xref: /openbmc/linux/kernel/power/snapshot.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
78 
79 
80 /*
81  * The calls to set_direct_map_*() should not fail because remapping a page
82  * here means that we only update protection bits in an existing PTE.
83  * It is still worth to have a warning here if something changes and this
84  * will no longer be the case.
85  */
86 static inline void hibernate_map_page(struct page *page)
87 {
88 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 		int ret = set_direct_map_default_noflush(page);
90 
91 		if (ret)
92 			pr_warn_once("Failed to remap page\n");
93 	} else {
94 		debug_pagealloc_map_pages(page, 1);
95 	}
96 }
97 
98 static inline void hibernate_unmap_page(struct page *page)
99 {
100 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 		unsigned long addr = (unsigned long)page_address(page);
102 		int ret  = set_direct_map_invalid_noflush(page);
103 
104 		if (ret)
105 			pr_warn_once("Failed to remap page\n");
106 
107 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 	} else {
109 		debug_pagealloc_unmap_pages(page, 1);
110 	}
111 }
112 
113 static int swsusp_page_is_free(struct page *);
114 static void swsusp_set_page_forbidden(struct page *);
115 static void swsusp_unset_page_forbidden(struct page *);
116 
117 /*
118  * Number of bytes to reserve for memory allocations made by device drivers
119  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120  * cause image creation to fail (tunable via /sys/power/reserved_size).
121  */
122 unsigned long reserved_size;
123 
124 void __init hibernate_reserved_size_init(void)
125 {
126 	reserved_size = SPARE_PAGES * PAGE_SIZE;
127 }
128 
129 /*
130  * Preferred image size in bytes (tunable via /sys/power/image_size).
131  * When it is set to N, swsusp will do its best to ensure the image
132  * size will not exceed N bytes, but if that is impossible, it will
133  * try to create the smallest image possible.
134  */
135 unsigned long image_size;
136 
137 void __init hibernate_image_size_init(void)
138 {
139 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140 }
141 
142 /*
143  * List of PBEs needed for restoring the pages that were allocated before
144  * the suspend and included in the suspend image, but have also been
145  * allocated by the "resume" kernel, so their contents cannot be written
146  * directly to their "original" page frames.
147  */
148 struct pbe *restore_pblist;
149 
150 /* struct linked_page is used to build chains of pages */
151 
152 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
153 
154 struct linked_page {
155 	struct linked_page *next;
156 	char data[LINKED_PAGE_DATA_SIZE];
157 } __packed;
158 
159 /*
160  * List of "safe" pages (ie. pages that were not used by the image kernel
161  * before hibernation) that may be used as temporary storage for image kernel
162  * memory contents.
163  */
164 static struct linked_page *safe_pages_list;
165 
166 /* Pointer to an auxiliary buffer (1 page) */
167 static void *buffer;
168 
169 #define PG_ANY		0
170 #define PG_SAFE		1
171 #define PG_UNSAFE_CLEAR	1
172 #define PG_UNSAFE_KEEP	0
173 
174 static unsigned int allocated_unsafe_pages;
175 
176 /**
177  * get_image_page - Allocate a page for a hibernation image.
178  * @gfp_mask: GFP mask for the allocation.
179  * @safe_needed: Get pages that were not used before hibernation (restore only)
180  *
181  * During image restoration, for storing the PBE list and the image data, we can
182  * only use memory pages that do not conflict with the pages used before
183  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
184  * using allocated_unsafe_pages.
185  *
186  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187  * swsusp_free() can release it.
188  */
189 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190 {
191 	void *res;
192 
193 	res = (void *)get_zeroed_page(gfp_mask);
194 	if (safe_needed)
195 		while (res && swsusp_page_is_free(virt_to_page(res))) {
196 			/* The page is unsafe, mark it for swsusp_free() */
197 			swsusp_set_page_forbidden(virt_to_page(res));
198 			allocated_unsafe_pages++;
199 			res = (void *)get_zeroed_page(gfp_mask);
200 		}
201 	if (res) {
202 		swsusp_set_page_forbidden(virt_to_page(res));
203 		swsusp_set_page_free(virt_to_page(res));
204 	}
205 	return res;
206 }
207 
208 static void *__get_safe_page(gfp_t gfp_mask)
209 {
210 	if (safe_pages_list) {
211 		void *ret = safe_pages_list;
212 
213 		safe_pages_list = safe_pages_list->next;
214 		memset(ret, 0, PAGE_SIZE);
215 		return ret;
216 	}
217 	return get_image_page(gfp_mask, PG_SAFE);
218 }
219 
220 unsigned long get_safe_page(gfp_t gfp_mask)
221 {
222 	return (unsigned long)__get_safe_page(gfp_mask);
223 }
224 
225 static struct page *alloc_image_page(gfp_t gfp_mask)
226 {
227 	struct page *page;
228 
229 	page = alloc_page(gfp_mask);
230 	if (page) {
231 		swsusp_set_page_forbidden(page);
232 		swsusp_set_page_free(page);
233 	}
234 	return page;
235 }
236 
237 static void recycle_safe_page(void *page_address)
238 {
239 	struct linked_page *lp = page_address;
240 
241 	lp->next = safe_pages_list;
242 	safe_pages_list = lp;
243 }
244 
245 /**
246  * free_image_page - Free a page allocated for hibernation image.
247  * @addr: Address of the page to free.
248  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249  *
250  * The page to free should have been allocated by get_image_page() (page flags
251  * set by it are affected).
252  */
253 static inline void free_image_page(void *addr, int clear_nosave_free)
254 {
255 	struct page *page;
256 
257 	BUG_ON(!virt_addr_valid(addr));
258 
259 	page = virt_to_page(addr);
260 
261 	swsusp_unset_page_forbidden(page);
262 	if (clear_nosave_free)
263 		swsusp_unset_page_free(page);
264 
265 	__free_page(page);
266 }
267 
268 static inline void free_list_of_pages(struct linked_page *list,
269 				      int clear_page_nosave)
270 {
271 	while (list) {
272 		struct linked_page *lp = list->next;
273 
274 		free_image_page(list, clear_page_nosave);
275 		list = lp;
276 	}
277 }
278 
279 /*
280  * struct chain_allocator is used for allocating small objects out of
281  * a linked list of pages called 'the chain'.
282  *
283  * The chain grows each time when there is no room for a new object in
284  * the current page.  The allocated objects cannot be freed individually.
285  * It is only possible to free them all at once, by freeing the entire
286  * chain.
287  *
288  * NOTE: The chain allocator may be inefficient if the allocated objects
289  * are not much smaller than PAGE_SIZE.
290  */
291 struct chain_allocator {
292 	struct linked_page *chain;	/* the chain */
293 	unsigned int used_space;	/* total size of objects allocated out
294 					   of the current page */
295 	gfp_t gfp_mask;		/* mask for allocating pages */
296 	int safe_needed;	/* if set, only "safe" pages are allocated */
297 };
298 
299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 		       int safe_needed)
301 {
302 	ca->chain = NULL;
303 	ca->used_space = LINKED_PAGE_DATA_SIZE;
304 	ca->gfp_mask = gfp_mask;
305 	ca->safe_needed = safe_needed;
306 }
307 
308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309 {
310 	void *ret;
311 
312 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 		struct linked_page *lp;
314 
315 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 					get_image_page(ca->gfp_mask, PG_ANY);
317 		if (!lp)
318 			return NULL;
319 
320 		lp->next = ca->chain;
321 		ca->chain = lp;
322 		ca->used_space = 0;
323 	}
324 	ret = ca->chain->data + ca->used_space;
325 	ca->used_space += size;
326 	return ret;
327 }
328 
329 /*
330  * Data types related to memory bitmaps.
331  *
332  * Memory bitmap is a structure consisting of many linked lists of
333  * objects.  The main list's elements are of type struct zone_bitmap
334  * and each of them corresponds to one zone.  For each zone bitmap
335  * object there is a list of objects of type struct bm_block that
336  * represent each blocks of bitmap in which information is stored.
337  *
338  * struct memory_bitmap contains a pointer to the main list of zone
339  * bitmap objects, a struct bm_position used for browsing the bitmap,
340  * and a pointer to the list of pages used for allocating all of the
341  * zone bitmap objects and bitmap block objects.
342  *
343  * NOTE: It has to be possible to lay out the bitmap in memory
344  * using only allocations of order 0.  Additionally, the bitmap is
345  * designed to work with arbitrary number of zones (this is over the
346  * top for now, but let's avoid making unnecessary assumptions ;-).
347  *
348  * struct zone_bitmap contains a pointer to a list of bitmap block
349  * objects and a pointer to the bitmap block object that has been
350  * most recently used for setting bits.  Additionally, it contains the
351  * PFNs that correspond to the start and end of the represented zone.
352  *
353  * struct bm_block contains a pointer to the memory page in which
354  * information is stored (in the form of a block of bitmap)
355  * It also contains the pfns that correspond to the start and end of
356  * the represented memory area.
357  *
358  * The memory bitmap is organized as a radix tree to guarantee fast random
359  * access to the bits. There is one radix tree for each zone (as returned
360  * from create_mem_extents).
361  *
362  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363  * two linked lists for the nodes of the tree, one for the inner nodes and
364  * one for the leave nodes. The linked leave nodes are used for fast linear
365  * access of the memory bitmap.
366  *
367  * The struct rtree_node represents one node of the radix tree.
368  */
369 
370 #define BM_END_OF_MAP	(~0UL)
371 
372 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
373 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
374 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
375 
376 /*
377  * struct rtree_node is a wrapper struct to link the nodes
378  * of the rtree together for easy linear iteration over
379  * bits and easy freeing
380  */
381 struct rtree_node {
382 	struct list_head list;
383 	unsigned long *data;
384 };
385 
386 /*
387  * struct mem_zone_bm_rtree represents a bitmap used for one
388  * populated memory zone.
389  */
390 struct mem_zone_bm_rtree {
391 	struct list_head list;		/* Link Zones together         */
392 	struct list_head nodes;		/* Radix Tree inner nodes      */
393 	struct list_head leaves;	/* Radix Tree leaves           */
394 	unsigned long start_pfn;	/* Zone start page frame       */
395 	unsigned long end_pfn;		/* Zone end page frame + 1     */
396 	struct rtree_node *rtree;	/* Radix Tree Root             */
397 	int levels;			/* Number of Radix Tree Levels */
398 	unsigned int blocks;		/* Number of Bitmap Blocks     */
399 };
400 
401 /* strcut bm_position is used for browsing memory bitmaps */
402 
403 struct bm_position {
404 	struct mem_zone_bm_rtree *zone;
405 	struct rtree_node *node;
406 	unsigned long node_pfn;
407 	int node_bit;
408 };
409 
410 struct memory_bitmap {
411 	struct list_head zones;
412 	struct linked_page *p_list;	/* list of pages used to store zone
413 					   bitmap objects and bitmap block
414 					   objects */
415 	struct bm_position cur;	/* most recently used bit position */
416 };
417 
418 /* Functions that operate on memory bitmaps */
419 
420 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
421 #if BITS_PER_LONG == 32
422 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
423 #else
424 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
425 #endif
426 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427 
428 /**
429  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
430  * @gfp_mask: GFP mask for the allocation.
431  * @safe_needed: Get pages not used before hibernation (restore only)
432  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
433  * @list: Radix Tree node to add.
434  *
435  * This function is used to allocate inner nodes as well as the
436  * leave nodes of the radix tree. It also adds the node to the
437  * corresponding linked list passed in by the *list parameter.
438  */
439 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
440 					   struct chain_allocator *ca,
441 					   struct list_head *list)
442 {
443 	struct rtree_node *node;
444 
445 	node = chain_alloc(ca, sizeof(struct rtree_node));
446 	if (!node)
447 		return NULL;
448 
449 	node->data = get_image_page(gfp_mask, safe_needed);
450 	if (!node->data)
451 		return NULL;
452 
453 	list_add_tail(&node->list, list);
454 
455 	return node;
456 }
457 
458 /**
459  * add_rtree_block - Add a new leave node to the radix tree.
460  *
461  * The leave nodes need to be allocated in order to keep the leaves
462  * linked list in order. This is guaranteed by the zone->blocks
463  * counter.
464  */
465 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
466 			   int safe_needed, struct chain_allocator *ca)
467 {
468 	struct rtree_node *node, *block, **dst;
469 	unsigned int levels_needed, block_nr;
470 	int i;
471 
472 	block_nr = zone->blocks;
473 	levels_needed = 0;
474 
475 	/* How many levels do we need for this block nr? */
476 	while (block_nr) {
477 		levels_needed += 1;
478 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
479 	}
480 
481 	/* Make sure the rtree has enough levels */
482 	for (i = zone->levels; i < levels_needed; i++) {
483 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
484 					&zone->nodes);
485 		if (!node)
486 			return -ENOMEM;
487 
488 		node->data[0] = (unsigned long)zone->rtree;
489 		zone->rtree = node;
490 		zone->levels += 1;
491 	}
492 
493 	/* Allocate new block */
494 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
495 	if (!block)
496 		return -ENOMEM;
497 
498 	/* Now walk the rtree to insert the block */
499 	node = zone->rtree;
500 	dst = &zone->rtree;
501 	block_nr = zone->blocks;
502 	for (i = zone->levels; i > 0; i--) {
503 		int index;
504 
505 		if (!node) {
506 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
507 						&zone->nodes);
508 			if (!node)
509 				return -ENOMEM;
510 			*dst = node;
511 		}
512 
513 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
514 		index &= BM_RTREE_LEVEL_MASK;
515 		dst = (struct rtree_node **)&((*dst)->data[index]);
516 		node = *dst;
517 	}
518 
519 	zone->blocks += 1;
520 	*dst = block;
521 
522 	return 0;
523 }
524 
525 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
526 			       int clear_nosave_free);
527 
528 /**
529  * create_zone_bm_rtree - Create a radix tree for one zone.
530  *
531  * Allocated the mem_zone_bm_rtree structure and initializes it.
532  * This function also allocated and builds the radix tree for the
533  * zone.
534  */
535 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
536 						      int safe_needed,
537 						      struct chain_allocator *ca,
538 						      unsigned long start,
539 						      unsigned long end)
540 {
541 	struct mem_zone_bm_rtree *zone;
542 	unsigned int i, nr_blocks;
543 	unsigned long pages;
544 
545 	pages = end - start;
546 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
547 	if (!zone)
548 		return NULL;
549 
550 	INIT_LIST_HEAD(&zone->nodes);
551 	INIT_LIST_HEAD(&zone->leaves);
552 	zone->start_pfn = start;
553 	zone->end_pfn = end;
554 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
555 
556 	for (i = 0; i < nr_blocks; i++) {
557 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
558 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
559 			return NULL;
560 		}
561 	}
562 
563 	return zone;
564 }
565 
566 /**
567  * free_zone_bm_rtree - Free the memory of the radix tree.
568  *
569  * Free all node pages of the radix tree. The mem_zone_bm_rtree
570  * structure itself is not freed here nor are the rtree_node
571  * structs.
572  */
573 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
574 			       int clear_nosave_free)
575 {
576 	struct rtree_node *node;
577 
578 	list_for_each_entry(node, &zone->nodes, list)
579 		free_image_page(node->data, clear_nosave_free);
580 
581 	list_for_each_entry(node, &zone->leaves, list)
582 		free_image_page(node->data, clear_nosave_free);
583 }
584 
585 static void memory_bm_position_reset(struct memory_bitmap *bm)
586 {
587 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
588 				  list);
589 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
590 				  struct rtree_node, list);
591 	bm->cur.node_pfn = 0;
592 	bm->cur.node_bit = 0;
593 }
594 
595 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
596 
597 struct mem_extent {
598 	struct list_head hook;
599 	unsigned long start;
600 	unsigned long end;
601 };
602 
603 /**
604  * free_mem_extents - Free a list of memory extents.
605  * @list: List of extents to free.
606  */
607 static void free_mem_extents(struct list_head *list)
608 {
609 	struct mem_extent *ext, *aux;
610 
611 	list_for_each_entry_safe(ext, aux, list, hook) {
612 		list_del(&ext->hook);
613 		kfree(ext);
614 	}
615 }
616 
617 /**
618  * create_mem_extents - Create a list of memory extents.
619  * @list: List to put the extents into.
620  * @gfp_mask: Mask to use for memory allocations.
621  *
622  * The extents represent contiguous ranges of PFNs.
623  */
624 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
625 {
626 	struct zone *zone;
627 
628 	INIT_LIST_HEAD(list);
629 
630 	for_each_populated_zone(zone) {
631 		unsigned long zone_start, zone_end;
632 		struct mem_extent *ext, *cur, *aux;
633 
634 		zone_start = zone->zone_start_pfn;
635 		zone_end = zone_end_pfn(zone);
636 
637 		list_for_each_entry(ext, list, hook)
638 			if (zone_start <= ext->end)
639 				break;
640 
641 		if (&ext->hook == list || zone_end < ext->start) {
642 			/* New extent is necessary */
643 			struct mem_extent *new_ext;
644 
645 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
646 			if (!new_ext) {
647 				free_mem_extents(list);
648 				return -ENOMEM;
649 			}
650 			new_ext->start = zone_start;
651 			new_ext->end = zone_end;
652 			list_add_tail(&new_ext->hook, &ext->hook);
653 			continue;
654 		}
655 
656 		/* Merge this zone's range of PFNs with the existing one */
657 		if (zone_start < ext->start)
658 			ext->start = zone_start;
659 		if (zone_end > ext->end)
660 			ext->end = zone_end;
661 
662 		/* More merging may be possible */
663 		cur = ext;
664 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
665 			if (zone_end < cur->start)
666 				break;
667 			if (zone_end < cur->end)
668 				ext->end = cur->end;
669 			list_del(&cur->hook);
670 			kfree(cur);
671 		}
672 	}
673 
674 	return 0;
675 }
676 
677 /**
678  * memory_bm_create - Allocate memory for a memory bitmap.
679  */
680 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
681 			    int safe_needed)
682 {
683 	struct chain_allocator ca;
684 	struct list_head mem_extents;
685 	struct mem_extent *ext;
686 	int error;
687 
688 	chain_init(&ca, gfp_mask, safe_needed);
689 	INIT_LIST_HEAD(&bm->zones);
690 
691 	error = create_mem_extents(&mem_extents, gfp_mask);
692 	if (error)
693 		return error;
694 
695 	list_for_each_entry(ext, &mem_extents, hook) {
696 		struct mem_zone_bm_rtree *zone;
697 
698 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
699 					    ext->start, ext->end);
700 		if (!zone) {
701 			error = -ENOMEM;
702 			goto Error;
703 		}
704 		list_add_tail(&zone->list, &bm->zones);
705 	}
706 
707 	bm->p_list = ca.chain;
708 	memory_bm_position_reset(bm);
709  Exit:
710 	free_mem_extents(&mem_extents);
711 	return error;
712 
713  Error:
714 	bm->p_list = ca.chain;
715 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
716 	goto Exit;
717 }
718 
719 /**
720  * memory_bm_free - Free memory occupied by the memory bitmap.
721  * @bm: Memory bitmap.
722  */
723 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
724 {
725 	struct mem_zone_bm_rtree *zone;
726 
727 	list_for_each_entry(zone, &bm->zones, list)
728 		free_zone_bm_rtree(zone, clear_nosave_free);
729 
730 	free_list_of_pages(bm->p_list, clear_nosave_free);
731 
732 	INIT_LIST_HEAD(&bm->zones);
733 }
734 
735 /**
736  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
737  *
738  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
739  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
740  *
741  * Walk the radix tree to find the page containing the bit that represents @pfn
742  * and return the position of the bit in @addr and @bit_nr.
743  */
744 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
745 			      void **addr, unsigned int *bit_nr)
746 {
747 	struct mem_zone_bm_rtree *curr, *zone;
748 	struct rtree_node *node;
749 	int i, block_nr;
750 
751 	zone = bm->cur.zone;
752 
753 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
754 		goto zone_found;
755 
756 	zone = NULL;
757 
758 	/* Find the right zone */
759 	list_for_each_entry(curr, &bm->zones, list) {
760 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
761 			zone = curr;
762 			break;
763 		}
764 	}
765 
766 	if (!zone)
767 		return -EFAULT;
768 
769 zone_found:
770 	/*
771 	 * We have found the zone. Now walk the radix tree to find the leaf node
772 	 * for our PFN.
773 	 */
774 
775 	/*
776 	 * If the zone we wish to scan is the current zone and the
777 	 * pfn falls into the current node then we do not need to walk
778 	 * the tree.
779 	 */
780 	node = bm->cur.node;
781 	if (zone == bm->cur.zone &&
782 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
783 		goto node_found;
784 
785 	node      = zone->rtree;
786 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
787 
788 	for (i = zone->levels; i > 0; i--) {
789 		int index;
790 
791 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
792 		index &= BM_RTREE_LEVEL_MASK;
793 		BUG_ON(node->data[index] == 0);
794 		node = (struct rtree_node *)node->data[index];
795 	}
796 
797 node_found:
798 	/* Update last position */
799 	bm->cur.zone = zone;
800 	bm->cur.node = node;
801 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
802 
803 	/* Set return values */
804 	*addr = node->data;
805 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
806 
807 	return 0;
808 }
809 
810 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
811 {
812 	void *addr;
813 	unsigned int bit;
814 	int error;
815 
816 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 	BUG_ON(error);
818 	set_bit(bit, addr);
819 }
820 
821 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
822 {
823 	void *addr;
824 	unsigned int bit;
825 	int error;
826 
827 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
828 	if (!error)
829 		set_bit(bit, addr);
830 
831 	return error;
832 }
833 
834 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
835 {
836 	void *addr;
837 	unsigned int bit;
838 	int error;
839 
840 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
841 	BUG_ON(error);
842 	clear_bit(bit, addr);
843 }
844 
845 static void memory_bm_clear_current(struct memory_bitmap *bm)
846 {
847 	int bit;
848 
849 	bit = max(bm->cur.node_bit - 1, 0);
850 	clear_bit(bit, bm->cur.node->data);
851 }
852 
853 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
854 {
855 	void *addr;
856 	unsigned int bit;
857 	int error;
858 
859 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
860 	BUG_ON(error);
861 	return test_bit(bit, addr);
862 }
863 
864 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
865 {
866 	void *addr;
867 	unsigned int bit;
868 
869 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
870 }
871 
872 /*
873  * rtree_next_node - Jump to the next leaf node.
874  *
875  * Set the position to the beginning of the next node in the
876  * memory bitmap. This is either the next node in the current
877  * zone's radix tree or the first node in the radix tree of the
878  * next zone.
879  *
880  * Return true if there is a next node, false otherwise.
881  */
882 static bool rtree_next_node(struct memory_bitmap *bm)
883 {
884 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
885 		bm->cur.node = list_entry(bm->cur.node->list.next,
886 					  struct rtree_node, list);
887 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
888 		bm->cur.node_bit  = 0;
889 		touch_softlockup_watchdog();
890 		return true;
891 	}
892 
893 	/* No more nodes, goto next zone */
894 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
895 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
896 				  struct mem_zone_bm_rtree, list);
897 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
898 					  struct rtree_node, list);
899 		bm->cur.node_pfn = 0;
900 		bm->cur.node_bit = 0;
901 		return true;
902 	}
903 
904 	/* No more zones */
905 	return false;
906 }
907 
908 /**
909  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
910  * @bm: Memory bitmap.
911  *
912  * Starting from the last returned position this function searches for the next
913  * set bit in @bm and returns the PFN represented by it.  If no more bits are
914  * set, BM_END_OF_MAP is returned.
915  *
916  * It is required to run memory_bm_position_reset() before the first call to
917  * this function for the given memory bitmap.
918  */
919 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
920 {
921 	unsigned long bits, pfn, pages;
922 	int bit;
923 
924 	do {
925 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
926 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
927 		bit	  = find_next_bit(bm->cur.node->data, bits,
928 					  bm->cur.node_bit);
929 		if (bit < bits) {
930 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
931 			bm->cur.node_bit = bit + 1;
932 			return pfn;
933 		}
934 	} while (rtree_next_node(bm));
935 
936 	return BM_END_OF_MAP;
937 }
938 
939 /*
940  * This structure represents a range of page frames the contents of which
941  * should not be saved during hibernation.
942  */
943 struct nosave_region {
944 	struct list_head list;
945 	unsigned long start_pfn;
946 	unsigned long end_pfn;
947 };
948 
949 static LIST_HEAD(nosave_regions);
950 
951 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
952 {
953 	struct rtree_node *node;
954 
955 	list_for_each_entry(node, &zone->nodes, list)
956 		recycle_safe_page(node->data);
957 
958 	list_for_each_entry(node, &zone->leaves, list)
959 		recycle_safe_page(node->data);
960 }
961 
962 static void memory_bm_recycle(struct memory_bitmap *bm)
963 {
964 	struct mem_zone_bm_rtree *zone;
965 	struct linked_page *p_list;
966 
967 	list_for_each_entry(zone, &bm->zones, list)
968 		recycle_zone_bm_rtree(zone);
969 
970 	p_list = bm->p_list;
971 	while (p_list) {
972 		struct linked_page *lp = p_list;
973 
974 		p_list = lp->next;
975 		recycle_safe_page(lp);
976 	}
977 }
978 
979 /**
980  * register_nosave_region - Register a region of unsaveable memory.
981  *
982  * Register a range of page frames the contents of which should not be saved
983  * during hibernation (to be used in the early initialization code).
984  */
985 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
986 {
987 	struct nosave_region *region;
988 
989 	if (start_pfn >= end_pfn)
990 		return;
991 
992 	if (!list_empty(&nosave_regions)) {
993 		/* Try to extend the previous region (they should be sorted) */
994 		region = list_entry(nosave_regions.prev,
995 					struct nosave_region, list);
996 		if (region->end_pfn == start_pfn) {
997 			region->end_pfn = end_pfn;
998 			goto Report;
999 		}
1000 	}
1001 	/* This allocation cannot fail */
1002 	region = memblock_alloc(sizeof(struct nosave_region),
1003 				SMP_CACHE_BYTES);
1004 	if (!region)
1005 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1006 		      sizeof(struct nosave_region));
1007 	region->start_pfn = start_pfn;
1008 	region->end_pfn = end_pfn;
1009 	list_add_tail(&region->list, &nosave_regions);
1010  Report:
1011 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012 		(unsigned long long) start_pfn << PAGE_SHIFT,
1013 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014 }
1015 
1016 /*
1017  * Set bits in this map correspond to the page frames the contents of which
1018  * should not be saved during the suspend.
1019  */
1020 static struct memory_bitmap *forbidden_pages_map;
1021 
1022 /* Set bits in this map correspond to free page frames. */
1023 static struct memory_bitmap *free_pages_map;
1024 
1025 /*
1026  * Each page frame allocated for creating the image is marked by setting the
1027  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028  */
1029 
1030 void swsusp_set_page_free(struct page *page)
1031 {
1032 	if (free_pages_map)
1033 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034 }
1035 
1036 static int swsusp_page_is_free(struct page *page)
1037 {
1038 	return free_pages_map ?
1039 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040 }
1041 
1042 void swsusp_unset_page_free(struct page *page)
1043 {
1044 	if (free_pages_map)
1045 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046 }
1047 
1048 static void swsusp_set_page_forbidden(struct page *page)
1049 {
1050 	if (forbidden_pages_map)
1051 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052 }
1053 
1054 int swsusp_page_is_forbidden(struct page *page)
1055 {
1056 	return forbidden_pages_map ?
1057 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058 }
1059 
1060 static void swsusp_unset_page_forbidden(struct page *page)
1061 {
1062 	if (forbidden_pages_map)
1063 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065 
1066 /**
1067  * mark_nosave_pages - Mark pages that should not be saved.
1068  * @bm: Memory bitmap.
1069  *
1070  * Set the bits in @bm that correspond to the page frames the contents of which
1071  * should not be saved.
1072  */
1073 static void mark_nosave_pages(struct memory_bitmap *bm)
1074 {
1075 	struct nosave_region *region;
1076 
1077 	if (list_empty(&nosave_regions))
1078 		return;
1079 
1080 	list_for_each_entry(region, &nosave_regions, list) {
1081 		unsigned long pfn;
1082 
1083 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086 				- 1);
1087 
1088 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089 			if (pfn_valid(pfn)) {
1090 				/*
1091 				 * It is safe to ignore the result of
1092 				 * mem_bm_set_bit_check() here, since we won't
1093 				 * touch the PFNs for which the error is
1094 				 * returned anyway.
1095 				 */
1096 				mem_bm_set_bit_check(bm, pfn);
1097 			}
1098 	}
1099 }
1100 
1101 /**
1102  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103  *
1104  * Create bitmaps needed for marking page frames that should not be saved and
1105  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1106  * only modified if everything goes well, because we don't want the bits to be
1107  * touched before both bitmaps are set up.
1108  */
1109 int create_basic_memory_bitmaps(void)
1110 {
1111 	struct memory_bitmap *bm1, *bm2;
1112 	int error = 0;
1113 
1114 	if (forbidden_pages_map && free_pages_map)
1115 		return 0;
1116 	else
1117 		BUG_ON(forbidden_pages_map || free_pages_map);
1118 
1119 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120 	if (!bm1)
1121 		return -ENOMEM;
1122 
1123 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124 	if (error)
1125 		goto Free_first_object;
1126 
1127 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128 	if (!bm2)
1129 		goto Free_first_bitmap;
1130 
1131 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132 	if (error)
1133 		goto Free_second_object;
1134 
1135 	forbidden_pages_map = bm1;
1136 	free_pages_map = bm2;
1137 	mark_nosave_pages(forbidden_pages_map);
1138 
1139 	pr_debug("Basic memory bitmaps created\n");
1140 
1141 	return 0;
1142 
1143  Free_second_object:
1144 	kfree(bm2);
1145  Free_first_bitmap:
1146 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147  Free_first_object:
1148 	kfree(bm1);
1149 	return -ENOMEM;
1150 }
1151 
1152 /**
1153  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154  *
1155  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1156  * auxiliary pointers are necessary so that the bitmaps themselves are not
1157  * referred to while they are being freed.
1158  */
1159 void free_basic_memory_bitmaps(void)
1160 {
1161 	struct memory_bitmap *bm1, *bm2;
1162 
1163 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164 		return;
1165 
1166 	bm1 = forbidden_pages_map;
1167 	bm2 = free_pages_map;
1168 	forbidden_pages_map = NULL;
1169 	free_pages_map = NULL;
1170 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171 	kfree(bm1);
1172 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173 	kfree(bm2);
1174 
1175 	pr_debug("Basic memory bitmaps freed\n");
1176 }
1177 
1178 static void clear_or_poison_free_page(struct page *page)
1179 {
1180 	if (page_poisoning_enabled_static())
1181 		__kernel_poison_pages(page, 1);
1182 	else if (want_init_on_free())
1183 		clear_highpage(page);
1184 }
1185 
1186 void clear_or_poison_free_pages(void)
1187 {
1188 	struct memory_bitmap *bm = free_pages_map;
1189 	unsigned long pfn;
1190 
1191 	if (WARN_ON(!(free_pages_map)))
1192 		return;
1193 
1194 	if (page_poisoning_enabled() || want_init_on_free()) {
1195 		memory_bm_position_reset(bm);
1196 		pfn = memory_bm_next_pfn(bm);
1197 		while (pfn != BM_END_OF_MAP) {
1198 			if (pfn_valid(pfn))
1199 				clear_or_poison_free_page(pfn_to_page(pfn));
1200 
1201 			pfn = memory_bm_next_pfn(bm);
1202 		}
1203 		memory_bm_position_reset(bm);
1204 		pr_info("free pages cleared after restore\n");
1205 	}
1206 }
1207 
1208 /**
1209  * snapshot_additional_pages - Estimate the number of extra pages needed.
1210  * @zone: Memory zone to carry out the computation for.
1211  *
1212  * Estimate the number of additional pages needed for setting up a hibernation
1213  * image data structures for @zone (usually, the returned value is greater than
1214  * the exact number).
1215  */
1216 unsigned int snapshot_additional_pages(struct zone *zone)
1217 {
1218 	unsigned int rtree, nodes;
1219 
1220 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222 			      LINKED_PAGE_DATA_SIZE);
1223 	while (nodes > 1) {
1224 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225 		rtree += nodes;
1226 	}
1227 
1228 	return 2 * rtree;
1229 }
1230 
1231 #ifdef CONFIG_HIGHMEM
1232 /**
1233  * count_free_highmem_pages - Compute the total number of free highmem pages.
1234  *
1235  * The returned number is system-wide.
1236  */
1237 static unsigned int count_free_highmem_pages(void)
1238 {
1239 	struct zone *zone;
1240 	unsigned int cnt = 0;
1241 
1242 	for_each_populated_zone(zone)
1243 		if (is_highmem(zone))
1244 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1245 
1246 	return cnt;
1247 }
1248 
1249 /**
1250  * saveable_highmem_page - Check if a highmem page is saveable.
1251  *
1252  * Determine whether a highmem page should be included in a hibernation image.
1253  *
1254  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255  * and it isn't part of a free chunk of pages.
1256  */
1257 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1258 {
1259 	struct page *page;
1260 
1261 	if (!pfn_valid(pfn))
1262 		return NULL;
1263 
1264 	page = pfn_to_online_page(pfn);
1265 	if (!page || page_zone(page) != zone)
1266 		return NULL;
1267 
1268 	BUG_ON(!PageHighMem(page));
1269 
1270 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1271 		return NULL;
1272 
1273 	if (PageReserved(page) || PageOffline(page))
1274 		return NULL;
1275 
1276 	if (page_is_guard(page))
1277 		return NULL;
1278 
1279 	return page;
1280 }
1281 
1282 /**
1283  * count_highmem_pages - Compute the total number of saveable highmem pages.
1284  */
1285 static unsigned int count_highmem_pages(void)
1286 {
1287 	struct zone *zone;
1288 	unsigned int n = 0;
1289 
1290 	for_each_populated_zone(zone) {
1291 		unsigned long pfn, max_zone_pfn;
1292 
1293 		if (!is_highmem(zone))
1294 			continue;
1295 
1296 		mark_free_pages(zone);
1297 		max_zone_pfn = zone_end_pfn(zone);
1298 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 			if (saveable_highmem_page(zone, pfn))
1300 				n++;
1301 	}
1302 	return n;
1303 }
1304 #else
1305 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306 {
1307 	return NULL;
1308 }
1309 #endif /* CONFIG_HIGHMEM */
1310 
1311 /**
1312  * saveable_page - Check if the given page is saveable.
1313  *
1314  * Determine whether a non-highmem page should be included in a hibernation
1315  * image.
1316  *
1317  * We should save the page if it isn't Nosave, and is not in the range
1318  * of pages statically defined as 'unsaveable', and it isn't part of
1319  * a free chunk of pages.
1320  */
1321 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1322 {
1323 	struct page *page;
1324 
1325 	if (!pfn_valid(pfn))
1326 		return NULL;
1327 
1328 	page = pfn_to_online_page(pfn);
1329 	if (!page || page_zone(page) != zone)
1330 		return NULL;
1331 
1332 	BUG_ON(PageHighMem(page));
1333 
1334 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1335 		return NULL;
1336 
1337 	if (PageOffline(page))
1338 		return NULL;
1339 
1340 	if (PageReserved(page)
1341 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1342 		return NULL;
1343 
1344 	if (page_is_guard(page))
1345 		return NULL;
1346 
1347 	return page;
1348 }
1349 
1350 /**
1351  * count_data_pages - Compute the total number of saveable non-highmem pages.
1352  */
1353 static unsigned int count_data_pages(void)
1354 {
1355 	struct zone *zone;
1356 	unsigned long pfn, max_zone_pfn;
1357 	unsigned int n = 0;
1358 
1359 	for_each_populated_zone(zone) {
1360 		if (is_highmem(zone))
1361 			continue;
1362 
1363 		mark_free_pages(zone);
1364 		max_zone_pfn = zone_end_pfn(zone);
1365 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366 			if (saveable_page(zone, pfn))
1367 				n++;
1368 	}
1369 	return n;
1370 }
1371 
1372 /*
1373  * This is needed, because copy_page and memcpy are not usable for copying
1374  * task structs.
1375  */
1376 static inline void do_copy_page(long *dst, long *src)
1377 {
1378 	int n;
1379 
1380 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1381 		*dst++ = *src++;
1382 }
1383 
1384 /**
1385  * safe_copy_page - Copy a page in a safe way.
1386  *
1387  * Check if the page we are going to copy is marked as present in the kernel
1388  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390  * always returns 'true'.
1391  */
1392 static void safe_copy_page(void *dst, struct page *s_page)
1393 {
1394 	if (kernel_page_present(s_page)) {
1395 		do_copy_page(dst, page_address(s_page));
1396 	} else {
1397 		hibernate_map_page(s_page);
1398 		do_copy_page(dst, page_address(s_page));
1399 		hibernate_unmap_page(s_page);
1400 	}
1401 }
1402 
1403 #ifdef CONFIG_HIGHMEM
1404 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1405 {
1406 	return is_highmem(zone) ?
1407 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408 }
1409 
1410 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411 {
1412 	struct page *s_page, *d_page;
1413 	void *src, *dst;
1414 
1415 	s_page = pfn_to_page(src_pfn);
1416 	d_page = pfn_to_page(dst_pfn);
1417 	if (PageHighMem(s_page)) {
1418 		src = kmap_atomic(s_page);
1419 		dst = kmap_atomic(d_page);
1420 		do_copy_page(dst, src);
1421 		kunmap_atomic(dst);
1422 		kunmap_atomic(src);
1423 	} else {
1424 		if (PageHighMem(d_page)) {
1425 			/*
1426 			 * The page pointed to by src may contain some kernel
1427 			 * data modified by kmap_atomic()
1428 			 */
1429 			safe_copy_page(buffer, s_page);
1430 			dst = kmap_atomic(d_page);
1431 			copy_page(dst, buffer);
1432 			kunmap_atomic(dst);
1433 		} else {
1434 			safe_copy_page(page_address(d_page), s_page);
1435 		}
1436 	}
1437 }
1438 #else
1439 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1440 
1441 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1442 {
1443 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444 				pfn_to_page(src_pfn));
1445 }
1446 #endif /* CONFIG_HIGHMEM */
1447 
1448 static void copy_data_pages(struct memory_bitmap *copy_bm,
1449 			    struct memory_bitmap *orig_bm)
1450 {
1451 	struct zone *zone;
1452 	unsigned long pfn;
1453 
1454 	for_each_populated_zone(zone) {
1455 		unsigned long max_zone_pfn;
1456 
1457 		mark_free_pages(zone);
1458 		max_zone_pfn = zone_end_pfn(zone);
1459 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 			if (page_is_saveable(zone, pfn))
1461 				memory_bm_set_bit(orig_bm, pfn);
1462 	}
1463 	memory_bm_position_reset(orig_bm);
1464 	memory_bm_position_reset(copy_bm);
1465 	for(;;) {
1466 		pfn = memory_bm_next_pfn(orig_bm);
1467 		if (unlikely(pfn == BM_END_OF_MAP))
1468 			break;
1469 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470 	}
1471 }
1472 
1473 /* Total number of image pages */
1474 static unsigned int nr_copy_pages;
1475 /* Number of pages needed for saving the original pfns of the image pages */
1476 static unsigned int nr_meta_pages;
1477 /*
1478  * Numbers of normal and highmem page frames allocated for hibernation image
1479  * before suspending devices.
1480  */
1481 static unsigned int alloc_normal, alloc_highmem;
1482 /*
1483  * Memory bitmap used for marking saveable pages (during hibernation) or
1484  * hibernation image pages (during restore)
1485  */
1486 static struct memory_bitmap orig_bm;
1487 /*
1488  * Memory bitmap used during hibernation for marking allocated page frames that
1489  * will contain copies of saveable pages.  During restore it is initially used
1490  * for marking hibernation image pages, but then the set bits from it are
1491  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1492  * used for marking "safe" highmem pages, but it has to be reinitialized for
1493  * this purpose.
1494  */
1495 static struct memory_bitmap copy_bm;
1496 
1497 /**
1498  * swsusp_free - Free pages allocated for hibernation image.
1499  *
1500  * Image pages are allocated before snapshot creation, so they need to be
1501  * released after resume.
1502  */
1503 void swsusp_free(void)
1504 {
1505 	unsigned long fb_pfn, fr_pfn;
1506 
1507 	if (!forbidden_pages_map || !free_pages_map)
1508 		goto out;
1509 
1510 	memory_bm_position_reset(forbidden_pages_map);
1511 	memory_bm_position_reset(free_pages_map);
1512 
1513 loop:
1514 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1515 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516 
1517 	/*
1518 	 * Find the next bit set in both bitmaps. This is guaranteed to
1519 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520 	 */
1521 	do {
1522 		if (fb_pfn < fr_pfn)
1523 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524 		if (fr_pfn < fb_pfn)
1525 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1526 	} while (fb_pfn != fr_pfn);
1527 
1528 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529 		struct page *page = pfn_to_page(fr_pfn);
1530 
1531 		memory_bm_clear_current(forbidden_pages_map);
1532 		memory_bm_clear_current(free_pages_map);
1533 		hibernate_restore_unprotect_page(page_address(page));
1534 		__free_page(page);
1535 		goto loop;
1536 	}
1537 
1538 out:
1539 	nr_copy_pages = 0;
1540 	nr_meta_pages = 0;
1541 	restore_pblist = NULL;
1542 	buffer = NULL;
1543 	alloc_normal = 0;
1544 	alloc_highmem = 0;
1545 	hibernate_restore_protection_end();
1546 }
1547 
1548 /* Helper functions used for the shrinking of memory. */
1549 
1550 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1551 
1552 /**
1553  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1554  * @nr_pages: Number of page frames to allocate.
1555  * @mask: GFP flags to use for the allocation.
1556  *
1557  * Return value: Number of page frames actually allocated
1558  */
1559 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560 {
1561 	unsigned long nr_alloc = 0;
1562 
1563 	while (nr_pages > 0) {
1564 		struct page *page;
1565 
1566 		page = alloc_image_page(mask);
1567 		if (!page)
1568 			break;
1569 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1570 		if (PageHighMem(page))
1571 			alloc_highmem++;
1572 		else
1573 			alloc_normal++;
1574 		nr_pages--;
1575 		nr_alloc++;
1576 	}
1577 
1578 	return nr_alloc;
1579 }
1580 
1581 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582 					      unsigned long avail_normal)
1583 {
1584 	unsigned long alloc;
1585 
1586 	if (avail_normal <= alloc_normal)
1587 		return 0;
1588 
1589 	alloc = avail_normal - alloc_normal;
1590 	if (nr_pages < alloc)
1591 		alloc = nr_pages;
1592 
1593 	return preallocate_image_pages(alloc, GFP_IMAGE);
1594 }
1595 
1596 #ifdef CONFIG_HIGHMEM
1597 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598 {
1599 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600 }
1601 
1602 /**
1603  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1604  */
1605 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606 {
1607 	return div64_u64(x * multiplier, base);
1608 }
1609 
1610 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1611 						  unsigned long highmem,
1612 						  unsigned long total)
1613 {
1614 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1615 
1616 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1617 }
1618 #else /* CONFIG_HIGHMEM */
1619 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620 {
1621 	return 0;
1622 }
1623 
1624 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1625 							 unsigned long highmem,
1626 							 unsigned long total)
1627 {
1628 	return 0;
1629 }
1630 #endif /* CONFIG_HIGHMEM */
1631 
1632 /**
1633  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1634  */
1635 static unsigned long free_unnecessary_pages(void)
1636 {
1637 	unsigned long save, to_free_normal, to_free_highmem, free;
1638 
1639 	save = count_data_pages();
1640 	if (alloc_normal >= save) {
1641 		to_free_normal = alloc_normal - save;
1642 		save = 0;
1643 	} else {
1644 		to_free_normal = 0;
1645 		save -= alloc_normal;
1646 	}
1647 	save += count_highmem_pages();
1648 	if (alloc_highmem >= save) {
1649 		to_free_highmem = alloc_highmem - save;
1650 	} else {
1651 		to_free_highmem = 0;
1652 		save -= alloc_highmem;
1653 		if (to_free_normal > save)
1654 			to_free_normal -= save;
1655 		else
1656 			to_free_normal = 0;
1657 	}
1658 	free = to_free_normal + to_free_highmem;
1659 
1660 	memory_bm_position_reset(&copy_bm);
1661 
1662 	while (to_free_normal > 0 || to_free_highmem > 0) {
1663 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1664 		struct page *page = pfn_to_page(pfn);
1665 
1666 		if (PageHighMem(page)) {
1667 			if (!to_free_highmem)
1668 				continue;
1669 			to_free_highmem--;
1670 			alloc_highmem--;
1671 		} else {
1672 			if (!to_free_normal)
1673 				continue;
1674 			to_free_normal--;
1675 			alloc_normal--;
1676 		}
1677 		memory_bm_clear_bit(&copy_bm, pfn);
1678 		swsusp_unset_page_forbidden(page);
1679 		swsusp_unset_page_free(page);
1680 		__free_page(page);
1681 	}
1682 
1683 	return free;
1684 }
1685 
1686 /**
1687  * minimum_image_size - Estimate the minimum acceptable size of an image.
1688  * @saveable: Number of saveable pages in the system.
1689  *
1690  * We want to avoid attempting to free too much memory too hard, so estimate the
1691  * minimum acceptable size of a hibernation image to use as the lower limit for
1692  * preallocating memory.
1693  *
1694  * We assume that the minimum image size should be proportional to
1695  *
1696  * [number of saveable pages] - [number of pages that can be freed in theory]
1697  *
1698  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1699  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1700  */
1701 static unsigned long minimum_image_size(unsigned long saveable)
1702 {
1703 	unsigned long size;
1704 
1705 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1706 		+ global_node_page_state(NR_ACTIVE_ANON)
1707 		+ global_node_page_state(NR_INACTIVE_ANON)
1708 		+ global_node_page_state(NR_ACTIVE_FILE)
1709 		+ global_node_page_state(NR_INACTIVE_FILE);
1710 
1711 	return saveable <= size ? 0 : saveable - size;
1712 }
1713 
1714 /**
1715  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1716  *
1717  * To create a hibernation image it is necessary to make a copy of every page
1718  * frame in use.  We also need a number of page frames to be free during
1719  * hibernation for allocations made while saving the image and for device
1720  * drivers, in case they need to allocate memory from their hibernation
1721  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1722  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1723  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1724  * total number of available page frames and allocate at least
1725  *
1726  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1728  *
1729  * of them, which corresponds to the maximum size of a hibernation image.
1730  *
1731  * If image_size is set below the number following from the above formula,
1732  * the preallocation of memory is continued until the total number of saveable
1733  * pages in the system is below the requested image size or the minimum
1734  * acceptable image size returned by minimum_image_size(), whichever is greater.
1735  */
1736 int hibernate_preallocate_memory(void)
1737 {
1738 	struct zone *zone;
1739 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1740 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1741 	ktime_t start, stop;
1742 	int error;
1743 
1744 	pr_info("Preallocating image memory\n");
1745 	start = ktime_get();
1746 
1747 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1748 	if (error) {
1749 		pr_err("Cannot allocate original bitmap\n");
1750 		goto err_out;
1751 	}
1752 
1753 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1754 	if (error) {
1755 		pr_err("Cannot allocate copy bitmap\n");
1756 		goto err_out;
1757 	}
1758 
1759 	alloc_normal = 0;
1760 	alloc_highmem = 0;
1761 
1762 	/* Count the number of saveable data pages. */
1763 	save_highmem = count_highmem_pages();
1764 	saveable = count_data_pages();
1765 
1766 	/*
1767 	 * Compute the total number of page frames we can use (count) and the
1768 	 * number of pages needed for image metadata (size).
1769 	 */
1770 	count = saveable;
1771 	saveable += save_highmem;
1772 	highmem = save_highmem;
1773 	size = 0;
1774 	for_each_populated_zone(zone) {
1775 		size += snapshot_additional_pages(zone);
1776 		if (is_highmem(zone))
1777 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1778 		else
1779 			count += zone_page_state(zone, NR_FREE_PAGES);
1780 	}
1781 	avail_normal = count;
1782 	count += highmem;
1783 	count -= totalreserve_pages;
1784 
1785 	/* Compute the maximum number of saveable pages to leave in memory. */
1786 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1787 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1788 	/* Compute the desired number of image pages specified by image_size. */
1789 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790 	if (size > max_size)
1791 		size = max_size;
1792 	/*
1793 	 * If the desired number of image pages is at least as large as the
1794 	 * current number of saveable pages in memory, allocate page frames for
1795 	 * the image and we're done.
1796 	 */
1797 	if (size >= saveable) {
1798 		pages = preallocate_image_highmem(save_highmem);
1799 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1800 		goto out;
1801 	}
1802 
1803 	/* Estimate the minimum size of the image. */
1804 	pages = minimum_image_size(saveable);
1805 	/*
1806 	 * To avoid excessive pressure on the normal zone, leave room in it to
1807 	 * accommodate an image of the minimum size (unless it's already too
1808 	 * small, in which case don't preallocate pages from it at all).
1809 	 */
1810 	if (avail_normal > pages)
1811 		avail_normal -= pages;
1812 	else
1813 		avail_normal = 0;
1814 	if (size < pages)
1815 		size = min_t(unsigned long, pages, max_size);
1816 
1817 	/*
1818 	 * Let the memory management subsystem know that we're going to need a
1819 	 * large number of page frames to allocate and make it free some memory.
1820 	 * NOTE: If this is not done, performance will be hurt badly in some
1821 	 * test cases.
1822 	 */
1823 	shrink_all_memory(saveable - size);
1824 
1825 	/*
1826 	 * The number of saveable pages in memory was too high, so apply some
1827 	 * pressure to decrease it.  First, make room for the largest possible
1828 	 * image and fail if that doesn't work.  Next, try to decrease the size
1829 	 * of the image as much as indicated by 'size' using allocations from
1830 	 * highmem and non-highmem zones separately.
1831 	 */
1832 	pages_highmem = preallocate_image_highmem(highmem / 2);
1833 	alloc = count - max_size;
1834 	if (alloc > pages_highmem)
1835 		alloc -= pages_highmem;
1836 	else
1837 		alloc = 0;
1838 	pages = preallocate_image_memory(alloc, avail_normal);
1839 	if (pages < alloc) {
1840 		/* We have exhausted non-highmem pages, try highmem. */
1841 		alloc -= pages;
1842 		pages += pages_highmem;
1843 		pages_highmem = preallocate_image_highmem(alloc);
1844 		if (pages_highmem < alloc) {
1845 			pr_err("Image allocation is %lu pages short\n",
1846 				alloc - pages_highmem);
1847 			goto err_out;
1848 		}
1849 		pages += pages_highmem;
1850 		/*
1851 		 * size is the desired number of saveable pages to leave in
1852 		 * memory, so try to preallocate (all memory - size) pages.
1853 		 */
1854 		alloc = (count - pages) - size;
1855 		pages += preallocate_image_highmem(alloc);
1856 	} else {
1857 		/*
1858 		 * There are approximately max_size saveable pages at this point
1859 		 * and we want to reduce this number down to size.
1860 		 */
1861 		alloc = max_size - size;
1862 		size = preallocate_highmem_fraction(alloc, highmem, count);
1863 		pages_highmem += size;
1864 		alloc -= size;
1865 		size = preallocate_image_memory(alloc, avail_normal);
1866 		pages_highmem += preallocate_image_highmem(alloc - size);
1867 		pages += pages_highmem + size;
1868 	}
1869 
1870 	/*
1871 	 * We only need as many page frames for the image as there are saveable
1872 	 * pages in memory, but we have allocated more.  Release the excessive
1873 	 * ones now.
1874 	 */
1875 	pages -= free_unnecessary_pages();
1876 
1877  out:
1878 	stop = ktime_get();
1879 	pr_info("Allocated %lu pages for snapshot\n", pages);
1880 	swsusp_show_speed(start, stop, pages, "Allocated");
1881 
1882 	return 0;
1883 
1884  err_out:
1885 	swsusp_free();
1886 	return -ENOMEM;
1887 }
1888 
1889 #ifdef CONFIG_HIGHMEM
1890 /**
1891  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892  *
1893  * Compute the number of non-highmem pages that will be necessary for creating
1894  * copies of highmem pages.
1895  */
1896 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897 {
1898 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1899 
1900 	if (free_highmem >= nr_highmem)
1901 		nr_highmem = 0;
1902 	else
1903 		nr_highmem -= free_highmem;
1904 
1905 	return nr_highmem;
1906 }
1907 #else
1908 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1909 #endif /* CONFIG_HIGHMEM */
1910 
1911 /**
1912  * enough_free_mem - Check if there is enough free memory for the image.
1913  */
1914 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1915 {
1916 	struct zone *zone;
1917 	unsigned int free = alloc_normal;
1918 
1919 	for_each_populated_zone(zone)
1920 		if (!is_highmem(zone))
1921 			free += zone_page_state(zone, NR_FREE_PAGES);
1922 
1923 	nr_pages += count_pages_for_highmem(nr_highmem);
1924 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925 		 nr_pages, PAGES_FOR_IO, free);
1926 
1927 	return free > nr_pages + PAGES_FOR_IO;
1928 }
1929 
1930 #ifdef CONFIG_HIGHMEM
1931 /**
1932  * get_highmem_buffer - Allocate a buffer for highmem pages.
1933  *
1934  * If there are some highmem pages in the hibernation image, we may need a
1935  * buffer to copy them and/or load their data.
1936  */
1937 static inline int get_highmem_buffer(int safe_needed)
1938 {
1939 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1940 	return buffer ? 0 : -ENOMEM;
1941 }
1942 
1943 /**
1944  * alloc_highmem_pages - Allocate some highmem pages for the image.
1945  *
1946  * Try to allocate as many pages as needed, but if the number of free highmem
1947  * pages is less than that, allocate them all.
1948  */
1949 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950 					       unsigned int nr_highmem)
1951 {
1952 	unsigned int to_alloc = count_free_highmem_pages();
1953 
1954 	if (to_alloc > nr_highmem)
1955 		to_alloc = nr_highmem;
1956 
1957 	nr_highmem -= to_alloc;
1958 	while (to_alloc-- > 0) {
1959 		struct page *page;
1960 
1961 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1962 		memory_bm_set_bit(bm, page_to_pfn(page));
1963 	}
1964 	return nr_highmem;
1965 }
1966 #else
1967 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968 
1969 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970 					       unsigned int n) { return 0; }
1971 #endif /* CONFIG_HIGHMEM */
1972 
1973 /**
1974  * swsusp_alloc - Allocate memory for hibernation image.
1975  *
1976  * We first try to allocate as many highmem pages as there are
1977  * saveable highmem pages in the system.  If that fails, we allocate
1978  * non-highmem pages for the copies of the remaining highmem ones.
1979  *
1980  * In this approach it is likely that the copies of highmem pages will
1981  * also be located in the high memory, because of the way in which
1982  * copy_data_pages() works.
1983  */
1984 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1985 			unsigned int nr_pages, unsigned int nr_highmem)
1986 {
1987 	if (nr_highmem > 0) {
1988 		if (get_highmem_buffer(PG_ANY))
1989 			goto err_out;
1990 		if (nr_highmem > alloc_highmem) {
1991 			nr_highmem -= alloc_highmem;
1992 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993 		}
1994 	}
1995 	if (nr_pages > alloc_normal) {
1996 		nr_pages -= alloc_normal;
1997 		while (nr_pages-- > 0) {
1998 			struct page *page;
1999 
2000 			page = alloc_image_page(GFP_ATOMIC);
2001 			if (!page)
2002 				goto err_out;
2003 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004 		}
2005 	}
2006 
2007 	return 0;
2008 
2009  err_out:
2010 	swsusp_free();
2011 	return -ENOMEM;
2012 }
2013 
2014 asmlinkage __visible int swsusp_save(void)
2015 {
2016 	unsigned int nr_pages, nr_highmem;
2017 
2018 	pr_info("Creating image:\n");
2019 
2020 	drain_local_pages(NULL);
2021 	nr_pages = count_data_pages();
2022 	nr_highmem = count_highmem_pages();
2023 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2024 
2025 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2026 		pr_err("Not enough free memory\n");
2027 		return -ENOMEM;
2028 	}
2029 
2030 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2031 		pr_err("Memory allocation failed\n");
2032 		return -ENOMEM;
2033 	}
2034 
2035 	/*
2036 	 * During allocating of suspend pagedir, new cold pages may appear.
2037 	 * Kill them.
2038 	 */
2039 	drain_local_pages(NULL);
2040 	copy_data_pages(&copy_bm, &orig_bm);
2041 
2042 	/*
2043 	 * End of critical section. From now on, we can write to memory,
2044 	 * but we should not touch disk. This specially means we must _not_
2045 	 * touch swap space! Except we must write out our image of course.
2046 	 */
2047 
2048 	nr_pages += nr_highmem;
2049 	nr_copy_pages = nr_pages;
2050 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2051 
2052 	pr_info("Image created (%d pages copied)\n", nr_pages);
2053 
2054 	return 0;
2055 }
2056 
2057 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2058 static int init_header_complete(struct swsusp_info *info)
2059 {
2060 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2061 	info->version_code = LINUX_VERSION_CODE;
2062 	return 0;
2063 }
2064 
2065 static const char *check_image_kernel(struct swsusp_info *info)
2066 {
2067 	if (info->version_code != LINUX_VERSION_CODE)
2068 		return "kernel version";
2069 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070 		return "system type";
2071 	if (strcmp(info->uts.release,init_utsname()->release))
2072 		return "kernel release";
2073 	if (strcmp(info->uts.version,init_utsname()->version))
2074 		return "version";
2075 	if (strcmp(info->uts.machine,init_utsname()->machine))
2076 		return "machine";
2077 	return NULL;
2078 }
2079 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080 
2081 unsigned long snapshot_get_image_size(void)
2082 {
2083 	return nr_copy_pages + nr_meta_pages + 1;
2084 }
2085 
2086 static int init_header(struct swsusp_info *info)
2087 {
2088 	memset(info, 0, sizeof(struct swsusp_info));
2089 	info->num_physpages = get_num_physpages();
2090 	info->image_pages = nr_copy_pages;
2091 	info->pages = snapshot_get_image_size();
2092 	info->size = info->pages;
2093 	info->size <<= PAGE_SHIFT;
2094 	return init_header_complete(info);
2095 }
2096 
2097 /**
2098  * pack_pfns - Prepare PFNs for saving.
2099  * @bm: Memory bitmap.
2100  * @buf: Memory buffer to store the PFNs in.
2101  *
2102  * PFNs corresponding to set bits in @bm are stored in the area of memory
2103  * pointed to by @buf (1 page at a time).
2104  */
2105 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2106 {
2107 	int j;
2108 
2109 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2110 		buf[j] = memory_bm_next_pfn(bm);
2111 		if (unlikely(buf[j] == BM_END_OF_MAP))
2112 			break;
2113 	}
2114 }
2115 
2116 /**
2117  * snapshot_read_next - Get the address to read the next image page from.
2118  * @handle: Snapshot handle to be used for the reading.
2119  *
2120  * On the first call, @handle should point to a zeroed snapshot_handle
2121  * structure.  The structure gets populated then and a pointer to it should be
2122  * passed to this function every next time.
2123  *
2124  * On success, the function returns a positive number.  Then, the caller
2125  * is allowed to read up to the returned number of bytes from the memory
2126  * location computed by the data_of() macro.
2127  *
2128  * The function returns 0 to indicate the end of the data stream condition,
2129  * and negative numbers are returned on errors.  If that happens, the structure
2130  * pointed to by @handle is not updated and should not be used any more.
2131  */
2132 int snapshot_read_next(struct snapshot_handle *handle)
2133 {
2134 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2135 		return 0;
2136 
2137 	if (!buffer) {
2138 		/* This makes the buffer be freed by swsusp_free() */
2139 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2140 		if (!buffer)
2141 			return -ENOMEM;
2142 	}
2143 	if (!handle->cur) {
2144 		int error;
2145 
2146 		error = init_header((struct swsusp_info *)buffer);
2147 		if (error)
2148 			return error;
2149 		handle->buffer = buffer;
2150 		memory_bm_position_reset(&orig_bm);
2151 		memory_bm_position_reset(&copy_bm);
2152 	} else if (handle->cur <= nr_meta_pages) {
2153 		clear_page(buffer);
2154 		pack_pfns(buffer, &orig_bm);
2155 	} else {
2156 		struct page *page;
2157 
2158 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2159 		if (PageHighMem(page)) {
2160 			/*
2161 			 * Highmem pages are copied to the buffer,
2162 			 * because we can't return with a kmapped
2163 			 * highmem page (we may not be called again).
2164 			 */
2165 			void *kaddr;
2166 
2167 			kaddr = kmap_atomic(page);
2168 			copy_page(buffer, kaddr);
2169 			kunmap_atomic(kaddr);
2170 			handle->buffer = buffer;
2171 		} else {
2172 			handle->buffer = page_address(page);
2173 		}
2174 	}
2175 	handle->cur++;
2176 	return PAGE_SIZE;
2177 }
2178 
2179 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180 				    struct memory_bitmap *src)
2181 {
2182 	unsigned long pfn;
2183 
2184 	memory_bm_position_reset(src);
2185 	pfn = memory_bm_next_pfn(src);
2186 	while (pfn != BM_END_OF_MAP) {
2187 		memory_bm_set_bit(dst, pfn);
2188 		pfn = memory_bm_next_pfn(src);
2189 	}
2190 }
2191 
2192 /**
2193  * mark_unsafe_pages - Mark pages that were used before hibernation.
2194  *
2195  * Mark the pages that cannot be used for storing the image during restoration,
2196  * because they conflict with the pages that had been used before hibernation.
2197  */
2198 static void mark_unsafe_pages(struct memory_bitmap *bm)
2199 {
2200 	unsigned long pfn;
2201 
2202 	/* Clear the "free"/"unsafe" bit for all PFNs */
2203 	memory_bm_position_reset(free_pages_map);
2204 	pfn = memory_bm_next_pfn(free_pages_map);
2205 	while (pfn != BM_END_OF_MAP) {
2206 		memory_bm_clear_current(free_pages_map);
2207 		pfn = memory_bm_next_pfn(free_pages_map);
2208 	}
2209 
2210 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211 	duplicate_memory_bitmap(free_pages_map, bm);
2212 
2213 	allocated_unsafe_pages = 0;
2214 }
2215 
2216 static int check_header(struct swsusp_info *info)
2217 {
2218 	const char *reason;
2219 
2220 	reason = check_image_kernel(info);
2221 	if (!reason && info->num_physpages != get_num_physpages())
2222 		reason = "memory size";
2223 	if (reason) {
2224 		pr_err("Image mismatch: %s\n", reason);
2225 		return -EPERM;
2226 	}
2227 	return 0;
2228 }
2229 
2230 /**
2231  * load_header - Check the image header and copy the data from it.
2232  */
2233 static int load_header(struct swsusp_info *info)
2234 {
2235 	int error;
2236 
2237 	restore_pblist = NULL;
2238 	error = check_header(info);
2239 	if (!error) {
2240 		nr_copy_pages = info->image_pages;
2241 		nr_meta_pages = info->pages - info->image_pages - 1;
2242 	}
2243 	return error;
2244 }
2245 
2246 /**
2247  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248  * @bm: Memory bitmap.
2249  * @buf: Area of memory containing the PFNs.
2250  *
2251  * For each element of the array pointed to by @buf (1 page at a time), set the
2252  * corresponding bit in @bm.
2253  */
2254 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2255 {
2256 	int j;
2257 
2258 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259 		if (unlikely(buf[j] == BM_END_OF_MAP))
2260 			break;
2261 
2262 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
2263 			memory_bm_set_bit(bm, buf[j]);
2264 		} else {
2265 			if (!pfn_valid(buf[j]))
2266 				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2267 				       (unsigned long long)PFN_PHYS(buf[j]));
2268 			return -EFAULT;
2269 		}
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 #ifdef CONFIG_HIGHMEM
2276 /*
2277  * struct highmem_pbe is used for creating the list of highmem pages that
2278  * should be restored atomically during the resume from disk, because the page
2279  * frames they have occupied before the suspend are in use.
2280  */
2281 struct highmem_pbe {
2282 	struct page *copy_page;	/* data is here now */
2283 	struct page *orig_page;	/* data was here before the suspend */
2284 	struct highmem_pbe *next;
2285 };
2286 
2287 /*
2288  * List of highmem PBEs needed for restoring the highmem pages that were
2289  * allocated before the suspend and included in the suspend image, but have
2290  * also been allocated by the "resume" kernel, so their contents cannot be
2291  * written directly to their "original" page frames.
2292  */
2293 static struct highmem_pbe *highmem_pblist;
2294 
2295 /**
2296  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2297  * @bm: Memory bitmap.
2298  *
2299  * The bits in @bm that correspond to image pages are assumed to be set.
2300  */
2301 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2302 {
2303 	unsigned long pfn;
2304 	unsigned int cnt = 0;
2305 
2306 	memory_bm_position_reset(bm);
2307 	pfn = memory_bm_next_pfn(bm);
2308 	while (pfn != BM_END_OF_MAP) {
2309 		if (PageHighMem(pfn_to_page(pfn)))
2310 			cnt++;
2311 
2312 		pfn = memory_bm_next_pfn(bm);
2313 	}
2314 	return cnt;
2315 }
2316 
2317 static unsigned int safe_highmem_pages;
2318 
2319 static struct memory_bitmap *safe_highmem_bm;
2320 
2321 /**
2322  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2323  * @bm: Pointer to an uninitialized memory bitmap structure.
2324  * @nr_highmem_p: Pointer to the number of highmem image pages.
2325  *
2326  * Try to allocate as many highmem pages as there are highmem image pages
2327  * (@nr_highmem_p points to the variable containing the number of highmem image
2328  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2329  * hibernation image is restored entirely) have the corresponding bits set in
2330  * @bm (it must be uninitialized).
2331  *
2332  * NOTE: This function should not be called if there are no highmem image pages.
2333  */
2334 static int prepare_highmem_image(struct memory_bitmap *bm,
2335 				 unsigned int *nr_highmem_p)
2336 {
2337 	unsigned int to_alloc;
2338 
2339 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2340 		return -ENOMEM;
2341 
2342 	if (get_highmem_buffer(PG_SAFE))
2343 		return -ENOMEM;
2344 
2345 	to_alloc = count_free_highmem_pages();
2346 	if (to_alloc > *nr_highmem_p)
2347 		to_alloc = *nr_highmem_p;
2348 	else
2349 		*nr_highmem_p = to_alloc;
2350 
2351 	safe_highmem_pages = 0;
2352 	while (to_alloc-- > 0) {
2353 		struct page *page;
2354 
2355 		page = alloc_page(__GFP_HIGHMEM);
2356 		if (!swsusp_page_is_free(page)) {
2357 			/* The page is "safe", set its bit the bitmap */
2358 			memory_bm_set_bit(bm, page_to_pfn(page));
2359 			safe_highmem_pages++;
2360 		}
2361 		/* Mark the page as allocated */
2362 		swsusp_set_page_forbidden(page);
2363 		swsusp_set_page_free(page);
2364 	}
2365 	memory_bm_position_reset(bm);
2366 	safe_highmem_bm = bm;
2367 	return 0;
2368 }
2369 
2370 static struct page *last_highmem_page;
2371 
2372 /**
2373  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2374  *
2375  * For a given highmem image page get a buffer that suspend_write_next() should
2376  * return to its caller to write to.
2377  *
2378  * If the page is to be saved to its "original" page frame or a copy of
2379  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2380  * the copy of the page is to be made in normal memory, so the address of
2381  * the copy is returned.
2382  *
2383  * If @buffer is returned, the caller of suspend_write_next() will write
2384  * the page's contents to @buffer, so they will have to be copied to the
2385  * right location on the next call to suspend_write_next() and it is done
2386  * with the help of copy_last_highmem_page().  For this purpose, if
2387  * @buffer is returned, @last_highmem_page is set to the page to which
2388  * the data will have to be copied from @buffer.
2389  */
2390 static void *get_highmem_page_buffer(struct page *page,
2391 				     struct chain_allocator *ca)
2392 {
2393 	struct highmem_pbe *pbe;
2394 	void *kaddr;
2395 
2396 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2397 		/*
2398 		 * We have allocated the "original" page frame and we can
2399 		 * use it directly to store the loaded page.
2400 		 */
2401 		last_highmem_page = page;
2402 		return buffer;
2403 	}
2404 	/*
2405 	 * The "original" page frame has not been allocated and we have to
2406 	 * use a "safe" page frame to store the loaded page.
2407 	 */
2408 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2409 	if (!pbe) {
2410 		swsusp_free();
2411 		return ERR_PTR(-ENOMEM);
2412 	}
2413 	pbe->orig_page = page;
2414 	if (safe_highmem_pages > 0) {
2415 		struct page *tmp;
2416 
2417 		/* Copy of the page will be stored in high memory */
2418 		kaddr = buffer;
2419 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2420 		safe_highmem_pages--;
2421 		last_highmem_page = tmp;
2422 		pbe->copy_page = tmp;
2423 	} else {
2424 		/* Copy of the page will be stored in normal memory */
2425 		kaddr = safe_pages_list;
2426 		safe_pages_list = safe_pages_list->next;
2427 		pbe->copy_page = virt_to_page(kaddr);
2428 	}
2429 	pbe->next = highmem_pblist;
2430 	highmem_pblist = pbe;
2431 	return kaddr;
2432 }
2433 
2434 /**
2435  * copy_last_highmem_page - Copy most the most recent highmem image page.
2436  *
2437  * Copy the contents of a highmem image from @buffer, where the caller of
2438  * snapshot_write_next() has stored them, to the right location represented by
2439  * @last_highmem_page .
2440  */
2441 static void copy_last_highmem_page(void)
2442 {
2443 	if (last_highmem_page) {
2444 		void *dst;
2445 
2446 		dst = kmap_atomic(last_highmem_page);
2447 		copy_page(dst, buffer);
2448 		kunmap_atomic(dst);
2449 		last_highmem_page = NULL;
2450 	}
2451 }
2452 
2453 static inline int last_highmem_page_copied(void)
2454 {
2455 	return !last_highmem_page;
2456 }
2457 
2458 static inline void free_highmem_data(void)
2459 {
2460 	if (safe_highmem_bm)
2461 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2462 
2463 	if (buffer)
2464 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2465 }
2466 #else
2467 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2468 
2469 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2470 					unsigned int *nr_highmem_p) { return 0; }
2471 
2472 static inline void *get_highmem_page_buffer(struct page *page,
2473 					    struct chain_allocator *ca)
2474 {
2475 	return ERR_PTR(-EINVAL);
2476 }
2477 
2478 static inline void copy_last_highmem_page(void) {}
2479 static inline int last_highmem_page_copied(void) { return 1; }
2480 static inline void free_highmem_data(void) {}
2481 #endif /* CONFIG_HIGHMEM */
2482 
2483 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2484 
2485 /**
2486  * prepare_image - Make room for loading hibernation image.
2487  * @new_bm: Uninitialized memory bitmap structure.
2488  * @bm: Memory bitmap with unsafe pages marked.
2489  *
2490  * Use @bm to mark the pages that will be overwritten in the process of
2491  * restoring the system memory state from the suspend image ("unsafe" pages)
2492  * and allocate memory for the image.
2493  *
2494  * The idea is to allocate a new memory bitmap first and then allocate
2495  * as many pages as needed for image data, but without specifying what those
2496  * pages will be used for just yet.  Instead, we mark them all as allocated and
2497  * create a lists of "safe" pages to be used later.  On systems with high
2498  * memory a list of "safe" highmem pages is created too.
2499  */
2500 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2501 {
2502 	unsigned int nr_pages, nr_highmem;
2503 	struct linked_page *lp;
2504 	int error;
2505 
2506 	/* If there is no highmem, the buffer will not be necessary */
2507 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2508 	buffer = NULL;
2509 
2510 	nr_highmem = count_highmem_image_pages(bm);
2511 	mark_unsafe_pages(bm);
2512 
2513 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2514 	if (error)
2515 		goto Free;
2516 
2517 	duplicate_memory_bitmap(new_bm, bm);
2518 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2519 	if (nr_highmem > 0) {
2520 		error = prepare_highmem_image(bm, &nr_highmem);
2521 		if (error)
2522 			goto Free;
2523 	}
2524 	/*
2525 	 * Reserve some safe pages for potential later use.
2526 	 *
2527 	 * NOTE: This way we make sure there will be enough safe pages for the
2528 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2529 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2530 	 *
2531 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2532 	 */
2533 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2534 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2535 	while (nr_pages > 0) {
2536 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2537 		if (!lp) {
2538 			error = -ENOMEM;
2539 			goto Free;
2540 		}
2541 		lp->next = safe_pages_list;
2542 		safe_pages_list = lp;
2543 		nr_pages--;
2544 	}
2545 	/* Preallocate memory for the image */
2546 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2547 	while (nr_pages > 0) {
2548 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2549 		if (!lp) {
2550 			error = -ENOMEM;
2551 			goto Free;
2552 		}
2553 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2554 			/* The page is "safe", add it to the list */
2555 			lp->next = safe_pages_list;
2556 			safe_pages_list = lp;
2557 		}
2558 		/* Mark the page as allocated */
2559 		swsusp_set_page_forbidden(virt_to_page(lp));
2560 		swsusp_set_page_free(virt_to_page(lp));
2561 		nr_pages--;
2562 	}
2563 	return 0;
2564 
2565  Free:
2566 	swsusp_free();
2567 	return error;
2568 }
2569 
2570 /**
2571  * get_buffer - Get the address to store the next image data page.
2572  *
2573  * Get the address that snapshot_write_next() should return to its caller to
2574  * write to.
2575  */
2576 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2577 {
2578 	struct pbe *pbe;
2579 	struct page *page;
2580 	unsigned long pfn = memory_bm_next_pfn(bm);
2581 
2582 	if (pfn == BM_END_OF_MAP)
2583 		return ERR_PTR(-EFAULT);
2584 
2585 	page = pfn_to_page(pfn);
2586 	if (PageHighMem(page))
2587 		return get_highmem_page_buffer(page, ca);
2588 
2589 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2590 		/*
2591 		 * We have allocated the "original" page frame and we can
2592 		 * use it directly to store the loaded page.
2593 		 */
2594 		return page_address(page);
2595 
2596 	/*
2597 	 * The "original" page frame has not been allocated and we have to
2598 	 * use a "safe" page frame to store the loaded page.
2599 	 */
2600 	pbe = chain_alloc(ca, sizeof(struct pbe));
2601 	if (!pbe) {
2602 		swsusp_free();
2603 		return ERR_PTR(-ENOMEM);
2604 	}
2605 	pbe->orig_address = page_address(page);
2606 	pbe->address = safe_pages_list;
2607 	safe_pages_list = safe_pages_list->next;
2608 	pbe->next = restore_pblist;
2609 	restore_pblist = pbe;
2610 	return pbe->address;
2611 }
2612 
2613 /**
2614  * snapshot_write_next - Get the address to store the next image page.
2615  * @handle: Snapshot handle structure to guide the writing.
2616  *
2617  * On the first call, @handle should point to a zeroed snapshot_handle
2618  * structure.  The structure gets populated then and a pointer to it should be
2619  * passed to this function every next time.
2620  *
2621  * On success, the function returns a positive number.  Then, the caller
2622  * is allowed to write up to the returned number of bytes to the memory
2623  * location computed by the data_of() macro.
2624  *
2625  * The function returns 0 to indicate the "end of file" condition.  Negative
2626  * numbers are returned on errors, in which cases the structure pointed to by
2627  * @handle is not updated and should not be used any more.
2628  */
2629 int snapshot_write_next(struct snapshot_handle *handle)
2630 {
2631 	static struct chain_allocator ca;
2632 	int error = 0;
2633 
2634 	/* Check if we have already loaded the entire image */
2635 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2636 		return 0;
2637 
2638 	handle->sync_read = 1;
2639 
2640 	if (!handle->cur) {
2641 		if (!buffer)
2642 			/* This makes the buffer be freed by swsusp_free() */
2643 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2644 
2645 		if (!buffer)
2646 			return -ENOMEM;
2647 
2648 		handle->buffer = buffer;
2649 	} else if (handle->cur == 1) {
2650 		error = load_header(buffer);
2651 		if (error)
2652 			return error;
2653 
2654 		safe_pages_list = NULL;
2655 
2656 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2657 		if (error)
2658 			return error;
2659 
2660 		hibernate_restore_protection_begin();
2661 	} else if (handle->cur <= nr_meta_pages + 1) {
2662 		error = unpack_orig_pfns(buffer, &copy_bm);
2663 		if (error)
2664 			return error;
2665 
2666 		if (handle->cur == nr_meta_pages + 1) {
2667 			error = prepare_image(&orig_bm, &copy_bm);
2668 			if (error)
2669 				return error;
2670 
2671 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2672 			memory_bm_position_reset(&orig_bm);
2673 			restore_pblist = NULL;
2674 			handle->buffer = get_buffer(&orig_bm, &ca);
2675 			handle->sync_read = 0;
2676 			if (IS_ERR(handle->buffer))
2677 				return PTR_ERR(handle->buffer);
2678 		}
2679 	} else {
2680 		copy_last_highmem_page();
2681 		hibernate_restore_protect_page(handle->buffer);
2682 		handle->buffer = get_buffer(&orig_bm, &ca);
2683 		if (IS_ERR(handle->buffer))
2684 			return PTR_ERR(handle->buffer);
2685 		if (handle->buffer != buffer)
2686 			handle->sync_read = 0;
2687 	}
2688 	handle->cur++;
2689 	return PAGE_SIZE;
2690 }
2691 
2692 /**
2693  * snapshot_write_finalize - Complete the loading of a hibernation image.
2694  *
2695  * Must be called after the last call to snapshot_write_next() in case the last
2696  * page in the image happens to be a highmem page and its contents should be
2697  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2698  * necessary any more.
2699  */
2700 void snapshot_write_finalize(struct snapshot_handle *handle)
2701 {
2702 	copy_last_highmem_page();
2703 	hibernate_restore_protect_page(handle->buffer);
2704 	/* Do that only if we have loaded the image entirely */
2705 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2706 		memory_bm_recycle(&orig_bm);
2707 		free_highmem_data();
2708 	}
2709 }
2710 
2711 int snapshot_image_loaded(struct snapshot_handle *handle)
2712 {
2713 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2714 			handle->cur <= nr_meta_pages + nr_copy_pages);
2715 }
2716 
2717 #ifdef CONFIG_HIGHMEM
2718 /* Assumes that @buf is ready and points to a "safe" page */
2719 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2720 				       void *buf)
2721 {
2722 	void *kaddr1, *kaddr2;
2723 
2724 	kaddr1 = kmap_atomic(p1);
2725 	kaddr2 = kmap_atomic(p2);
2726 	copy_page(buf, kaddr1);
2727 	copy_page(kaddr1, kaddr2);
2728 	copy_page(kaddr2, buf);
2729 	kunmap_atomic(kaddr2);
2730 	kunmap_atomic(kaddr1);
2731 }
2732 
2733 /**
2734  * restore_highmem - Put highmem image pages into their original locations.
2735  *
2736  * For each highmem page that was in use before hibernation and is included in
2737  * the image, and also has been allocated by the "restore" kernel, swap its
2738  * current contents with the previous (ie. "before hibernation") ones.
2739  *
2740  * If the restore eventually fails, we can call this function once again and
2741  * restore the highmem state as seen by the restore kernel.
2742  */
2743 int restore_highmem(void)
2744 {
2745 	struct highmem_pbe *pbe = highmem_pblist;
2746 	void *buf;
2747 
2748 	if (!pbe)
2749 		return 0;
2750 
2751 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2752 	if (!buf)
2753 		return -ENOMEM;
2754 
2755 	while (pbe) {
2756 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2757 		pbe = pbe->next;
2758 	}
2759 	free_image_page(buf, PG_UNSAFE_CLEAR);
2760 	return 0;
2761 }
2762 #endif /* CONFIG_HIGHMEM */
2763