xref: /openbmc/linux/kernel/power/snapshot.c (revision a1e58bbd)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40 
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47 
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50 
51 /**
52  *	@safe_needed - on resume, for storing the PBE list and the image,
53  *	we can only use memory pages that do not conflict with the pages
54  *	used before suspend.  The unsafe pages have PageNosaveFree set
55  *	and we count them using unsafe_pages.
56  *
57  *	Each allocated image page is marked as PageNosave and PageNosaveFree
58  *	so that swsusp_free() can release it.
59  */
60 
61 #define PG_ANY		0
62 #define PG_SAFE		1
63 #define PG_UNSAFE_CLEAR	1
64 #define PG_UNSAFE_KEEP	0
65 
66 static unsigned int allocated_unsafe_pages;
67 
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 	void *res;
71 
72 	res = (void *)get_zeroed_page(gfp_mask);
73 	if (safe_needed)
74 		while (res && swsusp_page_is_free(virt_to_page(res))) {
75 			/* The page is unsafe, mark it for swsusp_free() */
76 			swsusp_set_page_forbidden(virt_to_page(res));
77 			allocated_unsafe_pages++;
78 			res = (void *)get_zeroed_page(gfp_mask);
79 		}
80 	if (res) {
81 		swsusp_set_page_forbidden(virt_to_page(res));
82 		swsusp_set_page_free(virt_to_page(res));
83 	}
84 	return res;
85 }
86 
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91 
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 	struct page *page;
95 
96 	page = alloc_page(gfp_mask);
97 	if (page) {
98 		swsusp_set_page_forbidden(page);
99 		swsusp_set_page_free(page);
100 	}
101 	return page;
102 }
103 
104 /**
105  *	free_image_page - free page represented by @addr, allocated with
106  *	get_image_page (page flags set by it must be cleared)
107  */
108 
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 	struct page *page;
112 
113 	BUG_ON(!virt_addr_valid(addr));
114 
115 	page = virt_to_page(addr);
116 
117 	swsusp_unset_page_forbidden(page);
118 	if (clear_nosave_free)
119 		swsusp_unset_page_free(page);
120 
121 	__free_page(page);
122 }
123 
124 /* struct linked_page is used to build chains of pages */
125 
126 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
127 
128 struct linked_page {
129 	struct linked_page *next;
130 	char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132 
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 	while (list) {
137 		struct linked_page *lp = list->next;
138 
139 		free_image_page(list, clear_page_nosave);
140 		list = lp;
141 	}
142 }
143 
144 /**
145   *	struct chain_allocator is used for allocating small objects out of
146   *	a linked list of pages called 'the chain'.
147   *
148   *	The chain grows each time when there is no room for a new object in
149   *	the current page.  The allocated objects cannot be freed individually.
150   *	It is only possible to free them all at once, by freeing the entire
151   *	chain.
152   *
153   *	NOTE: The chain allocator may be inefficient if the allocated objects
154   *	are not much smaller than PAGE_SIZE.
155   */
156 
157 struct chain_allocator {
158 	struct linked_page *chain;	/* the chain */
159 	unsigned int used_space;	/* total size of objects allocated out
160 					 * of the current page
161 					 */
162 	gfp_t gfp_mask;		/* mask for allocating pages */
163 	int safe_needed;	/* if set, only "safe" pages are allocated */
164 };
165 
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 	ca->chain = NULL;
170 	ca->used_space = LINKED_PAGE_DATA_SIZE;
171 	ca->gfp_mask = gfp_mask;
172 	ca->safe_needed = safe_needed;
173 }
174 
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 	void *ret;
178 
179 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 		struct linked_page *lp;
181 
182 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 		if (!lp)
184 			return NULL;
185 
186 		lp->next = ca->chain;
187 		ca->chain = lp;
188 		ca->used_space = 0;
189 	}
190 	ret = ca->chain->data + ca->used_space;
191 	ca->used_space += size;
192 	return ret;
193 }
194 
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 	free_list_of_pages(ca->chain, clear_page_nosave);
198 	memset(ca, 0, sizeof(struct chain_allocator));
199 }
200 
201 /**
202  *	Data types related to memory bitmaps.
203  *
204  *	Memory bitmap is a structure consiting of many linked lists of
205  *	objects.  The main list's elements are of type struct zone_bitmap
206  *	and each of them corresonds to one zone.  For each zone bitmap
207  *	object there is a list of objects of type struct bm_block that
208  *	represent each blocks of bit chunks in which information is
209  *	stored.
210  *
211  *	struct memory_bitmap contains a pointer to the main list of zone
212  *	bitmap objects, a struct bm_position used for browsing the bitmap,
213  *	and a pointer to the list of pages used for allocating all of the
214  *	zone bitmap objects and bitmap block objects.
215  *
216  *	NOTE: It has to be possible to lay out the bitmap in memory
217  *	using only allocations of order 0.  Additionally, the bitmap is
218  *	designed to work with arbitrary number of zones (this is over the
219  *	top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *	struct zone_bitmap contains a pointer to a list of bitmap block
222  *	objects and a pointer to the bitmap block object that has been
223  *	most recently used for setting bits.  Additionally, it contains the
224  *	pfns that correspond to the start and end of the represented zone.
225  *
226  *	struct bm_block contains a pointer to the memory page in which
227  *	information is stored (in the form of a block of bit chunks
228  *	of type unsigned long each).  It also contains the pfns that
229  *	correspond to the start and end of the represented memory area and
230  *	the number of bit chunks in the block.
231  */
232 
233 #define BM_END_OF_MAP	(~0UL)
234 
235 #define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
238 
239 struct bm_block {
240 	struct bm_block *next;		/* next element of the list */
241 	unsigned long start_pfn;	/* pfn represented by the first bit */
242 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
243 	unsigned int size;	/* number of bit chunks */
244 	unsigned long *data;	/* chunks of bits representing pages */
245 };
246 
247 struct zone_bitmap {
248 	struct zone_bitmap *next;	/* next element of the list */
249 	unsigned long start_pfn;	/* minimal pfn in this zone */
250 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
251 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
252 	struct bm_block *cur_block;	/* recently used bitmap block */
253 };
254 
255 /* strcut bm_position is used for browsing memory bitmaps */
256 
257 struct bm_position {
258 	struct zone_bitmap *zone_bm;
259 	struct bm_block *block;
260 	int chunk;
261 	int bit;
262 };
263 
264 struct memory_bitmap {
265 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
266 	struct linked_page *p_list;	/* list of pages used to store zone
267 					 * bitmap objects and bitmap block
268 					 * objects
269 					 */
270 	struct bm_position cur;	/* most recently used bit position */
271 };
272 
273 /* Functions that operate on memory bitmaps */
274 
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277 	bm->cur.chunk = 0;
278 	bm->cur.bit = -1;
279 }
280 
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283 	struct zone_bitmap *zone_bm;
284 
285 	zone_bm = bm->zone_bm_list;
286 	bm->cur.zone_bm = zone_bm;
287 	bm->cur.block = zone_bm->bm_blocks;
288 	memory_bm_reset_chunk(bm);
289 }
290 
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292 
293 /**
294  *	create_bm_block_list - create a list of block bitmap objects
295  */
296 
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300 	struct bm_block *bblist = NULL;
301 
302 	while (nr_blocks-- > 0) {
303 		struct bm_block *bb;
304 
305 		bb = chain_alloc(ca, sizeof(struct bm_block));
306 		if (!bb)
307 			return NULL;
308 
309 		bb->next = bblist;
310 		bblist = bb;
311 	}
312 	return bblist;
313 }
314 
315 /**
316  *	create_zone_bm_list - create a list of zone bitmap objects
317  */
318 
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322 	struct zone_bitmap *zbmlist = NULL;
323 
324 	while (nr_zones-- > 0) {
325 		struct zone_bitmap *zbm;
326 
327 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 		if (!zbm)
329 			return NULL;
330 
331 		zbm->next = zbmlist;
332 		zbmlist = zbm;
333 	}
334 	return zbmlist;
335 }
336 
337 /**
338   *	memory_bm_create - allocate memory for a memory bitmap
339   */
340 
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344 	struct chain_allocator ca;
345 	struct zone *zone;
346 	struct zone_bitmap *zone_bm;
347 	struct bm_block *bb;
348 	unsigned int nr;
349 
350 	chain_init(&ca, gfp_mask, safe_needed);
351 
352 	/* Compute the number of zones */
353 	nr = 0;
354 	for_each_zone(zone)
355 		if (populated_zone(zone))
356 			nr++;
357 
358 	/* Allocate the list of zones bitmap objects */
359 	zone_bm = create_zone_bm_list(nr, &ca);
360 	bm->zone_bm_list = zone_bm;
361 	if (!zone_bm) {
362 		chain_free(&ca, PG_UNSAFE_CLEAR);
363 		return -ENOMEM;
364 	}
365 
366 	/* Initialize the zone bitmap objects */
367 	for_each_zone(zone) {
368 		unsigned long pfn;
369 
370 		if (!populated_zone(zone))
371 			continue;
372 
373 		zone_bm->start_pfn = zone->zone_start_pfn;
374 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 		/* Allocate the list of bitmap block objects */
376 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 		bb = create_bm_block_list(nr, &ca);
378 		zone_bm->bm_blocks = bb;
379 		zone_bm->cur_block = bb;
380 		if (!bb)
381 			goto Free;
382 
383 		nr = zone->spanned_pages;
384 		pfn = zone->zone_start_pfn;
385 		/* Initialize the bitmap block objects */
386 		while (bb) {
387 			unsigned long *ptr;
388 
389 			ptr = get_image_page(gfp_mask, safe_needed);
390 			bb->data = ptr;
391 			if (!ptr)
392 				goto Free;
393 
394 			bb->start_pfn = pfn;
395 			if (nr >= BM_BITS_PER_BLOCK) {
396 				pfn += BM_BITS_PER_BLOCK;
397 				bb->size = BM_CHUNKS_PER_BLOCK;
398 				nr -= BM_BITS_PER_BLOCK;
399 			} else {
400 				/* This is executed only once in the loop */
401 				pfn += nr;
402 				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 			}
404 			bb->end_pfn = pfn;
405 			bb = bb->next;
406 		}
407 		zone_bm = zone_bm->next;
408 	}
409 	bm->p_list = ca.chain;
410 	memory_bm_position_reset(bm);
411 	return 0;
412 
413  Free:
414 	bm->p_list = ca.chain;
415 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 	return -ENOMEM;
417 }
418 
419 /**
420   *	memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422 
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425 	struct zone_bitmap *zone_bm;
426 
427 	/* Free the list of bit blocks for each zone_bitmap object */
428 	zone_bm = bm->zone_bm_list;
429 	while (zone_bm) {
430 		struct bm_block *bb;
431 
432 		bb = zone_bm->bm_blocks;
433 		while (bb) {
434 			if (bb->data)
435 				free_image_page(bb->data, clear_nosave_free);
436 			bb = bb->next;
437 		}
438 		zone_bm = zone_bm->next;
439 	}
440 	free_list_of_pages(bm->p_list, clear_nosave_free);
441 	bm->zone_bm_list = NULL;
442 }
443 
444 /**
445  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *	of @bm->cur_zone_bm are updated.
448  */
449 
450 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 				void **addr, unsigned int *bit_nr)
452 {
453 	struct zone_bitmap *zone_bm;
454 	struct bm_block *bb;
455 
456 	/* Check if the pfn is from the current zone */
457 	zone_bm = bm->cur.zone_bm;
458 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 		zone_bm = bm->zone_bm_list;
460 		/* We don't assume that the zones are sorted by pfns */
461 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 			zone_bm = zone_bm->next;
463 
464 			if (!zone_bm)
465 				return -EFAULT;
466 		}
467 		bm->cur.zone_bm = zone_bm;
468 	}
469 	/* Check if the pfn corresponds to the current bitmap block */
470 	bb = zone_bm->cur_block;
471 	if (pfn < bb->start_pfn)
472 		bb = zone_bm->bm_blocks;
473 
474 	while (pfn >= bb->end_pfn) {
475 		bb = bb->next;
476 
477 		BUG_ON(!bb);
478 	}
479 	zone_bm->cur_block = bb;
480 	pfn -= bb->start_pfn;
481 	*bit_nr = pfn % BM_BITS_PER_CHUNK;
482 	*addr = bb->data + pfn / BM_BITS_PER_CHUNK;
483 	return 0;
484 }
485 
486 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
487 {
488 	void *addr;
489 	unsigned int bit;
490 	int error;
491 
492 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
493 	BUG_ON(error);
494 	set_bit(bit, addr);
495 }
496 
497 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
498 {
499 	void *addr;
500 	unsigned int bit;
501 	int error;
502 
503 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
504 	if (!error)
505 		set_bit(bit, addr);
506 	return error;
507 }
508 
509 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
510 {
511 	void *addr;
512 	unsigned int bit;
513 	int error;
514 
515 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
516 	BUG_ON(error);
517 	clear_bit(bit, addr);
518 }
519 
520 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
521 {
522 	void *addr;
523 	unsigned int bit;
524 	int error;
525 
526 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
527 	BUG_ON(error);
528 	return test_bit(bit, addr);
529 }
530 
531 /* Two auxiliary functions for memory_bm_next_pfn */
532 
533 /* Find the first set bit in the given chunk, if there is one */
534 
535 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
536 {
537 	bit++;
538 	while (bit < BM_BITS_PER_CHUNK) {
539 		if (test_bit(bit, chunk_p))
540 			return bit;
541 
542 		bit++;
543 	}
544 	return -1;
545 }
546 
547 /* Find a chunk containing some bits set in given block of bits */
548 
549 static inline int next_chunk_in_block(int n, struct bm_block *bb)
550 {
551 	n++;
552 	while (n < bb->size) {
553 		if (bb->data[n])
554 			return n;
555 
556 		n++;
557 	}
558 	return -1;
559 }
560 
561 /**
562  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
563  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
564  *	returned.
565  *
566  *	It is required to run memory_bm_position_reset() before the first call to
567  *	this function.
568  */
569 
570 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
571 {
572 	struct zone_bitmap *zone_bm;
573 	struct bm_block *bb;
574 	int chunk;
575 	int bit;
576 
577 	do {
578 		bb = bm->cur.block;
579 		do {
580 			chunk = bm->cur.chunk;
581 			bit = bm->cur.bit;
582 			do {
583 				bit = next_bit_in_chunk(bit, bb->data + chunk);
584 				if (bit >= 0)
585 					goto Return_pfn;
586 
587 				chunk = next_chunk_in_block(chunk, bb);
588 				bit = -1;
589 			} while (chunk >= 0);
590 			bb = bb->next;
591 			bm->cur.block = bb;
592 			memory_bm_reset_chunk(bm);
593 		} while (bb);
594 		zone_bm = bm->cur.zone_bm->next;
595 		if (zone_bm) {
596 			bm->cur.zone_bm = zone_bm;
597 			bm->cur.block = zone_bm->bm_blocks;
598 			memory_bm_reset_chunk(bm);
599 		}
600 	} while (zone_bm);
601 	memory_bm_position_reset(bm);
602 	return BM_END_OF_MAP;
603 
604  Return_pfn:
605 	bm->cur.chunk = chunk;
606 	bm->cur.bit = bit;
607 	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
608 }
609 
610 /**
611  *	This structure represents a range of page frames the contents of which
612  *	should not be saved during the suspend.
613  */
614 
615 struct nosave_region {
616 	struct list_head list;
617 	unsigned long start_pfn;
618 	unsigned long end_pfn;
619 };
620 
621 static LIST_HEAD(nosave_regions);
622 
623 /**
624  *	register_nosave_region - register a range of page frames the contents
625  *	of which should not be saved during the suspend (to be used in the early
626  *	initialization code)
627  */
628 
629 void __init
630 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
631 			 int use_kmalloc)
632 {
633 	struct nosave_region *region;
634 
635 	if (start_pfn >= end_pfn)
636 		return;
637 
638 	if (!list_empty(&nosave_regions)) {
639 		/* Try to extend the previous region (they should be sorted) */
640 		region = list_entry(nosave_regions.prev,
641 					struct nosave_region, list);
642 		if (region->end_pfn == start_pfn) {
643 			region->end_pfn = end_pfn;
644 			goto Report;
645 		}
646 	}
647 	if (use_kmalloc) {
648 		/* during init, this shouldn't fail */
649 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
650 		BUG_ON(!region);
651 	} else
652 		/* This allocation cannot fail */
653 		region = alloc_bootmem_low(sizeof(struct nosave_region));
654 	region->start_pfn = start_pfn;
655 	region->end_pfn = end_pfn;
656 	list_add_tail(&region->list, &nosave_regions);
657  Report:
658 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
659 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
660 }
661 
662 /*
663  * Set bits in this map correspond to the page frames the contents of which
664  * should not be saved during the suspend.
665  */
666 static struct memory_bitmap *forbidden_pages_map;
667 
668 /* Set bits in this map correspond to free page frames. */
669 static struct memory_bitmap *free_pages_map;
670 
671 /*
672  * Each page frame allocated for creating the image is marked by setting the
673  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
674  */
675 
676 void swsusp_set_page_free(struct page *page)
677 {
678 	if (free_pages_map)
679 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
680 }
681 
682 static int swsusp_page_is_free(struct page *page)
683 {
684 	return free_pages_map ?
685 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
686 }
687 
688 void swsusp_unset_page_free(struct page *page)
689 {
690 	if (free_pages_map)
691 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
692 }
693 
694 static void swsusp_set_page_forbidden(struct page *page)
695 {
696 	if (forbidden_pages_map)
697 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
698 }
699 
700 int swsusp_page_is_forbidden(struct page *page)
701 {
702 	return forbidden_pages_map ?
703 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
704 }
705 
706 static void swsusp_unset_page_forbidden(struct page *page)
707 {
708 	if (forbidden_pages_map)
709 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
710 }
711 
712 /**
713  *	mark_nosave_pages - set bits corresponding to the page frames the
714  *	contents of which should not be saved in a given bitmap.
715  */
716 
717 static void mark_nosave_pages(struct memory_bitmap *bm)
718 {
719 	struct nosave_region *region;
720 
721 	if (list_empty(&nosave_regions))
722 		return;
723 
724 	list_for_each_entry(region, &nosave_regions, list) {
725 		unsigned long pfn;
726 
727 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
728 				region->start_pfn << PAGE_SHIFT,
729 				region->end_pfn << PAGE_SHIFT);
730 
731 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
732 			if (pfn_valid(pfn)) {
733 				/*
734 				 * It is safe to ignore the result of
735 				 * mem_bm_set_bit_check() here, since we won't
736 				 * touch the PFNs for which the error is
737 				 * returned anyway.
738 				 */
739 				mem_bm_set_bit_check(bm, pfn);
740 			}
741 	}
742 }
743 
744 /**
745  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
746  *	frames that should not be saved and free page frames.  The pointers
747  *	forbidden_pages_map and free_pages_map are only modified if everything
748  *	goes well, because we don't want the bits to be used before both bitmaps
749  *	are set up.
750  */
751 
752 int create_basic_memory_bitmaps(void)
753 {
754 	struct memory_bitmap *bm1, *bm2;
755 	int error = 0;
756 
757 	BUG_ON(forbidden_pages_map || free_pages_map);
758 
759 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
760 	if (!bm1)
761 		return -ENOMEM;
762 
763 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
764 	if (error)
765 		goto Free_first_object;
766 
767 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
768 	if (!bm2)
769 		goto Free_first_bitmap;
770 
771 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
772 	if (error)
773 		goto Free_second_object;
774 
775 	forbidden_pages_map = bm1;
776 	free_pages_map = bm2;
777 	mark_nosave_pages(forbidden_pages_map);
778 
779 	pr_debug("PM: Basic memory bitmaps created\n");
780 
781 	return 0;
782 
783  Free_second_object:
784 	kfree(bm2);
785  Free_first_bitmap:
786  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
787  Free_first_object:
788 	kfree(bm1);
789 	return -ENOMEM;
790 }
791 
792 /**
793  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
794  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
795  *	so that the bitmaps themselves are not referred to while they are being
796  *	freed.
797  */
798 
799 void free_basic_memory_bitmaps(void)
800 {
801 	struct memory_bitmap *bm1, *bm2;
802 
803 	BUG_ON(!(forbidden_pages_map && free_pages_map));
804 
805 	bm1 = forbidden_pages_map;
806 	bm2 = free_pages_map;
807 	forbidden_pages_map = NULL;
808 	free_pages_map = NULL;
809 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
810 	kfree(bm1);
811 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
812 	kfree(bm2);
813 
814 	pr_debug("PM: Basic memory bitmaps freed\n");
815 }
816 
817 /**
818  *	snapshot_additional_pages - estimate the number of additional pages
819  *	be needed for setting up the suspend image data structures for given
820  *	zone (usually the returned value is greater than the exact number)
821  */
822 
823 unsigned int snapshot_additional_pages(struct zone *zone)
824 {
825 	unsigned int res;
826 
827 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
828 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
829 	return 2 * res;
830 }
831 
832 #ifdef CONFIG_HIGHMEM
833 /**
834  *	count_free_highmem_pages - compute the total number of free highmem
835  *	pages, system-wide.
836  */
837 
838 static unsigned int count_free_highmem_pages(void)
839 {
840 	struct zone *zone;
841 	unsigned int cnt = 0;
842 
843 	for_each_zone(zone)
844 		if (populated_zone(zone) && is_highmem(zone))
845 			cnt += zone_page_state(zone, NR_FREE_PAGES);
846 
847 	return cnt;
848 }
849 
850 /**
851  *	saveable_highmem_page - Determine whether a highmem page should be
852  *	included in the suspend image.
853  *
854  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
855  *	and it isn't a part of a free chunk of pages.
856  */
857 
858 static struct page *saveable_highmem_page(unsigned long pfn)
859 {
860 	struct page *page;
861 
862 	if (!pfn_valid(pfn))
863 		return NULL;
864 
865 	page = pfn_to_page(pfn);
866 
867 	BUG_ON(!PageHighMem(page));
868 
869 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
870 	    PageReserved(page))
871 		return NULL;
872 
873 	return page;
874 }
875 
876 /**
877  *	count_highmem_pages - compute the total number of saveable highmem
878  *	pages.
879  */
880 
881 unsigned int count_highmem_pages(void)
882 {
883 	struct zone *zone;
884 	unsigned int n = 0;
885 
886 	for_each_zone(zone) {
887 		unsigned long pfn, max_zone_pfn;
888 
889 		if (!is_highmem(zone))
890 			continue;
891 
892 		mark_free_pages(zone);
893 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
894 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
895 			if (saveable_highmem_page(pfn))
896 				n++;
897 	}
898 	return n;
899 }
900 #else
901 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
902 #endif /* CONFIG_HIGHMEM */
903 
904 /**
905  *	saveable_page - Determine whether a non-highmem page should be included
906  *	in the suspend image.
907  *
908  *	We should save the page if it isn't Nosave, and is not in the range
909  *	of pages statically defined as 'unsaveable', and it isn't a part of
910  *	a free chunk of pages.
911  */
912 
913 static struct page *saveable_page(unsigned long pfn)
914 {
915 	struct page *page;
916 
917 	if (!pfn_valid(pfn))
918 		return NULL;
919 
920 	page = pfn_to_page(pfn);
921 
922 	BUG_ON(PageHighMem(page));
923 
924 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
925 		return NULL;
926 
927 	if (PageReserved(page)
928 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
929 		return NULL;
930 
931 	return page;
932 }
933 
934 /**
935  *	count_data_pages - compute the total number of saveable non-highmem
936  *	pages.
937  */
938 
939 unsigned int count_data_pages(void)
940 {
941 	struct zone *zone;
942 	unsigned long pfn, max_zone_pfn;
943 	unsigned int n = 0;
944 
945 	for_each_zone(zone) {
946 		if (is_highmem(zone))
947 			continue;
948 
949 		mark_free_pages(zone);
950 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
951 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
952 			if(saveable_page(pfn))
953 				n++;
954 	}
955 	return n;
956 }
957 
958 /* This is needed, because copy_page and memcpy are not usable for copying
959  * task structs.
960  */
961 static inline void do_copy_page(long *dst, long *src)
962 {
963 	int n;
964 
965 	for (n = PAGE_SIZE / sizeof(long); n; n--)
966 		*dst++ = *src++;
967 }
968 
969 
970 /**
971  *	safe_copy_page - check if the page we are going to copy is marked as
972  *		present in the kernel page tables (this always is the case if
973  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
974  *		kernel_page_present() always returns 'true').
975  */
976 static void safe_copy_page(void *dst, struct page *s_page)
977 {
978 	if (kernel_page_present(s_page)) {
979 		do_copy_page(dst, page_address(s_page));
980 	} else {
981 		kernel_map_pages(s_page, 1, 1);
982 		do_copy_page(dst, page_address(s_page));
983 		kernel_map_pages(s_page, 1, 0);
984 	}
985 }
986 
987 
988 #ifdef CONFIG_HIGHMEM
989 static inline struct page *
990 page_is_saveable(struct zone *zone, unsigned long pfn)
991 {
992 	return is_highmem(zone) ?
993 			saveable_highmem_page(pfn) : saveable_page(pfn);
994 }
995 
996 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
997 {
998 	struct page *s_page, *d_page;
999 	void *src, *dst;
1000 
1001 	s_page = pfn_to_page(src_pfn);
1002 	d_page = pfn_to_page(dst_pfn);
1003 	if (PageHighMem(s_page)) {
1004 		src = kmap_atomic(s_page, KM_USER0);
1005 		dst = kmap_atomic(d_page, KM_USER1);
1006 		do_copy_page(dst, src);
1007 		kunmap_atomic(src, KM_USER0);
1008 		kunmap_atomic(dst, KM_USER1);
1009 	} else {
1010 		if (PageHighMem(d_page)) {
1011 			/* Page pointed to by src may contain some kernel
1012 			 * data modified by kmap_atomic()
1013 			 */
1014 			safe_copy_page(buffer, s_page);
1015 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
1016 			memcpy(dst, buffer, PAGE_SIZE);
1017 			kunmap_atomic(dst, KM_USER0);
1018 		} else {
1019 			safe_copy_page(page_address(d_page), s_page);
1020 		}
1021 	}
1022 }
1023 #else
1024 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
1025 
1026 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1027 {
1028 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1029 				pfn_to_page(src_pfn));
1030 }
1031 #endif /* CONFIG_HIGHMEM */
1032 
1033 static void
1034 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1035 {
1036 	struct zone *zone;
1037 	unsigned long pfn;
1038 
1039 	for_each_zone(zone) {
1040 		unsigned long max_zone_pfn;
1041 
1042 		mark_free_pages(zone);
1043 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1044 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1045 			if (page_is_saveable(zone, pfn))
1046 				memory_bm_set_bit(orig_bm, pfn);
1047 	}
1048 	memory_bm_position_reset(orig_bm);
1049 	memory_bm_position_reset(copy_bm);
1050 	for(;;) {
1051 		pfn = memory_bm_next_pfn(orig_bm);
1052 		if (unlikely(pfn == BM_END_OF_MAP))
1053 			break;
1054 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1055 	}
1056 }
1057 
1058 /* Total number of image pages */
1059 static unsigned int nr_copy_pages;
1060 /* Number of pages needed for saving the original pfns of the image pages */
1061 static unsigned int nr_meta_pages;
1062 
1063 /**
1064  *	swsusp_free - free pages allocated for the suspend.
1065  *
1066  *	Suspend pages are alocated before the atomic copy is made, so we
1067  *	need to release them after the resume.
1068  */
1069 
1070 void swsusp_free(void)
1071 {
1072 	struct zone *zone;
1073 	unsigned long pfn, max_zone_pfn;
1074 
1075 	for_each_zone(zone) {
1076 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1077 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1078 			if (pfn_valid(pfn)) {
1079 				struct page *page = pfn_to_page(pfn);
1080 
1081 				if (swsusp_page_is_forbidden(page) &&
1082 				    swsusp_page_is_free(page)) {
1083 					swsusp_unset_page_forbidden(page);
1084 					swsusp_unset_page_free(page);
1085 					__free_page(page);
1086 				}
1087 			}
1088 	}
1089 	nr_copy_pages = 0;
1090 	nr_meta_pages = 0;
1091 	restore_pblist = NULL;
1092 	buffer = NULL;
1093 }
1094 
1095 #ifdef CONFIG_HIGHMEM
1096 /**
1097   *	count_pages_for_highmem - compute the number of non-highmem pages
1098   *	that will be necessary for creating copies of highmem pages.
1099   */
1100 
1101 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1102 {
1103 	unsigned int free_highmem = count_free_highmem_pages();
1104 
1105 	if (free_highmem >= nr_highmem)
1106 		nr_highmem = 0;
1107 	else
1108 		nr_highmem -= free_highmem;
1109 
1110 	return nr_highmem;
1111 }
1112 #else
1113 static unsigned int
1114 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1115 #endif /* CONFIG_HIGHMEM */
1116 
1117 /**
1118  *	enough_free_mem - Make sure we have enough free memory for the
1119  *	snapshot image.
1120  */
1121 
1122 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1123 {
1124 	struct zone *zone;
1125 	unsigned int free = 0, meta = 0;
1126 
1127 	for_each_zone(zone) {
1128 		meta += snapshot_additional_pages(zone);
1129 		if (!is_highmem(zone))
1130 			free += zone_page_state(zone, NR_FREE_PAGES);
1131 	}
1132 
1133 	nr_pages += count_pages_for_highmem(nr_highmem);
1134 	pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1135 		nr_pages, PAGES_FOR_IO, meta, free);
1136 
1137 	return free > nr_pages + PAGES_FOR_IO + meta;
1138 }
1139 
1140 #ifdef CONFIG_HIGHMEM
1141 /**
1142  *	get_highmem_buffer - if there are some highmem pages in the suspend
1143  *	image, we may need the buffer to copy them and/or load their data.
1144  */
1145 
1146 static inline int get_highmem_buffer(int safe_needed)
1147 {
1148 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1149 	return buffer ? 0 : -ENOMEM;
1150 }
1151 
1152 /**
1153  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1154  *	Try to allocate as many pages as needed, but if the number of free
1155  *	highmem pages is lesser than that, allocate them all.
1156  */
1157 
1158 static inline unsigned int
1159 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1160 {
1161 	unsigned int to_alloc = count_free_highmem_pages();
1162 
1163 	if (to_alloc > nr_highmem)
1164 		to_alloc = nr_highmem;
1165 
1166 	nr_highmem -= to_alloc;
1167 	while (to_alloc-- > 0) {
1168 		struct page *page;
1169 
1170 		page = alloc_image_page(__GFP_HIGHMEM);
1171 		memory_bm_set_bit(bm, page_to_pfn(page));
1172 	}
1173 	return nr_highmem;
1174 }
1175 #else
1176 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1177 
1178 static inline unsigned int
1179 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1180 #endif /* CONFIG_HIGHMEM */
1181 
1182 /**
1183  *	swsusp_alloc - allocate memory for the suspend image
1184  *
1185  *	We first try to allocate as many highmem pages as there are
1186  *	saveable highmem pages in the system.  If that fails, we allocate
1187  *	non-highmem pages for the copies of the remaining highmem ones.
1188  *
1189  *	In this approach it is likely that the copies of highmem pages will
1190  *	also be located in the high memory, because of the way in which
1191  *	copy_data_pages() works.
1192  */
1193 
1194 static int
1195 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1196 		unsigned int nr_pages, unsigned int nr_highmem)
1197 {
1198 	int error;
1199 
1200 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1201 	if (error)
1202 		goto Free;
1203 
1204 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1205 	if (error)
1206 		goto Free;
1207 
1208 	if (nr_highmem > 0) {
1209 		error = get_highmem_buffer(PG_ANY);
1210 		if (error)
1211 			goto Free;
1212 
1213 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1214 	}
1215 	while (nr_pages-- > 0) {
1216 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1217 
1218 		if (!page)
1219 			goto Free;
1220 
1221 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1222 	}
1223 	return 0;
1224 
1225  Free:
1226 	swsusp_free();
1227 	return -ENOMEM;
1228 }
1229 
1230 /* Memory bitmap used for marking saveable pages (during suspend) or the
1231  * suspend image pages (during resume)
1232  */
1233 static struct memory_bitmap orig_bm;
1234 /* Memory bitmap used on suspend for marking allocated pages that will contain
1235  * the copies of saveable pages.  During resume it is initially used for
1236  * marking the suspend image pages, but then its set bits are duplicated in
1237  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1238  * used for marking "safe" highmem pages, but it has to be reinitialized for
1239  * this purpose.
1240  */
1241 static struct memory_bitmap copy_bm;
1242 
1243 asmlinkage int swsusp_save(void)
1244 {
1245 	unsigned int nr_pages, nr_highmem;
1246 
1247 	printk(KERN_INFO "PM: Creating hibernation image: \n");
1248 
1249 	drain_local_pages(NULL);
1250 	nr_pages = count_data_pages();
1251 	nr_highmem = count_highmem_pages();
1252 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1253 
1254 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1255 		printk(KERN_ERR "PM: Not enough free memory\n");
1256 		return -ENOMEM;
1257 	}
1258 
1259 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1260 		printk(KERN_ERR "PM: Memory allocation failed\n");
1261 		return -ENOMEM;
1262 	}
1263 
1264 	/* During allocating of suspend pagedir, new cold pages may appear.
1265 	 * Kill them.
1266 	 */
1267 	drain_local_pages(NULL);
1268 	copy_data_pages(&copy_bm, &orig_bm);
1269 
1270 	/*
1271 	 * End of critical section. From now on, we can write to memory,
1272 	 * but we should not touch disk. This specially means we must _not_
1273 	 * touch swap space! Except we must write out our image of course.
1274 	 */
1275 
1276 	nr_pages += nr_highmem;
1277 	nr_copy_pages = nr_pages;
1278 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1279 
1280 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1281 		nr_pages);
1282 
1283 	return 0;
1284 }
1285 
1286 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1287 static int init_header_complete(struct swsusp_info *info)
1288 {
1289 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1290 	info->version_code = LINUX_VERSION_CODE;
1291 	return 0;
1292 }
1293 
1294 static char *check_image_kernel(struct swsusp_info *info)
1295 {
1296 	if (info->version_code != LINUX_VERSION_CODE)
1297 		return "kernel version";
1298 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1299 		return "system type";
1300 	if (strcmp(info->uts.release,init_utsname()->release))
1301 		return "kernel release";
1302 	if (strcmp(info->uts.version,init_utsname()->version))
1303 		return "version";
1304 	if (strcmp(info->uts.machine,init_utsname()->machine))
1305 		return "machine";
1306 	return NULL;
1307 }
1308 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1309 
1310 unsigned long snapshot_get_image_size(void)
1311 {
1312 	return nr_copy_pages + nr_meta_pages + 1;
1313 }
1314 
1315 static int init_header(struct swsusp_info *info)
1316 {
1317 	memset(info, 0, sizeof(struct swsusp_info));
1318 	info->num_physpages = num_physpages;
1319 	info->image_pages = nr_copy_pages;
1320 	info->pages = snapshot_get_image_size();
1321 	info->size = info->pages;
1322 	info->size <<= PAGE_SHIFT;
1323 	return init_header_complete(info);
1324 }
1325 
1326 /**
1327  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1328  *	are stored in the array @buf[] (1 page at a time)
1329  */
1330 
1331 static inline void
1332 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1333 {
1334 	int j;
1335 
1336 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1337 		buf[j] = memory_bm_next_pfn(bm);
1338 		if (unlikely(buf[j] == BM_END_OF_MAP))
1339 			break;
1340 	}
1341 }
1342 
1343 /**
1344  *	snapshot_read_next - used for reading the system memory snapshot.
1345  *
1346  *	On the first call to it @handle should point to a zeroed
1347  *	snapshot_handle structure.  The structure gets updated and a pointer
1348  *	to it should be passed to this function every next time.
1349  *
1350  *	The @count parameter should contain the number of bytes the caller
1351  *	wants to read from the snapshot.  It must not be zero.
1352  *
1353  *	On success the function returns a positive number.  Then, the caller
1354  *	is allowed to read up to the returned number of bytes from the memory
1355  *	location computed by the data_of() macro.  The number returned
1356  *	may be smaller than @count, but this only happens if the read would
1357  *	cross a page boundary otherwise.
1358  *
1359  *	The function returns 0 to indicate the end of data stream condition,
1360  *	and a negative number is returned on error.  In such cases the
1361  *	structure pointed to by @handle is not updated and should not be used
1362  *	any more.
1363  */
1364 
1365 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1366 {
1367 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1368 		return 0;
1369 
1370 	if (!buffer) {
1371 		/* This makes the buffer be freed by swsusp_free() */
1372 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1373 		if (!buffer)
1374 			return -ENOMEM;
1375 	}
1376 	if (!handle->offset) {
1377 		int error;
1378 
1379 		error = init_header((struct swsusp_info *)buffer);
1380 		if (error)
1381 			return error;
1382 		handle->buffer = buffer;
1383 		memory_bm_position_reset(&orig_bm);
1384 		memory_bm_position_reset(&copy_bm);
1385 	}
1386 	if (handle->prev < handle->cur) {
1387 		if (handle->cur <= nr_meta_pages) {
1388 			memset(buffer, 0, PAGE_SIZE);
1389 			pack_pfns(buffer, &orig_bm);
1390 		} else {
1391 			struct page *page;
1392 
1393 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1394 			if (PageHighMem(page)) {
1395 				/* Highmem pages are copied to the buffer,
1396 				 * because we can't return with a kmapped
1397 				 * highmem page (we may not be called again).
1398 				 */
1399 				void *kaddr;
1400 
1401 				kaddr = kmap_atomic(page, KM_USER0);
1402 				memcpy(buffer, kaddr, PAGE_SIZE);
1403 				kunmap_atomic(kaddr, KM_USER0);
1404 				handle->buffer = buffer;
1405 			} else {
1406 				handle->buffer = page_address(page);
1407 			}
1408 		}
1409 		handle->prev = handle->cur;
1410 	}
1411 	handle->buf_offset = handle->cur_offset;
1412 	if (handle->cur_offset + count >= PAGE_SIZE) {
1413 		count = PAGE_SIZE - handle->cur_offset;
1414 		handle->cur_offset = 0;
1415 		handle->cur++;
1416 	} else {
1417 		handle->cur_offset += count;
1418 	}
1419 	handle->offset += count;
1420 	return count;
1421 }
1422 
1423 /**
1424  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1425  *	the image during resume, because they conflict with the pages that
1426  *	had been used before suspend
1427  */
1428 
1429 static int mark_unsafe_pages(struct memory_bitmap *bm)
1430 {
1431 	struct zone *zone;
1432 	unsigned long pfn, max_zone_pfn;
1433 
1434 	/* Clear page flags */
1435 	for_each_zone(zone) {
1436 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1437 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1438 			if (pfn_valid(pfn))
1439 				swsusp_unset_page_free(pfn_to_page(pfn));
1440 	}
1441 
1442 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1443 	memory_bm_position_reset(bm);
1444 	do {
1445 		pfn = memory_bm_next_pfn(bm);
1446 		if (likely(pfn != BM_END_OF_MAP)) {
1447 			if (likely(pfn_valid(pfn)))
1448 				swsusp_set_page_free(pfn_to_page(pfn));
1449 			else
1450 				return -EFAULT;
1451 		}
1452 	} while (pfn != BM_END_OF_MAP);
1453 
1454 	allocated_unsafe_pages = 0;
1455 
1456 	return 0;
1457 }
1458 
1459 static void
1460 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1461 {
1462 	unsigned long pfn;
1463 
1464 	memory_bm_position_reset(src);
1465 	pfn = memory_bm_next_pfn(src);
1466 	while (pfn != BM_END_OF_MAP) {
1467 		memory_bm_set_bit(dst, pfn);
1468 		pfn = memory_bm_next_pfn(src);
1469 	}
1470 }
1471 
1472 static int check_header(struct swsusp_info *info)
1473 {
1474 	char *reason;
1475 
1476 	reason = check_image_kernel(info);
1477 	if (!reason && info->num_physpages != num_physpages)
1478 		reason = "memory size";
1479 	if (reason) {
1480 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1481 		return -EPERM;
1482 	}
1483 	return 0;
1484 }
1485 
1486 /**
1487  *	load header - check the image header and copy data from it
1488  */
1489 
1490 static int
1491 load_header(struct swsusp_info *info)
1492 {
1493 	int error;
1494 
1495 	restore_pblist = NULL;
1496 	error = check_header(info);
1497 	if (!error) {
1498 		nr_copy_pages = info->image_pages;
1499 		nr_meta_pages = info->pages - info->image_pages - 1;
1500 	}
1501 	return error;
1502 }
1503 
1504 /**
1505  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1506  *	the corresponding bit in the memory bitmap @bm
1507  */
1508 
1509 static inline void
1510 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1511 {
1512 	int j;
1513 
1514 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1515 		if (unlikely(buf[j] == BM_END_OF_MAP))
1516 			break;
1517 
1518 		memory_bm_set_bit(bm, buf[j]);
1519 	}
1520 }
1521 
1522 /* List of "safe" pages that may be used to store data loaded from the suspend
1523  * image
1524  */
1525 static struct linked_page *safe_pages_list;
1526 
1527 #ifdef CONFIG_HIGHMEM
1528 /* struct highmem_pbe is used for creating the list of highmem pages that
1529  * should be restored atomically during the resume from disk, because the page
1530  * frames they have occupied before the suspend are in use.
1531  */
1532 struct highmem_pbe {
1533 	struct page *copy_page;	/* data is here now */
1534 	struct page *orig_page;	/* data was here before the suspend */
1535 	struct highmem_pbe *next;
1536 };
1537 
1538 /* List of highmem PBEs needed for restoring the highmem pages that were
1539  * allocated before the suspend and included in the suspend image, but have
1540  * also been allocated by the "resume" kernel, so their contents cannot be
1541  * written directly to their "original" page frames.
1542  */
1543 static struct highmem_pbe *highmem_pblist;
1544 
1545 /**
1546  *	count_highmem_image_pages - compute the number of highmem pages in the
1547  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1548  *	image pages are assumed to be set.
1549  */
1550 
1551 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1552 {
1553 	unsigned long pfn;
1554 	unsigned int cnt = 0;
1555 
1556 	memory_bm_position_reset(bm);
1557 	pfn = memory_bm_next_pfn(bm);
1558 	while (pfn != BM_END_OF_MAP) {
1559 		if (PageHighMem(pfn_to_page(pfn)))
1560 			cnt++;
1561 
1562 		pfn = memory_bm_next_pfn(bm);
1563 	}
1564 	return cnt;
1565 }
1566 
1567 /**
1568  *	prepare_highmem_image - try to allocate as many highmem pages as
1569  *	there are highmem image pages (@nr_highmem_p points to the variable
1570  *	containing the number of highmem image pages).  The pages that are
1571  *	"safe" (ie. will not be overwritten when the suspend image is
1572  *	restored) have the corresponding bits set in @bm (it must be
1573  *	unitialized).
1574  *
1575  *	NOTE: This function should not be called if there are no highmem
1576  *	image pages.
1577  */
1578 
1579 static unsigned int safe_highmem_pages;
1580 
1581 static struct memory_bitmap *safe_highmem_bm;
1582 
1583 static int
1584 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1585 {
1586 	unsigned int to_alloc;
1587 
1588 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1589 		return -ENOMEM;
1590 
1591 	if (get_highmem_buffer(PG_SAFE))
1592 		return -ENOMEM;
1593 
1594 	to_alloc = count_free_highmem_pages();
1595 	if (to_alloc > *nr_highmem_p)
1596 		to_alloc = *nr_highmem_p;
1597 	else
1598 		*nr_highmem_p = to_alloc;
1599 
1600 	safe_highmem_pages = 0;
1601 	while (to_alloc-- > 0) {
1602 		struct page *page;
1603 
1604 		page = alloc_page(__GFP_HIGHMEM);
1605 		if (!swsusp_page_is_free(page)) {
1606 			/* The page is "safe", set its bit the bitmap */
1607 			memory_bm_set_bit(bm, page_to_pfn(page));
1608 			safe_highmem_pages++;
1609 		}
1610 		/* Mark the page as allocated */
1611 		swsusp_set_page_forbidden(page);
1612 		swsusp_set_page_free(page);
1613 	}
1614 	memory_bm_position_reset(bm);
1615 	safe_highmem_bm = bm;
1616 	return 0;
1617 }
1618 
1619 /**
1620  *	get_highmem_page_buffer - for given highmem image page find the buffer
1621  *	that suspend_write_next() should set for its caller to write to.
1622  *
1623  *	If the page is to be saved to its "original" page frame or a copy of
1624  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1625  *	the copy of the page is to be made in normal memory, so the address of
1626  *	the copy is returned.
1627  *
1628  *	If @buffer is returned, the caller of suspend_write_next() will write
1629  *	the page's contents to @buffer, so they will have to be copied to the
1630  *	right location on the next call to suspend_write_next() and it is done
1631  *	with the help of copy_last_highmem_page().  For this purpose, if
1632  *	@buffer is returned, @last_highmem page is set to the page to which
1633  *	the data will have to be copied from @buffer.
1634  */
1635 
1636 static struct page *last_highmem_page;
1637 
1638 static void *
1639 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1640 {
1641 	struct highmem_pbe *pbe;
1642 	void *kaddr;
1643 
1644 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1645 		/* We have allocated the "original" page frame and we can
1646 		 * use it directly to store the loaded page.
1647 		 */
1648 		last_highmem_page = page;
1649 		return buffer;
1650 	}
1651 	/* The "original" page frame has not been allocated and we have to
1652 	 * use a "safe" page frame to store the loaded page.
1653 	 */
1654 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1655 	if (!pbe) {
1656 		swsusp_free();
1657 		return NULL;
1658 	}
1659 	pbe->orig_page = page;
1660 	if (safe_highmem_pages > 0) {
1661 		struct page *tmp;
1662 
1663 		/* Copy of the page will be stored in high memory */
1664 		kaddr = buffer;
1665 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1666 		safe_highmem_pages--;
1667 		last_highmem_page = tmp;
1668 		pbe->copy_page = tmp;
1669 	} else {
1670 		/* Copy of the page will be stored in normal memory */
1671 		kaddr = safe_pages_list;
1672 		safe_pages_list = safe_pages_list->next;
1673 		pbe->copy_page = virt_to_page(kaddr);
1674 	}
1675 	pbe->next = highmem_pblist;
1676 	highmem_pblist = pbe;
1677 	return kaddr;
1678 }
1679 
1680 /**
1681  *	copy_last_highmem_page - copy the contents of a highmem image from
1682  *	@buffer, where the caller of snapshot_write_next() has place them,
1683  *	to the right location represented by @last_highmem_page .
1684  */
1685 
1686 static void copy_last_highmem_page(void)
1687 {
1688 	if (last_highmem_page) {
1689 		void *dst;
1690 
1691 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1692 		memcpy(dst, buffer, PAGE_SIZE);
1693 		kunmap_atomic(dst, KM_USER0);
1694 		last_highmem_page = NULL;
1695 	}
1696 }
1697 
1698 static inline int last_highmem_page_copied(void)
1699 {
1700 	return !last_highmem_page;
1701 }
1702 
1703 static inline void free_highmem_data(void)
1704 {
1705 	if (safe_highmem_bm)
1706 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1707 
1708 	if (buffer)
1709 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1710 }
1711 #else
1712 static inline int get_safe_write_buffer(void) { return 0; }
1713 
1714 static unsigned int
1715 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1716 
1717 static inline int
1718 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1719 {
1720 	return 0;
1721 }
1722 
1723 static inline void *
1724 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1725 {
1726 	return NULL;
1727 }
1728 
1729 static inline void copy_last_highmem_page(void) {}
1730 static inline int last_highmem_page_copied(void) { return 1; }
1731 static inline void free_highmem_data(void) {}
1732 #endif /* CONFIG_HIGHMEM */
1733 
1734 /**
1735  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1736  *	be overwritten in the process of restoring the system memory state
1737  *	from the suspend image ("unsafe" pages) and allocate memory for the
1738  *	image.
1739  *
1740  *	The idea is to allocate a new memory bitmap first and then allocate
1741  *	as many pages as needed for the image data, but not to assign these
1742  *	pages to specific tasks initially.  Instead, we just mark them as
1743  *	allocated and create a lists of "safe" pages that will be used
1744  *	later.  On systems with high memory a list of "safe" highmem pages is
1745  *	also created.
1746  */
1747 
1748 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1749 
1750 static int
1751 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1752 {
1753 	unsigned int nr_pages, nr_highmem;
1754 	struct linked_page *sp_list, *lp;
1755 	int error;
1756 
1757 	/* If there is no highmem, the buffer will not be necessary */
1758 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1759 	buffer = NULL;
1760 
1761 	nr_highmem = count_highmem_image_pages(bm);
1762 	error = mark_unsafe_pages(bm);
1763 	if (error)
1764 		goto Free;
1765 
1766 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1767 	if (error)
1768 		goto Free;
1769 
1770 	duplicate_memory_bitmap(new_bm, bm);
1771 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1772 	if (nr_highmem > 0) {
1773 		error = prepare_highmem_image(bm, &nr_highmem);
1774 		if (error)
1775 			goto Free;
1776 	}
1777 	/* Reserve some safe pages for potential later use.
1778 	 *
1779 	 * NOTE: This way we make sure there will be enough safe pages for the
1780 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1781 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1782 	 */
1783 	sp_list = NULL;
1784 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1785 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1786 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1787 	while (nr_pages > 0) {
1788 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1789 		if (!lp) {
1790 			error = -ENOMEM;
1791 			goto Free;
1792 		}
1793 		lp->next = sp_list;
1794 		sp_list = lp;
1795 		nr_pages--;
1796 	}
1797 	/* Preallocate memory for the image */
1798 	safe_pages_list = NULL;
1799 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1800 	while (nr_pages > 0) {
1801 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1802 		if (!lp) {
1803 			error = -ENOMEM;
1804 			goto Free;
1805 		}
1806 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1807 			/* The page is "safe", add it to the list */
1808 			lp->next = safe_pages_list;
1809 			safe_pages_list = lp;
1810 		}
1811 		/* Mark the page as allocated */
1812 		swsusp_set_page_forbidden(virt_to_page(lp));
1813 		swsusp_set_page_free(virt_to_page(lp));
1814 		nr_pages--;
1815 	}
1816 	/* Free the reserved safe pages so that chain_alloc() can use them */
1817 	while (sp_list) {
1818 		lp = sp_list->next;
1819 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1820 		sp_list = lp;
1821 	}
1822 	return 0;
1823 
1824  Free:
1825 	swsusp_free();
1826 	return error;
1827 }
1828 
1829 /**
1830  *	get_buffer - compute the address that snapshot_write_next() should
1831  *	set for its caller to write to.
1832  */
1833 
1834 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1835 {
1836 	struct pbe *pbe;
1837 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1838 
1839 	if (PageHighMem(page))
1840 		return get_highmem_page_buffer(page, ca);
1841 
1842 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1843 		/* We have allocated the "original" page frame and we can
1844 		 * use it directly to store the loaded page.
1845 		 */
1846 		return page_address(page);
1847 
1848 	/* The "original" page frame has not been allocated and we have to
1849 	 * use a "safe" page frame to store the loaded page.
1850 	 */
1851 	pbe = chain_alloc(ca, sizeof(struct pbe));
1852 	if (!pbe) {
1853 		swsusp_free();
1854 		return NULL;
1855 	}
1856 	pbe->orig_address = page_address(page);
1857 	pbe->address = safe_pages_list;
1858 	safe_pages_list = safe_pages_list->next;
1859 	pbe->next = restore_pblist;
1860 	restore_pblist = pbe;
1861 	return pbe->address;
1862 }
1863 
1864 /**
1865  *	snapshot_write_next - used for writing the system memory snapshot.
1866  *
1867  *	On the first call to it @handle should point to a zeroed
1868  *	snapshot_handle structure.  The structure gets updated and a pointer
1869  *	to it should be passed to this function every next time.
1870  *
1871  *	The @count parameter should contain the number of bytes the caller
1872  *	wants to write to the image.  It must not be zero.
1873  *
1874  *	On success the function returns a positive number.  Then, the caller
1875  *	is allowed to write up to the returned number of bytes to the memory
1876  *	location computed by the data_of() macro.  The number returned
1877  *	may be smaller than @count, but this only happens if the write would
1878  *	cross a page boundary otherwise.
1879  *
1880  *	The function returns 0 to indicate the "end of file" condition,
1881  *	and a negative number is returned on error.  In such cases the
1882  *	structure pointed to by @handle is not updated and should not be used
1883  *	any more.
1884  */
1885 
1886 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1887 {
1888 	static struct chain_allocator ca;
1889 	int error = 0;
1890 
1891 	/* Check if we have already loaded the entire image */
1892 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1893 		return 0;
1894 
1895 	if (handle->offset == 0) {
1896 		if (!buffer)
1897 			/* This makes the buffer be freed by swsusp_free() */
1898 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1899 
1900 		if (!buffer)
1901 			return -ENOMEM;
1902 
1903 		handle->buffer = buffer;
1904 	}
1905 	handle->sync_read = 1;
1906 	if (handle->prev < handle->cur) {
1907 		if (handle->prev == 0) {
1908 			error = load_header(buffer);
1909 			if (error)
1910 				return error;
1911 
1912 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1913 			if (error)
1914 				return error;
1915 
1916 		} else if (handle->prev <= nr_meta_pages) {
1917 			unpack_orig_pfns(buffer, &copy_bm);
1918 			if (handle->prev == nr_meta_pages) {
1919 				error = prepare_image(&orig_bm, &copy_bm);
1920 				if (error)
1921 					return error;
1922 
1923 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1924 				memory_bm_position_reset(&orig_bm);
1925 				restore_pblist = NULL;
1926 				handle->buffer = get_buffer(&orig_bm, &ca);
1927 				handle->sync_read = 0;
1928 				if (!handle->buffer)
1929 					return -ENOMEM;
1930 			}
1931 		} else {
1932 			copy_last_highmem_page();
1933 			handle->buffer = get_buffer(&orig_bm, &ca);
1934 			if (handle->buffer != buffer)
1935 				handle->sync_read = 0;
1936 		}
1937 		handle->prev = handle->cur;
1938 	}
1939 	handle->buf_offset = handle->cur_offset;
1940 	if (handle->cur_offset + count >= PAGE_SIZE) {
1941 		count = PAGE_SIZE - handle->cur_offset;
1942 		handle->cur_offset = 0;
1943 		handle->cur++;
1944 	} else {
1945 		handle->cur_offset += count;
1946 	}
1947 	handle->offset += count;
1948 	return count;
1949 }
1950 
1951 /**
1952  *	snapshot_write_finalize - must be called after the last call to
1953  *	snapshot_write_next() in case the last page in the image happens
1954  *	to be a highmem page and its contents should be stored in the
1955  *	highmem.  Additionally, it releases the memory that will not be
1956  *	used any more.
1957  */
1958 
1959 void snapshot_write_finalize(struct snapshot_handle *handle)
1960 {
1961 	copy_last_highmem_page();
1962 	/* Free only if we have loaded the image entirely */
1963 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1964 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1965 		free_highmem_data();
1966 	}
1967 }
1968 
1969 int snapshot_image_loaded(struct snapshot_handle *handle)
1970 {
1971 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1972 			handle->cur <= nr_meta_pages + nr_copy_pages);
1973 }
1974 
1975 #ifdef CONFIG_HIGHMEM
1976 /* Assumes that @buf is ready and points to a "safe" page */
1977 static inline void
1978 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1979 {
1980 	void *kaddr1, *kaddr2;
1981 
1982 	kaddr1 = kmap_atomic(p1, KM_USER0);
1983 	kaddr2 = kmap_atomic(p2, KM_USER1);
1984 	memcpy(buf, kaddr1, PAGE_SIZE);
1985 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1986 	memcpy(kaddr2, buf, PAGE_SIZE);
1987 	kunmap_atomic(kaddr1, KM_USER0);
1988 	kunmap_atomic(kaddr2, KM_USER1);
1989 }
1990 
1991 /**
1992  *	restore_highmem - for each highmem page that was allocated before
1993  *	the suspend and included in the suspend image, and also has been
1994  *	allocated by the "resume" kernel swap its current (ie. "before
1995  *	resume") contents with the previous (ie. "before suspend") one.
1996  *
1997  *	If the resume eventually fails, we can call this function once
1998  *	again and restore the "before resume" highmem state.
1999  */
2000 
2001 int restore_highmem(void)
2002 {
2003 	struct highmem_pbe *pbe = highmem_pblist;
2004 	void *buf;
2005 
2006 	if (!pbe)
2007 		return 0;
2008 
2009 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2010 	if (!buf)
2011 		return -ENOMEM;
2012 
2013 	while (pbe) {
2014 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2015 		pbe = pbe->next;
2016 	}
2017 	free_image_page(buf, PG_UNSAFE_CLEAR);
2018 	return 0;
2019 }
2020 #endif /* CONFIG_HIGHMEM */
2021