xref: /openbmc/linux/kernel/power/snapshot.c (revision 8cfa7186)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39 
40 #include "power.h"
41 
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection;
44 static bool hibernate_restore_protection_active;
45 
46 void enable_restore_image_protection(void)
47 {
48 	hibernate_restore_protection = true;
49 }
50 
51 static inline void hibernate_restore_protection_begin(void)
52 {
53 	hibernate_restore_protection_active = hibernate_restore_protection;
54 }
55 
56 static inline void hibernate_restore_protection_end(void)
57 {
58 	hibernate_restore_protection_active = false;
59 }
60 
61 static inline void hibernate_restore_protect_page(void *page_address)
62 {
63 	if (hibernate_restore_protection_active)
64 		set_memory_ro((unsigned long)page_address, 1);
65 }
66 
67 static inline void hibernate_restore_unprotect_page(void *page_address)
68 {
69 	if (hibernate_restore_protection_active)
70 		set_memory_rw((unsigned long)page_address, 1);
71 }
72 #else
73 static inline void hibernate_restore_protection_begin(void) {}
74 static inline void hibernate_restore_protection_end(void) {}
75 static inline void hibernate_restore_protect_page(void *page_address) {}
76 static inline void hibernate_restore_unprotect_page(void *page_address) {}
77 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
78 
79 
80 /*
81  * The calls to set_direct_map_*() should not fail because remapping a page
82  * here means that we only update protection bits in an existing PTE.
83  * It is still worth to have a warning here if something changes and this
84  * will no longer be the case.
85  */
86 static inline void hibernate_map_page(struct page *page)
87 {
88 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 		int ret = set_direct_map_default_noflush(page);
90 
91 		if (ret)
92 			pr_warn_once("Failed to remap page\n");
93 	} else {
94 		debug_pagealloc_map_pages(page, 1);
95 	}
96 }
97 
98 static inline void hibernate_unmap_page(struct page *page)
99 {
100 	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 		unsigned long addr = (unsigned long)page_address(page);
102 		int ret  = set_direct_map_invalid_noflush(page);
103 
104 		if (ret)
105 			pr_warn_once("Failed to remap page\n");
106 
107 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 	} else {
109 		debug_pagealloc_unmap_pages(page, 1);
110 	}
111 }
112 
113 static int swsusp_page_is_free(struct page *);
114 static void swsusp_set_page_forbidden(struct page *);
115 static void swsusp_unset_page_forbidden(struct page *);
116 
117 /*
118  * Number of bytes to reserve for memory allocations made by device drivers
119  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120  * cause image creation to fail (tunable via /sys/power/reserved_size).
121  */
122 unsigned long reserved_size;
123 
124 void __init hibernate_reserved_size_init(void)
125 {
126 	reserved_size = SPARE_PAGES * PAGE_SIZE;
127 }
128 
129 /*
130  * Preferred image size in bytes (tunable via /sys/power/image_size).
131  * When it is set to N, swsusp will do its best to ensure the image
132  * size will not exceed N bytes, but if that is impossible, it will
133  * try to create the smallest image possible.
134  */
135 unsigned long image_size;
136 
137 void __init hibernate_image_size_init(void)
138 {
139 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140 }
141 
142 /*
143  * List of PBEs needed for restoring the pages that were allocated before
144  * the suspend and included in the suspend image, but have also been
145  * allocated by the "resume" kernel, so their contents cannot be written
146  * directly to their "original" page frames.
147  */
148 struct pbe *restore_pblist;
149 
150 /* struct linked_page is used to build chains of pages */
151 
152 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
153 
154 struct linked_page {
155 	struct linked_page *next;
156 	char data[LINKED_PAGE_DATA_SIZE];
157 } __packed;
158 
159 /*
160  * List of "safe" pages (ie. pages that were not used by the image kernel
161  * before hibernation) that may be used as temporary storage for image kernel
162  * memory contents.
163  */
164 static struct linked_page *safe_pages_list;
165 
166 /* Pointer to an auxiliary buffer (1 page) */
167 static void *buffer;
168 
169 #define PG_ANY		0
170 #define PG_SAFE		1
171 #define PG_UNSAFE_CLEAR	1
172 #define PG_UNSAFE_KEEP	0
173 
174 static unsigned int allocated_unsafe_pages;
175 
176 /**
177  * get_image_page - Allocate a page for a hibernation image.
178  * @gfp_mask: GFP mask for the allocation.
179  * @safe_needed: Get pages that were not used before hibernation (restore only)
180  *
181  * During image restoration, for storing the PBE list and the image data, we can
182  * only use memory pages that do not conflict with the pages used before
183  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
184  * using allocated_unsafe_pages.
185  *
186  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187  * swsusp_free() can release it.
188  */
189 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190 {
191 	void *res;
192 
193 	res = (void *)get_zeroed_page(gfp_mask);
194 	if (safe_needed)
195 		while (res && swsusp_page_is_free(virt_to_page(res))) {
196 			/* The page is unsafe, mark it for swsusp_free() */
197 			swsusp_set_page_forbidden(virt_to_page(res));
198 			allocated_unsafe_pages++;
199 			res = (void *)get_zeroed_page(gfp_mask);
200 		}
201 	if (res) {
202 		swsusp_set_page_forbidden(virt_to_page(res));
203 		swsusp_set_page_free(virt_to_page(res));
204 	}
205 	return res;
206 }
207 
208 static void *__get_safe_page(gfp_t gfp_mask)
209 {
210 	if (safe_pages_list) {
211 		void *ret = safe_pages_list;
212 
213 		safe_pages_list = safe_pages_list->next;
214 		memset(ret, 0, PAGE_SIZE);
215 		return ret;
216 	}
217 	return get_image_page(gfp_mask, PG_SAFE);
218 }
219 
220 unsigned long get_safe_page(gfp_t gfp_mask)
221 {
222 	return (unsigned long)__get_safe_page(gfp_mask);
223 }
224 
225 static struct page *alloc_image_page(gfp_t gfp_mask)
226 {
227 	struct page *page;
228 
229 	page = alloc_page(gfp_mask);
230 	if (page) {
231 		swsusp_set_page_forbidden(page);
232 		swsusp_set_page_free(page);
233 	}
234 	return page;
235 }
236 
237 static void recycle_safe_page(void *page_address)
238 {
239 	struct linked_page *lp = page_address;
240 
241 	lp->next = safe_pages_list;
242 	safe_pages_list = lp;
243 }
244 
245 /**
246  * free_image_page - Free a page allocated for hibernation image.
247  * @addr: Address of the page to free.
248  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249  *
250  * The page to free should have been allocated by get_image_page() (page flags
251  * set by it are affected).
252  */
253 static inline void free_image_page(void *addr, int clear_nosave_free)
254 {
255 	struct page *page;
256 
257 	BUG_ON(!virt_addr_valid(addr));
258 
259 	page = virt_to_page(addr);
260 
261 	swsusp_unset_page_forbidden(page);
262 	if (clear_nosave_free)
263 		swsusp_unset_page_free(page);
264 
265 	__free_page(page);
266 }
267 
268 static inline void free_list_of_pages(struct linked_page *list,
269 				      int clear_page_nosave)
270 {
271 	while (list) {
272 		struct linked_page *lp = list->next;
273 
274 		free_image_page(list, clear_page_nosave);
275 		list = lp;
276 	}
277 }
278 
279 /*
280  * struct chain_allocator is used for allocating small objects out of
281  * a linked list of pages called 'the chain'.
282  *
283  * The chain grows each time when there is no room for a new object in
284  * the current page.  The allocated objects cannot be freed individually.
285  * It is only possible to free them all at once, by freeing the entire
286  * chain.
287  *
288  * NOTE: The chain allocator may be inefficient if the allocated objects
289  * are not much smaller than PAGE_SIZE.
290  */
291 struct chain_allocator {
292 	struct linked_page *chain;	/* the chain */
293 	unsigned int used_space;	/* total size of objects allocated out
294 					   of the current page */
295 	gfp_t gfp_mask;		/* mask for allocating pages */
296 	int safe_needed;	/* if set, only "safe" pages are allocated */
297 };
298 
299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 		       int safe_needed)
301 {
302 	ca->chain = NULL;
303 	ca->used_space = LINKED_PAGE_DATA_SIZE;
304 	ca->gfp_mask = gfp_mask;
305 	ca->safe_needed = safe_needed;
306 }
307 
308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309 {
310 	void *ret;
311 
312 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 		struct linked_page *lp;
314 
315 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 					get_image_page(ca->gfp_mask, PG_ANY);
317 		if (!lp)
318 			return NULL;
319 
320 		lp->next = ca->chain;
321 		ca->chain = lp;
322 		ca->used_space = 0;
323 	}
324 	ret = ca->chain->data + ca->used_space;
325 	ca->used_space += size;
326 	return ret;
327 }
328 
329 /*
330  * Data types related to memory bitmaps.
331  *
332  * Memory bitmap is a structure consisting of many linked lists of
333  * objects.  The main list's elements are of type struct zone_bitmap
334  * and each of them corresponds to one zone.  For each zone bitmap
335  * object there is a list of objects of type struct bm_block that
336  * represent each blocks of bitmap in which information is stored.
337  *
338  * struct memory_bitmap contains a pointer to the main list of zone
339  * bitmap objects, a struct bm_position used for browsing the bitmap,
340  * and a pointer to the list of pages used for allocating all of the
341  * zone bitmap objects and bitmap block objects.
342  *
343  * NOTE: It has to be possible to lay out the bitmap in memory
344  * using only allocations of order 0.  Additionally, the bitmap is
345  * designed to work with arbitrary number of zones (this is over the
346  * top for now, but let's avoid making unnecessary assumptions ;-).
347  *
348  * struct zone_bitmap contains a pointer to a list of bitmap block
349  * objects and a pointer to the bitmap block object that has been
350  * most recently used for setting bits.  Additionally, it contains the
351  * PFNs that correspond to the start and end of the represented zone.
352  *
353  * struct bm_block contains a pointer to the memory page in which
354  * information is stored (in the form of a block of bitmap)
355  * It also contains the pfns that correspond to the start and end of
356  * the represented memory area.
357  *
358  * The memory bitmap is organized as a radix tree to guarantee fast random
359  * access to the bits. There is one radix tree for each zone (as returned
360  * from create_mem_extents).
361  *
362  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363  * two linked lists for the nodes of the tree, one for the inner nodes and
364  * one for the leave nodes. The linked leave nodes are used for fast linear
365  * access of the memory bitmap.
366  *
367  * The struct rtree_node represents one node of the radix tree.
368  */
369 
370 #define BM_END_OF_MAP	(~0UL)
371 
372 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
373 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
374 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
375 
376 /*
377  * struct rtree_node is a wrapper struct to link the nodes
378  * of the rtree together for easy linear iteration over
379  * bits and easy freeing
380  */
381 struct rtree_node {
382 	struct list_head list;
383 	unsigned long *data;
384 };
385 
386 /*
387  * struct mem_zone_bm_rtree represents a bitmap used for one
388  * populated memory zone.
389  */
390 struct mem_zone_bm_rtree {
391 	struct list_head list;		/* Link Zones together         */
392 	struct list_head nodes;		/* Radix Tree inner nodes      */
393 	struct list_head leaves;	/* Radix Tree leaves           */
394 	unsigned long start_pfn;	/* Zone start page frame       */
395 	unsigned long end_pfn;		/* Zone end page frame + 1     */
396 	struct rtree_node *rtree;	/* Radix Tree Root             */
397 	int levels;			/* Number of Radix Tree Levels */
398 	unsigned int blocks;		/* Number of Bitmap Blocks     */
399 };
400 
401 /* struct bm_position is used for browsing memory bitmaps */
402 
403 struct bm_position {
404 	struct mem_zone_bm_rtree *zone;
405 	struct rtree_node *node;
406 	unsigned long node_pfn;
407 	int node_bit;
408 };
409 
410 struct memory_bitmap {
411 	struct list_head zones;
412 	struct linked_page *p_list;	/* list of pages used to store zone
413 					   bitmap objects and bitmap block
414 					   objects */
415 	struct bm_position cur;	/* most recently used bit position */
416 };
417 
418 /* Functions that operate on memory bitmaps */
419 
420 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
421 #if BITS_PER_LONG == 32
422 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
423 #else
424 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
425 #endif
426 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427 
428 /**
429  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
430  * @gfp_mask: GFP mask for the allocation.
431  * @safe_needed: Get pages not used before hibernation (restore only)
432  * @ca: Pointer to a linked list of pages ("a chain") to allocate from
433  * @list: Radix Tree node to add.
434  *
435  * This function is used to allocate inner nodes as well as the
436  * leave nodes of the radix tree. It also adds the node to the
437  * corresponding linked list passed in by the *list parameter.
438  */
439 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
440 					   struct chain_allocator *ca,
441 					   struct list_head *list)
442 {
443 	struct rtree_node *node;
444 
445 	node = chain_alloc(ca, sizeof(struct rtree_node));
446 	if (!node)
447 		return NULL;
448 
449 	node->data = get_image_page(gfp_mask, safe_needed);
450 	if (!node->data)
451 		return NULL;
452 
453 	list_add_tail(&node->list, list);
454 
455 	return node;
456 }
457 
458 /**
459  * add_rtree_block - Add a new leave node to the radix tree.
460  *
461  * The leave nodes need to be allocated in order to keep the leaves
462  * linked list in order. This is guaranteed by the zone->blocks
463  * counter.
464  */
465 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
466 			   int safe_needed, struct chain_allocator *ca)
467 {
468 	struct rtree_node *node, *block, **dst;
469 	unsigned int levels_needed, block_nr;
470 	int i;
471 
472 	block_nr = zone->blocks;
473 	levels_needed = 0;
474 
475 	/* How many levels do we need for this block nr? */
476 	while (block_nr) {
477 		levels_needed += 1;
478 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
479 	}
480 
481 	/* Make sure the rtree has enough levels */
482 	for (i = zone->levels; i < levels_needed; i++) {
483 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
484 					&zone->nodes);
485 		if (!node)
486 			return -ENOMEM;
487 
488 		node->data[0] = (unsigned long)zone->rtree;
489 		zone->rtree = node;
490 		zone->levels += 1;
491 	}
492 
493 	/* Allocate new block */
494 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
495 	if (!block)
496 		return -ENOMEM;
497 
498 	/* Now walk the rtree to insert the block */
499 	node = zone->rtree;
500 	dst = &zone->rtree;
501 	block_nr = zone->blocks;
502 	for (i = zone->levels; i > 0; i--) {
503 		int index;
504 
505 		if (!node) {
506 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
507 						&zone->nodes);
508 			if (!node)
509 				return -ENOMEM;
510 			*dst = node;
511 		}
512 
513 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
514 		index &= BM_RTREE_LEVEL_MASK;
515 		dst = (struct rtree_node **)&((*dst)->data[index]);
516 		node = *dst;
517 	}
518 
519 	zone->blocks += 1;
520 	*dst = block;
521 
522 	return 0;
523 }
524 
525 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
526 			       int clear_nosave_free);
527 
528 /**
529  * create_zone_bm_rtree - Create a radix tree for one zone.
530  *
531  * Allocated the mem_zone_bm_rtree structure and initializes it.
532  * This function also allocated and builds the radix tree for the
533  * zone.
534  */
535 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
536 						      int safe_needed,
537 						      struct chain_allocator *ca,
538 						      unsigned long start,
539 						      unsigned long end)
540 {
541 	struct mem_zone_bm_rtree *zone;
542 	unsigned int i, nr_blocks;
543 	unsigned long pages;
544 
545 	pages = end - start;
546 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
547 	if (!zone)
548 		return NULL;
549 
550 	INIT_LIST_HEAD(&zone->nodes);
551 	INIT_LIST_HEAD(&zone->leaves);
552 	zone->start_pfn = start;
553 	zone->end_pfn = end;
554 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
555 
556 	for (i = 0; i < nr_blocks; i++) {
557 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
558 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
559 			return NULL;
560 		}
561 	}
562 
563 	return zone;
564 }
565 
566 /**
567  * free_zone_bm_rtree - Free the memory of the radix tree.
568  *
569  * Free all node pages of the radix tree. The mem_zone_bm_rtree
570  * structure itself is not freed here nor are the rtree_node
571  * structs.
572  */
573 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
574 			       int clear_nosave_free)
575 {
576 	struct rtree_node *node;
577 
578 	list_for_each_entry(node, &zone->nodes, list)
579 		free_image_page(node->data, clear_nosave_free);
580 
581 	list_for_each_entry(node, &zone->leaves, list)
582 		free_image_page(node->data, clear_nosave_free);
583 }
584 
585 static void memory_bm_position_reset(struct memory_bitmap *bm)
586 {
587 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
588 				  list);
589 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
590 				  struct rtree_node, list);
591 	bm->cur.node_pfn = 0;
592 	bm->cur.node_bit = 0;
593 }
594 
595 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
596 
597 struct mem_extent {
598 	struct list_head hook;
599 	unsigned long start;
600 	unsigned long end;
601 };
602 
603 /**
604  * free_mem_extents - Free a list of memory extents.
605  * @list: List of extents to free.
606  */
607 static void free_mem_extents(struct list_head *list)
608 {
609 	struct mem_extent *ext, *aux;
610 
611 	list_for_each_entry_safe(ext, aux, list, hook) {
612 		list_del(&ext->hook);
613 		kfree(ext);
614 	}
615 }
616 
617 /**
618  * create_mem_extents - Create a list of memory extents.
619  * @list: List to put the extents into.
620  * @gfp_mask: Mask to use for memory allocations.
621  *
622  * The extents represent contiguous ranges of PFNs.
623  */
624 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
625 {
626 	struct zone *zone;
627 
628 	INIT_LIST_HEAD(list);
629 
630 	for_each_populated_zone(zone) {
631 		unsigned long zone_start, zone_end;
632 		struct mem_extent *ext, *cur, *aux;
633 
634 		zone_start = zone->zone_start_pfn;
635 		zone_end = zone_end_pfn(zone);
636 
637 		list_for_each_entry(ext, list, hook)
638 			if (zone_start <= ext->end)
639 				break;
640 
641 		if (&ext->hook == list || zone_end < ext->start) {
642 			/* New extent is necessary */
643 			struct mem_extent *new_ext;
644 
645 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
646 			if (!new_ext) {
647 				free_mem_extents(list);
648 				return -ENOMEM;
649 			}
650 			new_ext->start = zone_start;
651 			new_ext->end = zone_end;
652 			list_add_tail(&new_ext->hook, &ext->hook);
653 			continue;
654 		}
655 
656 		/* Merge this zone's range of PFNs with the existing one */
657 		if (zone_start < ext->start)
658 			ext->start = zone_start;
659 		if (zone_end > ext->end)
660 			ext->end = zone_end;
661 
662 		/* More merging may be possible */
663 		cur = ext;
664 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
665 			if (zone_end < cur->start)
666 				break;
667 			if (zone_end < cur->end)
668 				ext->end = cur->end;
669 			list_del(&cur->hook);
670 			kfree(cur);
671 		}
672 	}
673 
674 	return 0;
675 }
676 
677 /**
678  * memory_bm_create - Allocate memory for a memory bitmap.
679  */
680 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
681 			    int safe_needed)
682 {
683 	struct chain_allocator ca;
684 	struct list_head mem_extents;
685 	struct mem_extent *ext;
686 	int error;
687 
688 	chain_init(&ca, gfp_mask, safe_needed);
689 	INIT_LIST_HEAD(&bm->zones);
690 
691 	error = create_mem_extents(&mem_extents, gfp_mask);
692 	if (error)
693 		return error;
694 
695 	list_for_each_entry(ext, &mem_extents, hook) {
696 		struct mem_zone_bm_rtree *zone;
697 
698 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
699 					    ext->start, ext->end);
700 		if (!zone) {
701 			error = -ENOMEM;
702 			goto Error;
703 		}
704 		list_add_tail(&zone->list, &bm->zones);
705 	}
706 
707 	bm->p_list = ca.chain;
708 	memory_bm_position_reset(bm);
709  Exit:
710 	free_mem_extents(&mem_extents);
711 	return error;
712 
713  Error:
714 	bm->p_list = ca.chain;
715 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
716 	goto Exit;
717 }
718 
719 /**
720  * memory_bm_free - Free memory occupied by the memory bitmap.
721  * @bm: Memory bitmap.
722  */
723 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
724 {
725 	struct mem_zone_bm_rtree *zone;
726 
727 	list_for_each_entry(zone, &bm->zones, list)
728 		free_zone_bm_rtree(zone, clear_nosave_free);
729 
730 	free_list_of_pages(bm->p_list, clear_nosave_free);
731 
732 	INIT_LIST_HEAD(&bm->zones);
733 }
734 
735 /**
736  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
737  *
738  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
739  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
740  *
741  * Walk the radix tree to find the page containing the bit that represents @pfn
742  * and return the position of the bit in @addr and @bit_nr.
743  */
744 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
745 			      void **addr, unsigned int *bit_nr)
746 {
747 	struct mem_zone_bm_rtree *curr, *zone;
748 	struct rtree_node *node;
749 	int i, block_nr;
750 
751 	zone = bm->cur.zone;
752 
753 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
754 		goto zone_found;
755 
756 	zone = NULL;
757 
758 	/* Find the right zone */
759 	list_for_each_entry(curr, &bm->zones, list) {
760 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
761 			zone = curr;
762 			break;
763 		}
764 	}
765 
766 	if (!zone)
767 		return -EFAULT;
768 
769 zone_found:
770 	/*
771 	 * We have found the zone. Now walk the radix tree to find the leaf node
772 	 * for our PFN.
773 	 */
774 
775 	/*
776 	 * If the zone we wish to scan is the current zone and the
777 	 * pfn falls into the current node then we do not need to walk
778 	 * the tree.
779 	 */
780 	node = bm->cur.node;
781 	if (zone == bm->cur.zone &&
782 	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
783 		goto node_found;
784 
785 	node      = zone->rtree;
786 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
787 
788 	for (i = zone->levels; i > 0; i--) {
789 		int index;
790 
791 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
792 		index &= BM_RTREE_LEVEL_MASK;
793 		BUG_ON(node->data[index] == 0);
794 		node = (struct rtree_node *)node->data[index];
795 	}
796 
797 node_found:
798 	/* Update last position */
799 	bm->cur.zone = zone;
800 	bm->cur.node = node;
801 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
802 
803 	/* Set return values */
804 	*addr = node->data;
805 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
806 
807 	return 0;
808 }
809 
810 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
811 {
812 	void *addr;
813 	unsigned int bit;
814 	int error;
815 
816 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 	BUG_ON(error);
818 	set_bit(bit, addr);
819 }
820 
821 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
822 {
823 	void *addr;
824 	unsigned int bit;
825 	int error;
826 
827 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
828 	if (!error)
829 		set_bit(bit, addr);
830 
831 	return error;
832 }
833 
834 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
835 {
836 	void *addr;
837 	unsigned int bit;
838 	int error;
839 
840 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
841 	BUG_ON(error);
842 	clear_bit(bit, addr);
843 }
844 
845 static void memory_bm_clear_current(struct memory_bitmap *bm)
846 {
847 	int bit;
848 
849 	bit = max(bm->cur.node_bit - 1, 0);
850 	clear_bit(bit, bm->cur.node->data);
851 }
852 
853 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
854 {
855 	void *addr;
856 	unsigned int bit;
857 	int error;
858 
859 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
860 	BUG_ON(error);
861 	return test_bit(bit, addr);
862 }
863 
864 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
865 {
866 	void *addr;
867 	unsigned int bit;
868 
869 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
870 }
871 
872 /*
873  * rtree_next_node - Jump to the next leaf node.
874  *
875  * Set the position to the beginning of the next node in the
876  * memory bitmap. This is either the next node in the current
877  * zone's radix tree or the first node in the radix tree of the
878  * next zone.
879  *
880  * Return true if there is a next node, false otherwise.
881  */
882 static bool rtree_next_node(struct memory_bitmap *bm)
883 {
884 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
885 		bm->cur.node = list_entry(bm->cur.node->list.next,
886 					  struct rtree_node, list);
887 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
888 		bm->cur.node_bit  = 0;
889 		touch_softlockup_watchdog();
890 		return true;
891 	}
892 
893 	/* No more nodes, goto next zone */
894 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
895 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
896 				  struct mem_zone_bm_rtree, list);
897 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
898 					  struct rtree_node, list);
899 		bm->cur.node_pfn = 0;
900 		bm->cur.node_bit = 0;
901 		return true;
902 	}
903 
904 	/* No more zones */
905 	return false;
906 }
907 
908 /**
909  * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
910  * @bm: Memory bitmap.
911  *
912  * Starting from the last returned position this function searches for the next
913  * set bit in @bm and returns the PFN represented by it.  If no more bits are
914  * set, BM_END_OF_MAP is returned.
915  *
916  * It is required to run memory_bm_position_reset() before the first call to
917  * this function for the given memory bitmap.
918  */
919 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
920 {
921 	unsigned long bits, pfn, pages;
922 	int bit;
923 
924 	do {
925 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
926 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
927 		bit	  = find_next_bit(bm->cur.node->data, bits,
928 					  bm->cur.node_bit);
929 		if (bit < bits) {
930 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
931 			bm->cur.node_bit = bit + 1;
932 			return pfn;
933 		}
934 	} while (rtree_next_node(bm));
935 
936 	return BM_END_OF_MAP;
937 }
938 
939 /*
940  * This structure represents a range of page frames the contents of which
941  * should not be saved during hibernation.
942  */
943 struct nosave_region {
944 	struct list_head list;
945 	unsigned long start_pfn;
946 	unsigned long end_pfn;
947 };
948 
949 static LIST_HEAD(nosave_regions);
950 
951 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
952 {
953 	struct rtree_node *node;
954 
955 	list_for_each_entry(node, &zone->nodes, list)
956 		recycle_safe_page(node->data);
957 
958 	list_for_each_entry(node, &zone->leaves, list)
959 		recycle_safe_page(node->data);
960 }
961 
962 static void memory_bm_recycle(struct memory_bitmap *bm)
963 {
964 	struct mem_zone_bm_rtree *zone;
965 	struct linked_page *p_list;
966 
967 	list_for_each_entry(zone, &bm->zones, list)
968 		recycle_zone_bm_rtree(zone);
969 
970 	p_list = bm->p_list;
971 	while (p_list) {
972 		struct linked_page *lp = p_list;
973 
974 		p_list = lp->next;
975 		recycle_safe_page(lp);
976 	}
977 }
978 
979 /**
980  * register_nosave_region - Register a region of unsaveable memory.
981  *
982  * Register a range of page frames the contents of which should not be saved
983  * during hibernation (to be used in the early initialization code).
984  */
985 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
986 {
987 	struct nosave_region *region;
988 
989 	if (start_pfn >= end_pfn)
990 		return;
991 
992 	if (!list_empty(&nosave_regions)) {
993 		/* Try to extend the previous region (they should be sorted) */
994 		region = list_entry(nosave_regions.prev,
995 					struct nosave_region, list);
996 		if (region->end_pfn == start_pfn) {
997 			region->end_pfn = end_pfn;
998 			goto Report;
999 		}
1000 	}
1001 	/* This allocation cannot fail */
1002 	region = memblock_alloc(sizeof(struct nosave_region),
1003 				SMP_CACHE_BYTES);
1004 	if (!region)
1005 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1006 		      sizeof(struct nosave_region));
1007 	region->start_pfn = start_pfn;
1008 	region->end_pfn = end_pfn;
1009 	list_add_tail(&region->list, &nosave_regions);
1010  Report:
1011 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012 		(unsigned long long) start_pfn << PAGE_SHIFT,
1013 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014 }
1015 
1016 /*
1017  * Set bits in this map correspond to the page frames the contents of which
1018  * should not be saved during the suspend.
1019  */
1020 static struct memory_bitmap *forbidden_pages_map;
1021 
1022 /* Set bits in this map correspond to free page frames. */
1023 static struct memory_bitmap *free_pages_map;
1024 
1025 /*
1026  * Each page frame allocated for creating the image is marked by setting the
1027  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028  */
1029 
1030 void swsusp_set_page_free(struct page *page)
1031 {
1032 	if (free_pages_map)
1033 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034 }
1035 
1036 static int swsusp_page_is_free(struct page *page)
1037 {
1038 	return free_pages_map ?
1039 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040 }
1041 
1042 void swsusp_unset_page_free(struct page *page)
1043 {
1044 	if (free_pages_map)
1045 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046 }
1047 
1048 static void swsusp_set_page_forbidden(struct page *page)
1049 {
1050 	if (forbidden_pages_map)
1051 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052 }
1053 
1054 int swsusp_page_is_forbidden(struct page *page)
1055 {
1056 	return forbidden_pages_map ?
1057 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058 }
1059 
1060 static void swsusp_unset_page_forbidden(struct page *page)
1061 {
1062 	if (forbidden_pages_map)
1063 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064 }
1065 
1066 /**
1067  * mark_nosave_pages - Mark pages that should not be saved.
1068  * @bm: Memory bitmap.
1069  *
1070  * Set the bits in @bm that correspond to the page frames the contents of which
1071  * should not be saved.
1072  */
1073 static void mark_nosave_pages(struct memory_bitmap *bm)
1074 {
1075 	struct nosave_region *region;
1076 
1077 	if (list_empty(&nosave_regions))
1078 		return;
1079 
1080 	list_for_each_entry(region, &nosave_regions, list) {
1081 		unsigned long pfn;
1082 
1083 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086 				- 1);
1087 
1088 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089 			if (pfn_valid(pfn)) {
1090 				/*
1091 				 * It is safe to ignore the result of
1092 				 * mem_bm_set_bit_check() here, since we won't
1093 				 * touch the PFNs for which the error is
1094 				 * returned anyway.
1095 				 */
1096 				mem_bm_set_bit_check(bm, pfn);
1097 			}
1098 	}
1099 }
1100 
1101 /**
1102  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103  *
1104  * Create bitmaps needed for marking page frames that should not be saved and
1105  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1106  * only modified if everything goes well, because we don't want the bits to be
1107  * touched before both bitmaps are set up.
1108  */
1109 int create_basic_memory_bitmaps(void)
1110 {
1111 	struct memory_bitmap *bm1, *bm2;
1112 	int error = 0;
1113 
1114 	if (forbidden_pages_map && free_pages_map)
1115 		return 0;
1116 	else
1117 		BUG_ON(forbidden_pages_map || free_pages_map);
1118 
1119 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120 	if (!bm1)
1121 		return -ENOMEM;
1122 
1123 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124 	if (error)
1125 		goto Free_first_object;
1126 
1127 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128 	if (!bm2)
1129 		goto Free_first_bitmap;
1130 
1131 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132 	if (error)
1133 		goto Free_second_object;
1134 
1135 	forbidden_pages_map = bm1;
1136 	free_pages_map = bm2;
1137 	mark_nosave_pages(forbidden_pages_map);
1138 
1139 	pr_debug("Basic memory bitmaps created\n");
1140 
1141 	return 0;
1142 
1143  Free_second_object:
1144 	kfree(bm2);
1145  Free_first_bitmap:
1146 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147  Free_first_object:
1148 	kfree(bm1);
1149 	return -ENOMEM;
1150 }
1151 
1152 /**
1153  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154  *
1155  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1156  * auxiliary pointers are necessary so that the bitmaps themselves are not
1157  * referred to while they are being freed.
1158  */
1159 void free_basic_memory_bitmaps(void)
1160 {
1161 	struct memory_bitmap *bm1, *bm2;
1162 
1163 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164 		return;
1165 
1166 	bm1 = forbidden_pages_map;
1167 	bm2 = free_pages_map;
1168 	forbidden_pages_map = NULL;
1169 	free_pages_map = NULL;
1170 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171 	kfree(bm1);
1172 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173 	kfree(bm2);
1174 
1175 	pr_debug("Basic memory bitmaps freed\n");
1176 }
1177 
1178 static void clear_or_poison_free_page(struct page *page)
1179 {
1180 	if (page_poisoning_enabled_static())
1181 		__kernel_poison_pages(page, 1);
1182 	else if (want_init_on_free())
1183 		clear_highpage(page);
1184 }
1185 
1186 void clear_or_poison_free_pages(void)
1187 {
1188 	struct memory_bitmap *bm = free_pages_map;
1189 	unsigned long pfn;
1190 
1191 	if (WARN_ON(!(free_pages_map)))
1192 		return;
1193 
1194 	if (page_poisoning_enabled() || want_init_on_free()) {
1195 		memory_bm_position_reset(bm);
1196 		pfn = memory_bm_next_pfn(bm);
1197 		while (pfn != BM_END_OF_MAP) {
1198 			if (pfn_valid(pfn))
1199 				clear_or_poison_free_page(pfn_to_page(pfn));
1200 
1201 			pfn = memory_bm_next_pfn(bm);
1202 		}
1203 		memory_bm_position_reset(bm);
1204 		pr_info("free pages cleared after restore\n");
1205 	}
1206 }
1207 
1208 /**
1209  * snapshot_additional_pages - Estimate the number of extra pages needed.
1210  * @zone: Memory zone to carry out the computation for.
1211  *
1212  * Estimate the number of additional pages needed for setting up a hibernation
1213  * image data structures for @zone (usually, the returned value is greater than
1214  * the exact number).
1215  */
1216 unsigned int snapshot_additional_pages(struct zone *zone)
1217 {
1218 	unsigned int rtree, nodes;
1219 
1220 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222 			      LINKED_PAGE_DATA_SIZE);
1223 	while (nodes > 1) {
1224 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225 		rtree += nodes;
1226 	}
1227 
1228 	return 2 * rtree;
1229 }
1230 
1231 /*
1232  * Touch the watchdog for every WD_PAGE_COUNT pages.
1233  */
1234 #define WD_PAGE_COUNT	(128*1024)
1235 
1236 static void mark_free_pages(struct zone *zone)
1237 {
1238 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
1239 	unsigned long flags;
1240 	unsigned int order, t;
1241 	struct page *page;
1242 
1243 	if (zone_is_empty(zone))
1244 		return;
1245 
1246 	spin_lock_irqsave(&zone->lock, flags);
1247 
1248 	max_zone_pfn = zone_end_pfn(zone);
1249 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250 		if (pfn_valid(pfn)) {
1251 			page = pfn_to_page(pfn);
1252 
1253 			if (!--page_count) {
1254 				touch_nmi_watchdog();
1255 				page_count = WD_PAGE_COUNT;
1256 			}
1257 
1258 			if (page_zone(page) != zone)
1259 				continue;
1260 
1261 			if (!swsusp_page_is_forbidden(page))
1262 				swsusp_unset_page_free(page);
1263 		}
1264 
1265 	for_each_migratetype_order(order, t) {
1266 		list_for_each_entry(page,
1267 				&zone->free_area[order].free_list[t], buddy_list) {
1268 			unsigned long i;
1269 
1270 			pfn = page_to_pfn(page);
1271 			for (i = 0; i < (1UL << order); i++) {
1272 				if (!--page_count) {
1273 					touch_nmi_watchdog();
1274 					page_count = WD_PAGE_COUNT;
1275 				}
1276 				swsusp_set_page_free(pfn_to_page(pfn + i));
1277 			}
1278 		}
1279 	}
1280 	spin_unlock_irqrestore(&zone->lock, flags);
1281 }
1282 
1283 #ifdef CONFIG_HIGHMEM
1284 /**
1285  * count_free_highmem_pages - Compute the total number of free highmem pages.
1286  *
1287  * The returned number is system-wide.
1288  */
1289 static unsigned int count_free_highmem_pages(void)
1290 {
1291 	struct zone *zone;
1292 	unsigned int cnt = 0;
1293 
1294 	for_each_populated_zone(zone)
1295 		if (is_highmem(zone))
1296 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1297 
1298 	return cnt;
1299 }
1300 
1301 /**
1302  * saveable_highmem_page - Check if a highmem page is saveable.
1303  *
1304  * Determine whether a highmem page should be included in a hibernation image.
1305  *
1306  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1307  * and it isn't part of a free chunk of pages.
1308  */
1309 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1310 {
1311 	struct page *page;
1312 
1313 	if (!pfn_valid(pfn))
1314 		return NULL;
1315 
1316 	page = pfn_to_online_page(pfn);
1317 	if (!page || page_zone(page) != zone)
1318 		return NULL;
1319 
1320 	BUG_ON(!PageHighMem(page));
1321 
1322 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1323 		return NULL;
1324 
1325 	if (PageReserved(page) || PageOffline(page))
1326 		return NULL;
1327 
1328 	if (page_is_guard(page))
1329 		return NULL;
1330 
1331 	return page;
1332 }
1333 
1334 /**
1335  * count_highmem_pages - Compute the total number of saveable highmem pages.
1336  */
1337 static unsigned int count_highmem_pages(void)
1338 {
1339 	struct zone *zone;
1340 	unsigned int n = 0;
1341 
1342 	for_each_populated_zone(zone) {
1343 		unsigned long pfn, max_zone_pfn;
1344 
1345 		if (!is_highmem(zone))
1346 			continue;
1347 
1348 		mark_free_pages(zone);
1349 		max_zone_pfn = zone_end_pfn(zone);
1350 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1351 			if (saveable_highmem_page(zone, pfn))
1352 				n++;
1353 	}
1354 	return n;
1355 }
1356 #else
1357 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1358 {
1359 	return NULL;
1360 }
1361 #endif /* CONFIG_HIGHMEM */
1362 
1363 /**
1364  * saveable_page - Check if the given page is saveable.
1365  *
1366  * Determine whether a non-highmem page should be included in a hibernation
1367  * image.
1368  *
1369  * We should save the page if it isn't Nosave, and is not in the range
1370  * of pages statically defined as 'unsaveable', and it isn't part of
1371  * a free chunk of pages.
1372  */
1373 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1374 {
1375 	struct page *page;
1376 
1377 	if (!pfn_valid(pfn))
1378 		return NULL;
1379 
1380 	page = pfn_to_online_page(pfn);
1381 	if (!page || page_zone(page) != zone)
1382 		return NULL;
1383 
1384 	BUG_ON(PageHighMem(page));
1385 
1386 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1387 		return NULL;
1388 
1389 	if (PageOffline(page))
1390 		return NULL;
1391 
1392 	if (PageReserved(page)
1393 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1394 		return NULL;
1395 
1396 	if (page_is_guard(page))
1397 		return NULL;
1398 
1399 	return page;
1400 }
1401 
1402 /**
1403  * count_data_pages - Compute the total number of saveable non-highmem pages.
1404  */
1405 static unsigned int count_data_pages(void)
1406 {
1407 	struct zone *zone;
1408 	unsigned long pfn, max_zone_pfn;
1409 	unsigned int n = 0;
1410 
1411 	for_each_populated_zone(zone) {
1412 		if (is_highmem(zone))
1413 			continue;
1414 
1415 		mark_free_pages(zone);
1416 		max_zone_pfn = zone_end_pfn(zone);
1417 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1418 			if (saveable_page(zone, pfn))
1419 				n++;
1420 	}
1421 	return n;
1422 }
1423 
1424 /*
1425  * This is needed, because copy_page and memcpy are not usable for copying
1426  * task structs.
1427  */
1428 static inline void do_copy_page(long *dst, long *src)
1429 {
1430 	int n;
1431 
1432 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1433 		*dst++ = *src++;
1434 }
1435 
1436 /**
1437  * safe_copy_page - Copy a page in a safe way.
1438  *
1439  * Check if the page we are going to copy is marked as present in the kernel
1440  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1441  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1442  * always returns 'true'.
1443  */
1444 static void safe_copy_page(void *dst, struct page *s_page)
1445 {
1446 	if (kernel_page_present(s_page)) {
1447 		do_copy_page(dst, page_address(s_page));
1448 	} else {
1449 		hibernate_map_page(s_page);
1450 		do_copy_page(dst, page_address(s_page));
1451 		hibernate_unmap_page(s_page);
1452 	}
1453 }
1454 
1455 #ifdef CONFIG_HIGHMEM
1456 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1457 {
1458 	return is_highmem(zone) ?
1459 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1460 }
1461 
1462 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1463 {
1464 	struct page *s_page, *d_page;
1465 	void *src, *dst;
1466 
1467 	s_page = pfn_to_page(src_pfn);
1468 	d_page = pfn_to_page(dst_pfn);
1469 	if (PageHighMem(s_page)) {
1470 		src = kmap_atomic(s_page);
1471 		dst = kmap_atomic(d_page);
1472 		do_copy_page(dst, src);
1473 		kunmap_atomic(dst);
1474 		kunmap_atomic(src);
1475 	} else {
1476 		if (PageHighMem(d_page)) {
1477 			/*
1478 			 * The page pointed to by src may contain some kernel
1479 			 * data modified by kmap_atomic()
1480 			 */
1481 			safe_copy_page(buffer, s_page);
1482 			dst = kmap_atomic(d_page);
1483 			copy_page(dst, buffer);
1484 			kunmap_atomic(dst);
1485 		} else {
1486 			safe_copy_page(page_address(d_page), s_page);
1487 		}
1488 	}
1489 }
1490 #else
1491 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1492 
1493 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1494 {
1495 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1496 				pfn_to_page(src_pfn));
1497 }
1498 #endif /* CONFIG_HIGHMEM */
1499 
1500 static void copy_data_pages(struct memory_bitmap *copy_bm,
1501 			    struct memory_bitmap *orig_bm)
1502 {
1503 	struct zone *zone;
1504 	unsigned long pfn;
1505 
1506 	for_each_populated_zone(zone) {
1507 		unsigned long max_zone_pfn;
1508 
1509 		mark_free_pages(zone);
1510 		max_zone_pfn = zone_end_pfn(zone);
1511 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1512 			if (page_is_saveable(zone, pfn))
1513 				memory_bm_set_bit(orig_bm, pfn);
1514 	}
1515 	memory_bm_position_reset(orig_bm);
1516 	memory_bm_position_reset(copy_bm);
1517 	for(;;) {
1518 		pfn = memory_bm_next_pfn(orig_bm);
1519 		if (unlikely(pfn == BM_END_OF_MAP))
1520 			break;
1521 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1522 	}
1523 }
1524 
1525 /* Total number of image pages */
1526 static unsigned int nr_copy_pages;
1527 /* Number of pages needed for saving the original pfns of the image pages */
1528 static unsigned int nr_meta_pages;
1529 /*
1530  * Numbers of normal and highmem page frames allocated for hibernation image
1531  * before suspending devices.
1532  */
1533 static unsigned int alloc_normal, alloc_highmem;
1534 /*
1535  * Memory bitmap used for marking saveable pages (during hibernation) or
1536  * hibernation image pages (during restore)
1537  */
1538 static struct memory_bitmap orig_bm;
1539 /*
1540  * Memory bitmap used during hibernation for marking allocated page frames that
1541  * will contain copies of saveable pages.  During restore it is initially used
1542  * for marking hibernation image pages, but then the set bits from it are
1543  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1544  * used for marking "safe" highmem pages, but it has to be reinitialized for
1545  * this purpose.
1546  */
1547 static struct memory_bitmap copy_bm;
1548 
1549 /**
1550  * swsusp_free - Free pages allocated for hibernation image.
1551  *
1552  * Image pages are allocated before snapshot creation, so they need to be
1553  * released after resume.
1554  */
1555 void swsusp_free(void)
1556 {
1557 	unsigned long fb_pfn, fr_pfn;
1558 
1559 	if (!forbidden_pages_map || !free_pages_map)
1560 		goto out;
1561 
1562 	memory_bm_position_reset(forbidden_pages_map);
1563 	memory_bm_position_reset(free_pages_map);
1564 
1565 loop:
1566 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1567 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1568 
1569 	/*
1570 	 * Find the next bit set in both bitmaps. This is guaranteed to
1571 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1572 	 */
1573 	do {
1574 		if (fb_pfn < fr_pfn)
1575 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1576 		if (fr_pfn < fb_pfn)
1577 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1578 	} while (fb_pfn != fr_pfn);
1579 
1580 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1581 		struct page *page = pfn_to_page(fr_pfn);
1582 
1583 		memory_bm_clear_current(forbidden_pages_map);
1584 		memory_bm_clear_current(free_pages_map);
1585 		hibernate_restore_unprotect_page(page_address(page));
1586 		__free_page(page);
1587 		goto loop;
1588 	}
1589 
1590 out:
1591 	nr_copy_pages = 0;
1592 	nr_meta_pages = 0;
1593 	restore_pblist = NULL;
1594 	buffer = NULL;
1595 	alloc_normal = 0;
1596 	alloc_highmem = 0;
1597 	hibernate_restore_protection_end();
1598 }
1599 
1600 /* Helper functions used for the shrinking of memory. */
1601 
1602 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1603 
1604 /**
1605  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1606  * @nr_pages: Number of page frames to allocate.
1607  * @mask: GFP flags to use for the allocation.
1608  *
1609  * Return value: Number of page frames actually allocated
1610  */
1611 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1612 {
1613 	unsigned long nr_alloc = 0;
1614 
1615 	while (nr_pages > 0) {
1616 		struct page *page;
1617 
1618 		page = alloc_image_page(mask);
1619 		if (!page)
1620 			break;
1621 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1622 		if (PageHighMem(page))
1623 			alloc_highmem++;
1624 		else
1625 			alloc_normal++;
1626 		nr_pages--;
1627 		nr_alloc++;
1628 	}
1629 
1630 	return nr_alloc;
1631 }
1632 
1633 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1634 					      unsigned long avail_normal)
1635 {
1636 	unsigned long alloc;
1637 
1638 	if (avail_normal <= alloc_normal)
1639 		return 0;
1640 
1641 	alloc = avail_normal - alloc_normal;
1642 	if (nr_pages < alloc)
1643 		alloc = nr_pages;
1644 
1645 	return preallocate_image_pages(alloc, GFP_IMAGE);
1646 }
1647 
1648 #ifdef CONFIG_HIGHMEM
1649 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1650 {
1651 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1652 }
1653 
1654 /**
1655  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1656  */
1657 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1658 {
1659 	return div64_u64(x * multiplier, base);
1660 }
1661 
1662 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1663 						  unsigned long highmem,
1664 						  unsigned long total)
1665 {
1666 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1667 
1668 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1669 }
1670 #else /* CONFIG_HIGHMEM */
1671 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1672 {
1673 	return 0;
1674 }
1675 
1676 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1677 							 unsigned long highmem,
1678 							 unsigned long total)
1679 {
1680 	return 0;
1681 }
1682 #endif /* CONFIG_HIGHMEM */
1683 
1684 /**
1685  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1686  */
1687 static unsigned long free_unnecessary_pages(void)
1688 {
1689 	unsigned long save, to_free_normal, to_free_highmem, free;
1690 
1691 	save = count_data_pages();
1692 	if (alloc_normal >= save) {
1693 		to_free_normal = alloc_normal - save;
1694 		save = 0;
1695 	} else {
1696 		to_free_normal = 0;
1697 		save -= alloc_normal;
1698 	}
1699 	save += count_highmem_pages();
1700 	if (alloc_highmem >= save) {
1701 		to_free_highmem = alloc_highmem - save;
1702 	} else {
1703 		to_free_highmem = 0;
1704 		save -= alloc_highmem;
1705 		if (to_free_normal > save)
1706 			to_free_normal -= save;
1707 		else
1708 			to_free_normal = 0;
1709 	}
1710 	free = to_free_normal + to_free_highmem;
1711 
1712 	memory_bm_position_reset(&copy_bm);
1713 
1714 	while (to_free_normal > 0 || to_free_highmem > 0) {
1715 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1716 		struct page *page = pfn_to_page(pfn);
1717 
1718 		if (PageHighMem(page)) {
1719 			if (!to_free_highmem)
1720 				continue;
1721 			to_free_highmem--;
1722 			alloc_highmem--;
1723 		} else {
1724 			if (!to_free_normal)
1725 				continue;
1726 			to_free_normal--;
1727 			alloc_normal--;
1728 		}
1729 		memory_bm_clear_bit(&copy_bm, pfn);
1730 		swsusp_unset_page_forbidden(page);
1731 		swsusp_unset_page_free(page);
1732 		__free_page(page);
1733 	}
1734 
1735 	return free;
1736 }
1737 
1738 /**
1739  * minimum_image_size - Estimate the minimum acceptable size of an image.
1740  * @saveable: Number of saveable pages in the system.
1741  *
1742  * We want to avoid attempting to free too much memory too hard, so estimate the
1743  * minimum acceptable size of a hibernation image to use as the lower limit for
1744  * preallocating memory.
1745  *
1746  * We assume that the minimum image size should be proportional to
1747  *
1748  * [number of saveable pages] - [number of pages that can be freed in theory]
1749  *
1750  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1751  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1752  */
1753 static unsigned long minimum_image_size(unsigned long saveable)
1754 {
1755 	unsigned long size;
1756 
1757 	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1758 		+ global_node_page_state(NR_ACTIVE_ANON)
1759 		+ global_node_page_state(NR_INACTIVE_ANON)
1760 		+ global_node_page_state(NR_ACTIVE_FILE)
1761 		+ global_node_page_state(NR_INACTIVE_FILE);
1762 
1763 	return saveable <= size ? 0 : saveable - size;
1764 }
1765 
1766 /**
1767  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1768  *
1769  * To create a hibernation image it is necessary to make a copy of every page
1770  * frame in use.  We also need a number of page frames to be free during
1771  * hibernation for allocations made while saving the image and for device
1772  * drivers, in case they need to allocate memory from their hibernation
1773  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1774  * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1775  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1776  * total number of available page frames and allocate at least
1777  *
1778  * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1779  *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1780  *
1781  * of them, which corresponds to the maximum size of a hibernation image.
1782  *
1783  * If image_size is set below the number following from the above formula,
1784  * the preallocation of memory is continued until the total number of saveable
1785  * pages in the system is below the requested image size or the minimum
1786  * acceptable image size returned by minimum_image_size(), whichever is greater.
1787  */
1788 int hibernate_preallocate_memory(void)
1789 {
1790 	struct zone *zone;
1791 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1792 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1793 	ktime_t start, stop;
1794 	int error;
1795 
1796 	pr_info("Preallocating image memory\n");
1797 	start = ktime_get();
1798 
1799 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1800 	if (error) {
1801 		pr_err("Cannot allocate original bitmap\n");
1802 		goto err_out;
1803 	}
1804 
1805 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1806 	if (error) {
1807 		pr_err("Cannot allocate copy bitmap\n");
1808 		goto err_out;
1809 	}
1810 
1811 	alloc_normal = 0;
1812 	alloc_highmem = 0;
1813 
1814 	/* Count the number of saveable data pages. */
1815 	save_highmem = count_highmem_pages();
1816 	saveable = count_data_pages();
1817 
1818 	/*
1819 	 * Compute the total number of page frames we can use (count) and the
1820 	 * number of pages needed for image metadata (size).
1821 	 */
1822 	count = saveable;
1823 	saveable += save_highmem;
1824 	highmem = save_highmem;
1825 	size = 0;
1826 	for_each_populated_zone(zone) {
1827 		size += snapshot_additional_pages(zone);
1828 		if (is_highmem(zone))
1829 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1830 		else
1831 			count += zone_page_state(zone, NR_FREE_PAGES);
1832 	}
1833 	avail_normal = count;
1834 	count += highmem;
1835 	count -= totalreserve_pages;
1836 
1837 	/* Compute the maximum number of saveable pages to leave in memory. */
1838 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1839 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1840 	/* Compute the desired number of image pages specified by image_size. */
1841 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1842 	if (size > max_size)
1843 		size = max_size;
1844 	/*
1845 	 * If the desired number of image pages is at least as large as the
1846 	 * current number of saveable pages in memory, allocate page frames for
1847 	 * the image and we're done.
1848 	 */
1849 	if (size >= saveable) {
1850 		pages = preallocate_image_highmem(save_highmem);
1851 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1852 		goto out;
1853 	}
1854 
1855 	/* Estimate the minimum size of the image. */
1856 	pages = minimum_image_size(saveable);
1857 	/*
1858 	 * To avoid excessive pressure on the normal zone, leave room in it to
1859 	 * accommodate an image of the minimum size (unless it's already too
1860 	 * small, in which case don't preallocate pages from it at all).
1861 	 */
1862 	if (avail_normal > pages)
1863 		avail_normal -= pages;
1864 	else
1865 		avail_normal = 0;
1866 	if (size < pages)
1867 		size = min_t(unsigned long, pages, max_size);
1868 
1869 	/*
1870 	 * Let the memory management subsystem know that we're going to need a
1871 	 * large number of page frames to allocate and make it free some memory.
1872 	 * NOTE: If this is not done, performance will be hurt badly in some
1873 	 * test cases.
1874 	 */
1875 	shrink_all_memory(saveable - size);
1876 
1877 	/*
1878 	 * The number of saveable pages in memory was too high, so apply some
1879 	 * pressure to decrease it.  First, make room for the largest possible
1880 	 * image and fail if that doesn't work.  Next, try to decrease the size
1881 	 * of the image as much as indicated by 'size' using allocations from
1882 	 * highmem and non-highmem zones separately.
1883 	 */
1884 	pages_highmem = preallocate_image_highmem(highmem / 2);
1885 	alloc = count - max_size;
1886 	if (alloc > pages_highmem)
1887 		alloc -= pages_highmem;
1888 	else
1889 		alloc = 0;
1890 	pages = preallocate_image_memory(alloc, avail_normal);
1891 	if (pages < alloc) {
1892 		/* We have exhausted non-highmem pages, try highmem. */
1893 		alloc -= pages;
1894 		pages += pages_highmem;
1895 		pages_highmem = preallocate_image_highmem(alloc);
1896 		if (pages_highmem < alloc) {
1897 			pr_err("Image allocation is %lu pages short\n",
1898 				alloc - pages_highmem);
1899 			goto err_out;
1900 		}
1901 		pages += pages_highmem;
1902 		/*
1903 		 * size is the desired number of saveable pages to leave in
1904 		 * memory, so try to preallocate (all memory - size) pages.
1905 		 */
1906 		alloc = (count - pages) - size;
1907 		pages += preallocate_image_highmem(alloc);
1908 	} else {
1909 		/*
1910 		 * There are approximately max_size saveable pages at this point
1911 		 * and we want to reduce this number down to size.
1912 		 */
1913 		alloc = max_size - size;
1914 		size = preallocate_highmem_fraction(alloc, highmem, count);
1915 		pages_highmem += size;
1916 		alloc -= size;
1917 		size = preallocate_image_memory(alloc, avail_normal);
1918 		pages_highmem += preallocate_image_highmem(alloc - size);
1919 		pages += pages_highmem + size;
1920 	}
1921 
1922 	/*
1923 	 * We only need as many page frames for the image as there are saveable
1924 	 * pages in memory, but we have allocated more.  Release the excessive
1925 	 * ones now.
1926 	 */
1927 	pages -= free_unnecessary_pages();
1928 
1929  out:
1930 	stop = ktime_get();
1931 	pr_info("Allocated %lu pages for snapshot\n", pages);
1932 	swsusp_show_speed(start, stop, pages, "Allocated");
1933 
1934 	return 0;
1935 
1936  err_out:
1937 	swsusp_free();
1938 	return -ENOMEM;
1939 }
1940 
1941 #ifdef CONFIG_HIGHMEM
1942 /**
1943  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1944  *
1945  * Compute the number of non-highmem pages that will be necessary for creating
1946  * copies of highmem pages.
1947  */
1948 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1949 {
1950 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1951 
1952 	if (free_highmem >= nr_highmem)
1953 		nr_highmem = 0;
1954 	else
1955 		nr_highmem -= free_highmem;
1956 
1957 	return nr_highmem;
1958 }
1959 #else
1960 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1961 #endif /* CONFIG_HIGHMEM */
1962 
1963 /**
1964  * enough_free_mem - Check if there is enough free memory for the image.
1965  */
1966 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1967 {
1968 	struct zone *zone;
1969 	unsigned int free = alloc_normal;
1970 
1971 	for_each_populated_zone(zone)
1972 		if (!is_highmem(zone))
1973 			free += zone_page_state(zone, NR_FREE_PAGES);
1974 
1975 	nr_pages += count_pages_for_highmem(nr_highmem);
1976 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1977 		 nr_pages, PAGES_FOR_IO, free);
1978 
1979 	return free > nr_pages + PAGES_FOR_IO;
1980 }
1981 
1982 #ifdef CONFIG_HIGHMEM
1983 /**
1984  * get_highmem_buffer - Allocate a buffer for highmem pages.
1985  *
1986  * If there are some highmem pages in the hibernation image, we may need a
1987  * buffer to copy them and/or load their data.
1988  */
1989 static inline int get_highmem_buffer(int safe_needed)
1990 {
1991 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1992 	return buffer ? 0 : -ENOMEM;
1993 }
1994 
1995 /**
1996  * alloc_highmem_pages - Allocate some highmem pages for the image.
1997  *
1998  * Try to allocate as many pages as needed, but if the number of free highmem
1999  * pages is less than that, allocate them all.
2000  */
2001 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2002 					       unsigned int nr_highmem)
2003 {
2004 	unsigned int to_alloc = count_free_highmem_pages();
2005 
2006 	if (to_alloc > nr_highmem)
2007 		to_alloc = nr_highmem;
2008 
2009 	nr_highmem -= to_alloc;
2010 	while (to_alloc-- > 0) {
2011 		struct page *page;
2012 
2013 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
2014 		memory_bm_set_bit(bm, page_to_pfn(page));
2015 	}
2016 	return nr_highmem;
2017 }
2018 #else
2019 static inline int get_highmem_buffer(int safe_needed) { return 0; }
2020 
2021 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
2022 					       unsigned int n) { return 0; }
2023 #endif /* CONFIG_HIGHMEM */
2024 
2025 /**
2026  * swsusp_alloc - Allocate memory for hibernation image.
2027  *
2028  * We first try to allocate as many highmem pages as there are
2029  * saveable highmem pages in the system.  If that fails, we allocate
2030  * non-highmem pages for the copies of the remaining highmem ones.
2031  *
2032  * In this approach it is likely that the copies of highmem pages will
2033  * also be located in the high memory, because of the way in which
2034  * copy_data_pages() works.
2035  */
2036 static int swsusp_alloc(struct memory_bitmap *copy_bm,
2037 			unsigned int nr_pages, unsigned int nr_highmem)
2038 {
2039 	if (nr_highmem > 0) {
2040 		if (get_highmem_buffer(PG_ANY))
2041 			goto err_out;
2042 		if (nr_highmem > alloc_highmem) {
2043 			nr_highmem -= alloc_highmem;
2044 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
2045 		}
2046 	}
2047 	if (nr_pages > alloc_normal) {
2048 		nr_pages -= alloc_normal;
2049 		while (nr_pages-- > 0) {
2050 			struct page *page;
2051 
2052 			page = alloc_image_page(GFP_ATOMIC);
2053 			if (!page)
2054 				goto err_out;
2055 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2056 		}
2057 	}
2058 
2059 	return 0;
2060 
2061  err_out:
2062 	swsusp_free();
2063 	return -ENOMEM;
2064 }
2065 
2066 asmlinkage __visible int swsusp_save(void)
2067 {
2068 	unsigned int nr_pages, nr_highmem;
2069 
2070 	pr_info("Creating image:\n");
2071 
2072 	drain_local_pages(NULL);
2073 	nr_pages = count_data_pages();
2074 	nr_highmem = count_highmem_pages();
2075 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2076 
2077 	if (!enough_free_mem(nr_pages, nr_highmem)) {
2078 		pr_err("Not enough free memory\n");
2079 		return -ENOMEM;
2080 	}
2081 
2082 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2083 		pr_err("Memory allocation failed\n");
2084 		return -ENOMEM;
2085 	}
2086 
2087 	/*
2088 	 * During allocating of suspend pagedir, new cold pages may appear.
2089 	 * Kill them.
2090 	 */
2091 	drain_local_pages(NULL);
2092 	copy_data_pages(&copy_bm, &orig_bm);
2093 
2094 	/*
2095 	 * End of critical section. From now on, we can write to memory,
2096 	 * but we should not touch disk. This specially means we must _not_
2097 	 * touch swap space! Except we must write out our image of course.
2098 	 */
2099 
2100 	nr_pages += nr_highmem;
2101 	nr_copy_pages = nr_pages;
2102 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2103 
2104 	pr_info("Image created (%d pages copied)\n", nr_pages);
2105 
2106 	return 0;
2107 }
2108 
2109 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2110 static int init_header_complete(struct swsusp_info *info)
2111 {
2112 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2113 	info->version_code = LINUX_VERSION_CODE;
2114 	return 0;
2115 }
2116 
2117 static const char *check_image_kernel(struct swsusp_info *info)
2118 {
2119 	if (info->version_code != LINUX_VERSION_CODE)
2120 		return "kernel version";
2121 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2122 		return "system type";
2123 	if (strcmp(info->uts.release,init_utsname()->release))
2124 		return "kernel release";
2125 	if (strcmp(info->uts.version,init_utsname()->version))
2126 		return "version";
2127 	if (strcmp(info->uts.machine,init_utsname()->machine))
2128 		return "machine";
2129 	return NULL;
2130 }
2131 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2132 
2133 unsigned long snapshot_get_image_size(void)
2134 {
2135 	return nr_copy_pages + nr_meta_pages + 1;
2136 }
2137 
2138 static int init_header(struct swsusp_info *info)
2139 {
2140 	memset(info, 0, sizeof(struct swsusp_info));
2141 	info->num_physpages = get_num_physpages();
2142 	info->image_pages = nr_copy_pages;
2143 	info->pages = snapshot_get_image_size();
2144 	info->size = info->pages;
2145 	info->size <<= PAGE_SHIFT;
2146 	return init_header_complete(info);
2147 }
2148 
2149 /**
2150  * pack_pfns - Prepare PFNs for saving.
2151  * @bm: Memory bitmap.
2152  * @buf: Memory buffer to store the PFNs in.
2153  *
2154  * PFNs corresponding to set bits in @bm are stored in the area of memory
2155  * pointed to by @buf (1 page at a time).
2156  */
2157 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2158 {
2159 	int j;
2160 
2161 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2162 		buf[j] = memory_bm_next_pfn(bm);
2163 		if (unlikely(buf[j] == BM_END_OF_MAP))
2164 			break;
2165 	}
2166 }
2167 
2168 /**
2169  * snapshot_read_next - Get the address to read the next image page from.
2170  * @handle: Snapshot handle to be used for the reading.
2171  *
2172  * On the first call, @handle should point to a zeroed snapshot_handle
2173  * structure.  The structure gets populated then and a pointer to it should be
2174  * passed to this function every next time.
2175  *
2176  * On success, the function returns a positive number.  Then, the caller
2177  * is allowed to read up to the returned number of bytes from the memory
2178  * location computed by the data_of() macro.
2179  *
2180  * The function returns 0 to indicate the end of the data stream condition,
2181  * and negative numbers are returned on errors.  If that happens, the structure
2182  * pointed to by @handle is not updated and should not be used any more.
2183  */
2184 int snapshot_read_next(struct snapshot_handle *handle)
2185 {
2186 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2187 		return 0;
2188 
2189 	if (!buffer) {
2190 		/* This makes the buffer be freed by swsusp_free() */
2191 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2192 		if (!buffer)
2193 			return -ENOMEM;
2194 	}
2195 	if (!handle->cur) {
2196 		int error;
2197 
2198 		error = init_header((struct swsusp_info *)buffer);
2199 		if (error)
2200 			return error;
2201 		handle->buffer = buffer;
2202 		memory_bm_position_reset(&orig_bm);
2203 		memory_bm_position_reset(&copy_bm);
2204 	} else if (handle->cur <= nr_meta_pages) {
2205 		clear_page(buffer);
2206 		pack_pfns(buffer, &orig_bm);
2207 	} else {
2208 		struct page *page;
2209 
2210 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2211 		if (PageHighMem(page)) {
2212 			/*
2213 			 * Highmem pages are copied to the buffer,
2214 			 * because we can't return with a kmapped
2215 			 * highmem page (we may not be called again).
2216 			 */
2217 			void *kaddr;
2218 
2219 			kaddr = kmap_atomic(page);
2220 			copy_page(buffer, kaddr);
2221 			kunmap_atomic(kaddr);
2222 			handle->buffer = buffer;
2223 		} else {
2224 			handle->buffer = page_address(page);
2225 		}
2226 	}
2227 	handle->cur++;
2228 	return PAGE_SIZE;
2229 }
2230 
2231 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2232 				    struct memory_bitmap *src)
2233 {
2234 	unsigned long pfn;
2235 
2236 	memory_bm_position_reset(src);
2237 	pfn = memory_bm_next_pfn(src);
2238 	while (pfn != BM_END_OF_MAP) {
2239 		memory_bm_set_bit(dst, pfn);
2240 		pfn = memory_bm_next_pfn(src);
2241 	}
2242 }
2243 
2244 /**
2245  * mark_unsafe_pages - Mark pages that were used before hibernation.
2246  *
2247  * Mark the pages that cannot be used for storing the image during restoration,
2248  * because they conflict with the pages that had been used before hibernation.
2249  */
2250 static void mark_unsafe_pages(struct memory_bitmap *bm)
2251 {
2252 	unsigned long pfn;
2253 
2254 	/* Clear the "free"/"unsafe" bit for all PFNs */
2255 	memory_bm_position_reset(free_pages_map);
2256 	pfn = memory_bm_next_pfn(free_pages_map);
2257 	while (pfn != BM_END_OF_MAP) {
2258 		memory_bm_clear_current(free_pages_map);
2259 		pfn = memory_bm_next_pfn(free_pages_map);
2260 	}
2261 
2262 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2263 	duplicate_memory_bitmap(free_pages_map, bm);
2264 
2265 	allocated_unsafe_pages = 0;
2266 }
2267 
2268 static int check_header(struct swsusp_info *info)
2269 {
2270 	const char *reason;
2271 
2272 	reason = check_image_kernel(info);
2273 	if (!reason && info->num_physpages != get_num_physpages())
2274 		reason = "memory size";
2275 	if (reason) {
2276 		pr_err("Image mismatch: %s\n", reason);
2277 		return -EPERM;
2278 	}
2279 	return 0;
2280 }
2281 
2282 /**
2283  * load_header - Check the image header and copy the data from it.
2284  */
2285 static int load_header(struct swsusp_info *info)
2286 {
2287 	int error;
2288 
2289 	restore_pblist = NULL;
2290 	error = check_header(info);
2291 	if (!error) {
2292 		nr_copy_pages = info->image_pages;
2293 		nr_meta_pages = info->pages - info->image_pages - 1;
2294 	}
2295 	return error;
2296 }
2297 
2298 /**
2299  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2300  * @bm: Memory bitmap.
2301  * @buf: Area of memory containing the PFNs.
2302  *
2303  * For each element of the array pointed to by @buf (1 page at a time), set the
2304  * corresponding bit in @bm.
2305  */
2306 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2307 {
2308 	int j;
2309 
2310 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2311 		if (unlikely(buf[j] == BM_END_OF_MAP))
2312 			break;
2313 
2314 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
2315 			memory_bm_set_bit(bm, buf[j]);
2316 		} else {
2317 			if (!pfn_valid(buf[j]))
2318 				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2319 				       (unsigned long long)PFN_PHYS(buf[j]));
2320 			return -EFAULT;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 }
2326 
2327 #ifdef CONFIG_HIGHMEM
2328 /*
2329  * struct highmem_pbe is used for creating the list of highmem pages that
2330  * should be restored atomically during the resume from disk, because the page
2331  * frames they have occupied before the suspend are in use.
2332  */
2333 struct highmem_pbe {
2334 	struct page *copy_page;	/* data is here now */
2335 	struct page *orig_page;	/* data was here before the suspend */
2336 	struct highmem_pbe *next;
2337 };
2338 
2339 /*
2340  * List of highmem PBEs needed for restoring the highmem pages that were
2341  * allocated before the suspend and included in the suspend image, but have
2342  * also been allocated by the "resume" kernel, so their contents cannot be
2343  * written directly to their "original" page frames.
2344  */
2345 static struct highmem_pbe *highmem_pblist;
2346 
2347 /**
2348  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2349  * @bm: Memory bitmap.
2350  *
2351  * The bits in @bm that correspond to image pages are assumed to be set.
2352  */
2353 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2354 {
2355 	unsigned long pfn;
2356 	unsigned int cnt = 0;
2357 
2358 	memory_bm_position_reset(bm);
2359 	pfn = memory_bm_next_pfn(bm);
2360 	while (pfn != BM_END_OF_MAP) {
2361 		if (PageHighMem(pfn_to_page(pfn)))
2362 			cnt++;
2363 
2364 		pfn = memory_bm_next_pfn(bm);
2365 	}
2366 	return cnt;
2367 }
2368 
2369 static unsigned int safe_highmem_pages;
2370 
2371 static struct memory_bitmap *safe_highmem_bm;
2372 
2373 /**
2374  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2375  * @bm: Pointer to an uninitialized memory bitmap structure.
2376  * @nr_highmem_p: Pointer to the number of highmem image pages.
2377  *
2378  * Try to allocate as many highmem pages as there are highmem image pages
2379  * (@nr_highmem_p points to the variable containing the number of highmem image
2380  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2381  * hibernation image is restored entirely) have the corresponding bits set in
2382  * @bm (it must be uninitialized).
2383  *
2384  * NOTE: This function should not be called if there are no highmem image pages.
2385  */
2386 static int prepare_highmem_image(struct memory_bitmap *bm,
2387 				 unsigned int *nr_highmem_p)
2388 {
2389 	unsigned int to_alloc;
2390 
2391 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2392 		return -ENOMEM;
2393 
2394 	if (get_highmem_buffer(PG_SAFE))
2395 		return -ENOMEM;
2396 
2397 	to_alloc = count_free_highmem_pages();
2398 	if (to_alloc > *nr_highmem_p)
2399 		to_alloc = *nr_highmem_p;
2400 	else
2401 		*nr_highmem_p = to_alloc;
2402 
2403 	safe_highmem_pages = 0;
2404 	while (to_alloc-- > 0) {
2405 		struct page *page;
2406 
2407 		page = alloc_page(__GFP_HIGHMEM);
2408 		if (!swsusp_page_is_free(page)) {
2409 			/* The page is "safe", set its bit the bitmap */
2410 			memory_bm_set_bit(bm, page_to_pfn(page));
2411 			safe_highmem_pages++;
2412 		}
2413 		/* Mark the page as allocated */
2414 		swsusp_set_page_forbidden(page);
2415 		swsusp_set_page_free(page);
2416 	}
2417 	memory_bm_position_reset(bm);
2418 	safe_highmem_bm = bm;
2419 	return 0;
2420 }
2421 
2422 static struct page *last_highmem_page;
2423 
2424 /**
2425  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2426  *
2427  * For a given highmem image page get a buffer that suspend_write_next() should
2428  * return to its caller to write to.
2429  *
2430  * If the page is to be saved to its "original" page frame or a copy of
2431  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2432  * the copy of the page is to be made in normal memory, so the address of
2433  * the copy is returned.
2434  *
2435  * If @buffer is returned, the caller of suspend_write_next() will write
2436  * the page's contents to @buffer, so they will have to be copied to the
2437  * right location on the next call to suspend_write_next() and it is done
2438  * with the help of copy_last_highmem_page().  For this purpose, if
2439  * @buffer is returned, @last_highmem_page is set to the page to which
2440  * the data will have to be copied from @buffer.
2441  */
2442 static void *get_highmem_page_buffer(struct page *page,
2443 				     struct chain_allocator *ca)
2444 {
2445 	struct highmem_pbe *pbe;
2446 	void *kaddr;
2447 
2448 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2449 		/*
2450 		 * We have allocated the "original" page frame and we can
2451 		 * use it directly to store the loaded page.
2452 		 */
2453 		last_highmem_page = page;
2454 		return buffer;
2455 	}
2456 	/*
2457 	 * The "original" page frame has not been allocated and we have to
2458 	 * use a "safe" page frame to store the loaded page.
2459 	 */
2460 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2461 	if (!pbe) {
2462 		swsusp_free();
2463 		return ERR_PTR(-ENOMEM);
2464 	}
2465 	pbe->orig_page = page;
2466 	if (safe_highmem_pages > 0) {
2467 		struct page *tmp;
2468 
2469 		/* Copy of the page will be stored in high memory */
2470 		kaddr = buffer;
2471 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2472 		safe_highmem_pages--;
2473 		last_highmem_page = tmp;
2474 		pbe->copy_page = tmp;
2475 	} else {
2476 		/* Copy of the page will be stored in normal memory */
2477 		kaddr = safe_pages_list;
2478 		safe_pages_list = safe_pages_list->next;
2479 		pbe->copy_page = virt_to_page(kaddr);
2480 	}
2481 	pbe->next = highmem_pblist;
2482 	highmem_pblist = pbe;
2483 	return kaddr;
2484 }
2485 
2486 /**
2487  * copy_last_highmem_page - Copy most the most recent highmem image page.
2488  *
2489  * Copy the contents of a highmem image from @buffer, where the caller of
2490  * snapshot_write_next() has stored them, to the right location represented by
2491  * @last_highmem_page .
2492  */
2493 static void copy_last_highmem_page(void)
2494 {
2495 	if (last_highmem_page) {
2496 		void *dst;
2497 
2498 		dst = kmap_atomic(last_highmem_page);
2499 		copy_page(dst, buffer);
2500 		kunmap_atomic(dst);
2501 		last_highmem_page = NULL;
2502 	}
2503 }
2504 
2505 static inline int last_highmem_page_copied(void)
2506 {
2507 	return !last_highmem_page;
2508 }
2509 
2510 static inline void free_highmem_data(void)
2511 {
2512 	if (safe_highmem_bm)
2513 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2514 
2515 	if (buffer)
2516 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2517 }
2518 #else
2519 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2520 
2521 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2522 					unsigned int *nr_highmem_p) { return 0; }
2523 
2524 static inline void *get_highmem_page_buffer(struct page *page,
2525 					    struct chain_allocator *ca)
2526 {
2527 	return ERR_PTR(-EINVAL);
2528 }
2529 
2530 static inline void copy_last_highmem_page(void) {}
2531 static inline int last_highmem_page_copied(void) { return 1; }
2532 static inline void free_highmem_data(void) {}
2533 #endif /* CONFIG_HIGHMEM */
2534 
2535 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2536 
2537 /**
2538  * prepare_image - Make room for loading hibernation image.
2539  * @new_bm: Uninitialized memory bitmap structure.
2540  * @bm: Memory bitmap with unsafe pages marked.
2541  *
2542  * Use @bm to mark the pages that will be overwritten in the process of
2543  * restoring the system memory state from the suspend image ("unsafe" pages)
2544  * and allocate memory for the image.
2545  *
2546  * The idea is to allocate a new memory bitmap first and then allocate
2547  * as many pages as needed for image data, but without specifying what those
2548  * pages will be used for just yet.  Instead, we mark them all as allocated and
2549  * create a lists of "safe" pages to be used later.  On systems with high
2550  * memory a list of "safe" highmem pages is created too.
2551  */
2552 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2553 {
2554 	unsigned int nr_pages, nr_highmem;
2555 	struct linked_page *lp;
2556 	int error;
2557 
2558 	/* If there is no highmem, the buffer will not be necessary */
2559 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2560 	buffer = NULL;
2561 
2562 	nr_highmem = count_highmem_image_pages(bm);
2563 	mark_unsafe_pages(bm);
2564 
2565 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2566 	if (error)
2567 		goto Free;
2568 
2569 	duplicate_memory_bitmap(new_bm, bm);
2570 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2571 	if (nr_highmem > 0) {
2572 		error = prepare_highmem_image(bm, &nr_highmem);
2573 		if (error)
2574 			goto Free;
2575 	}
2576 	/*
2577 	 * Reserve some safe pages for potential later use.
2578 	 *
2579 	 * NOTE: This way we make sure there will be enough safe pages for the
2580 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2581 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2582 	 *
2583 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2584 	 */
2585 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2586 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2587 	while (nr_pages > 0) {
2588 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2589 		if (!lp) {
2590 			error = -ENOMEM;
2591 			goto Free;
2592 		}
2593 		lp->next = safe_pages_list;
2594 		safe_pages_list = lp;
2595 		nr_pages--;
2596 	}
2597 	/* Preallocate memory for the image */
2598 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2599 	while (nr_pages > 0) {
2600 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2601 		if (!lp) {
2602 			error = -ENOMEM;
2603 			goto Free;
2604 		}
2605 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2606 			/* The page is "safe", add it to the list */
2607 			lp->next = safe_pages_list;
2608 			safe_pages_list = lp;
2609 		}
2610 		/* Mark the page as allocated */
2611 		swsusp_set_page_forbidden(virt_to_page(lp));
2612 		swsusp_set_page_free(virt_to_page(lp));
2613 		nr_pages--;
2614 	}
2615 	return 0;
2616 
2617  Free:
2618 	swsusp_free();
2619 	return error;
2620 }
2621 
2622 /**
2623  * get_buffer - Get the address to store the next image data page.
2624  *
2625  * Get the address that snapshot_write_next() should return to its caller to
2626  * write to.
2627  */
2628 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2629 {
2630 	struct pbe *pbe;
2631 	struct page *page;
2632 	unsigned long pfn = memory_bm_next_pfn(bm);
2633 
2634 	if (pfn == BM_END_OF_MAP)
2635 		return ERR_PTR(-EFAULT);
2636 
2637 	page = pfn_to_page(pfn);
2638 	if (PageHighMem(page))
2639 		return get_highmem_page_buffer(page, ca);
2640 
2641 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2642 		/*
2643 		 * We have allocated the "original" page frame and we can
2644 		 * use it directly to store the loaded page.
2645 		 */
2646 		return page_address(page);
2647 
2648 	/*
2649 	 * The "original" page frame has not been allocated and we have to
2650 	 * use a "safe" page frame to store the loaded page.
2651 	 */
2652 	pbe = chain_alloc(ca, sizeof(struct pbe));
2653 	if (!pbe) {
2654 		swsusp_free();
2655 		return ERR_PTR(-ENOMEM);
2656 	}
2657 	pbe->orig_address = page_address(page);
2658 	pbe->address = safe_pages_list;
2659 	safe_pages_list = safe_pages_list->next;
2660 	pbe->next = restore_pblist;
2661 	restore_pblist = pbe;
2662 	return pbe->address;
2663 }
2664 
2665 /**
2666  * snapshot_write_next - Get the address to store the next image page.
2667  * @handle: Snapshot handle structure to guide the writing.
2668  *
2669  * On the first call, @handle should point to a zeroed snapshot_handle
2670  * structure.  The structure gets populated then and a pointer to it should be
2671  * passed to this function every next time.
2672  *
2673  * On success, the function returns a positive number.  Then, the caller
2674  * is allowed to write up to the returned number of bytes to the memory
2675  * location computed by the data_of() macro.
2676  *
2677  * The function returns 0 to indicate the "end of file" condition.  Negative
2678  * numbers are returned on errors, in which cases the structure pointed to by
2679  * @handle is not updated and should not be used any more.
2680  */
2681 int snapshot_write_next(struct snapshot_handle *handle)
2682 {
2683 	static struct chain_allocator ca;
2684 	int error = 0;
2685 
2686 	/* Check if we have already loaded the entire image */
2687 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2688 		return 0;
2689 
2690 	handle->sync_read = 1;
2691 
2692 	if (!handle->cur) {
2693 		if (!buffer)
2694 			/* This makes the buffer be freed by swsusp_free() */
2695 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2696 
2697 		if (!buffer)
2698 			return -ENOMEM;
2699 
2700 		handle->buffer = buffer;
2701 	} else if (handle->cur == 1) {
2702 		error = load_header(buffer);
2703 		if (error)
2704 			return error;
2705 
2706 		safe_pages_list = NULL;
2707 
2708 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2709 		if (error)
2710 			return error;
2711 
2712 		hibernate_restore_protection_begin();
2713 	} else if (handle->cur <= nr_meta_pages + 1) {
2714 		error = unpack_orig_pfns(buffer, &copy_bm);
2715 		if (error)
2716 			return error;
2717 
2718 		if (handle->cur == nr_meta_pages + 1) {
2719 			error = prepare_image(&orig_bm, &copy_bm);
2720 			if (error)
2721 				return error;
2722 
2723 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2724 			memory_bm_position_reset(&orig_bm);
2725 			restore_pblist = NULL;
2726 			handle->buffer = get_buffer(&orig_bm, &ca);
2727 			handle->sync_read = 0;
2728 			if (IS_ERR(handle->buffer))
2729 				return PTR_ERR(handle->buffer);
2730 		}
2731 	} else {
2732 		copy_last_highmem_page();
2733 		hibernate_restore_protect_page(handle->buffer);
2734 		handle->buffer = get_buffer(&orig_bm, &ca);
2735 		if (IS_ERR(handle->buffer))
2736 			return PTR_ERR(handle->buffer);
2737 		if (handle->buffer != buffer)
2738 			handle->sync_read = 0;
2739 	}
2740 	handle->cur++;
2741 	return PAGE_SIZE;
2742 }
2743 
2744 /**
2745  * snapshot_write_finalize - Complete the loading of a hibernation image.
2746  *
2747  * Must be called after the last call to snapshot_write_next() in case the last
2748  * page in the image happens to be a highmem page and its contents should be
2749  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2750  * necessary any more.
2751  */
2752 void snapshot_write_finalize(struct snapshot_handle *handle)
2753 {
2754 	copy_last_highmem_page();
2755 	hibernate_restore_protect_page(handle->buffer);
2756 	/* Do that only if we have loaded the image entirely */
2757 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2758 		memory_bm_recycle(&orig_bm);
2759 		free_highmem_data();
2760 	}
2761 }
2762 
2763 int snapshot_image_loaded(struct snapshot_handle *handle)
2764 {
2765 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2766 			handle->cur <= nr_meta_pages + nr_copy_pages);
2767 }
2768 
2769 #ifdef CONFIG_HIGHMEM
2770 /* Assumes that @buf is ready and points to a "safe" page */
2771 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2772 				       void *buf)
2773 {
2774 	void *kaddr1, *kaddr2;
2775 
2776 	kaddr1 = kmap_atomic(p1);
2777 	kaddr2 = kmap_atomic(p2);
2778 	copy_page(buf, kaddr1);
2779 	copy_page(kaddr1, kaddr2);
2780 	copy_page(kaddr2, buf);
2781 	kunmap_atomic(kaddr2);
2782 	kunmap_atomic(kaddr1);
2783 }
2784 
2785 /**
2786  * restore_highmem - Put highmem image pages into their original locations.
2787  *
2788  * For each highmem page that was in use before hibernation and is included in
2789  * the image, and also has been allocated by the "restore" kernel, swap its
2790  * current contents with the previous (ie. "before hibernation") ones.
2791  *
2792  * If the restore eventually fails, we can call this function once again and
2793  * restore the highmem state as seen by the restore kernel.
2794  */
2795 int restore_highmem(void)
2796 {
2797 	struct highmem_pbe *pbe = highmem_pblist;
2798 	void *buf;
2799 
2800 	if (!pbe)
2801 		return 0;
2802 
2803 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2804 	if (!buf)
2805 		return -ENOMEM;
2806 
2807 	while (pbe) {
2808 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2809 		pbe = pbe->next;
2810 	}
2811 	free_image_page(buf, PG_UNSAFE_CLEAR);
2812 	return 0;
2813 }
2814 #endif /* CONFIG_HIGHMEM */
2815