusp_page_is_free(virt_to_page(lp))) { 1807 /* The page is "safe", add it to the list */ 1808 lp->next = safe_pages_list; 1809 safe_pages_list = lp; 1810 } 1811 /* Mark the page as allocated */ 1812 swsusp_set_page_forbidden(virt_to_page(lp)); 1813 swsusp_set_page_free(virt_to_page(lp)); 1814 nr_pages--; 1815 } 1816 /* Free the reserved safe pages so that chain_alloc() can use them */ 1817 while (sp_list) { 1818 lp = sp_list->next; 1819 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1820 sp_list = lp; 1821 } 1822 return 0; 1823 1824 Free: 1825 swsusp_free(); 1826 return error; 1827 } 1828 1829 /** 1830 * get_buffer - compute the address that snapshot_write_next() should 1831 * set for its caller to write to. 1832 */ 1833 1834 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1835 { 1836 struct pbe *pbe; 1837 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1838 1839 if (PageHighMem(page)) 1840 return get_highmem_page_buffer(page, ca); 1841 1842 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1843 /* We have allocated the "original" page frame and we can 1844 * use it directly to store the loaded page. 1845 */ 1846 return page_address(page); 1847 1848 /* The "original" page frame has not been allocated and we have to 1849 * use a "safe" page frame to store the loaded page. 1850 */ 1851 pbe = chain_alloc(ca, sizeof(struct pbe)); 1852 if (!pbe) { 1853 swsusp_free(); 1854 return NULL; 1855 } 1856 pbe->orig_address = page_address(page); 1857 pbe->address = safe_pages_list; 1858 safe_pages_list = safe_pages_list->next; 1859 pbe->next = restore_pblist; 1860 restore_pblist = pbe; 1861 return pbe->address; 1862 } 1863 1864 /** 1865 * snapshot_write_next - used for writing the system memory snapshot. 1866 * 1867 * On the first call to it @handle should point to a zeroed 1868 * snapshot_handle structure. The structure gets updated and a pointer 1869 * to it should be passed to this function every next time. 1870 * 1871 * The @count parameter should contain the number of bytes the caller 1872 * wants to write to the image. It must not be zero. 1873 * 1874 * On success the function returns a positive number. Then, the caller 1875 * is allowed to write up to the returned number of bytes to the memory 1876 * location computed by the data_of() macro. The number returned 1877 * may be smaller than @count, but this only happens if the write would 1878 * cross a page boundary otherwise. 1879 * 1880 * The function returns 0 to indicate the "end of file" condition, 1881 * and a negative number is returned on error. In such cases the 1882 * structure pointed to by @handle is not updated and should not be used 1883 * any more. 1884 */ 1885 1886 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1887 { 1888 static struct chain_allocator ca; 1889 int error = 0; 1890 1891 /* Check if we have already loaded the entire image */ 1892 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1893 return 0; 1894 1895 if (handle->offset == 0) { 1896 if (!buffer) 1897 /* This makes the buffer be freed by swsusp_free() */ 1898 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1899 1900 if (!buffer) 1901 return -ENOMEM; 1902 1903 handle->buffer = buffer; 1904 } 1905 handle->sync_read = 1; 1906 if (handle->prev < handle->cur) { 1907 if (handle->prev == 0) { 1908 error = load_header(buffer); 1909 if (error) 1910 return error; 1911 1912 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1913 if (error) 1914 return error; 1915 1916 } else if (handle->prev <= nr_meta_pages) { 1917 unpack_orig_pfns(buffer, ©_bm); 1918 if (handle->prev == nr_meta_pages) { 1919 error = prepare_image(&orig_bm, ©_bm); 1920 if (error) 1921 return error; 1922 1923 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1924 memory_bm_position_reset(&orig_bm); 1925 restore_pblist = NULL; 1926 handle->buffer = get_buffer(&orig_bm, &ca); 1927 handle->sync_read = 0; 1928 if (!handle->buffer) 1929 return -ENOMEM; 1930 } 1931 } else { 1932 copy_last_highmem_page(); 1933 handle->buffer = get_buffer(&orig_bm, &ca); 1934 if (handle->buffer != buffer) 1935 handle->sync_read = 0; 1936 } 1937 handle->prev = handle->cur; 1938 } 1939 handle->buf_offset = handle->cur_offset; 1940 if (handle->cur_offset + count >= PAGE_SIZE) { 1941 count = PAGE_SIZE - handle->cur_offset; 1942 handle->cur_offset = 0; 1943 handle->cur++; 1944 } else { 1945 handle->cur_offset += count; 1946 } 1947 handle->offset += count; 1948 return count; 1949 } 1950 1951 /** 1952 * snapshot_write_finalize - must be called after the last call to 1953 * snapshot_write_next() in case the last page in the image happens 1954 * to be a highmem page and its contents should be stored in the 1955 * highmem. Additionally, it releases the memory that will not be 1956 * used any more. 1957 */ 1958 1959 void snapshot_write_finalize(struct snapshot_handle *handle) 1960 { 1961 copy_last_highmem_page(); 1962 /* Free only if we have loaded the image entirely */ 1963 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1964 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1965 free_highmem_data(); 1966 } 1967 } 1968 1969 int snapshot_image_loaded(struct snapshot_handle *handle) 1970 { 1971 return !(!nr_copy_pages || !last_highmem_page_copied() || 1972 handle->cur <= nr_meta_pages + nr_copy_pages); 1973 } 1974 1975 #ifdef CONFIG_HIGHMEM 1976 /* Assumes that @buf is ready and points to a "safe" page */ 1977 static inline void 1978 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1979 { 1980 void *kaddr1, *kaddr2; 1981 1982 kaddr1 = kmap_atomic(p1, KM_USER0); 1983 kaddr2 = kmap_atomic(p2, KM_USER1); 1984 memcpy(buf, kaddr1, PAGE_SIZE); 1985 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1986 memcpy(kaddr2, buf, PAGE_SIZE); 1987 kunmap_atomic(kaddr1, KM_USER0); 1988 kunmap_atomic(kaddr2, KM_USER1); 1989 } 1990 1991 /** 1992 * restore_highmem - for each highmem page that was allocated before 1993 * the suspend and included in the suspend image, and also has been 1994 * allocated by the "resume" kernel swap its current (ie. "before 1995 * resume") contents with the previous (ie. "before suspend") one. 1996 * 1997 * If the resume eventually fails, we can call this function once 1998 * again and restore the "before resume" highmem state. 1999 */ 2000 2001 int restore_highmem(void) 2002 { 2003 struct highmem_pbe *pbe = highmem_pblist; 2004 void *buf; 2005 2006 if (!pbe) 2007 return 0; 2008 2009 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2010 if (!buf) 2011 return -ENOMEM; 2012 2013 while (pbe) { 2014 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2015 pbe = pbe->next; 2016 } 2017 free_image_page(buf, PG_UNSAFE_CLEAR); 2018 return 0; 2019 } 2020 #endif /* CONFIG_HIGHMEM */ 2021