1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/version.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/bitops.h> 21 #include <linux/spinlock.h> 22 #include <linux/kernel.h> 23 #include <linux/pm.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/memblock.h> 27 #include <linux/nmi.h> 28 #include <linux/syscalls.h> 29 #include <linux/console.h> 30 #include <linux/highmem.h> 31 #include <linux/list.h> 32 #include <linux/slab.h> 33 #include <linux/compiler.h> 34 #include <linux/ktime.h> 35 #include <linux/set_memory.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/io.h> 42 43 #include "power.h" 44 45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 46 static bool hibernate_restore_protection; 47 static bool hibernate_restore_protection_active; 48 49 void enable_restore_image_protection(void) 50 { 51 hibernate_restore_protection = true; 52 } 53 54 static inline void hibernate_restore_protection_begin(void) 55 { 56 hibernate_restore_protection_active = hibernate_restore_protection; 57 } 58 59 static inline void hibernate_restore_protection_end(void) 60 { 61 hibernate_restore_protection_active = false; 62 } 63 64 static inline void hibernate_restore_protect_page(void *page_address) 65 { 66 if (hibernate_restore_protection_active) 67 set_memory_ro((unsigned long)page_address, 1); 68 } 69 70 static inline void hibernate_restore_unprotect_page(void *page_address) 71 { 72 if (hibernate_restore_protection_active) 73 set_memory_rw((unsigned long)page_address, 1); 74 } 75 #else 76 static inline void hibernate_restore_protection_begin(void) {} 77 static inline void hibernate_restore_protection_end(void) {} 78 static inline void hibernate_restore_protect_page(void *page_address) {} 79 static inline void hibernate_restore_unprotect_page(void *page_address) {} 80 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 81 82 static int swsusp_page_is_free(struct page *); 83 static void swsusp_set_page_forbidden(struct page *); 84 static void swsusp_unset_page_forbidden(struct page *); 85 86 /* 87 * Number of bytes to reserve for memory allocations made by device drivers 88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 89 * cause image creation to fail (tunable via /sys/power/reserved_size). 90 */ 91 unsigned long reserved_size; 92 93 void __init hibernate_reserved_size_init(void) 94 { 95 reserved_size = SPARE_PAGES * PAGE_SIZE; 96 } 97 98 /* 99 * Preferred image size in bytes (tunable via /sys/power/image_size). 100 * When it is set to N, swsusp will do its best to ensure the image 101 * size will not exceed N bytes, but if that is impossible, it will 102 * try to create the smallest image possible. 103 */ 104 unsigned long image_size; 105 106 void __init hibernate_image_size_init(void) 107 { 108 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 109 } 110 111 /* 112 * List of PBEs needed for restoring the pages that were allocated before 113 * the suspend and included in the suspend image, but have also been 114 * allocated by the "resume" kernel, so their contents cannot be written 115 * directly to their "original" page frames. 116 */ 117 struct pbe *restore_pblist; 118 119 /* struct linked_page is used to build chains of pages */ 120 121 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 122 123 struct linked_page { 124 struct linked_page *next; 125 char data[LINKED_PAGE_DATA_SIZE]; 126 } __packed; 127 128 /* 129 * List of "safe" pages (ie. pages that were not used by the image kernel 130 * before hibernation) that may be used as temporary storage for image kernel 131 * memory contents. 132 */ 133 static struct linked_page *safe_pages_list; 134 135 /* Pointer to an auxiliary buffer (1 page) */ 136 static void *buffer; 137 138 #define PG_ANY 0 139 #define PG_SAFE 1 140 #define PG_UNSAFE_CLEAR 1 141 #define PG_UNSAFE_KEEP 0 142 143 static unsigned int allocated_unsafe_pages; 144 145 /** 146 * get_image_page - Allocate a page for a hibernation image. 147 * @gfp_mask: GFP mask for the allocation. 148 * @safe_needed: Get pages that were not used before hibernation (restore only) 149 * 150 * During image restoration, for storing the PBE list and the image data, we can 151 * only use memory pages that do not conflict with the pages used before 152 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 153 * using allocated_unsafe_pages. 154 * 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 156 * swsusp_free() can release it. 157 */ 158 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 159 { 160 void *res; 161 162 res = (void *)get_zeroed_page(gfp_mask); 163 if (safe_needed) 164 while (res && swsusp_page_is_free(virt_to_page(res))) { 165 /* The page is unsafe, mark it for swsusp_free() */ 166 swsusp_set_page_forbidden(virt_to_page(res)); 167 allocated_unsafe_pages++; 168 res = (void *)get_zeroed_page(gfp_mask); 169 } 170 if (res) { 171 swsusp_set_page_forbidden(virt_to_page(res)); 172 swsusp_set_page_free(virt_to_page(res)); 173 } 174 return res; 175 } 176 177 static void *__get_safe_page(gfp_t gfp_mask) 178 { 179 if (safe_pages_list) { 180 void *ret = safe_pages_list; 181 182 safe_pages_list = safe_pages_list->next; 183 memset(ret, 0, PAGE_SIZE); 184 return ret; 185 } 186 return get_image_page(gfp_mask, PG_SAFE); 187 } 188 189 unsigned long get_safe_page(gfp_t gfp_mask) 190 { 191 return (unsigned long)__get_safe_page(gfp_mask); 192 } 193 194 static struct page *alloc_image_page(gfp_t gfp_mask) 195 { 196 struct page *page; 197 198 page = alloc_page(gfp_mask); 199 if (page) { 200 swsusp_set_page_forbidden(page); 201 swsusp_set_page_free(page); 202 } 203 return page; 204 } 205 206 static void recycle_safe_page(void *page_address) 207 { 208 struct linked_page *lp = page_address; 209 210 lp->next = safe_pages_list; 211 safe_pages_list = lp; 212 } 213 214 /** 215 * free_image_page - Free a page allocated for hibernation image. 216 * @addr: Address of the page to free. 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 218 * 219 * The page to free should have been allocated by get_image_page() (page flags 220 * set by it are affected). 221 */ 222 static inline void free_image_page(void *addr, int clear_nosave_free) 223 { 224 struct page *page; 225 226 BUG_ON(!virt_addr_valid(addr)); 227 228 page = virt_to_page(addr); 229 230 swsusp_unset_page_forbidden(page); 231 if (clear_nosave_free) 232 swsusp_unset_page_free(page); 233 234 __free_page(page); 235 } 236 237 static inline void free_list_of_pages(struct linked_page *list, 238 int clear_page_nosave) 239 { 240 while (list) { 241 struct linked_page *lp = list->next; 242 243 free_image_page(list, clear_page_nosave); 244 list = lp; 245 } 246 } 247 248 /* 249 * struct chain_allocator is used for allocating small objects out of 250 * a linked list of pages called 'the chain'. 251 * 252 * The chain grows each time when there is no room for a new object in 253 * the current page. The allocated objects cannot be freed individually. 254 * It is only possible to free them all at once, by freeing the entire 255 * chain. 256 * 257 * NOTE: The chain allocator may be inefficient if the allocated objects 258 * are not much smaller than PAGE_SIZE. 259 */ 260 struct chain_allocator { 261 struct linked_page *chain; /* the chain */ 262 unsigned int used_space; /* total size of objects allocated out 263 of the current page */ 264 gfp_t gfp_mask; /* mask for allocating pages */ 265 int safe_needed; /* if set, only "safe" pages are allocated */ 266 }; 267 268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 269 int safe_needed) 270 { 271 ca->chain = NULL; 272 ca->used_space = LINKED_PAGE_DATA_SIZE; 273 ca->gfp_mask = gfp_mask; 274 ca->safe_needed = safe_needed; 275 } 276 277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 278 { 279 void *ret; 280 281 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 282 struct linked_page *lp; 283 284 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 285 get_image_page(ca->gfp_mask, PG_ANY); 286 if (!lp) 287 return NULL; 288 289 lp->next = ca->chain; 290 ca->chain = lp; 291 ca->used_space = 0; 292 } 293 ret = ca->chain->data + ca->used_space; 294 ca->used_space += size; 295 return ret; 296 } 297 298 /** 299 * Data types related to memory bitmaps. 300 * 301 * Memory bitmap is a structure consiting of many linked lists of 302 * objects. The main list's elements are of type struct zone_bitmap 303 * and each of them corresonds to one zone. For each zone bitmap 304 * object there is a list of objects of type struct bm_block that 305 * represent each blocks of bitmap in which information is stored. 306 * 307 * struct memory_bitmap contains a pointer to the main list of zone 308 * bitmap objects, a struct bm_position used for browsing the bitmap, 309 * and a pointer to the list of pages used for allocating all of the 310 * zone bitmap objects and bitmap block objects. 311 * 312 * NOTE: It has to be possible to lay out the bitmap in memory 313 * using only allocations of order 0. Additionally, the bitmap is 314 * designed to work with arbitrary number of zones (this is over the 315 * top for now, but let's avoid making unnecessary assumptions ;-). 316 * 317 * struct zone_bitmap contains a pointer to a list of bitmap block 318 * objects and a pointer to the bitmap block object that has been 319 * most recently used for setting bits. Additionally, it contains the 320 * PFNs that correspond to the start and end of the represented zone. 321 * 322 * struct bm_block contains a pointer to the memory page in which 323 * information is stored (in the form of a block of bitmap) 324 * It also contains the pfns that correspond to the start and end of 325 * the represented memory area. 326 * 327 * The memory bitmap is organized as a radix tree to guarantee fast random 328 * access to the bits. There is one radix tree for each zone (as returned 329 * from create_mem_extents). 330 * 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 332 * two linked lists for the nodes of the tree, one for the inner nodes and 333 * one for the leave nodes. The linked leave nodes are used for fast linear 334 * access of the memory bitmap. 335 * 336 * The struct rtree_node represents one node of the radix tree. 337 */ 338 339 #define BM_END_OF_MAP (~0UL) 340 341 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 342 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 343 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 344 345 /* 346 * struct rtree_node is a wrapper struct to link the nodes 347 * of the rtree together for easy linear iteration over 348 * bits and easy freeing 349 */ 350 struct rtree_node { 351 struct list_head list; 352 unsigned long *data; 353 }; 354 355 /* 356 * struct mem_zone_bm_rtree represents a bitmap used for one 357 * populated memory zone. 358 */ 359 struct mem_zone_bm_rtree { 360 struct list_head list; /* Link Zones together */ 361 struct list_head nodes; /* Radix Tree inner nodes */ 362 struct list_head leaves; /* Radix Tree leaves */ 363 unsigned long start_pfn; /* Zone start page frame */ 364 unsigned long end_pfn; /* Zone end page frame + 1 */ 365 struct rtree_node *rtree; /* Radix Tree Root */ 366 int levels; /* Number of Radix Tree Levels */ 367 unsigned int blocks; /* Number of Bitmap Blocks */ 368 }; 369 370 /* strcut bm_position is used for browsing memory bitmaps */ 371 372 struct bm_position { 373 struct mem_zone_bm_rtree *zone; 374 struct rtree_node *node; 375 unsigned long node_pfn; 376 int node_bit; 377 }; 378 379 struct memory_bitmap { 380 struct list_head zones; 381 struct linked_page *p_list; /* list of pages used to store zone 382 bitmap objects and bitmap block 383 objects */ 384 struct bm_position cur; /* most recently used bit position */ 385 }; 386 387 /* Functions that operate on memory bitmaps */ 388 389 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 390 #if BITS_PER_LONG == 32 391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 392 #else 393 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 394 #endif 395 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 396 397 /** 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 399 * 400 * This function is used to allocate inner nodes as well as the 401 * leave nodes of the radix tree. It also adds the node to the 402 * corresponding linked list passed in by the *list parameter. 403 */ 404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 405 struct chain_allocator *ca, 406 struct list_head *list) 407 { 408 struct rtree_node *node; 409 410 node = chain_alloc(ca, sizeof(struct rtree_node)); 411 if (!node) 412 return NULL; 413 414 node->data = get_image_page(gfp_mask, safe_needed); 415 if (!node->data) 416 return NULL; 417 418 list_add_tail(&node->list, list); 419 420 return node; 421 } 422 423 /** 424 * add_rtree_block - Add a new leave node to the radix tree. 425 * 426 * The leave nodes need to be allocated in order to keep the leaves 427 * linked list in order. This is guaranteed by the zone->blocks 428 * counter. 429 */ 430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 431 int safe_needed, struct chain_allocator *ca) 432 { 433 struct rtree_node *node, *block, **dst; 434 unsigned int levels_needed, block_nr; 435 int i; 436 437 block_nr = zone->blocks; 438 levels_needed = 0; 439 440 /* How many levels do we need for this block nr? */ 441 while (block_nr) { 442 levels_needed += 1; 443 block_nr >>= BM_RTREE_LEVEL_SHIFT; 444 } 445 446 /* Make sure the rtree has enough levels */ 447 for (i = zone->levels; i < levels_needed; i++) { 448 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 449 &zone->nodes); 450 if (!node) 451 return -ENOMEM; 452 453 node->data[0] = (unsigned long)zone->rtree; 454 zone->rtree = node; 455 zone->levels += 1; 456 } 457 458 /* Allocate new block */ 459 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 460 if (!block) 461 return -ENOMEM; 462 463 /* Now walk the rtree to insert the block */ 464 node = zone->rtree; 465 dst = &zone->rtree; 466 block_nr = zone->blocks; 467 for (i = zone->levels; i > 0; i--) { 468 int index; 469 470 if (!node) { 471 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 472 &zone->nodes); 473 if (!node) 474 return -ENOMEM; 475 *dst = node; 476 } 477 478 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 479 index &= BM_RTREE_LEVEL_MASK; 480 dst = (struct rtree_node **)&((*dst)->data[index]); 481 node = *dst; 482 } 483 484 zone->blocks += 1; 485 *dst = block; 486 487 return 0; 488 } 489 490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 491 int clear_nosave_free); 492 493 /** 494 * create_zone_bm_rtree - Create a radix tree for one zone. 495 * 496 * Allocated the mem_zone_bm_rtree structure and initializes it. 497 * This function also allocated and builds the radix tree for the 498 * zone. 499 */ 500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 501 int safe_needed, 502 struct chain_allocator *ca, 503 unsigned long start, 504 unsigned long end) 505 { 506 struct mem_zone_bm_rtree *zone; 507 unsigned int i, nr_blocks; 508 unsigned long pages; 509 510 pages = end - start; 511 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 512 if (!zone) 513 return NULL; 514 515 INIT_LIST_HEAD(&zone->nodes); 516 INIT_LIST_HEAD(&zone->leaves); 517 zone->start_pfn = start; 518 zone->end_pfn = end; 519 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 520 521 for (i = 0; i < nr_blocks; i++) { 522 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 523 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 524 return NULL; 525 } 526 } 527 528 return zone; 529 } 530 531 /** 532 * free_zone_bm_rtree - Free the memory of the radix tree. 533 * 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree 535 * structure itself is not freed here nor are the rtree_node 536 * structs. 537 */ 538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 539 int clear_nosave_free) 540 { 541 struct rtree_node *node; 542 543 list_for_each_entry(node, &zone->nodes, list) 544 free_image_page(node->data, clear_nosave_free); 545 546 list_for_each_entry(node, &zone->leaves, list) 547 free_image_page(node->data, clear_nosave_free); 548 } 549 550 static void memory_bm_position_reset(struct memory_bitmap *bm) 551 { 552 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 553 list); 554 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 555 struct rtree_node, list); 556 bm->cur.node_pfn = 0; 557 bm->cur.node_bit = 0; 558 } 559 560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 561 562 struct mem_extent { 563 struct list_head hook; 564 unsigned long start; 565 unsigned long end; 566 }; 567 568 /** 569 * free_mem_extents - Free a list of memory extents. 570 * @list: List of extents to free. 571 */ 572 static void free_mem_extents(struct list_head *list) 573 { 574 struct mem_extent *ext, *aux; 575 576 list_for_each_entry_safe(ext, aux, list, hook) { 577 list_del(&ext->hook); 578 kfree(ext); 579 } 580 } 581 582 /** 583 * create_mem_extents - Create a list of memory extents. 584 * @list: List to put the extents into. 585 * @gfp_mask: Mask to use for memory allocations. 586 * 587 * The extents represent contiguous ranges of PFNs. 588 */ 589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 590 { 591 struct zone *zone; 592 593 INIT_LIST_HEAD(list); 594 595 for_each_populated_zone(zone) { 596 unsigned long zone_start, zone_end; 597 struct mem_extent *ext, *cur, *aux; 598 599 zone_start = zone->zone_start_pfn; 600 zone_end = zone_end_pfn(zone); 601 602 list_for_each_entry(ext, list, hook) 603 if (zone_start <= ext->end) 604 break; 605 606 if (&ext->hook == list || zone_end < ext->start) { 607 /* New extent is necessary */ 608 struct mem_extent *new_ext; 609 610 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 611 if (!new_ext) { 612 free_mem_extents(list); 613 return -ENOMEM; 614 } 615 new_ext->start = zone_start; 616 new_ext->end = zone_end; 617 list_add_tail(&new_ext->hook, &ext->hook); 618 continue; 619 } 620 621 /* Merge this zone's range of PFNs with the existing one */ 622 if (zone_start < ext->start) 623 ext->start = zone_start; 624 if (zone_end > ext->end) 625 ext->end = zone_end; 626 627 /* More merging may be possible */ 628 cur = ext; 629 list_for_each_entry_safe_continue(cur, aux, list, hook) { 630 if (zone_end < cur->start) 631 break; 632 if (zone_end < cur->end) 633 ext->end = cur->end; 634 list_del(&cur->hook); 635 kfree(cur); 636 } 637 } 638 639 return 0; 640 } 641 642 /** 643 * memory_bm_create - Allocate memory for a memory bitmap. 644 */ 645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 646 int safe_needed) 647 { 648 struct chain_allocator ca; 649 struct list_head mem_extents; 650 struct mem_extent *ext; 651 int error; 652 653 chain_init(&ca, gfp_mask, safe_needed); 654 INIT_LIST_HEAD(&bm->zones); 655 656 error = create_mem_extents(&mem_extents, gfp_mask); 657 if (error) 658 return error; 659 660 list_for_each_entry(ext, &mem_extents, hook) { 661 struct mem_zone_bm_rtree *zone; 662 663 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 664 ext->start, ext->end); 665 if (!zone) { 666 error = -ENOMEM; 667 goto Error; 668 } 669 list_add_tail(&zone->list, &bm->zones); 670 } 671 672 bm->p_list = ca.chain; 673 memory_bm_position_reset(bm); 674 Exit: 675 free_mem_extents(&mem_extents); 676 return error; 677 678 Error: 679 bm->p_list = ca.chain; 680 memory_bm_free(bm, PG_UNSAFE_CLEAR); 681 goto Exit; 682 } 683 684 /** 685 * memory_bm_free - Free memory occupied by the memory bitmap. 686 * @bm: Memory bitmap. 687 */ 688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 689 { 690 struct mem_zone_bm_rtree *zone; 691 692 list_for_each_entry(zone, &bm->zones, list) 693 free_zone_bm_rtree(zone, clear_nosave_free); 694 695 free_list_of_pages(bm->p_list, clear_nosave_free); 696 697 INIT_LIST_HEAD(&bm->zones); 698 } 699 700 /** 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 702 * 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 705 * 706 * Walk the radix tree to find the page containing the bit that represents @pfn 707 * and return the position of the bit in @addr and @bit_nr. 708 */ 709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 710 void **addr, unsigned int *bit_nr) 711 { 712 struct mem_zone_bm_rtree *curr, *zone; 713 struct rtree_node *node; 714 int i, block_nr; 715 716 zone = bm->cur.zone; 717 718 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 719 goto zone_found; 720 721 zone = NULL; 722 723 /* Find the right zone */ 724 list_for_each_entry(curr, &bm->zones, list) { 725 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 726 zone = curr; 727 break; 728 } 729 } 730 731 if (!zone) 732 return -EFAULT; 733 734 zone_found: 735 /* 736 * We have found the zone. Now walk the radix tree to find the leaf node 737 * for our PFN. 738 */ 739 node = bm->cur.node; 740 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 741 goto node_found; 742 743 node = zone->rtree; 744 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 745 746 for (i = zone->levels; i > 0; i--) { 747 int index; 748 749 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 750 index &= BM_RTREE_LEVEL_MASK; 751 BUG_ON(node->data[index] == 0); 752 node = (struct rtree_node *)node->data[index]; 753 } 754 755 node_found: 756 /* Update last position */ 757 bm->cur.zone = zone; 758 bm->cur.node = node; 759 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 760 761 /* Set return values */ 762 *addr = node->data; 763 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 764 765 return 0; 766 } 767 768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 769 { 770 void *addr; 771 unsigned int bit; 772 int error; 773 774 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 775 BUG_ON(error); 776 set_bit(bit, addr); 777 } 778 779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 780 { 781 void *addr; 782 unsigned int bit; 783 int error; 784 785 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 786 if (!error) 787 set_bit(bit, addr); 788 789 return error; 790 } 791 792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 793 { 794 void *addr; 795 unsigned int bit; 796 int error; 797 798 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 799 BUG_ON(error); 800 clear_bit(bit, addr); 801 } 802 803 static void memory_bm_clear_current(struct memory_bitmap *bm) 804 { 805 int bit; 806 807 bit = max(bm->cur.node_bit - 1, 0); 808 clear_bit(bit, bm->cur.node->data); 809 } 810 811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 812 { 813 void *addr; 814 unsigned int bit; 815 int error; 816 817 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 818 BUG_ON(error); 819 return test_bit(bit, addr); 820 } 821 822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 823 { 824 void *addr; 825 unsigned int bit; 826 827 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 828 } 829 830 /* 831 * rtree_next_node - Jump to the next leaf node. 832 * 833 * Set the position to the beginning of the next node in the 834 * memory bitmap. This is either the next node in the current 835 * zone's radix tree or the first node in the radix tree of the 836 * next zone. 837 * 838 * Return true if there is a next node, false otherwise. 839 */ 840 static bool rtree_next_node(struct memory_bitmap *bm) 841 { 842 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 843 bm->cur.node = list_entry(bm->cur.node->list.next, 844 struct rtree_node, list); 845 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 846 bm->cur.node_bit = 0; 847 touch_softlockup_watchdog(); 848 return true; 849 } 850 851 /* No more nodes, goto next zone */ 852 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 853 bm->cur.zone = list_entry(bm->cur.zone->list.next, 854 struct mem_zone_bm_rtree, list); 855 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 856 struct rtree_node, list); 857 bm->cur.node_pfn = 0; 858 bm->cur.node_bit = 0; 859 return true; 860 } 861 862 /* No more zones */ 863 return false; 864 } 865 866 /** 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 868 * @bm: Memory bitmap. 869 * 870 * Starting from the last returned position this function searches for the next 871 * set bit in @bm and returns the PFN represented by it. If no more bits are 872 * set, BM_END_OF_MAP is returned. 873 * 874 * It is required to run memory_bm_position_reset() before the first call to 875 * this function for the given memory bitmap. 876 */ 877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 878 { 879 unsigned long bits, pfn, pages; 880 int bit; 881 882 do { 883 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 884 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 885 bit = find_next_bit(bm->cur.node->data, bits, 886 bm->cur.node_bit); 887 if (bit < bits) { 888 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 889 bm->cur.node_bit = bit + 1; 890 return pfn; 891 } 892 } while (rtree_next_node(bm)); 893 894 return BM_END_OF_MAP; 895 } 896 897 /* 898 * This structure represents a range of page frames the contents of which 899 * should not be saved during hibernation. 900 */ 901 struct nosave_region { 902 struct list_head list; 903 unsigned long start_pfn; 904 unsigned long end_pfn; 905 }; 906 907 static LIST_HEAD(nosave_regions); 908 909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 910 { 911 struct rtree_node *node; 912 913 list_for_each_entry(node, &zone->nodes, list) 914 recycle_safe_page(node->data); 915 916 list_for_each_entry(node, &zone->leaves, list) 917 recycle_safe_page(node->data); 918 } 919 920 static void memory_bm_recycle(struct memory_bitmap *bm) 921 { 922 struct mem_zone_bm_rtree *zone; 923 struct linked_page *p_list; 924 925 list_for_each_entry(zone, &bm->zones, list) 926 recycle_zone_bm_rtree(zone); 927 928 p_list = bm->p_list; 929 while (p_list) { 930 struct linked_page *lp = p_list; 931 932 p_list = lp->next; 933 recycle_safe_page(lp); 934 } 935 } 936 937 /** 938 * register_nosave_region - Register a region of unsaveable memory. 939 * 940 * Register a range of page frames the contents of which should not be saved 941 * during hibernation (to be used in the early initialization code). 942 */ 943 void __init __register_nosave_region(unsigned long start_pfn, 944 unsigned long end_pfn, int use_kmalloc) 945 { 946 struct nosave_region *region; 947 948 if (start_pfn >= end_pfn) 949 return; 950 951 if (!list_empty(&nosave_regions)) { 952 /* Try to extend the previous region (they should be sorted) */ 953 region = list_entry(nosave_regions.prev, 954 struct nosave_region, list); 955 if (region->end_pfn == start_pfn) { 956 region->end_pfn = end_pfn; 957 goto Report; 958 } 959 } 960 if (use_kmalloc) { 961 /* During init, this shouldn't fail */ 962 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 963 BUG_ON(!region); 964 } else { 965 /* This allocation cannot fail */ 966 region = memblock_alloc(sizeof(struct nosave_region), 967 SMP_CACHE_BYTES); 968 } 969 region->start_pfn = start_pfn; 970 region->end_pfn = end_pfn; 971 list_add_tail(®ion->list, &nosave_regions); 972 Report: 973 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 974 (unsigned long long) start_pfn << PAGE_SHIFT, 975 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 976 } 977 978 /* 979 * Set bits in this map correspond to the page frames the contents of which 980 * should not be saved during the suspend. 981 */ 982 static struct memory_bitmap *forbidden_pages_map; 983 984 /* Set bits in this map correspond to free page frames. */ 985 static struct memory_bitmap *free_pages_map; 986 987 /* 988 * Each page frame allocated for creating the image is marked by setting the 989 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 990 */ 991 992 void swsusp_set_page_free(struct page *page) 993 { 994 if (free_pages_map) 995 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 996 } 997 998 static int swsusp_page_is_free(struct page *page) 999 { 1000 return free_pages_map ? 1001 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1002 } 1003 1004 void swsusp_unset_page_free(struct page *page) 1005 { 1006 if (free_pages_map) 1007 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1008 } 1009 1010 static void swsusp_set_page_forbidden(struct page *page) 1011 { 1012 if (forbidden_pages_map) 1013 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1014 } 1015 1016 int swsusp_page_is_forbidden(struct page *page) 1017 { 1018 return forbidden_pages_map ? 1019 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1020 } 1021 1022 static void swsusp_unset_page_forbidden(struct page *page) 1023 { 1024 if (forbidden_pages_map) 1025 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1026 } 1027 1028 /** 1029 * mark_nosave_pages - Mark pages that should not be saved. 1030 * @bm: Memory bitmap. 1031 * 1032 * Set the bits in @bm that correspond to the page frames the contents of which 1033 * should not be saved. 1034 */ 1035 static void mark_nosave_pages(struct memory_bitmap *bm) 1036 { 1037 struct nosave_region *region; 1038 1039 if (list_empty(&nosave_regions)) 1040 return; 1041 1042 list_for_each_entry(region, &nosave_regions, list) { 1043 unsigned long pfn; 1044 1045 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1046 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1047 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1048 - 1); 1049 1050 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1051 if (pfn_valid(pfn)) { 1052 /* 1053 * It is safe to ignore the result of 1054 * mem_bm_set_bit_check() here, since we won't 1055 * touch the PFNs for which the error is 1056 * returned anyway. 1057 */ 1058 mem_bm_set_bit_check(bm, pfn); 1059 } 1060 } 1061 } 1062 1063 /** 1064 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1065 * 1066 * Create bitmaps needed for marking page frames that should not be saved and 1067 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1068 * only modified if everything goes well, because we don't want the bits to be 1069 * touched before both bitmaps are set up. 1070 */ 1071 int create_basic_memory_bitmaps(void) 1072 { 1073 struct memory_bitmap *bm1, *bm2; 1074 int error = 0; 1075 1076 if (forbidden_pages_map && free_pages_map) 1077 return 0; 1078 else 1079 BUG_ON(forbidden_pages_map || free_pages_map); 1080 1081 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1082 if (!bm1) 1083 return -ENOMEM; 1084 1085 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1086 if (error) 1087 goto Free_first_object; 1088 1089 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1090 if (!bm2) 1091 goto Free_first_bitmap; 1092 1093 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1094 if (error) 1095 goto Free_second_object; 1096 1097 forbidden_pages_map = bm1; 1098 free_pages_map = bm2; 1099 mark_nosave_pages(forbidden_pages_map); 1100 1101 pr_debug("Basic memory bitmaps created\n"); 1102 1103 return 0; 1104 1105 Free_second_object: 1106 kfree(bm2); 1107 Free_first_bitmap: 1108 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1109 Free_first_object: 1110 kfree(bm1); 1111 return -ENOMEM; 1112 } 1113 1114 /** 1115 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1116 * 1117 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1118 * auxiliary pointers are necessary so that the bitmaps themselves are not 1119 * referred to while they are being freed. 1120 */ 1121 void free_basic_memory_bitmaps(void) 1122 { 1123 struct memory_bitmap *bm1, *bm2; 1124 1125 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1126 return; 1127 1128 bm1 = forbidden_pages_map; 1129 bm2 = free_pages_map; 1130 forbidden_pages_map = NULL; 1131 free_pages_map = NULL; 1132 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1133 kfree(bm1); 1134 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1135 kfree(bm2); 1136 1137 pr_debug("Basic memory bitmaps freed\n"); 1138 } 1139 1140 void clear_free_pages(void) 1141 { 1142 #ifdef CONFIG_PAGE_POISONING_ZERO 1143 struct memory_bitmap *bm = free_pages_map; 1144 unsigned long pfn; 1145 1146 if (WARN_ON(!(free_pages_map))) 1147 return; 1148 1149 memory_bm_position_reset(bm); 1150 pfn = memory_bm_next_pfn(bm); 1151 while (pfn != BM_END_OF_MAP) { 1152 if (pfn_valid(pfn)) 1153 clear_highpage(pfn_to_page(pfn)); 1154 1155 pfn = memory_bm_next_pfn(bm); 1156 } 1157 memory_bm_position_reset(bm); 1158 pr_info("free pages cleared after restore\n"); 1159 #endif /* PAGE_POISONING_ZERO */ 1160 } 1161 1162 /** 1163 * snapshot_additional_pages - Estimate the number of extra pages needed. 1164 * @zone: Memory zone to carry out the computation for. 1165 * 1166 * Estimate the number of additional pages needed for setting up a hibernation 1167 * image data structures for @zone (usually, the returned value is greater than 1168 * the exact number). 1169 */ 1170 unsigned int snapshot_additional_pages(struct zone *zone) 1171 { 1172 unsigned int rtree, nodes; 1173 1174 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1175 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1176 LINKED_PAGE_DATA_SIZE); 1177 while (nodes > 1) { 1178 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1179 rtree += nodes; 1180 } 1181 1182 return 2 * rtree; 1183 } 1184 1185 #ifdef CONFIG_HIGHMEM 1186 /** 1187 * count_free_highmem_pages - Compute the total number of free highmem pages. 1188 * 1189 * The returned number is system-wide. 1190 */ 1191 static unsigned int count_free_highmem_pages(void) 1192 { 1193 struct zone *zone; 1194 unsigned int cnt = 0; 1195 1196 for_each_populated_zone(zone) 1197 if (is_highmem(zone)) 1198 cnt += zone_page_state(zone, NR_FREE_PAGES); 1199 1200 return cnt; 1201 } 1202 1203 /** 1204 * saveable_highmem_page - Check if a highmem page is saveable. 1205 * 1206 * Determine whether a highmem page should be included in a hibernation image. 1207 * 1208 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1209 * and it isn't part of a free chunk of pages. 1210 */ 1211 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1212 { 1213 struct page *page; 1214 1215 if (!pfn_valid(pfn)) 1216 return NULL; 1217 1218 page = pfn_to_online_page(pfn); 1219 if (!page || page_zone(page) != zone) 1220 return NULL; 1221 1222 BUG_ON(!PageHighMem(page)); 1223 1224 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1225 return NULL; 1226 1227 if (PageReserved(page) || PageOffline(page)) 1228 return NULL; 1229 1230 if (page_is_guard(page)) 1231 return NULL; 1232 1233 return page; 1234 } 1235 1236 /** 1237 * count_highmem_pages - Compute the total number of saveable highmem pages. 1238 */ 1239 static unsigned int count_highmem_pages(void) 1240 { 1241 struct zone *zone; 1242 unsigned int n = 0; 1243 1244 for_each_populated_zone(zone) { 1245 unsigned long pfn, max_zone_pfn; 1246 1247 if (!is_highmem(zone)) 1248 continue; 1249 1250 mark_free_pages(zone); 1251 max_zone_pfn = zone_end_pfn(zone); 1252 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1253 if (saveable_highmem_page(zone, pfn)) 1254 n++; 1255 } 1256 return n; 1257 } 1258 #else 1259 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1260 { 1261 return NULL; 1262 } 1263 #endif /* CONFIG_HIGHMEM */ 1264 1265 /** 1266 * saveable_page - Check if the given page is saveable. 1267 * 1268 * Determine whether a non-highmem page should be included in a hibernation 1269 * image. 1270 * 1271 * We should save the page if it isn't Nosave, and is not in the range 1272 * of pages statically defined as 'unsaveable', and it isn't part of 1273 * a free chunk of pages. 1274 */ 1275 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1276 { 1277 struct page *page; 1278 1279 if (!pfn_valid(pfn)) 1280 return NULL; 1281 1282 page = pfn_to_online_page(pfn); 1283 if (!page || page_zone(page) != zone) 1284 return NULL; 1285 1286 BUG_ON(PageHighMem(page)); 1287 1288 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1289 return NULL; 1290 1291 if (PageOffline(page)) 1292 return NULL; 1293 1294 if (PageReserved(page) 1295 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1296 return NULL; 1297 1298 if (page_is_guard(page)) 1299 return NULL; 1300 1301 return page; 1302 } 1303 1304 /** 1305 * count_data_pages - Compute the total number of saveable non-highmem pages. 1306 */ 1307 static unsigned int count_data_pages(void) 1308 { 1309 struct zone *zone; 1310 unsigned long pfn, max_zone_pfn; 1311 unsigned int n = 0; 1312 1313 for_each_populated_zone(zone) { 1314 if (is_highmem(zone)) 1315 continue; 1316 1317 mark_free_pages(zone); 1318 max_zone_pfn = zone_end_pfn(zone); 1319 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1320 if (saveable_page(zone, pfn)) 1321 n++; 1322 } 1323 return n; 1324 } 1325 1326 /* 1327 * This is needed, because copy_page and memcpy are not usable for copying 1328 * task structs. 1329 */ 1330 static inline void do_copy_page(long *dst, long *src) 1331 { 1332 int n; 1333 1334 for (n = PAGE_SIZE / sizeof(long); n; n--) 1335 *dst++ = *src++; 1336 } 1337 1338 /** 1339 * safe_copy_page - Copy a page in a safe way. 1340 * 1341 * Check if the page we are going to copy is marked as present in the kernel 1342 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set 1343 * and in that case kernel_page_present() always returns 'true'). 1344 */ 1345 static void safe_copy_page(void *dst, struct page *s_page) 1346 { 1347 if (kernel_page_present(s_page)) { 1348 do_copy_page(dst, page_address(s_page)); 1349 } else { 1350 kernel_map_pages(s_page, 1, 1); 1351 do_copy_page(dst, page_address(s_page)); 1352 kernel_map_pages(s_page, 1, 0); 1353 } 1354 } 1355 1356 #ifdef CONFIG_HIGHMEM 1357 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1358 { 1359 return is_highmem(zone) ? 1360 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1361 } 1362 1363 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1364 { 1365 struct page *s_page, *d_page; 1366 void *src, *dst; 1367 1368 s_page = pfn_to_page(src_pfn); 1369 d_page = pfn_to_page(dst_pfn); 1370 if (PageHighMem(s_page)) { 1371 src = kmap_atomic(s_page); 1372 dst = kmap_atomic(d_page); 1373 do_copy_page(dst, src); 1374 kunmap_atomic(dst); 1375 kunmap_atomic(src); 1376 } else { 1377 if (PageHighMem(d_page)) { 1378 /* 1379 * The page pointed to by src may contain some kernel 1380 * data modified by kmap_atomic() 1381 */ 1382 safe_copy_page(buffer, s_page); 1383 dst = kmap_atomic(d_page); 1384 copy_page(dst, buffer); 1385 kunmap_atomic(dst); 1386 } else { 1387 safe_copy_page(page_address(d_page), s_page); 1388 } 1389 } 1390 } 1391 #else 1392 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1393 1394 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1395 { 1396 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1397 pfn_to_page(src_pfn)); 1398 } 1399 #endif /* CONFIG_HIGHMEM */ 1400 1401 static void copy_data_pages(struct memory_bitmap *copy_bm, 1402 struct memory_bitmap *orig_bm) 1403 { 1404 struct zone *zone; 1405 unsigned long pfn; 1406 1407 for_each_populated_zone(zone) { 1408 unsigned long max_zone_pfn; 1409 1410 mark_free_pages(zone); 1411 max_zone_pfn = zone_end_pfn(zone); 1412 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1413 if (page_is_saveable(zone, pfn)) 1414 memory_bm_set_bit(orig_bm, pfn); 1415 } 1416 memory_bm_position_reset(orig_bm); 1417 memory_bm_position_reset(copy_bm); 1418 for(;;) { 1419 pfn = memory_bm_next_pfn(orig_bm); 1420 if (unlikely(pfn == BM_END_OF_MAP)) 1421 break; 1422 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1423 } 1424 } 1425 1426 /* Total number of image pages */ 1427 static unsigned int nr_copy_pages; 1428 /* Number of pages needed for saving the original pfns of the image pages */ 1429 static unsigned int nr_meta_pages; 1430 /* 1431 * Numbers of normal and highmem page frames allocated for hibernation image 1432 * before suspending devices. 1433 */ 1434 static unsigned int alloc_normal, alloc_highmem; 1435 /* 1436 * Memory bitmap used for marking saveable pages (during hibernation) or 1437 * hibernation image pages (during restore) 1438 */ 1439 static struct memory_bitmap orig_bm; 1440 /* 1441 * Memory bitmap used during hibernation for marking allocated page frames that 1442 * will contain copies of saveable pages. During restore it is initially used 1443 * for marking hibernation image pages, but then the set bits from it are 1444 * duplicated in @orig_bm and it is released. On highmem systems it is next 1445 * used for marking "safe" highmem pages, but it has to be reinitialized for 1446 * this purpose. 1447 */ 1448 static struct memory_bitmap copy_bm; 1449 1450 /** 1451 * swsusp_free - Free pages allocated for hibernation image. 1452 * 1453 * Image pages are alocated before snapshot creation, so they need to be 1454 * released after resume. 1455 */ 1456 void swsusp_free(void) 1457 { 1458 unsigned long fb_pfn, fr_pfn; 1459 1460 if (!forbidden_pages_map || !free_pages_map) 1461 goto out; 1462 1463 memory_bm_position_reset(forbidden_pages_map); 1464 memory_bm_position_reset(free_pages_map); 1465 1466 loop: 1467 fr_pfn = memory_bm_next_pfn(free_pages_map); 1468 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1469 1470 /* 1471 * Find the next bit set in both bitmaps. This is guaranteed to 1472 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1473 */ 1474 do { 1475 if (fb_pfn < fr_pfn) 1476 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1477 if (fr_pfn < fb_pfn) 1478 fr_pfn = memory_bm_next_pfn(free_pages_map); 1479 } while (fb_pfn != fr_pfn); 1480 1481 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1482 struct page *page = pfn_to_page(fr_pfn); 1483 1484 memory_bm_clear_current(forbidden_pages_map); 1485 memory_bm_clear_current(free_pages_map); 1486 hibernate_restore_unprotect_page(page_address(page)); 1487 __free_page(page); 1488 goto loop; 1489 } 1490 1491 out: 1492 nr_copy_pages = 0; 1493 nr_meta_pages = 0; 1494 restore_pblist = NULL; 1495 buffer = NULL; 1496 alloc_normal = 0; 1497 alloc_highmem = 0; 1498 hibernate_restore_protection_end(); 1499 } 1500 1501 /* Helper functions used for the shrinking of memory. */ 1502 1503 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1504 1505 /** 1506 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1507 * @nr_pages: Number of page frames to allocate. 1508 * @mask: GFP flags to use for the allocation. 1509 * 1510 * Return value: Number of page frames actually allocated 1511 */ 1512 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1513 { 1514 unsigned long nr_alloc = 0; 1515 1516 while (nr_pages > 0) { 1517 struct page *page; 1518 1519 page = alloc_image_page(mask); 1520 if (!page) 1521 break; 1522 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1523 if (PageHighMem(page)) 1524 alloc_highmem++; 1525 else 1526 alloc_normal++; 1527 nr_pages--; 1528 nr_alloc++; 1529 } 1530 1531 return nr_alloc; 1532 } 1533 1534 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1535 unsigned long avail_normal) 1536 { 1537 unsigned long alloc; 1538 1539 if (avail_normal <= alloc_normal) 1540 return 0; 1541 1542 alloc = avail_normal - alloc_normal; 1543 if (nr_pages < alloc) 1544 alloc = nr_pages; 1545 1546 return preallocate_image_pages(alloc, GFP_IMAGE); 1547 } 1548 1549 #ifdef CONFIG_HIGHMEM 1550 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1551 { 1552 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1553 } 1554 1555 /** 1556 * __fraction - Compute (an approximation of) x * (multiplier / base). 1557 */ 1558 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1559 { 1560 x *= multiplier; 1561 do_div(x, base); 1562 return (unsigned long)x; 1563 } 1564 1565 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1566 unsigned long highmem, 1567 unsigned long total) 1568 { 1569 unsigned long alloc = __fraction(nr_pages, highmem, total); 1570 1571 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1572 } 1573 #else /* CONFIG_HIGHMEM */ 1574 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1575 { 1576 return 0; 1577 } 1578 1579 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1580 unsigned long highmem, 1581 unsigned long total) 1582 { 1583 return 0; 1584 } 1585 #endif /* CONFIG_HIGHMEM */ 1586 1587 /** 1588 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1589 */ 1590 static unsigned long free_unnecessary_pages(void) 1591 { 1592 unsigned long save, to_free_normal, to_free_highmem, free; 1593 1594 save = count_data_pages(); 1595 if (alloc_normal >= save) { 1596 to_free_normal = alloc_normal - save; 1597 save = 0; 1598 } else { 1599 to_free_normal = 0; 1600 save -= alloc_normal; 1601 } 1602 save += count_highmem_pages(); 1603 if (alloc_highmem >= save) { 1604 to_free_highmem = alloc_highmem - save; 1605 } else { 1606 to_free_highmem = 0; 1607 save -= alloc_highmem; 1608 if (to_free_normal > save) 1609 to_free_normal -= save; 1610 else 1611 to_free_normal = 0; 1612 } 1613 free = to_free_normal + to_free_highmem; 1614 1615 memory_bm_position_reset(©_bm); 1616 1617 while (to_free_normal > 0 || to_free_highmem > 0) { 1618 unsigned long pfn = memory_bm_next_pfn(©_bm); 1619 struct page *page = pfn_to_page(pfn); 1620 1621 if (PageHighMem(page)) { 1622 if (!to_free_highmem) 1623 continue; 1624 to_free_highmem--; 1625 alloc_highmem--; 1626 } else { 1627 if (!to_free_normal) 1628 continue; 1629 to_free_normal--; 1630 alloc_normal--; 1631 } 1632 memory_bm_clear_bit(©_bm, pfn); 1633 swsusp_unset_page_forbidden(page); 1634 swsusp_unset_page_free(page); 1635 __free_page(page); 1636 } 1637 1638 return free; 1639 } 1640 1641 /** 1642 * minimum_image_size - Estimate the minimum acceptable size of an image. 1643 * @saveable: Number of saveable pages in the system. 1644 * 1645 * We want to avoid attempting to free too much memory too hard, so estimate the 1646 * minimum acceptable size of a hibernation image to use as the lower limit for 1647 * preallocating memory. 1648 * 1649 * We assume that the minimum image size should be proportional to 1650 * 1651 * [number of saveable pages] - [number of pages that can be freed in theory] 1652 * 1653 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1654 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1655 */ 1656 static unsigned long minimum_image_size(unsigned long saveable) 1657 { 1658 unsigned long size; 1659 1660 size = global_node_page_state(NR_SLAB_RECLAIMABLE) 1661 + global_node_page_state(NR_ACTIVE_ANON) 1662 + global_node_page_state(NR_INACTIVE_ANON) 1663 + global_node_page_state(NR_ACTIVE_FILE) 1664 + global_node_page_state(NR_INACTIVE_FILE); 1665 1666 return saveable <= size ? 0 : saveable - size; 1667 } 1668 1669 /** 1670 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1671 * 1672 * To create a hibernation image it is necessary to make a copy of every page 1673 * frame in use. We also need a number of page frames to be free during 1674 * hibernation for allocations made while saving the image and for device 1675 * drivers, in case they need to allocate memory from their hibernation 1676 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1677 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1678 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1679 * total number of available page frames and allocate at least 1680 * 1681 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1682 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1683 * 1684 * of them, which corresponds to the maximum size of a hibernation image. 1685 * 1686 * If image_size is set below the number following from the above formula, 1687 * the preallocation of memory is continued until the total number of saveable 1688 * pages in the system is below the requested image size or the minimum 1689 * acceptable image size returned by minimum_image_size(), whichever is greater. 1690 */ 1691 int hibernate_preallocate_memory(void) 1692 { 1693 struct zone *zone; 1694 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1695 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1696 ktime_t start, stop; 1697 int error; 1698 1699 pr_info("Preallocating image memory... "); 1700 start = ktime_get(); 1701 1702 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1703 if (error) 1704 goto err_out; 1705 1706 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1707 if (error) 1708 goto err_out; 1709 1710 alloc_normal = 0; 1711 alloc_highmem = 0; 1712 1713 /* Count the number of saveable data pages. */ 1714 save_highmem = count_highmem_pages(); 1715 saveable = count_data_pages(); 1716 1717 /* 1718 * Compute the total number of page frames we can use (count) and the 1719 * number of pages needed for image metadata (size). 1720 */ 1721 count = saveable; 1722 saveable += save_highmem; 1723 highmem = save_highmem; 1724 size = 0; 1725 for_each_populated_zone(zone) { 1726 size += snapshot_additional_pages(zone); 1727 if (is_highmem(zone)) 1728 highmem += zone_page_state(zone, NR_FREE_PAGES); 1729 else 1730 count += zone_page_state(zone, NR_FREE_PAGES); 1731 } 1732 avail_normal = count; 1733 count += highmem; 1734 count -= totalreserve_pages; 1735 1736 /* Add number of pages required for page keys (s390 only). */ 1737 size += page_key_additional_pages(saveable); 1738 1739 /* Compute the maximum number of saveable pages to leave in memory. */ 1740 max_size = (count - (size + PAGES_FOR_IO)) / 2 1741 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1742 /* Compute the desired number of image pages specified by image_size. */ 1743 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1744 if (size > max_size) 1745 size = max_size; 1746 /* 1747 * If the desired number of image pages is at least as large as the 1748 * current number of saveable pages in memory, allocate page frames for 1749 * the image and we're done. 1750 */ 1751 if (size >= saveable) { 1752 pages = preallocate_image_highmem(save_highmem); 1753 pages += preallocate_image_memory(saveable - pages, avail_normal); 1754 goto out; 1755 } 1756 1757 /* Estimate the minimum size of the image. */ 1758 pages = minimum_image_size(saveable); 1759 /* 1760 * To avoid excessive pressure on the normal zone, leave room in it to 1761 * accommodate an image of the minimum size (unless it's already too 1762 * small, in which case don't preallocate pages from it at all). 1763 */ 1764 if (avail_normal > pages) 1765 avail_normal -= pages; 1766 else 1767 avail_normal = 0; 1768 if (size < pages) 1769 size = min_t(unsigned long, pages, max_size); 1770 1771 /* 1772 * Let the memory management subsystem know that we're going to need a 1773 * large number of page frames to allocate and make it free some memory. 1774 * NOTE: If this is not done, performance will be hurt badly in some 1775 * test cases. 1776 */ 1777 shrink_all_memory(saveable - size); 1778 1779 /* 1780 * The number of saveable pages in memory was too high, so apply some 1781 * pressure to decrease it. First, make room for the largest possible 1782 * image and fail if that doesn't work. Next, try to decrease the size 1783 * of the image as much as indicated by 'size' using allocations from 1784 * highmem and non-highmem zones separately. 1785 */ 1786 pages_highmem = preallocate_image_highmem(highmem / 2); 1787 alloc = count - max_size; 1788 if (alloc > pages_highmem) 1789 alloc -= pages_highmem; 1790 else 1791 alloc = 0; 1792 pages = preallocate_image_memory(alloc, avail_normal); 1793 if (pages < alloc) { 1794 /* We have exhausted non-highmem pages, try highmem. */ 1795 alloc -= pages; 1796 pages += pages_highmem; 1797 pages_highmem = preallocate_image_highmem(alloc); 1798 if (pages_highmem < alloc) 1799 goto err_out; 1800 pages += pages_highmem; 1801 /* 1802 * size is the desired number of saveable pages to leave in 1803 * memory, so try to preallocate (all memory - size) pages. 1804 */ 1805 alloc = (count - pages) - size; 1806 pages += preallocate_image_highmem(alloc); 1807 } else { 1808 /* 1809 * There are approximately max_size saveable pages at this point 1810 * and we want to reduce this number down to size. 1811 */ 1812 alloc = max_size - size; 1813 size = preallocate_highmem_fraction(alloc, highmem, count); 1814 pages_highmem += size; 1815 alloc -= size; 1816 size = preallocate_image_memory(alloc, avail_normal); 1817 pages_highmem += preallocate_image_highmem(alloc - size); 1818 pages += pages_highmem + size; 1819 } 1820 1821 /* 1822 * We only need as many page frames for the image as there are saveable 1823 * pages in memory, but we have allocated more. Release the excessive 1824 * ones now. 1825 */ 1826 pages -= free_unnecessary_pages(); 1827 1828 out: 1829 stop = ktime_get(); 1830 pr_cont("done (allocated %lu pages)\n", pages); 1831 swsusp_show_speed(start, stop, pages, "Allocated"); 1832 1833 return 0; 1834 1835 err_out: 1836 pr_cont("\n"); 1837 swsusp_free(); 1838 return -ENOMEM; 1839 } 1840 1841 #ifdef CONFIG_HIGHMEM 1842 /** 1843 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1844 * 1845 * Compute the number of non-highmem pages that will be necessary for creating 1846 * copies of highmem pages. 1847 */ 1848 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1849 { 1850 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1851 1852 if (free_highmem >= nr_highmem) 1853 nr_highmem = 0; 1854 else 1855 nr_highmem -= free_highmem; 1856 1857 return nr_highmem; 1858 } 1859 #else 1860 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1861 #endif /* CONFIG_HIGHMEM */ 1862 1863 /** 1864 * enough_free_mem - Check if there is enough free memory for the image. 1865 */ 1866 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1867 { 1868 struct zone *zone; 1869 unsigned int free = alloc_normal; 1870 1871 for_each_populated_zone(zone) 1872 if (!is_highmem(zone)) 1873 free += zone_page_state(zone, NR_FREE_PAGES); 1874 1875 nr_pages += count_pages_for_highmem(nr_highmem); 1876 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 1877 nr_pages, PAGES_FOR_IO, free); 1878 1879 return free > nr_pages + PAGES_FOR_IO; 1880 } 1881 1882 #ifdef CONFIG_HIGHMEM 1883 /** 1884 * get_highmem_buffer - Allocate a buffer for highmem pages. 1885 * 1886 * If there are some highmem pages in the hibernation image, we may need a 1887 * buffer to copy them and/or load their data. 1888 */ 1889 static inline int get_highmem_buffer(int safe_needed) 1890 { 1891 buffer = get_image_page(GFP_ATOMIC, safe_needed); 1892 return buffer ? 0 : -ENOMEM; 1893 } 1894 1895 /** 1896 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1897 * 1898 * Try to allocate as many pages as needed, but if the number of free highmem 1899 * pages is less than that, allocate them all. 1900 */ 1901 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1902 unsigned int nr_highmem) 1903 { 1904 unsigned int to_alloc = count_free_highmem_pages(); 1905 1906 if (to_alloc > nr_highmem) 1907 to_alloc = nr_highmem; 1908 1909 nr_highmem -= to_alloc; 1910 while (to_alloc-- > 0) { 1911 struct page *page; 1912 1913 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1914 memory_bm_set_bit(bm, page_to_pfn(page)); 1915 } 1916 return nr_highmem; 1917 } 1918 #else 1919 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1920 1921 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1922 unsigned int n) { return 0; } 1923 #endif /* CONFIG_HIGHMEM */ 1924 1925 /** 1926 * swsusp_alloc - Allocate memory for hibernation image. 1927 * 1928 * We first try to allocate as many highmem pages as there are 1929 * saveable highmem pages in the system. If that fails, we allocate 1930 * non-highmem pages for the copies of the remaining highmem ones. 1931 * 1932 * In this approach it is likely that the copies of highmem pages will 1933 * also be located in the high memory, because of the way in which 1934 * copy_data_pages() works. 1935 */ 1936 static int swsusp_alloc(struct memory_bitmap *copy_bm, 1937 unsigned int nr_pages, unsigned int nr_highmem) 1938 { 1939 if (nr_highmem > 0) { 1940 if (get_highmem_buffer(PG_ANY)) 1941 goto err_out; 1942 if (nr_highmem > alloc_highmem) { 1943 nr_highmem -= alloc_highmem; 1944 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1945 } 1946 } 1947 if (nr_pages > alloc_normal) { 1948 nr_pages -= alloc_normal; 1949 while (nr_pages-- > 0) { 1950 struct page *page; 1951 1952 page = alloc_image_page(GFP_ATOMIC); 1953 if (!page) 1954 goto err_out; 1955 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1956 } 1957 } 1958 1959 return 0; 1960 1961 err_out: 1962 swsusp_free(); 1963 return -ENOMEM; 1964 } 1965 1966 asmlinkage __visible int swsusp_save(void) 1967 { 1968 unsigned int nr_pages, nr_highmem; 1969 1970 pr_info("Creating hibernation image:\n"); 1971 1972 drain_local_pages(NULL); 1973 nr_pages = count_data_pages(); 1974 nr_highmem = count_highmem_pages(); 1975 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 1976 1977 if (!enough_free_mem(nr_pages, nr_highmem)) { 1978 pr_err("Not enough free memory\n"); 1979 return -ENOMEM; 1980 } 1981 1982 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 1983 pr_err("Memory allocation failed\n"); 1984 return -ENOMEM; 1985 } 1986 1987 /* 1988 * During allocating of suspend pagedir, new cold pages may appear. 1989 * Kill them. 1990 */ 1991 drain_local_pages(NULL); 1992 copy_data_pages(©_bm, &orig_bm); 1993 1994 /* 1995 * End of critical section. From now on, we can write to memory, 1996 * but we should not touch disk. This specially means we must _not_ 1997 * touch swap space! Except we must write out our image of course. 1998 */ 1999 2000 nr_pages += nr_highmem; 2001 nr_copy_pages = nr_pages; 2002 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2003 2004 pr_info("Hibernation image created (%d pages copied)\n", nr_pages); 2005 2006 return 0; 2007 } 2008 2009 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2010 static int init_header_complete(struct swsusp_info *info) 2011 { 2012 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2013 info->version_code = LINUX_VERSION_CODE; 2014 return 0; 2015 } 2016 2017 static char *check_image_kernel(struct swsusp_info *info) 2018 { 2019 if (info->version_code != LINUX_VERSION_CODE) 2020 return "kernel version"; 2021 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2022 return "system type"; 2023 if (strcmp(info->uts.release,init_utsname()->release)) 2024 return "kernel release"; 2025 if (strcmp(info->uts.version,init_utsname()->version)) 2026 return "version"; 2027 if (strcmp(info->uts.machine,init_utsname()->machine)) 2028 return "machine"; 2029 return NULL; 2030 } 2031 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2032 2033 unsigned long snapshot_get_image_size(void) 2034 { 2035 return nr_copy_pages + nr_meta_pages + 1; 2036 } 2037 2038 static int init_header(struct swsusp_info *info) 2039 { 2040 memset(info, 0, sizeof(struct swsusp_info)); 2041 info->num_physpages = get_num_physpages(); 2042 info->image_pages = nr_copy_pages; 2043 info->pages = snapshot_get_image_size(); 2044 info->size = info->pages; 2045 info->size <<= PAGE_SHIFT; 2046 return init_header_complete(info); 2047 } 2048 2049 /** 2050 * pack_pfns - Prepare PFNs for saving. 2051 * @bm: Memory bitmap. 2052 * @buf: Memory buffer to store the PFNs in. 2053 * 2054 * PFNs corresponding to set bits in @bm are stored in the area of memory 2055 * pointed to by @buf (1 page at a time). 2056 */ 2057 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2058 { 2059 int j; 2060 2061 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2062 buf[j] = memory_bm_next_pfn(bm); 2063 if (unlikely(buf[j] == BM_END_OF_MAP)) 2064 break; 2065 /* Save page key for data page (s390 only). */ 2066 page_key_read(buf + j); 2067 } 2068 } 2069 2070 /** 2071 * snapshot_read_next - Get the address to read the next image page from. 2072 * @handle: Snapshot handle to be used for the reading. 2073 * 2074 * On the first call, @handle should point to a zeroed snapshot_handle 2075 * structure. The structure gets populated then and a pointer to it should be 2076 * passed to this function every next time. 2077 * 2078 * On success, the function returns a positive number. Then, the caller 2079 * is allowed to read up to the returned number of bytes from the memory 2080 * location computed by the data_of() macro. 2081 * 2082 * The function returns 0 to indicate the end of the data stream condition, 2083 * and negative numbers are returned on errors. If that happens, the structure 2084 * pointed to by @handle is not updated and should not be used any more. 2085 */ 2086 int snapshot_read_next(struct snapshot_handle *handle) 2087 { 2088 if (handle->cur > nr_meta_pages + nr_copy_pages) 2089 return 0; 2090 2091 if (!buffer) { 2092 /* This makes the buffer be freed by swsusp_free() */ 2093 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2094 if (!buffer) 2095 return -ENOMEM; 2096 } 2097 if (!handle->cur) { 2098 int error; 2099 2100 error = init_header((struct swsusp_info *)buffer); 2101 if (error) 2102 return error; 2103 handle->buffer = buffer; 2104 memory_bm_position_reset(&orig_bm); 2105 memory_bm_position_reset(©_bm); 2106 } else if (handle->cur <= nr_meta_pages) { 2107 clear_page(buffer); 2108 pack_pfns(buffer, &orig_bm); 2109 } else { 2110 struct page *page; 2111 2112 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2113 if (PageHighMem(page)) { 2114 /* 2115 * Highmem pages are copied to the buffer, 2116 * because we can't return with a kmapped 2117 * highmem page (we may not be called again). 2118 */ 2119 void *kaddr; 2120 2121 kaddr = kmap_atomic(page); 2122 copy_page(buffer, kaddr); 2123 kunmap_atomic(kaddr); 2124 handle->buffer = buffer; 2125 } else { 2126 handle->buffer = page_address(page); 2127 } 2128 } 2129 handle->cur++; 2130 return PAGE_SIZE; 2131 } 2132 2133 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2134 struct memory_bitmap *src) 2135 { 2136 unsigned long pfn; 2137 2138 memory_bm_position_reset(src); 2139 pfn = memory_bm_next_pfn(src); 2140 while (pfn != BM_END_OF_MAP) { 2141 memory_bm_set_bit(dst, pfn); 2142 pfn = memory_bm_next_pfn(src); 2143 } 2144 } 2145 2146 /** 2147 * mark_unsafe_pages - Mark pages that were used before hibernation. 2148 * 2149 * Mark the pages that cannot be used for storing the image during restoration, 2150 * because they conflict with the pages that had been used before hibernation. 2151 */ 2152 static void mark_unsafe_pages(struct memory_bitmap *bm) 2153 { 2154 unsigned long pfn; 2155 2156 /* Clear the "free"/"unsafe" bit for all PFNs */ 2157 memory_bm_position_reset(free_pages_map); 2158 pfn = memory_bm_next_pfn(free_pages_map); 2159 while (pfn != BM_END_OF_MAP) { 2160 memory_bm_clear_current(free_pages_map); 2161 pfn = memory_bm_next_pfn(free_pages_map); 2162 } 2163 2164 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2165 duplicate_memory_bitmap(free_pages_map, bm); 2166 2167 allocated_unsafe_pages = 0; 2168 } 2169 2170 static int check_header(struct swsusp_info *info) 2171 { 2172 char *reason; 2173 2174 reason = check_image_kernel(info); 2175 if (!reason && info->num_physpages != get_num_physpages()) 2176 reason = "memory size"; 2177 if (reason) { 2178 pr_err("Image mismatch: %s\n", reason); 2179 return -EPERM; 2180 } 2181 return 0; 2182 } 2183 2184 /** 2185 * load header - Check the image header and copy the data from it. 2186 */ 2187 static int load_header(struct swsusp_info *info) 2188 { 2189 int error; 2190 2191 restore_pblist = NULL; 2192 error = check_header(info); 2193 if (!error) { 2194 nr_copy_pages = info->image_pages; 2195 nr_meta_pages = info->pages - info->image_pages - 1; 2196 } 2197 return error; 2198 } 2199 2200 /** 2201 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2202 * @bm: Memory bitmap. 2203 * @buf: Area of memory containing the PFNs. 2204 * 2205 * For each element of the array pointed to by @buf (1 page at a time), set the 2206 * corresponding bit in @bm. 2207 */ 2208 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2209 { 2210 int j; 2211 2212 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2213 if (unlikely(buf[j] == BM_END_OF_MAP)) 2214 break; 2215 2216 /* Extract and buffer page key for data page (s390 only). */ 2217 page_key_memorize(buf + j); 2218 2219 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2220 memory_bm_set_bit(bm, buf[j]); 2221 else 2222 return -EFAULT; 2223 } 2224 2225 return 0; 2226 } 2227 2228 #ifdef CONFIG_HIGHMEM 2229 /* 2230 * struct highmem_pbe is used for creating the list of highmem pages that 2231 * should be restored atomically during the resume from disk, because the page 2232 * frames they have occupied before the suspend are in use. 2233 */ 2234 struct highmem_pbe { 2235 struct page *copy_page; /* data is here now */ 2236 struct page *orig_page; /* data was here before the suspend */ 2237 struct highmem_pbe *next; 2238 }; 2239 2240 /* 2241 * List of highmem PBEs needed for restoring the highmem pages that were 2242 * allocated before the suspend and included in the suspend image, but have 2243 * also been allocated by the "resume" kernel, so their contents cannot be 2244 * written directly to their "original" page frames. 2245 */ 2246 static struct highmem_pbe *highmem_pblist; 2247 2248 /** 2249 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2250 * @bm: Memory bitmap. 2251 * 2252 * The bits in @bm that correspond to image pages are assumed to be set. 2253 */ 2254 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2255 { 2256 unsigned long pfn; 2257 unsigned int cnt = 0; 2258 2259 memory_bm_position_reset(bm); 2260 pfn = memory_bm_next_pfn(bm); 2261 while (pfn != BM_END_OF_MAP) { 2262 if (PageHighMem(pfn_to_page(pfn))) 2263 cnt++; 2264 2265 pfn = memory_bm_next_pfn(bm); 2266 } 2267 return cnt; 2268 } 2269 2270 static unsigned int safe_highmem_pages; 2271 2272 static struct memory_bitmap *safe_highmem_bm; 2273 2274 /** 2275 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2276 * @bm: Pointer to an uninitialized memory bitmap structure. 2277 * @nr_highmem_p: Pointer to the number of highmem image pages. 2278 * 2279 * Try to allocate as many highmem pages as there are highmem image pages 2280 * (@nr_highmem_p points to the variable containing the number of highmem image 2281 * pages). The pages that are "safe" (ie. will not be overwritten when the 2282 * hibernation image is restored entirely) have the corresponding bits set in 2283 * @bm (it must be unitialized). 2284 * 2285 * NOTE: This function should not be called if there are no highmem image pages. 2286 */ 2287 static int prepare_highmem_image(struct memory_bitmap *bm, 2288 unsigned int *nr_highmem_p) 2289 { 2290 unsigned int to_alloc; 2291 2292 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2293 return -ENOMEM; 2294 2295 if (get_highmem_buffer(PG_SAFE)) 2296 return -ENOMEM; 2297 2298 to_alloc = count_free_highmem_pages(); 2299 if (to_alloc > *nr_highmem_p) 2300 to_alloc = *nr_highmem_p; 2301 else 2302 *nr_highmem_p = to_alloc; 2303 2304 safe_highmem_pages = 0; 2305 while (to_alloc-- > 0) { 2306 struct page *page; 2307 2308 page = alloc_page(__GFP_HIGHMEM); 2309 if (!swsusp_page_is_free(page)) { 2310 /* The page is "safe", set its bit the bitmap */ 2311 memory_bm_set_bit(bm, page_to_pfn(page)); 2312 safe_highmem_pages++; 2313 } 2314 /* Mark the page as allocated */ 2315 swsusp_set_page_forbidden(page); 2316 swsusp_set_page_free(page); 2317 } 2318 memory_bm_position_reset(bm); 2319 safe_highmem_bm = bm; 2320 return 0; 2321 } 2322 2323 static struct page *last_highmem_page; 2324 2325 /** 2326 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2327 * 2328 * For a given highmem image page get a buffer that suspend_write_next() should 2329 * return to its caller to write to. 2330 * 2331 * If the page is to be saved to its "original" page frame or a copy of 2332 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2333 * the copy of the page is to be made in normal memory, so the address of 2334 * the copy is returned. 2335 * 2336 * If @buffer is returned, the caller of suspend_write_next() will write 2337 * the page's contents to @buffer, so they will have to be copied to the 2338 * right location on the next call to suspend_write_next() and it is done 2339 * with the help of copy_last_highmem_page(). For this purpose, if 2340 * @buffer is returned, @last_highmem_page is set to the page to which 2341 * the data will have to be copied from @buffer. 2342 */ 2343 static void *get_highmem_page_buffer(struct page *page, 2344 struct chain_allocator *ca) 2345 { 2346 struct highmem_pbe *pbe; 2347 void *kaddr; 2348 2349 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2350 /* 2351 * We have allocated the "original" page frame and we can 2352 * use it directly to store the loaded page. 2353 */ 2354 last_highmem_page = page; 2355 return buffer; 2356 } 2357 /* 2358 * The "original" page frame has not been allocated and we have to 2359 * use a "safe" page frame to store the loaded page. 2360 */ 2361 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2362 if (!pbe) { 2363 swsusp_free(); 2364 return ERR_PTR(-ENOMEM); 2365 } 2366 pbe->orig_page = page; 2367 if (safe_highmem_pages > 0) { 2368 struct page *tmp; 2369 2370 /* Copy of the page will be stored in high memory */ 2371 kaddr = buffer; 2372 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2373 safe_highmem_pages--; 2374 last_highmem_page = tmp; 2375 pbe->copy_page = tmp; 2376 } else { 2377 /* Copy of the page will be stored in normal memory */ 2378 kaddr = safe_pages_list; 2379 safe_pages_list = safe_pages_list->next; 2380 pbe->copy_page = virt_to_page(kaddr); 2381 } 2382 pbe->next = highmem_pblist; 2383 highmem_pblist = pbe; 2384 return kaddr; 2385 } 2386 2387 /** 2388 * copy_last_highmem_page - Copy most the most recent highmem image page. 2389 * 2390 * Copy the contents of a highmem image from @buffer, where the caller of 2391 * snapshot_write_next() has stored them, to the right location represented by 2392 * @last_highmem_page . 2393 */ 2394 static void copy_last_highmem_page(void) 2395 { 2396 if (last_highmem_page) { 2397 void *dst; 2398 2399 dst = kmap_atomic(last_highmem_page); 2400 copy_page(dst, buffer); 2401 kunmap_atomic(dst); 2402 last_highmem_page = NULL; 2403 } 2404 } 2405 2406 static inline int last_highmem_page_copied(void) 2407 { 2408 return !last_highmem_page; 2409 } 2410 2411 static inline void free_highmem_data(void) 2412 { 2413 if (safe_highmem_bm) 2414 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2415 2416 if (buffer) 2417 free_image_page(buffer, PG_UNSAFE_CLEAR); 2418 } 2419 #else 2420 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2421 2422 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2423 unsigned int *nr_highmem_p) { return 0; } 2424 2425 static inline void *get_highmem_page_buffer(struct page *page, 2426 struct chain_allocator *ca) 2427 { 2428 return ERR_PTR(-EINVAL); 2429 } 2430 2431 static inline void copy_last_highmem_page(void) {} 2432 static inline int last_highmem_page_copied(void) { return 1; } 2433 static inline void free_highmem_data(void) {} 2434 #endif /* CONFIG_HIGHMEM */ 2435 2436 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2437 2438 /** 2439 * prepare_image - Make room for loading hibernation image. 2440 * @new_bm: Unitialized memory bitmap structure. 2441 * @bm: Memory bitmap with unsafe pages marked. 2442 * 2443 * Use @bm to mark the pages that will be overwritten in the process of 2444 * restoring the system memory state from the suspend image ("unsafe" pages) 2445 * and allocate memory for the image. 2446 * 2447 * The idea is to allocate a new memory bitmap first and then allocate 2448 * as many pages as needed for image data, but without specifying what those 2449 * pages will be used for just yet. Instead, we mark them all as allocated and 2450 * create a lists of "safe" pages to be used later. On systems with high 2451 * memory a list of "safe" highmem pages is created too. 2452 */ 2453 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2454 { 2455 unsigned int nr_pages, nr_highmem; 2456 struct linked_page *lp; 2457 int error; 2458 2459 /* If there is no highmem, the buffer will not be necessary */ 2460 free_image_page(buffer, PG_UNSAFE_CLEAR); 2461 buffer = NULL; 2462 2463 nr_highmem = count_highmem_image_pages(bm); 2464 mark_unsafe_pages(bm); 2465 2466 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2467 if (error) 2468 goto Free; 2469 2470 duplicate_memory_bitmap(new_bm, bm); 2471 memory_bm_free(bm, PG_UNSAFE_KEEP); 2472 if (nr_highmem > 0) { 2473 error = prepare_highmem_image(bm, &nr_highmem); 2474 if (error) 2475 goto Free; 2476 } 2477 /* 2478 * Reserve some safe pages for potential later use. 2479 * 2480 * NOTE: This way we make sure there will be enough safe pages for the 2481 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2482 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2483 * 2484 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2485 */ 2486 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2487 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2488 while (nr_pages > 0) { 2489 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2490 if (!lp) { 2491 error = -ENOMEM; 2492 goto Free; 2493 } 2494 lp->next = safe_pages_list; 2495 safe_pages_list = lp; 2496 nr_pages--; 2497 } 2498 /* Preallocate memory for the image */ 2499 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2500 while (nr_pages > 0) { 2501 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2502 if (!lp) { 2503 error = -ENOMEM; 2504 goto Free; 2505 } 2506 if (!swsusp_page_is_free(virt_to_page(lp))) { 2507 /* The page is "safe", add it to the list */ 2508 lp->next = safe_pages_list; 2509 safe_pages_list = lp; 2510 } 2511 /* Mark the page as allocated */ 2512 swsusp_set_page_forbidden(virt_to_page(lp)); 2513 swsusp_set_page_free(virt_to_page(lp)); 2514 nr_pages--; 2515 } 2516 return 0; 2517 2518 Free: 2519 swsusp_free(); 2520 return error; 2521 } 2522 2523 /** 2524 * get_buffer - Get the address to store the next image data page. 2525 * 2526 * Get the address that snapshot_write_next() should return to its caller to 2527 * write to. 2528 */ 2529 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2530 { 2531 struct pbe *pbe; 2532 struct page *page; 2533 unsigned long pfn = memory_bm_next_pfn(bm); 2534 2535 if (pfn == BM_END_OF_MAP) 2536 return ERR_PTR(-EFAULT); 2537 2538 page = pfn_to_page(pfn); 2539 if (PageHighMem(page)) 2540 return get_highmem_page_buffer(page, ca); 2541 2542 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2543 /* 2544 * We have allocated the "original" page frame and we can 2545 * use it directly to store the loaded page. 2546 */ 2547 return page_address(page); 2548 2549 /* 2550 * The "original" page frame has not been allocated and we have to 2551 * use a "safe" page frame to store the loaded page. 2552 */ 2553 pbe = chain_alloc(ca, sizeof(struct pbe)); 2554 if (!pbe) { 2555 swsusp_free(); 2556 return ERR_PTR(-ENOMEM); 2557 } 2558 pbe->orig_address = page_address(page); 2559 pbe->address = safe_pages_list; 2560 safe_pages_list = safe_pages_list->next; 2561 pbe->next = restore_pblist; 2562 restore_pblist = pbe; 2563 return pbe->address; 2564 } 2565 2566 /** 2567 * snapshot_write_next - Get the address to store the next image page. 2568 * @handle: Snapshot handle structure to guide the writing. 2569 * 2570 * On the first call, @handle should point to a zeroed snapshot_handle 2571 * structure. The structure gets populated then and a pointer to it should be 2572 * passed to this function every next time. 2573 * 2574 * On success, the function returns a positive number. Then, the caller 2575 * is allowed to write up to the returned number of bytes to the memory 2576 * location computed by the data_of() macro. 2577 * 2578 * The function returns 0 to indicate the "end of file" condition. Negative 2579 * numbers are returned on errors, in which cases the structure pointed to by 2580 * @handle is not updated and should not be used any more. 2581 */ 2582 int snapshot_write_next(struct snapshot_handle *handle) 2583 { 2584 static struct chain_allocator ca; 2585 int error = 0; 2586 2587 /* Check if we have already loaded the entire image */ 2588 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2589 return 0; 2590 2591 handle->sync_read = 1; 2592 2593 if (!handle->cur) { 2594 if (!buffer) 2595 /* This makes the buffer be freed by swsusp_free() */ 2596 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2597 2598 if (!buffer) 2599 return -ENOMEM; 2600 2601 handle->buffer = buffer; 2602 } else if (handle->cur == 1) { 2603 error = load_header(buffer); 2604 if (error) 2605 return error; 2606 2607 safe_pages_list = NULL; 2608 2609 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2610 if (error) 2611 return error; 2612 2613 /* Allocate buffer for page keys. */ 2614 error = page_key_alloc(nr_copy_pages); 2615 if (error) 2616 return error; 2617 2618 hibernate_restore_protection_begin(); 2619 } else if (handle->cur <= nr_meta_pages + 1) { 2620 error = unpack_orig_pfns(buffer, ©_bm); 2621 if (error) 2622 return error; 2623 2624 if (handle->cur == nr_meta_pages + 1) { 2625 error = prepare_image(&orig_bm, ©_bm); 2626 if (error) 2627 return error; 2628 2629 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2630 memory_bm_position_reset(&orig_bm); 2631 restore_pblist = NULL; 2632 handle->buffer = get_buffer(&orig_bm, &ca); 2633 handle->sync_read = 0; 2634 if (IS_ERR(handle->buffer)) 2635 return PTR_ERR(handle->buffer); 2636 } 2637 } else { 2638 copy_last_highmem_page(); 2639 /* Restore page key for data page (s390 only). */ 2640 page_key_write(handle->buffer); 2641 hibernate_restore_protect_page(handle->buffer); 2642 handle->buffer = get_buffer(&orig_bm, &ca); 2643 if (IS_ERR(handle->buffer)) 2644 return PTR_ERR(handle->buffer); 2645 if (handle->buffer != buffer) 2646 handle->sync_read = 0; 2647 } 2648 handle->cur++; 2649 return PAGE_SIZE; 2650 } 2651 2652 /** 2653 * snapshot_write_finalize - Complete the loading of a hibernation image. 2654 * 2655 * Must be called after the last call to snapshot_write_next() in case the last 2656 * page in the image happens to be a highmem page and its contents should be 2657 * stored in highmem. Additionally, it recycles bitmap memory that's not 2658 * necessary any more. 2659 */ 2660 void snapshot_write_finalize(struct snapshot_handle *handle) 2661 { 2662 copy_last_highmem_page(); 2663 /* Restore page key for data page (s390 only). */ 2664 page_key_write(handle->buffer); 2665 page_key_free(); 2666 hibernate_restore_protect_page(handle->buffer); 2667 /* Do that only if we have loaded the image entirely */ 2668 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2669 memory_bm_recycle(&orig_bm); 2670 free_highmem_data(); 2671 } 2672 } 2673 2674 int snapshot_image_loaded(struct snapshot_handle *handle) 2675 { 2676 return !(!nr_copy_pages || !last_highmem_page_copied() || 2677 handle->cur <= nr_meta_pages + nr_copy_pages); 2678 } 2679 2680 #ifdef CONFIG_HIGHMEM 2681 /* Assumes that @buf is ready and points to a "safe" page */ 2682 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2683 void *buf) 2684 { 2685 void *kaddr1, *kaddr2; 2686 2687 kaddr1 = kmap_atomic(p1); 2688 kaddr2 = kmap_atomic(p2); 2689 copy_page(buf, kaddr1); 2690 copy_page(kaddr1, kaddr2); 2691 copy_page(kaddr2, buf); 2692 kunmap_atomic(kaddr2); 2693 kunmap_atomic(kaddr1); 2694 } 2695 2696 /** 2697 * restore_highmem - Put highmem image pages into their original locations. 2698 * 2699 * For each highmem page that was in use before hibernation and is included in 2700 * the image, and also has been allocated by the "restore" kernel, swap its 2701 * current contents with the previous (ie. "before hibernation") ones. 2702 * 2703 * If the restore eventually fails, we can call this function once again and 2704 * restore the highmem state as seen by the restore kernel. 2705 */ 2706 int restore_highmem(void) 2707 { 2708 struct highmem_pbe *pbe = highmem_pblist; 2709 void *buf; 2710 2711 if (!pbe) 2712 return 0; 2713 2714 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2715 if (!buf) 2716 return -ENOMEM; 2717 2718 while (pbe) { 2719 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2720 pbe = pbe->next; 2721 } 2722 free_image_page(buf, PG_UNSAFE_CLEAR); 2723 return 0; 2724 } 2725 #endif /* CONFIG_HIGHMEM */ 2726