1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone_end_pfn(zone); 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n", 646 (unsigned long long) start_pfn << PAGE_SHIFT, 647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 648 } 649 650 /* 651 * Set bits in this map correspond to the page frames the contents of which 652 * should not be saved during the suspend. 653 */ 654 static struct memory_bitmap *forbidden_pages_map; 655 656 /* Set bits in this map correspond to free page frames. */ 657 static struct memory_bitmap *free_pages_map; 658 659 /* 660 * Each page frame allocated for creating the image is marked by setting the 661 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 662 */ 663 664 void swsusp_set_page_free(struct page *page) 665 { 666 if (free_pages_map) 667 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 668 } 669 670 static int swsusp_page_is_free(struct page *page) 671 { 672 return free_pages_map ? 673 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 674 } 675 676 void swsusp_unset_page_free(struct page *page) 677 { 678 if (free_pages_map) 679 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 680 } 681 682 static void swsusp_set_page_forbidden(struct page *page) 683 { 684 if (forbidden_pages_map) 685 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 686 } 687 688 int swsusp_page_is_forbidden(struct page *page) 689 { 690 return forbidden_pages_map ? 691 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 692 } 693 694 static void swsusp_unset_page_forbidden(struct page *page) 695 { 696 if (forbidden_pages_map) 697 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 698 } 699 700 /** 701 * mark_nosave_pages - set bits corresponding to the page frames the 702 * contents of which should not be saved in a given bitmap. 703 */ 704 705 static void mark_nosave_pages(struct memory_bitmap *bm) 706 { 707 struct nosave_region *region; 708 709 if (list_empty(&nosave_regions)) 710 return; 711 712 list_for_each_entry(region, &nosave_regions, list) { 713 unsigned long pfn; 714 715 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 716 (unsigned long long) region->start_pfn << PAGE_SHIFT, 717 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 718 - 1); 719 720 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 721 if (pfn_valid(pfn)) { 722 /* 723 * It is safe to ignore the result of 724 * mem_bm_set_bit_check() here, since we won't 725 * touch the PFNs for which the error is 726 * returned anyway. 727 */ 728 mem_bm_set_bit_check(bm, pfn); 729 } 730 } 731 } 732 733 /** 734 * create_basic_memory_bitmaps - create bitmaps needed for marking page 735 * frames that should not be saved and free page frames. The pointers 736 * forbidden_pages_map and free_pages_map are only modified if everything 737 * goes well, because we don't want the bits to be used before both bitmaps 738 * are set up. 739 */ 740 741 int create_basic_memory_bitmaps(void) 742 { 743 struct memory_bitmap *bm1, *bm2; 744 int error = 0; 745 746 if (forbidden_pages_map && free_pages_map) 747 return 0; 748 else 749 BUG_ON(forbidden_pages_map || free_pages_map); 750 751 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 752 if (!bm1) 753 return -ENOMEM; 754 755 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 756 if (error) 757 goto Free_first_object; 758 759 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 760 if (!bm2) 761 goto Free_first_bitmap; 762 763 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 764 if (error) 765 goto Free_second_object; 766 767 forbidden_pages_map = bm1; 768 free_pages_map = bm2; 769 mark_nosave_pages(forbidden_pages_map); 770 771 pr_debug("PM: Basic memory bitmaps created\n"); 772 773 return 0; 774 775 Free_second_object: 776 kfree(bm2); 777 Free_first_bitmap: 778 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 779 Free_first_object: 780 kfree(bm1); 781 return -ENOMEM; 782 } 783 784 /** 785 * free_basic_memory_bitmaps - free memory bitmaps allocated by 786 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 787 * so that the bitmaps themselves are not referred to while they are being 788 * freed. 789 */ 790 791 void free_basic_memory_bitmaps(void) 792 { 793 struct memory_bitmap *bm1, *bm2; 794 795 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 796 return; 797 798 bm1 = forbidden_pages_map; 799 bm2 = free_pages_map; 800 forbidden_pages_map = NULL; 801 free_pages_map = NULL; 802 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 803 kfree(bm1); 804 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 805 kfree(bm2); 806 807 pr_debug("PM: Basic memory bitmaps freed\n"); 808 } 809 810 /** 811 * snapshot_additional_pages - estimate the number of additional pages 812 * be needed for setting up the suspend image data structures for given 813 * zone (usually the returned value is greater than the exact number) 814 */ 815 816 unsigned int snapshot_additional_pages(struct zone *zone) 817 { 818 unsigned int res; 819 820 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 821 res += DIV_ROUND_UP(res * sizeof(struct bm_block), 822 LINKED_PAGE_DATA_SIZE); 823 return 2 * res; 824 } 825 826 #ifdef CONFIG_HIGHMEM 827 /** 828 * count_free_highmem_pages - compute the total number of free highmem 829 * pages, system-wide. 830 */ 831 832 static unsigned int count_free_highmem_pages(void) 833 { 834 struct zone *zone; 835 unsigned int cnt = 0; 836 837 for_each_populated_zone(zone) 838 if (is_highmem(zone)) 839 cnt += zone_page_state(zone, NR_FREE_PAGES); 840 841 return cnt; 842 } 843 844 /** 845 * saveable_highmem_page - Determine whether a highmem page should be 846 * included in the suspend image. 847 * 848 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 849 * and it isn't a part of a free chunk of pages. 850 */ 851 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 852 { 853 struct page *page; 854 855 if (!pfn_valid(pfn)) 856 return NULL; 857 858 page = pfn_to_page(pfn); 859 if (page_zone(page) != zone) 860 return NULL; 861 862 BUG_ON(!PageHighMem(page)); 863 864 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 865 PageReserved(page)) 866 return NULL; 867 868 if (page_is_guard(page)) 869 return NULL; 870 871 return page; 872 } 873 874 /** 875 * count_highmem_pages - compute the total number of saveable highmem 876 * pages. 877 */ 878 879 static unsigned int count_highmem_pages(void) 880 { 881 struct zone *zone; 882 unsigned int n = 0; 883 884 for_each_populated_zone(zone) { 885 unsigned long pfn, max_zone_pfn; 886 887 if (!is_highmem(zone)) 888 continue; 889 890 mark_free_pages(zone); 891 max_zone_pfn = zone_end_pfn(zone); 892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 893 if (saveable_highmem_page(zone, pfn)) 894 n++; 895 } 896 return n; 897 } 898 #else 899 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 900 { 901 return NULL; 902 } 903 #endif /* CONFIG_HIGHMEM */ 904 905 /** 906 * saveable_page - Determine whether a non-highmem page should be included 907 * in the suspend image. 908 * 909 * We should save the page if it isn't Nosave, and is not in the range 910 * of pages statically defined as 'unsaveable', and it isn't a part of 911 * a free chunk of pages. 912 */ 913 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 914 { 915 struct page *page; 916 917 if (!pfn_valid(pfn)) 918 return NULL; 919 920 page = pfn_to_page(pfn); 921 if (page_zone(page) != zone) 922 return NULL; 923 924 BUG_ON(PageHighMem(page)); 925 926 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 927 return NULL; 928 929 if (PageReserved(page) 930 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 931 return NULL; 932 933 if (page_is_guard(page)) 934 return NULL; 935 936 return page; 937 } 938 939 /** 940 * count_data_pages - compute the total number of saveable non-highmem 941 * pages. 942 */ 943 944 static unsigned int count_data_pages(void) 945 { 946 struct zone *zone; 947 unsigned long pfn, max_zone_pfn; 948 unsigned int n = 0; 949 950 for_each_populated_zone(zone) { 951 if (is_highmem(zone)) 952 continue; 953 954 mark_free_pages(zone); 955 max_zone_pfn = zone_end_pfn(zone); 956 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 957 if (saveable_page(zone, pfn)) 958 n++; 959 } 960 return n; 961 } 962 963 /* This is needed, because copy_page and memcpy are not usable for copying 964 * task structs. 965 */ 966 static inline void do_copy_page(long *dst, long *src) 967 { 968 int n; 969 970 for (n = PAGE_SIZE / sizeof(long); n; n--) 971 *dst++ = *src++; 972 } 973 974 975 /** 976 * safe_copy_page - check if the page we are going to copy is marked as 977 * present in the kernel page tables (this always is the case if 978 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 979 * kernel_page_present() always returns 'true'). 980 */ 981 static void safe_copy_page(void *dst, struct page *s_page) 982 { 983 if (kernel_page_present(s_page)) { 984 do_copy_page(dst, page_address(s_page)); 985 } else { 986 kernel_map_pages(s_page, 1, 1); 987 do_copy_page(dst, page_address(s_page)); 988 kernel_map_pages(s_page, 1, 0); 989 } 990 } 991 992 993 #ifdef CONFIG_HIGHMEM 994 static inline struct page * 995 page_is_saveable(struct zone *zone, unsigned long pfn) 996 { 997 return is_highmem(zone) ? 998 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 999 } 1000 1001 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1002 { 1003 struct page *s_page, *d_page; 1004 void *src, *dst; 1005 1006 s_page = pfn_to_page(src_pfn); 1007 d_page = pfn_to_page(dst_pfn); 1008 if (PageHighMem(s_page)) { 1009 src = kmap_atomic(s_page); 1010 dst = kmap_atomic(d_page); 1011 do_copy_page(dst, src); 1012 kunmap_atomic(dst); 1013 kunmap_atomic(src); 1014 } else { 1015 if (PageHighMem(d_page)) { 1016 /* Page pointed to by src may contain some kernel 1017 * data modified by kmap_atomic() 1018 */ 1019 safe_copy_page(buffer, s_page); 1020 dst = kmap_atomic(d_page); 1021 copy_page(dst, buffer); 1022 kunmap_atomic(dst); 1023 } else { 1024 safe_copy_page(page_address(d_page), s_page); 1025 } 1026 } 1027 } 1028 #else 1029 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1030 1031 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1032 { 1033 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1034 pfn_to_page(src_pfn)); 1035 } 1036 #endif /* CONFIG_HIGHMEM */ 1037 1038 static void 1039 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1040 { 1041 struct zone *zone; 1042 unsigned long pfn; 1043 1044 for_each_populated_zone(zone) { 1045 unsigned long max_zone_pfn; 1046 1047 mark_free_pages(zone); 1048 max_zone_pfn = zone_end_pfn(zone); 1049 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1050 if (page_is_saveable(zone, pfn)) 1051 memory_bm_set_bit(orig_bm, pfn); 1052 } 1053 memory_bm_position_reset(orig_bm); 1054 memory_bm_position_reset(copy_bm); 1055 for(;;) { 1056 pfn = memory_bm_next_pfn(orig_bm); 1057 if (unlikely(pfn == BM_END_OF_MAP)) 1058 break; 1059 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1060 } 1061 } 1062 1063 /* Total number of image pages */ 1064 static unsigned int nr_copy_pages; 1065 /* Number of pages needed for saving the original pfns of the image pages */ 1066 static unsigned int nr_meta_pages; 1067 /* 1068 * Numbers of normal and highmem page frames allocated for hibernation image 1069 * before suspending devices. 1070 */ 1071 unsigned int alloc_normal, alloc_highmem; 1072 /* 1073 * Memory bitmap used for marking saveable pages (during hibernation) or 1074 * hibernation image pages (during restore) 1075 */ 1076 static struct memory_bitmap orig_bm; 1077 /* 1078 * Memory bitmap used during hibernation for marking allocated page frames that 1079 * will contain copies of saveable pages. During restore it is initially used 1080 * for marking hibernation image pages, but then the set bits from it are 1081 * duplicated in @orig_bm and it is released. On highmem systems it is next 1082 * used for marking "safe" highmem pages, but it has to be reinitialized for 1083 * this purpose. 1084 */ 1085 static struct memory_bitmap copy_bm; 1086 1087 /** 1088 * swsusp_free - free pages allocated for the suspend. 1089 * 1090 * Suspend pages are alocated before the atomic copy is made, so we 1091 * need to release them after the resume. 1092 */ 1093 1094 void swsusp_free(void) 1095 { 1096 struct zone *zone; 1097 unsigned long pfn, max_zone_pfn; 1098 1099 for_each_populated_zone(zone) { 1100 max_zone_pfn = zone_end_pfn(zone); 1101 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1102 if (pfn_valid(pfn)) { 1103 struct page *page = pfn_to_page(pfn); 1104 1105 if (swsusp_page_is_forbidden(page) && 1106 swsusp_page_is_free(page)) { 1107 swsusp_unset_page_forbidden(page); 1108 swsusp_unset_page_free(page); 1109 __free_page(page); 1110 } 1111 } 1112 } 1113 nr_copy_pages = 0; 1114 nr_meta_pages = 0; 1115 restore_pblist = NULL; 1116 buffer = NULL; 1117 alloc_normal = 0; 1118 alloc_highmem = 0; 1119 } 1120 1121 /* Helper functions used for the shrinking of memory. */ 1122 1123 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1124 1125 /** 1126 * preallocate_image_pages - Allocate a number of pages for hibernation image 1127 * @nr_pages: Number of page frames to allocate. 1128 * @mask: GFP flags to use for the allocation. 1129 * 1130 * Return value: Number of page frames actually allocated 1131 */ 1132 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1133 { 1134 unsigned long nr_alloc = 0; 1135 1136 while (nr_pages > 0) { 1137 struct page *page; 1138 1139 page = alloc_image_page(mask); 1140 if (!page) 1141 break; 1142 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1143 if (PageHighMem(page)) 1144 alloc_highmem++; 1145 else 1146 alloc_normal++; 1147 nr_pages--; 1148 nr_alloc++; 1149 } 1150 1151 return nr_alloc; 1152 } 1153 1154 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1155 unsigned long avail_normal) 1156 { 1157 unsigned long alloc; 1158 1159 if (avail_normal <= alloc_normal) 1160 return 0; 1161 1162 alloc = avail_normal - alloc_normal; 1163 if (nr_pages < alloc) 1164 alloc = nr_pages; 1165 1166 return preallocate_image_pages(alloc, GFP_IMAGE); 1167 } 1168 1169 #ifdef CONFIG_HIGHMEM 1170 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1171 { 1172 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1173 } 1174 1175 /** 1176 * __fraction - Compute (an approximation of) x * (multiplier / base) 1177 */ 1178 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1179 { 1180 x *= multiplier; 1181 do_div(x, base); 1182 return (unsigned long)x; 1183 } 1184 1185 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1186 unsigned long highmem, 1187 unsigned long total) 1188 { 1189 unsigned long alloc = __fraction(nr_pages, highmem, total); 1190 1191 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1192 } 1193 #else /* CONFIG_HIGHMEM */ 1194 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1195 { 1196 return 0; 1197 } 1198 1199 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1200 unsigned long highmem, 1201 unsigned long total) 1202 { 1203 return 0; 1204 } 1205 #endif /* CONFIG_HIGHMEM */ 1206 1207 /** 1208 * free_unnecessary_pages - Release preallocated pages not needed for the image 1209 */ 1210 static void free_unnecessary_pages(void) 1211 { 1212 unsigned long save, to_free_normal, to_free_highmem; 1213 1214 save = count_data_pages(); 1215 if (alloc_normal >= save) { 1216 to_free_normal = alloc_normal - save; 1217 save = 0; 1218 } else { 1219 to_free_normal = 0; 1220 save -= alloc_normal; 1221 } 1222 save += count_highmem_pages(); 1223 if (alloc_highmem >= save) { 1224 to_free_highmem = alloc_highmem - save; 1225 } else { 1226 to_free_highmem = 0; 1227 save -= alloc_highmem; 1228 if (to_free_normal > save) 1229 to_free_normal -= save; 1230 else 1231 to_free_normal = 0; 1232 } 1233 1234 memory_bm_position_reset(©_bm); 1235 1236 while (to_free_normal > 0 || to_free_highmem > 0) { 1237 unsigned long pfn = memory_bm_next_pfn(©_bm); 1238 struct page *page = pfn_to_page(pfn); 1239 1240 if (PageHighMem(page)) { 1241 if (!to_free_highmem) 1242 continue; 1243 to_free_highmem--; 1244 alloc_highmem--; 1245 } else { 1246 if (!to_free_normal) 1247 continue; 1248 to_free_normal--; 1249 alloc_normal--; 1250 } 1251 memory_bm_clear_bit(©_bm, pfn); 1252 swsusp_unset_page_forbidden(page); 1253 swsusp_unset_page_free(page); 1254 __free_page(page); 1255 } 1256 } 1257 1258 /** 1259 * minimum_image_size - Estimate the minimum acceptable size of an image 1260 * @saveable: Number of saveable pages in the system. 1261 * 1262 * We want to avoid attempting to free too much memory too hard, so estimate the 1263 * minimum acceptable size of a hibernation image to use as the lower limit for 1264 * preallocating memory. 1265 * 1266 * We assume that the minimum image size should be proportional to 1267 * 1268 * [number of saveable pages] - [number of pages that can be freed in theory] 1269 * 1270 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1271 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1272 * minus mapped file pages. 1273 */ 1274 static unsigned long minimum_image_size(unsigned long saveable) 1275 { 1276 unsigned long size; 1277 1278 size = global_page_state(NR_SLAB_RECLAIMABLE) 1279 + global_page_state(NR_ACTIVE_ANON) 1280 + global_page_state(NR_INACTIVE_ANON) 1281 + global_page_state(NR_ACTIVE_FILE) 1282 + global_page_state(NR_INACTIVE_FILE) 1283 - global_page_state(NR_FILE_MAPPED); 1284 1285 return saveable <= size ? 0 : saveable - size; 1286 } 1287 1288 /** 1289 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1290 * 1291 * To create a hibernation image it is necessary to make a copy of every page 1292 * frame in use. We also need a number of page frames to be free during 1293 * hibernation for allocations made while saving the image and for device 1294 * drivers, in case they need to allocate memory from their hibernation 1295 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1296 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1297 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1298 * total number of available page frames and allocate at least 1299 * 1300 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1301 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1302 * 1303 * of them, which corresponds to the maximum size of a hibernation image. 1304 * 1305 * If image_size is set below the number following from the above formula, 1306 * the preallocation of memory is continued until the total number of saveable 1307 * pages in the system is below the requested image size or the minimum 1308 * acceptable image size returned by minimum_image_size(), whichever is greater. 1309 */ 1310 int hibernate_preallocate_memory(void) 1311 { 1312 struct zone *zone; 1313 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1314 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1315 struct timeval start, stop; 1316 int error; 1317 1318 printk(KERN_INFO "PM: Preallocating image memory... "); 1319 do_gettimeofday(&start); 1320 1321 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1322 if (error) 1323 goto err_out; 1324 1325 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1326 if (error) 1327 goto err_out; 1328 1329 alloc_normal = 0; 1330 alloc_highmem = 0; 1331 1332 /* Count the number of saveable data pages. */ 1333 save_highmem = count_highmem_pages(); 1334 saveable = count_data_pages(); 1335 1336 /* 1337 * Compute the total number of page frames we can use (count) and the 1338 * number of pages needed for image metadata (size). 1339 */ 1340 count = saveable; 1341 saveable += save_highmem; 1342 highmem = save_highmem; 1343 size = 0; 1344 for_each_populated_zone(zone) { 1345 size += snapshot_additional_pages(zone); 1346 if (is_highmem(zone)) 1347 highmem += zone_page_state(zone, NR_FREE_PAGES); 1348 else 1349 count += zone_page_state(zone, NR_FREE_PAGES); 1350 } 1351 avail_normal = count; 1352 count += highmem; 1353 count -= totalreserve_pages; 1354 1355 /* Add number of pages required for page keys (s390 only). */ 1356 size += page_key_additional_pages(saveable); 1357 1358 /* Compute the maximum number of saveable pages to leave in memory. */ 1359 max_size = (count - (size + PAGES_FOR_IO)) / 2 1360 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1361 /* Compute the desired number of image pages specified by image_size. */ 1362 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1363 if (size > max_size) 1364 size = max_size; 1365 /* 1366 * If the desired number of image pages is at least as large as the 1367 * current number of saveable pages in memory, allocate page frames for 1368 * the image and we're done. 1369 */ 1370 if (size >= saveable) { 1371 pages = preallocate_image_highmem(save_highmem); 1372 pages += preallocate_image_memory(saveable - pages, avail_normal); 1373 goto out; 1374 } 1375 1376 /* Estimate the minimum size of the image. */ 1377 pages = minimum_image_size(saveable); 1378 /* 1379 * To avoid excessive pressure on the normal zone, leave room in it to 1380 * accommodate an image of the minimum size (unless it's already too 1381 * small, in which case don't preallocate pages from it at all). 1382 */ 1383 if (avail_normal > pages) 1384 avail_normal -= pages; 1385 else 1386 avail_normal = 0; 1387 if (size < pages) 1388 size = min_t(unsigned long, pages, max_size); 1389 1390 /* 1391 * Let the memory management subsystem know that we're going to need a 1392 * large number of page frames to allocate and make it free some memory. 1393 * NOTE: If this is not done, performance will be hurt badly in some 1394 * test cases. 1395 */ 1396 shrink_all_memory(saveable - size); 1397 1398 /* 1399 * The number of saveable pages in memory was too high, so apply some 1400 * pressure to decrease it. First, make room for the largest possible 1401 * image and fail if that doesn't work. Next, try to decrease the size 1402 * of the image as much as indicated by 'size' using allocations from 1403 * highmem and non-highmem zones separately. 1404 */ 1405 pages_highmem = preallocate_image_highmem(highmem / 2); 1406 alloc = count - max_size; 1407 if (alloc > pages_highmem) 1408 alloc -= pages_highmem; 1409 else 1410 alloc = 0; 1411 pages = preallocate_image_memory(alloc, avail_normal); 1412 if (pages < alloc) { 1413 /* We have exhausted non-highmem pages, try highmem. */ 1414 alloc -= pages; 1415 pages += pages_highmem; 1416 pages_highmem = preallocate_image_highmem(alloc); 1417 if (pages_highmem < alloc) 1418 goto err_out; 1419 pages += pages_highmem; 1420 /* 1421 * size is the desired number of saveable pages to leave in 1422 * memory, so try to preallocate (all memory - size) pages. 1423 */ 1424 alloc = (count - pages) - size; 1425 pages += preallocate_image_highmem(alloc); 1426 } else { 1427 /* 1428 * There are approximately max_size saveable pages at this point 1429 * and we want to reduce this number down to size. 1430 */ 1431 alloc = max_size - size; 1432 size = preallocate_highmem_fraction(alloc, highmem, count); 1433 pages_highmem += size; 1434 alloc -= size; 1435 size = preallocate_image_memory(alloc, avail_normal); 1436 pages_highmem += preallocate_image_highmem(alloc - size); 1437 pages += pages_highmem + size; 1438 } 1439 1440 /* 1441 * We only need as many page frames for the image as there are saveable 1442 * pages in memory, but we have allocated more. Release the excessive 1443 * ones now. 1444 */ 1445 free_unnecessary_pages(); 1446 1447 out: 1448 do_gettimeofday(&stop); 1449 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1450 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1451 1452 return 0; 1453 1454 err_out: 1455 printk(KERN_CONT "\n"); 1456 swsusp_free(); 1457 return -ENOMEM; 1458 } 1459 1460 #ifdef CONFIG_HIGHMEM 1461 /** 1462 * count_pages_for_highmem - compute the number of non-highmem pages 1463 * that will be necessary for creating copies of highmem pages. 1464 */ 1465 1466 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1467 { 1468 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1469 1470 if (free_highmem >= nr_highmem) 1471 nr_highmem = 0; 1472 else 1473 nr_highmem -= free_highmem; 1474 1475 return nr_highmem; 1476 } 1477 #else 1478 static unsigned int 1479 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1480 #endif /* CONFIG_HIGHMEM */ 1481 1482 /** 1483 * enough_free_mem - Make sure we have enough free memory for the 1484 * snapshot image. 1485 */ 1486 1487 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1488 { 1489 struct zone *zone; 1490 unsigned int free = alloc_normal; 1491 1492 for_each_populated_zone(zone) 1493 if (!is_highmem(zone)) 1494 free += zone_page_state(zone, NR_FREE_PAGES); 1495 1496 nr_pages += count_pages_for_highmem(nr_highmem); 1497 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1498 nr_pages, PAGES_FOR_IO, free); 1499 1500 return free > nr_pages + PAGES_FOR_IO; 1501 } 1502 1503 #ifdef CONFIG_HIGHMEM 1504 /** 1505 * get_highmem_buffer - if there are some highmem pages in the suspend 1506 * image, we may need the buffer to copy them and/or load their data. 1507 */ 1508 1509 static inline int get_highmem_buffer(int safe_needed) 1510 { 1511 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1512 return buffer ? 0 : -ENOMEM; 1513 } 1514 1515 /** 1516 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1517 * Try to allocate as many pages as needed, but if the number of free 1518 * highmem pages is lesser than that, allocate them all. 1519 */ 1520 1521 static inline unsigned int 1522 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1523 { 1524 unsigned int to_alloc = count_free_highmem_pages(); 1525 1526 if (to_alloc > nr_highmem) 1527 to_alloc = nr_highmem; 1528 1529 nr_highmem -= to_alloc; 1530 while (to_alloc-- > 0) { 1531 struct page *page; 1532 1533 page = alloc_image_page(__GFP_HIGHMEM); 1534 memory_bm_set_bit(bm, page_to_pfn(page)); 1535 } 1536 return nr_highmem; 1537 } 1538 #else 1539 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1540 1541 static inline unsigned int 1542 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1543 #endif /* CONFIG_HIGHMEM */ 1544 1545 /** 1546 * swsusp_alloc - allocate memory for the suspend image 1547 * 1548 * We first try to allocate as many highmem pages as there are 1549 * saveable highmem pages in the system. If that fails, we allocate 1550 * non-highmem pages for the copies of the remaining highmem ones. 1551 * 1552 * In this approach it is likely that the copies of highmem pages will 1553 * also be located in the high memory, because of the way in which 1554 * copy_data_pages() works. 1555 */ 1556 1557 static int 1558 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1559 unsigned int nr_pages, unsigned int nr_highmem) 1560 { 1561 if (nr_highmem > 0) { 1562 if (get_highmem_buffer(PG_ANY)) 1563 goto err_out; 1564 if (nr_highmem > alloc_highmem) { 1565 nr_highmem -= alloc_highmem; 1566 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1567 } 1568 } 1569 if (nr_pages > alloc_normal) { 1570 nr_pages -= alloc_normal; 1571 while (nr_pages-- > 0) { 1572 struct page *page; 1573 1574 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1575 if (!page) 1576 goto err_out; 1577 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1578 } 1579 } 1580 1581 return 0; 1582 1583 err_out: 1584 swsusp_free(); 1585 return -ENOMEM; 1586 } 1587 1588 asmlinkage int swsusp_save(void) 1589 { 1590 unsigned int nr_pages, nr_highmem; 1591 1592 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1593 1594 drain_local_pages(NULL); 1595 nr_pages = count_data_pages(); 1596 nr_highmem = count_highmem_pages(); 1597 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1598 1599 if (!enough_free_mem(nr_pages, nr_highmem)) { 1600 printk(KERN_ERR "PM: Not enough free memory\n"); 1601 return -ENOMEM; 1602 } 1603 1604 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1605 printk(KERN_ERR "PM: Memory allocation failed\n"); 1606 return -ENOMEM; 1607 } 1608 1609 /* During allocating of suspend pagedir, new cold pages may appear. 1610 * Kill them. 1611 */ 1612 drain_local_pages(NULL); 1613 copy_data_pages(©_bm, &orig_bm); 1614 1615 /* 1616 * End of critical section. From now on, we can write to memory, 1617 * but we should not touch disk. This specially means we must _not_ 1618 * touch swap space! Except we must write out our image of course. 1619 */ 1620 1621 nr_pages += nr_highmem; 1622 nr_copy_pages = nr_pages; 1623 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1624 1625 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1626 nr_pages); 1627 1628 return 0; 1629 } 1630 1631 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1632 static int init_header_complete(struct swsusp_info *info) 1633 { 1634 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1635 info->version_code = LINUX_VERSION_CODE; 1636 return 0; 1637 } 1638 1639 static char *check_image_kernel(struct swsusp_info *info) 1640 { 1641 if (info->version_code != LINUX_VERSION_CODE) 1642 return "kernel version"; 1643 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1644 return "system type"; 1645 if (strcmp(info->uts.release,init_utsname()->release)) 1646 return "kernel release"; 1647 if (strcmp(info->uts.version,init_utsname()->version)) 1648 return "version"; 1649 if (strcmp(info->uts.machine,init_utsname()->machine)) 1650 return "machine"; 1651 return NULL; 1652 } 1653 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1654 1655 unsigned long snapshot_get_image_size(void) 1656 { 1657 return nr_copy_pages + nr_meta_pages + 1; 1658 } 1659 1660 static int init_header(struct swsusp_info *info) 1661 { 1662 memset(info, 0, sizeof(struct swsusp_info)); 1663 info->num_physpages = get_num_physpages(); 1664 info->image_pages = nr_copy_pages; 1665 info->pages = snapshot_get_image_size(); 1666 info->size = info->pages; 1667 info->size <<= PAGE_SHIFT; 1668 return init_header_complete(info); 1669 } 1670 1671 /** 1672 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1673 * are stored in the array @buf[] (1 page at a time) 1674 */ 1675 1676 static inline void 1677 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1678 { 1679 int j; 1680 1681 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1682 buf[j] = memory_bm_next_pfn(bm); 1683 if (unlikely(buf[j] == BM_END_OF_MAP)) 1684 break; 1685 /* Save page key for data page (s390 only). */ 1686 page_key_read(buf + j); 1687 } 1688 } 1689 1690 /** 1691 * snapshot_read_next - used for reading the system memory snapshot. 1692 * 1693 * On the first call to it @handle should point to a zeroed 1694 * snapshot_handle structure. The structure gets updated and a pointer 1695 * to it should be passed to this function every next time. 1696 * 1697 * On success the function returns a positive number. Then, the caller 1698 * is allowed to read up to the returned number of bytes from the memory 1699 * location computed by the data_of() macro. 1700 * 1701 * The function returns 0 to indicate the end of data stream condition, 1702 * and a negative number is returned on error. In such cases the 1703 * structure pointed to by @handle is not updated and should not be used 1704 * any more. 1705 */ 1706 1707 int snapshot_read_next(struct snapshot_handle *handle) 1708 { 1709 if (handle->cur > nr_meta_pages + nr_copy_pages) 1710 return 0; 1711 1712 if (!buffer) { 1713 /* This makes the buffer be freed by swsusp_free() */ 1714 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1715 if (!buffer) 1716 return -ENOMEM; 1717 } 1718 if (!handle->cur) { 1719 int error; 1720 1721 error = init_header((struct swsusp_info *)buffer); 1722 if (error) 1723 return error; 1724 handle->buffer = buffer; 1725 memory_bm_position_reset(&orig_bm); 1726 memory_bm_position_reset(©_bm); 1727 } else if (handle->cur <= nr_meta_pages) { 1728 clear_page(buffer); 1729 pack_pfns(buffer, &orig_bm); 1730 } else { 1731 struct page *page; 1732 1733 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1734 if (PageHighMem(page)) { 1735 /* Highmem pages are copied to the buffer, 1736 * because we can't return with a kmapped 1737 * highmem page (we may not be called again). 1738 */ 1739 void *kaddr; 1740 1741 kaddr = kmap_atomic(page); 1742 copy_page(buffer, kaddr); 1743 kunmap_atomic(kaddr); 1744 handle->buffer = buffer; 1745 } else { 1746 handle->buffer = page_address(page); 1747 } 1748 } 1749 handle->cur++; 1750 return PAGE_SIZE; 1751 } 1752 1753 /** 1754 * mark_unsafe_pages - mark the pages that cannot be used for storing 1755 * the image during resume, because they conflict with the pages that 1756 * had been used before suspend 1757 */ 1758 1759 static int mark_unsafe_pages(struct memory_bitmap *bm) 1760 { 1761 struct zone *zone; 1762 unsigned long pfn, max_zone_pfn; 1763 1764 /* Clear page flags */ 1765 for_each_populated_zone(zone) { 1766 max_zone_pfn = zone_end_pfn(zone); 1767 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1768 if (pfn_valid(pfn)) 1769 swsusp_unset_page_free(pfn_to_page(pfn)); 1770 } 1771 1772 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1773 memory_bm_position_reset(bm); 1774 do { 1775 pfn = memory_bm_next_pfn(bm); 1776 if (likely(pfn != BM_END_OF_MAP)) { 1777 if (likely(pfn_valid(pfn))) 1778 swsusp_set_page_free(pfn_to_page(pfn)); 1779 else 1780 return -EFAULT; 1781 } 1782 } while (pfn != BM_END_OF_MAP); 1783 1784 allocated_unsafe_pages = 0; 1785 1786 return 0; 1787 } 1788 1789 static void 1790 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1791 { 1792 unsigned long pfn; 1793 1794 memory_bm_position_reset(src); 1795 pfn = memory_bm_next_pfn(src); 1796 while (pfn != BM_END_OF_MAP) { 1797 memory_bm_set_bit(dst, pfn); 1798 pfn = memory_bm_next_pfn(src); 1799 } 1800 } 1801 1802 static int check_header(struct swsusp_info *info) 1803 { 1804 char *reason; 1805 1806 reason = check_image_kernel(info); 1807 if (!reason && info->num_physpages != get_num_physpages()) 1808 reason = "memory size"; 1809 if (reason) { 1810 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1811 return -EPERM; 1812 } 1813 return 0; 1814 } 1815 1816 /** 1817 * load header - check the image header and copy data from it 1818 */ 1819 1820 static int 1821 load_header(struct swsusp_info *info) 1822 { 1823 int error; 1824 1825 restore_pblist = NULL; 1826 error = check_header(info); 1827 if (!error) { 1828 nr_copy_pages = info->image_pages; 1829 nr_meta_pages = info->pages - info->image_pages - 1; 1830 } 1831 return error; 1832 } 1833 1834 /** 1835 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1836 * the corresponding bit in the memory bitmap @bm 1837 */ 1838 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1839 { 1840 int j; 1841 1842 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1843 if (unlikely(buf[j] == BM_END_OF_MAP)) 1844 break; 1845 1846 /* Extract and buffer page key for data page (s390 only). */ 1847 page_key_memorize(buf + j); 1848 1849 if (memory_bm_pfn_present(bm, buf[j])) 1850 memory_bm_set_bit(bm, buf[j]); 1851 else 1852 return -EFAULT; 1853 } 1854 1855 return 0; 1856 } 1857 1858 /* List of "safe" pages that may be used to store data loaded from the suspend 1859 * image 1860 */ 1861 static struct linked_page *safe_pages_list; 1862 1863 #ifdef CONFIG_HIGHMEM 1864 /* struct highmem_pbe is used for creating the list of highmem pages that 1865 * should be restored atomically during the resume from disk, because the page 1866 * frames they have occupied before the suspend are in use. 1867 */ 1868 struct highmem_pbe { 1869 struct page *copy_page; /* data is here now */ 1870 struct page *orig_page; /* data was here before the suspend */ 1871 struct highmem_pbe *next; 1872 }; 1873 1874 /* List of highmem PBEs needed for restoring the highmem pages that were 1875 * allocated before the suspend and included in the suspend image, but have 1876 * also been allocated by the "resume" kernel, so their contents cannot be 1877 * written directly to their "original" page frames. 1878 */ 1879 static struct highmem_pbe *highmem_pblist; 1880 1881 /** 1882 * count_highmem_image_pages - compute the number of highmem pages in the 1883 * suspend image. The bits in the memory bitmap @bm that correspond to the 1884 * image pages are assumed to be set. 1885 */ 1886 1887 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1888 { 1889 unsigned long pfn; 1890 unsigned int cnt = 0; 1891 1892 memory_bm_position_reset(bm); 1893 pfn = memory_bm_next_pfn(bm); 1894 while (pfn != BM_END_OF_MAP) { 1895 if (PageHighMem(pfn_to_page(pfn))) 1896 cnt++; 1897 1898 pfn = memory_bm_next_pfn(bm); 1899 } 1900 return cnt; 1901 } 1902 1903 /** 1904 * prepare_highmem_image - try to allocate as many highmem pages as 1905 * there are highmem image pages (@nr_highmem_p points to the variable 1906 * containing the number of highmem image pages). The pages that are 1907 * "safe" (ie. will not be overwritten when the suspend image is 1908 * restored) have the corresponding bits set in @bm (it must be 1909 * unitialized). 1910 * 1911 * NOTE: This function should not be called if there are no highmem 1912 * image pages. 1913 */ 1914 1915 static unsigned int safe_highmem_pages; 1916 1917 static struct memory_bitmap *safe_highmem_bm; 1918 1919 static int 1920 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1921 { 1922 unsigned int to_alloc; 1923 1924 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1925 return -ENOMEM; 1926 1927 if (get_highmem_buffer(PG_SAFE)) 1928 return -ENOMEM; 1929 1930 to_alloc = count_free_highmem_pages(); 1931 if (to_alloc > *nr_highmem_p) 1932 to_alloc = *nr_highmem_p; 1933 else 1934 *nr_highmem_p = to_alloc; 1935 1936 safe_highmem_pages = 0; 1937 while (to_alloc-- > 0) { 1938 struct page *page; 1939 1940 page = alloc_page(__GFP_HIGHMEM); 1941 if (!swsusp_page_is_free(page)) { 1942 /* The page is "safe", set its bit the bitmap */ 1943 memory_bm_set_bit(bm, page_to_pfn(page)); 1944 safe_highmem_pages++; 1945 } 1946 /* Mark the page as allocated */ 1947 swsusp_set_page_forbidden(page); 1948 swsusp_set_page_free(page); 1949 } 1950 memory_bm_position_reset(bm); 1951 safe_highmem_bm = bm; 1952 return 0; 1953 } 1954 1955 /** 1956 * get_highmem_page_buffer - for given highmem image page find the buffer 1957 * that suspend_write_next() should set for its caller to write to. 1958 * 1959 * If the page is to be saved to its "original" page frame or a copy of 1960 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1961 * the copy of the page is to be made in normal memory, so the address of 1962 * the copy is returned. 1963 * 1964 * If @buffer is returned, the caller of suspend_write_next() will write 1965 * the page's contents to @buffer, so they will have to be copied to the 1966 * right location on the next call to suspend_write_next() and it is done 1967 * with the help of copy_last_highmem_page(). For this purpose, if 1968 * @buffer is returned, @last_highmem page is set to the page to which 1969 * the data will have to be copied from @buffer. 1970 */ 1971 1972 static struct page *last_highmem_page; 1973 1974 static void * 1975 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1976 { 1977 struct highmem_pbe *pbe; 1978 void *kaddr; 1979 1980 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1981 /* We have allocated the "original" page frame and we can 1982 * use it directly to store the loaded page. 1983 */ 1984 last_highmem_page = page; 1985 return buffer; 1986 } 1987 /* The "original" page frame has not been allocated and we have to 1988 * use a "safe" page frame to store the loaded page. 1989 */ 1990 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1991 if (!pbe) { 1992 swsusp_free(); 1993 return ERR_PTR(-ENOMEM); 1994 } 1995 pbe->orig_page = page; 1996 if (safe_highmem_pages > 0) { 1997 struct page *tmp; 1998 1999 /* Copy of the page will be stored in high memory */ 2000 kaddr = buffer; 2001 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2002 safe_highmem_pages--; 2003 last_highmem_page = tmp; 2004 pbe->copy_page = tmp; 2005 } else { 2006 /* Copy of the page will be stored in normal memory */ 2007 kaddr = safe_pages_list; 2008 safe_pages_list = safe_pages_list->next; 2009 pbe->copy_page = virt_to_page(kaddr); 2010 } 2011 pbe->next = highmem_pblist; 2012 highmem_pblist = pbe; 2013 return kaddr; 2014 } 2015 2016 /** 2017 * copy_last_highmem_page - copy the contents of a highmem image from 2018 * @buffer, where the caller of snapshot_write_next() has place them, 2019 * to the right location represented by @last_highmem_page . 2020 */ 2021 2022 static void copy_last_highmem_page(void) 2023 { 2024 if (last_highmem_page) { 2025 void *dst; 2026 2027 dst = kmap_atomic(last_highmem_page); 2028 copy_page(dst, buffer); 2029 kunmap_atomic(dst); 2030 last_highmem_page = NULL; 2031 } 2032 } 2033 2034 static inline int last_highmem_page_copied(void) 2035 { 2036 return !last_highmem_page; 2037 } 2038 2039 static inline void free_highmem_data(void) 2040 { 2041 if (safe_highmem_bm) 2042 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2043 2044 if (buffer) 2045 free_image_page(buffer, PG_UNSAFE_CLEAR); 2046 } 2047 #else 2048 static inline int get_safe_write_buffer(void) { return 0; } 2049 2050 static unsigned int 2051 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2052 2053 static inline int 2054 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2055 { 2056 return 0; 2057 } 2058 2059 static inline void * 2060 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2061 { 2062 return ERR_PTR(-EINVAL); 2063 } 2064 2065 static inline void copy_last_highmem_page(void) {} 2066 static inline int last_highmem_page_copied(void) { return 1; } 2067 static inline void free_highmem_data(void) {} 2068 #endif /* CONFIG_HIGHMEM */ 2069 2070 /** 2071 * prepare_image - use the memory bitmap @bm to mark the pages that will 2072 * be overwritten in the process of restoring the system memory state 2073 * from the suspend image ("unsafe" pages) and allocate memory for the 2074 * image. 2075 * 2076 * The idea is to allocate a new memory bitmap first and then allocate 2077 * as many pages as needed for the image data, but not to assign these 2078 * pages to specific tasks initially. Instead, we just mark them as 2079 * allocated and create a lists of "safe" pages that will be used 2080 * later. On systems with high memory a list of "safe" highmem pages is 2081 * also created. 2082 */ 2083 2084 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2085 2086 static int 2087 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2088 { 2089 unsigned int nr_pages, nr_highmem; 2090 struct linked_page *sp_list, *lp; 2091 int error; 2092 2093 /* If there is no highmem, the buffer will not be necessary */ 2094 free_image_page(buffer, PG_UNSAFE_CLEAR); 2095 buffer = NULL; 2096 2097 nr_highmem = count_highmem_image_pages(bm); 2098 error = mark_unsafe_pages(bm); 2099 if (error) 2100 goto Free; 2101 2102 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2103 if (error) 2104 goto Free; 2105 2106 duplicate_memory_bitmap(new_bm, bm); 2107 memory_bm_free(bm, PG_UNSAFE_KEEP); 2108 if (nr_highmem > 0) { 2109 error = prepare_highmem_image(bm, &nr_highmem); 2110 if (error) 2111 goto Free; 2112 } 2113 /* Reserve some safe pages for potential later use. 2114 * 2115 * NOTE: This way we make sure there will be enough safe pages for the 2116 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2117 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2118 */ 2119 sp_list = NULL; 2120 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2121 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2122 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2123 while (nr_pages > 0) { 2124 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2125 if (!lp) { 2126 error = -ENOMEM; 2127 goto Free; 2128 } 2129 lp->next = sp_list; 2130 sp_list = lp; 2131 nr_pages--; 2132 } 2133 /* Preallocate memory for the image */ 2134 safe_pages_list = NULL; 2135 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2136 while (nr_pages > 0) { 2137 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2138 if (!lp) { 2139 error = -ENOMEM; 2140 goto Free; 2141 } 2142 if (!swsusp_page_is_free(virt_to_page(lp))) { 2143 /* The page is "safe", add it to the list */ 2144 lp->next = safe_pages_list; 2145 safe_pages_list = lp; 2146 } 2147 /* Mark the page as allocated */ 2148 swsusp_set_page_forbidden(virt_to_page(lp)); 2149 swsusp_set_page_free(virt_to_page(lp)); 2150 nr_pages--; 2151 } 2152 /* Free the reserved safe pages so that chain_alloc() can use them */ 2153 while (sp_list) { 2154 lp = sp_list->next; 2155 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2156 sp_list = lp; 2157 } 2158 return 0; 2159 2160 Free: 2161 swsusp_free(); 2162 return error; 2163 } 2164 2165 /** 2166 * get_buffer - compute the address that snapshot_write_next() should 2167 * set for its caller to write to. 2168 */ 2169 2170 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2171 { 2172 struct pbe *pbe; 2173 struct page *page; 2174 unsigned long pfn = memory_bm_next_pfn(bm); 2175 2176 if (pfn == BM_END_OF_MAP) 2177 return ERR_PTR(-EFAULT); 2178 2179 page = pfn_to_page(pfn); 2180 if (PageHighMem(page)) 2181 return get_highmem_page_buffer(page, ca); 2182 2183 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2184 /* We have allocated the "original" page frame and we can 2185 * use it directly to store the loaded page. 2186 */ 2187 return page_address(page); 2188 2189 /* The "original" page frame has not been allocated and we have to 2190 * use a "safe" page frame to store the loaded page. 2191 */ 2192 pbe = chain_alloc(ca, sizeof(struct pbe)); 2193 if (!pbe) { 2194 swsusp_free(); 2195 return ERR_PTR(-ENOMEM); 2196 } 2197 pbe->orig_address = page_address(page); 2198 pbe->address = safe_pages_list; 2199 safe_pages_list = safe_pages_list->next; 2200 pbe->next = restore_pblist; 2201 restore_pblist = pbe; 2202 return pbe->address; 2203 } 2204 2205 /** 2206 * snapshot_write_next - used for writing the system memory snapshot. 2207 * 2208 * On the first call to it @handle should point to a zeroed 2209 * snapshot_handle structure. The structure gets updated and a pointer 2210 * to it should be passed to this function every next time. 2211 * 2212 * On success the function returns a positive number. Then, the caller 2213 * is allowed to write up to the returned number of bytes to the memory 2214 * location computed by the data_of() macro. 2215 * 2216 * The function returns 0 to indicate the "end of file" condition, 2217 * and a negative number is returned on error. In such cases the 2218 * structure pointed to by @handle is not updated and should not be used 2219 * any more. 2220 */ 2221 2222 int snapshot_write_next(struct snapshot_handle *handle) 2223 { 2224 static struct chain_allocator ca; 2225 int error = 0; 2226 2227 /* Check if we have already loaded the entire image */ 2228 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2229 return 0; 2230 2231 handle->sync_read = 1; 2232 2233 if (!handle->cur) { 2234 if (!buffer) 2235 /* This makes the buffer be freed by swsusp_free() */ 2236 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2237 2238 if (!buffer) 2239 return -ENOMEM; 2240 2241 handle->buffer = buffer; 2242 } else if (handle->cur == 1) { 2243 error = load_header(buffer); 2244 if (error) 2245 return error; 2246 2247 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2248 if (error) 2249 return error; 2250 2251 /* Allocate buffer for page keys. */ 2252 error = page_key_alloc(nr_copy_pages); 2253 if (error) 2254 return error; 2255 2256 } else if (handle->cur <= nr_meta_pages + 1) { 2257 error = unpack_orig_pfns(buffer, ©_bm); 2258 if (error) 2259 return error; 2260 2261 if (handle->cur == nr_meta_pages + 1) { 2262 error = prepare_image(&orig_bm, ©_bm); 2263 if (error) 2264 return error; 2265 2266 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2267 memory_bm_position_reset(&orig_bm); 2268 restore_pblist = NULL; 2269 handle->buffer = get_buffer(&orig_bm, &ca); 2270 handle->sync_read = 0; 2271 if (IS_ERR(handle->buffer)) 2272 return PTR_ERR(handle->buffer); 2273 } 2274 } else { 2275 copy_last_highmem_page(); 2276 /* Restore page key for data page (s390 only). */ 2277 page_key_write(handle->buffer); 2278 handle->buffer = get_buffer(&orig_bm, &ca); 2279 if (IS_ERR(handle->buffer)) 2280 return PTR_ERR(handle->buffer); 2281 if (handle->buffer != buffer) 2282 handle->sync_read = 0; 2283 } 2284 handle->cur++; 2285 return PAGE_SIZE; 2286 } 2287 2288 /** 2289 * snapshot_write_finalize - must be called after the last call to 2290 * snapshot_write_next() in case the last page in the image happens 2291 * to be a highmem page and its contents should be stored in the 2292 * highmem. Additionally, it releases the memory that will not be 2293 * used any more. 2294 */ 2295 2296 void snapshot_write_finalize(struct snapshot_handle *handle) 2297 { 2298 copy_last_highmem_page(); 2299 /* Restore page key for data page (s390 only). */ 2300 page_key_write(handle->buffer); 2301 page_key_free(); 2302 /* Free only if we have loaded the image entirely */ 2303 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2304 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2305 free_highmem_data(); 2306 } 2307 } 2308 2309 int snapshot_image_loaded(struct snapshot_handle *handle) 2310 { 2311 return !(!nr_copy_pages || !last_highmem_page_copied() || 2312 handle->cur <= nr_meta_pages + nr_copy_pages); 2313 } 2314 2315 #ifdef CONFIG_HIGHMEM 2316 /* Assumes that @buf is ready and points to a "safe" page */ 2317 static inline void 2318 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2319 { 2320 void *kaddr1, *kaddr2; 2321 2322 kaddr1 = kmap_atomic(p1); 2323 kaddr2 = kmap_atomic(p2); 2324 copy_page(buf, kaddr1); 2325 copy_page(kaddr1, kaddr2); 2326 copy_page(kaddr2, buf); 2327 kunmap_atomic(kaddr2); 2328 kunmap_atomic(kaddr1); 2329 } 2330 2331 /** 2332 * restore_highmem - for each highmem page that was allocated before 2333 * the suspend and included in the suspend image, and also has been 2334 * allocated by the "resume" kernel swap its current (ie. "before 2335 * resume") contents with the previous (ie. "before suspend") one. 2336 * 2337 * If the resume eventually fails, we can call this function once 2338 * again and restore the "before resume" highmem state. 2339 */ 2340 2341 int restore_highmem(void) 2342 { 2343 struct highmem_pbe *pbe = highmem_pblist; 2344 void *buf; 2345 2346 if (!pbe) 2347 return 0; 2348 2349 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2350 if (!buf) 2351 return -ENOMEM; 2352 2353 while (pbe) { 2354 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2355 pbe = pbe->next; 2356 } 2357 free_image_page(buf, PG_UNSAFE_CLEAR); 2358 return 0; 2359 } 2360 #endif /* CONFIG_HIGHMEM */ 2361