xref: /openbmc/linux/kernel/power/snapshot.c (revision 8684014d)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
38 
39 #include "power.h"
40 
41 static int swsusp_page_is_free(struct page *);
42 static void swsusp_set_page_forbidden(struct page *);
43 static void swsusp_unset_page_forbidden(struct page *);
44 
45 /*
46  * Number of bytes to reserve for memory allocations made by device drivers
47  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48  * cause image creation to fail (tunable via /sys/power/reserved_size).
49  */
50 unsigned long reserved_size;
51 
52 void __init hibernate_reserved_size_init(void)
53 {
54 	reserved_size = SPARE_PAGES * PAGE_SIZE;
55 }
56 
57 /*
58  * Preferred image size in bytes (tunable via /sys/power/image_size).
59  * When it is set to N, swsusp will do its best to ensure the image
60  * size will not exceed N bytes, but if that is impossible, it will
61  * try to create the smallest image possible.
62  */
63 unsigned long image_size;
64 
65 void __init hibernate_image_size_init(void)
66 {
67 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
68 }
69 
70 /* List of PBEs needed for restoring the pages that were allocated before
71  * the suspend and included in the suspend image, but have also been
72  * allocated by the "resume" kernel, so their contents cannot be written
73  * directly to their "original" page frames.
74  */
75 struct pbe *restore_pblist;
76 
77 /* Pointer to an auxiliary buffer (1 page) */
78 static void *buffer;
79 
80 /**
81  *	@safe_needed - on resume, for storing the PBE list and the image,
82  *	we can only use memory pages that do not conflict with the pages
83  *	used before suspend.  The unsafe pages have PageNosaveFree set
84  *	and we count them using unsafe_pages.
85  *
86  *	Each allocated image page is marked as PageNosave and PageNosaveFree
87  *	so that swsusp_free() can release it.
88  */
89 
90 #define PG_ANY		0
91 #define PG_SAFE		1
92 #define PG_UNSAFE_CLEAR	1
93 #define PG_UNSAFE_KEEP	0
94 
95 static unsigned int allocated_unsafe_pages;
96 
97 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
98 {
99 	void *res;
100 
101 	res = (void *)get_zeroed_page(gfp_mask);
102 	if (safe_needed)
103 		while (res && swsusp_page_is_free(virt_to_page(res))) {
104 			/* The page is unsafe, mark it for swsusp_free() */
105 			swsusp_set_page_forbidden(virt_to_page(res));
106 			allocated_unsafe_pages++;
107 			res = (void *)get_zeroed_page(gfp_mask);
108 		}
109 	if (res) {
110 		swsusp_set_page_forbidden(virt_to_page(res));
111 		swsusp_set_page_free(virt_to_page(res));
112 	}
113 	return res;
114 }
115 
116 unsigned long get_safe_page(gfp_t gfp_mask)
117 {
118 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
119 }
120 
121 static struct page *alloc_image_page(gfp_t gfp_mask)
122 {
123 	struct page *page;
124 
125 	page = alloc_page(gfp_mask);
126 	if (page) {
127 		swsusp_set_page_forbidden(page);
128 		swsusp_set_page_free(page);
129 	}
130 	return page;
131 }
132 
133 /**
134  *	free_image_page - free page represented by @addr, allocated with
135  *	get_image_page (page flags set by it must be cleared)
136  */
137 
138 static inline void free_image_page(void *addr, int clear_nosave_free)
139 {
140 	struct page *page;
141 
142 	BUG_ON(!virt_addr_valid(addr));
143 
144 	page = virt_to_page(addr);
145 
146 	swsusp_unset_page_forbidden(page);
147 	if (clear_nosave_free)
148 		swsusp_unset_page_free(page);
149 
150 	__free_page(page);
151 }
152 
153 /* struct linked_page is used to build chains of pages */
154 
155 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
156 
157 struct linked_page {
158 	struct linked_page *next;
159 	char data[LINKED_PAGE_DATA_SIZE];
160 } __packed;
161 
162 static inline void
163 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
164 {
165 	while (list) {
166 		struct linked_page *lp = list->next;
167 
168 		free_image_page(list, clear_page_nosave);
169 		list = lp;
170 	}
171 }
172 
173 /**
174   *	struct chain_allocator is used for allocating small objects out of
175   *	a linked list of pages called 'the chain'.
176   *
177   *	The chain grows each time when there is no room for a new object in
178   *	the current page.  The allocated objects cannot be freed individually.
179   *	It is only possible to free them all at once, by freeing the entire
180   *	chain.
181   *
182   *	NOTE: The chain allocator may be inefficient if the allocated objects
183   *	are not much smaller than PAGE_SIZE.
184   */
185 
186 struct chain_allocator {
187 	struct linked_page *chain;	/* the chain */
188 	unsigned int used_space;	/* total size of objects allocated out
189 					 * of the current page
190 					 */
191 	gfp_t gfp_mask;		/* mask for allocating pages */
192 	int safe_needed;	/* if set, only "safe" pages are allocated */
193 };
194 
195 static void
196 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
197 {
198 	ca->chain = NULL;
199 	ca->used_space = LINKED_PAGE_DATA_SIZE;
200 	ca->gfp_mask = gfp_mask;
201 	ca->safe_needed = safe_needed;
202 }
203 
204 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
205 {
206 	void *ret;
207 
208 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
209 		struct linked_page *lp;
210 
211 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
212 		if (!lp)
213 			return NULL;
214 
215 		lp->next = ca->chain;
216 		ca->chain = lp;
217 		ca->used_space = 0;
218 	}
219 	ret = ca->chain->data + ca->used_space;
220 	ca->used_space += size;
221 	return ret;
222 }
223 
224 /**
225  *	Data types related to memory bitmaps.
226  *
227  *	Memory bitmap is a structure consiting of many linked lists of
228  *	objects.  The main list's elements are of type struct zone_bitmap
229  *	and each of them corresonds to one zone.  For each zone bitmap
230  *	object there is a list of objects of type struct bm_block that
231  *	represent each blocks of bitmap in which information is stored.
232  *
233  *	struct memory_bitmap contains a pointer to the main list of zone
234  *	bitmap objects, a struct bm_position used for browsing the bitmap,
235  *	and a pointer to the list of pages used for allocating all of the
236  *	zone bitmap objects and bitmap block objects.
237  *
238  *	NOTE: It has to be possible to lay out the bitmap in memory
239  *	using only allocations of order 0.  Additionally, the bitmap is
240  *	designed to work with arbitrary number of zones (this is over the
241  *	top for now, but let's avoid making unnecessary assumptions ;-).
242  *
243  *	struct zone_bitmap contains a pointer to a list of bitmap block
244  *	objects and a pointer to the bitmap block object that has been
245  *	most recently used for setting bits.  Additionally, it contains the
246  *	pfns that correspond to the start and end of the represented zone.
247  *
248  *	struct bm_block contains a pointer to the memory page in which
249  *	information is stored (in the form of a block of bitmap)
250  *	It also contains the pfns that correspond to the start and end of
251  *	the represented memory area.
252  *
253  *	The memory bitmap is organized as a radix tree to guarantee fast random
254  *	access to the bits. There is one radix tree for each zone (as returned
255  *	from create_mem_extents).
256  *
257  *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
258  *	two linked lists for the nodes of the tree, one for the inner nodes and
259  *	one for the leave nodes. The linked leave nodes are used for fast linear
260  *	access of the memory bitmap.
261  *
262  *	The struct rtree_node represents one node of the radix tree.
263  */
264 
265 #define BM_END_OF_MAP	(~0UL)
266 
267 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
268 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
269 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
270 
271 /*
272  * struct rtree_node is a wrapper struct to link the nodes
273  * of the rtree together for easy linear iteration over
274  * bits and easy freeing
275  */
276 struct rtree_node {
277 	struct list_head list;
278 	unsigned long *data;
279 };
280 
281 /*
282  * struct mem_zone_bm_rtree represents a bitmap used for one
283  * populated memory zone.
284  */
285 struct mem_zone_bm_rtree {
286 	struct list_head list;		/* Link Zones together         */
287 	struct list_head nodes;		/* Radix Tree inner nodes      */
288 	struct list_head leaves;	/* Radix Tree leaves           */
289 	unsigned long start_pfn;	/* Zone start page frame       */
290 	unsigned long end_pfn;		/* Zone end page frame + 1     */
291 	struct rtree_node *rtree;	/* Radix Tree Root             */
292 	int levels;			/* Number of Radix Tree Levels */
293 	unsigned int blocks;		/* Number of Bitmap Blocks     */
294 };
295 
296 /* strcut bm_position is used for browsing memory bitmaps */
297 
298 struct bm_position {
299 	struct mem_zone_bm_rtree *zone;
300 	struct rtree_node *node;
301 	unsigned long node_pfn;
302 	int node_bit;
303 };
304 
305 struct memory_bitmap {
306 	struct list_head zones;
307 	struct linked_page *p_list;	/* list of pages used to store zone
308 					 * bitmap objects and bitmap block
309 					 * objects
310 					 */
311 	struct bm_position cur;	/* most recently used bit position */
312 };
313 
314 /* Functions that operate on memory bitmaps */
315 
316 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
317 #if BITS_PER_LONG == 32
318 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
319 #else
320 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
321 #endif
322 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
323 
324 /*
325  *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
326  *
327  *	This function is used to allocate inner nodes as well as the
328  *	leave nodes of the radix tree. It also adds the node to the
329  *	corresponding linked list passed in by the *list parameter.
330  */
331 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
332 					   struct chain_allocator *ca,
333 					   struct list_head *list)
334 {
335 	struct rtree_node *node;
336 
337 	node = chain_alloc(ca, sizeof(struct rtree_node));
338 	if (!node)
339 		return NULL;
340 
341 	node->data = get_image_page(gfp_mask, safe_needed);
342 	if (!node->data)
343 		return NULL;
344 
345 	list_add_tail(&node->list, list);
346 
347 	return node;
348 }
349 
350 /*
351  *	add_rtree_block - Add a new leave node to the radix tree
352  *
353  *	The leave nodes need to be allocated in order to keep the leaves
354  *	linked list in order. This is guaranteed by the zone->blocks
355  *	counter.
356  */
357 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
358 			   int safe_needed, struct chain_allocator *ca)
359 {
360 	struct rtree_node *node, *block, **dst;
361 	unsigned int levels_needed, block_nr;
362 	int i;
363 
364 	block_nr = zone->blocks;
365 	levels_needed = 0;
366 
367 	/* How many levels do we need for this block nr? */
368 	while (block_nr) {
369 		levels_needed += 1;
370 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
371 	}
372 
373 	/* Make sure the rtree has enough levels */
374 	for (i = zone->levels; i < levels_needed; i++) {
375 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
376 					&zone->nodes);
377 		if (!node)
378 			return -ENOMEM;
379 
380 		node->data[0] = (unsigned long)zone->rtree;
381 		zone->rtree = node;
382 		zone->levels += 1;
383 	}
384 
385 	/* Allocate new block */
386 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
387 	if (!block)
388 		return -ENOMEM;
389 
390 	/* Now walk the rtree to insert the block */
391 	node = zone->rtree;
392 	dst = &zone->rtree;
393 	block_nr = zone->blocks;
394 	for (i = zone->levels; i > 0; i--) {
395 		int index;
396 
397 		if (!node) {
398 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
399 						&zone->nodes);
400 			if (!node)
401 				return -ENOMEM;
402 			*dst = node;
403 		}
404 
405 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
406 		index &= BM_RTREE_LEVEL_MASK;
407 		dst = (struct rtree_node **)&((*dst)->data[index]);
408 		node = *dst;
409 	}
410 
411 	zone->blocks += 1;
412 	*dst = block;
413 
414 	return 0;
415 }
416 
417 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
418 			       int clear_nosave_free);
419 
420 /*
421  *	create_zone_bm_rtree - create a radix tree for one zone
422  *
423  *	Allocated the mem_zone_bm_rtree structure and initializes it.
424  *	This function also allocated and builds the radix tree for the
425  *	zone.
426  */
427 static struct mem_zone_bm_rtree *
428 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
429 		     struct chain_allocator *ca,
430 		     unsigned long start, unsigned long end)
431 {
432 	struct mem_zone_bm_rtree *zone;
433 	unsigned int i, nr_blocks;
434 	unsigned long pages;
435 
436 	pages = end - start;
437 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
438 	if (!zone)
439 		return NULL;
440 
441 	INIT_LIST_HEAD(&zone->nodes);
442 	INIT_LIST_HEAD(&zone->leaves);
443 	zone->start_pfn = start;
444 	zone->end_pfn = end;
445 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
446 
447 	for (i = 0; i < nr_blocks; i++) {
448 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
449 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
450 			return NULL;
451 		}
452 	}
453 
454 	return zone;
455 }
456 
457 /*
458  *	free_zone_bm_rtree - Free the memory of the radix tree
459  *
460  *	Free all node pages of the radix tree. The mem_zone_bm_rtree
461  *	structure itself is not freed here nor are the rtree_node
462  *	structs.
463  */
464 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
465 			       int clear_nosave_free)
466 {
467 	struct rtree_node *node;
468 
469 	list_for_each_entry(node, &zone->nodes, list)
470 		free_image_page(node->data, clear_nosave_free);
471 
472 	list_for_each_entry(node, &zone->leaves, list)
473 		free_image_page(node->data, clear_nosave_free);
474 }
475 
476 static void memory_bm_position_reset(struct memory_bitmap *bm)
477 {
478 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
479 				  list);
480 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
481 				  struct rtree_node, list);
482 	bm->cur.node_pfn = 0;
483 	bm->cur.node_bit = 0;
484 }
485 
486 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
487 
488 struct mem_extent {
489 	struct list_head hook;
490 	unsigned long start;
491 	unsigned long end;
492 };
493 
494 /**
495  *	free_mem_extents - free a list of memory extents
496  *	@list - list of extents to empty
497  */
498 static void free_mem_extents(struct list_head *list)
499 {
500 	struct mem_extent *ext, *aux;
501 
502 	list_for_each_entry_safe(ext, aux, list, hook) {
503 		list_del(&ext->hook);
504 		kfree(ext);
505 	}
506 }
507 
508 /**
509  *	create_mem_extents - create a list of memory extents representing
510  *	                     contiguous ranges of PFNs
511  *	@list - list to put the extents into
512  *	@gfp_mask - mask to use for memory allocations
513  */
514 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
515 {
516 	struct zone *zone;
517 
518 	INIT_LIST_HEAD(list);
519 
520 	for_each_populated_zone(zone) {
521 		unsigned long zone_start, zone_end;
522 		struct mem_extent *ext, *cur, *aux;
523 
524 		zone_start = zone->zone_start_pfn;
525 		zone_end = zone_end_pfn(zone);
526 
527 		list_for_each_entry(ext, list, hook)
528 			if (zone_start <= ext->end)
529 				break;
530 
531 		if (&ext->hook == list || zone_end < ext->start) {
532 			/* New extent is necessary */
533 			struct mem_extent *new_ext;
534 
535 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
536 			if (!new_ext) {
537 				free_mem_extents(list);
538 				return -ENOMEM;
539 			}
540 			new_ext->start = zone_start;
541 			new_ext->end = zone_end;
542 			list_add_tail(&new_ext->hook, &ext->hook);
543 			continue;
544 		}
545 
546 		/* Merge this zone's range of PFNs with the existing one */
547 		if (zone_start < ext->start)
548 			ext->start = zone_start;
549 		if (zone_end > ext->end)
550 			ext->end = zone_end;
551 
552 		/* More merging may be possible */
553 		cur = ext;
554 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
555 			if (zone_end < cur->start)
556 				break;
557 			if (zone_end < cur->end)
558 				ext->end = cur->end;
559 			list_del(&cur->hook);
560 			kfree(cur);
561 		}
562 	}
563 
564 	return 0;
565 }
566 
567 /**
568   *	memory_bm_create - allocate memory for a memory bitmap
569   */
570 static int
571 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
572 {
573 	struct chain_allocator ca;
574 	struct list_head mem_extents;
575 	struct mem_extent *ext;
576 	int error;
577 
578 	chain_init(&ca, gfp_mask, safe_needed);
579 	INIT_LIST_HEAD(&bm->zones);
580 
581 	error = create_mem_extents(&mem_extents, gfp_mask);
582 	if (error)
583 		return error;
584 
585 	list_for_each_entry(ext, &mem_extents, hook) {
586 		struct mem_zone_bm_rtree *zone;
587 
588 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
589 					    ext->start, ext->end);
590 		if (!zone) {
591 			error = -ENOMEM;
592 			goto Error;
593 		}
594 		list_add_tail(&zone->list, &bm->zones);
595 	}
596 
597 	bm->p_list = ca.chain;
598 	memory_bm_position_reset(bm);
599  Exit:
600 	free_mem_extents(&mem_extents);
601 	return error;
602 
603  Error:
604 	bm->p_list = ca.chain;
605 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
606 	goto Exit;
607 }
608 
609 /**
610   *	memory_bm_free - free memory occupied by the memory bitmap @bm
611   */
612 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
613 {
614 	struct mem_zone_bm_rtree *zone;
615 
616 	list_for_each_entry(zone, &bm->zones, list)
617 		free_zone_bm_rtree(zone, clear_nosave_free);
618 
619 	free_list_of_pages(bm->p_list, clear_nosave_free);
620 
621 	INIT_LIST_HEAD(&bm->zones);
622 }
623 
624 /**
625  *	memory_bm_find_bit - Find the bit for pfn in the memory
626  *			     bitmap
627  *
628  *	Find the bit in the bitmap @bm that corresponds to given pfn.
629  *	The cur.zone, cur.block and cur.node_pfn member of @bm are
630  *	updated.
631  *	It walks the radix tree to find the page which contains the bit for
632  *	pfn and returns the bit position in **addr and *bit_nr.
633  */
634 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
635 			      void **addr, unsigned int *bit_nr)
636 {
637 	struct mem_zone_bm_rtree *curr, *zone;
638 	struct rtree_node *node;
639 	int i, block_nr;
640 
641 	zone = bm->cur.zone;
642 
643 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
644 		goto zone_found;
645 
646 	zone = NULL;
647 
648 	/* Find the right zone */
649 	list_for_each_entry(curr, &bm->zones, list) {
650 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
651 			zone = curr;
652 			break;
653 		}
654 	}
655 
656 	if (!zone)
657 		return -EFAULT;
658 
659 zone_found:
660 	/*
661 	 * We have a zone. Now walk the radix tree to find the leave
662 	 * node for our pfn.
663 	 */
664 
665 	node = bm->cur.node;
666 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
667 		goto node_found;
668 
669 	node      = zone->rtree;
670 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
671 
672 	for (i = zone->levels; i > 0; i--) {
673 		int index;
674 
675 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
676 		index &= BM_RTREE_LEVEL_MASK;
677 		BUG_ON(node->data[index] == 0);
678 		node = (struct rtree_node *)node->data[index];
679 	}
680 
681 node_found:
682 	/* Update last position */
683 	bm->cur.zone = zone;
684 	bm->cur.node = node;
685 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
686 
687 	/* Set return values */
688 	*addr = node->data;
689 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
690 
691 	return 0;
692 }
693 
694 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
695 {
696 	void *addr;
697 	unsigned int bit;
698 	int error;
699 
700 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
701 	BUG_ON(error);
702 	set_bit(bit, addr);
703 }
704 
705 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
706 {
707 	void *addr;
708 	unsigned int bit;
709 	int error;
710 
711 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
712 	if (!error)
713 		set_bit(bit, addr);
714 
715 	return error;
716 }
717 
718 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
719 {
720 	void *addr;
721 	unsigned int bit;
722 	int error;
723 
724 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
725 	BUG_ON(error);
726 	clear_bit(bit, addr);
727 }
728 
729 static void memory_bm_clear_current(struct memory_bitmap *bm)
730 {
731 	int bit;
732 
733 	bit = max(bm->cur.node_bit - 1, 0);
734 	clear_bit(bit, bm->cur.node->data);
735 }
736 
737 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
738 {
739 	void *addr;
740 	unsigned int bit;
741 	int error;
742 
743 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
744 	BUG_ON(error);
745 	return test_bit(bit, addr);
746 }
747 
748 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
749 {
750 	void *addr;
751 	unsigned int bit;
752 
753 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
754 }
755 
756 /*
757  *	rtree_next_node - Jumps to the next leave node
758  *
759  *	Sets the position to the beginning of the next node in the
760  *	memory bitmap. This is either the next node in the current
761  *	zone's radix tree or the first node in the radix tree of the
762  *	next zone.
763  *
764  *	Returns true if there is a next node, false otherwise.
765  */
766 static bool rtree_next_node(struct memory_bitmap *bm)
767 {
768 	bm->cur.node = list_entry(bm->cur.node->list.next,
769 				  struct rtree_node, list);
770 	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
771 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
772 		bm->cur.node_bit  = 0;
773 		touch_softlockup_watchdog();
774 		return true;
775 	}
776 
777 	/* No more nodes, goto next zone */
778 	bm->cur.zone = list_entry(bm->cur.zone->list.next,
779 				  struct mem_zone_bm_rtree, list);
780 	if (&bm->cur.zone->list != &bm->zones) {
781 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
782 					  struct rtree_node, list);
783 		bm->cur.node_pfn = 0;
784 		bm->cur.node_bit = 0;
785 		return true;
786 	}
787 
788 	/* No more zones */
789 	return false;
790 }
791 
792 /**
793  *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
794  *
795  *	Starting from the last returned position this function searches
796  *	for the next set bit in the memory bitmap and returns its
797  *	number. If no more bit is set BM_END_OF_MAP is returned.
798  *
799  *	It is required to run memory_bm_position_reset() before the
800  *	first call to this function.
801  */
802 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
803 {
804 	unsigned long bits, pfn, pages;
805 	int bit;
806 
807 	do {
808 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
809 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
810 		bit	  = find_next_bit(bm->cur.node->data, bits,
811 					  bm->cur.node_bit);
812 		if (bit < bits) {
813 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
814 			bm->cur.node_bit = bit + 1;
815 			return pfn;
816 		}
817 	} while (rtree_next_node(bm));
818 
819 	return BM_END_OF_MAP;
820 }
821 
822 /**
823  *	This structure represents a range of page frames the contents of which
824  *	should not be saved during the suspend.
825  */
826 
827 struct nosave_region {
828 	struct list_head list;
829 	unsigned long start_pfn;
830 	unsigned long end_pfn;
831 };
832 
833 static LIST_HEAD(nosave_regions);
834 
835 /**
836  *	register_nosave_region - register a range of page frames the contents
837  *	of which should not be saved during the suspend (to be used in the early
838  *	initialization code)
839  */
840 
841 void __init
842 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
843 			 int use_kmalloc)
844 {
845 	struct nosave_region *region;
846 
847 	if (start_pfn >= end_pfn)
848 		return;
849 
850 	if (!list_empty(&nosave_regions)) {
851 		/* Try to extend the previous region (they should be sorted) */
852 		region = list_entry(nosave_regions.prev,
853 					struct nosave_region, list);
854 		if (region->end_pfn == start_pfn) {
855 			region->end_pfn = end_pfn;
856 			goto Report;
857 		}
858 	}
859 	if (use_kmalloc) {
860 		/* during init, this shouldn't fail */
861 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
862 		BUG_ON(!region);
863 	} else
864 		/* This allocation cannot fail */
865 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
866 	region->start_pfn = start_pfn;
867 	region->end_pfn = end_pfn;
868 	list_add_tail(&region->list, &nosave_regions);
869  Report:
870 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
871 		(unsigned long long) start_pfn << PAGE_SHIFT,
872 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
873 }
874 
875 /*
876  * Set bits in this map correspond to the page frames the contents of which
877  * should not be saved during the suspend.
878  */
879 static struct memory_bitmap *forbidden_pages_map;
880 
881 /* Set bits in this map correspond to free page frames. */
882 static struct memory_bitmap *free_pages_map;
883 
884 /*
885  * Each page frame allocated for creating the image is marked by setting the
886  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
887  */
888 
889 void swsusp_set_page_free(struct page *page)
890 {
891 	if (free_pages_map)
892 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
893 }
894 
895 static int swsusp_page_is_free(struct page *page)
896 {
897 	return free_pages_map ?
898 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
899 }
900 
901 void swsusp_unset_page_free(struct page *page)
902 {
903 	if (free_pages_map)
904 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
905 }
906 
907 static void swsusp_set_page_forbidden(struct page *page)
908 {
909 	if (forbidden_pages_map)
910 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
911 }
912 
913 int swsusp_page_is_forbidden(struct page *page)
914 {
915 	return forbidden_pages_map ?
916 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
917 }
918 
919 static void swsusp_unset_page_forbidden(struct page *page)
920 {
921 	if (forbidden_pages_map)
922 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
923 }
924 
925 /**
926  *	mark_nosave_pages - set bits corresponding to the page frames the
927  *	contents of which should not be saved in a given bitmap.
928  */
929 
930 static void mark_nosave_pages(struct memory_bitmap *bm)
931 {
932 	struct nosave_region *region;
933 
934 	if (list_empty(&nosave_regions))
935 		return;
936 
937 	list_for_each_entry(region, &nosave_regions, list) {
938 		unsigned long pfn;
939 
940 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
941 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
942 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
943 				- 1);
944 
945 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
946 			if (pfn_valid(pfn)) {
947 				/*
948 				 * It is safe to ignore the result of
949 				 * mem_bm_set_bit_check() here, since we won't
950 				 * touch the PFNs for which the error is
951 				 * returned anyway.
952 				 */
953 				mem_bm_set_bit_check(bm, pfn);
954 			}
955 	}
956 }
957 
958 static bool is_nosave_page(unsigned long pfn)
959 {
960 	struct nosave_region *region;
961 
962 	list_for_each_entry(region, &nosave_regions, list) {
963 		if (pfn >= region->start_pfn && pfn < region->end_pfn) {
964 			pr_err("PM: %#010llx in e820 nosave region: "
965 			       "[mem %#010llx-%#010llx]\n",
966 			       (unsigned long long) pfn << PAGE_SHIFT,
967 			       (unsigned long long) region->start_pfn << PAGE_SHIFT,
968 			       ((unsigned long long) region->end_pfn << PAGE_SHIFT)
969 					- 1);
970 			return true;
971 		}
972 	}
973 
974 	return false;
975 }
976 
977 /**
978  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
979  *	frames that should not be saved and free page frames.  The pointers
980  *	forbidden_pages_map and free_pages_map are only modified if everything
981  *	goes well, because we don't want the bits to be used before both bitmaps
982  *	are set up.
983  */
984 
985 int create_basic_memory_bitmaps(void)
986 {
987 	struct memory_bitmap *bm1, *bm2;
988 	int error = 0;
989 
990 	if (forbidden_pages_map && free_pages_map)
991 		return 0;
992 	else
993 		BUG_ON(forbidden_pages_map || free_pages_map);
994 
995 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
996 	if (!bm1)
997 		return -ENOMEM;
998 
999 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1000 	if (error)
1001 		goto Free_first_object;
1002 
1003 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1004 	if (!bm2)
1005 		goto Free_first_bitmap;
1006 
1007 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1008 	if (error)
1009 		goto Free_second_object;
1010 
1011 	forbidden_pages_map = bm1;
1012 	free_pages_map = bm2;
1013 	mark_nosave_pages(forbidden_pages_map);
1014 
1015 	pr_debug("PM: Basic memory bitmaps created\n");
1016 
1017 	return 0;
1018 
1019  Free_second_object:
1020 	kfree(bm2);
1021  Free_first_bitmap:
1022  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1023  Free_first_object:
1024 	kfree(bm1);
1025 	return -ENOMEM;
1026 }
1027 
1028 /**
1029  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1030  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1031  *	so that the bitmaps themselves are not referred to while they are being
1032  *	freed.
1033  */
1034 
1035 void free_basic_memory_bitmaps(void)
1036 {
1037 	struct memory_bitmap *bm1, *bm2;
1038 
1039 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1040 		return;
1041 
1042 	bm1 = forbidden_pages_map;
1043 	bm2 = free_pages_map;
1044 	forbidden_pages_map = NULL;
1045 	free_pages_map = NULL;
1046 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1047 	kfree(bm1);
1048 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1049 	kfree(bm2);
1050 
1051 	pr_debug("PM: Basic memory bitmaps freed\n");
1052 }
1053 
1054 /**
1055  *	snapshot_additional_pages - estimate the number of additional pages
1056  *	be needed for setting up the suspend image data structures for given
1057  *	zone (usually the returned value is greater than the exact number)
1058  */
1059 
1060 unsigned int snapshot_additional_pages(struct zone *zone)
1061 {
1062 	unsigned int rtree, nodes;
1063 
1064 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1065 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1066 			      LINKED_PAGE_DATA_SIZE);
1067 	while (nodes > 1) {
1068 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1069 		rtree += nodes;
1070 	}
1071 
1072 	return 2 * rtree;
1073 }
1074 
1075 #ifdef CONFIG_HIGHMEM
1076 /**
1077  *	count_free_highmem_pages - compute the total number of free highmem
1078  *	pages, system-wide.
1079  */
1080 
1081 static unsigned int count_free_highmem_pages(void)
1082 {
1083 	struct zone *zone;
1084 	unsigned int cnt = 0;
1085 
1086 	for_each_populated_zone(zone)
1087 		if (is_highmem(zone))
1088 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1089 
1090 	return cnt;
1091 }
1092 
1093 /**
1094  *	saveable_highmem_page - Determine whether a highmem page should be
1095  *	included in the suspend image.
1096  *
1097  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1098  *	and it isn't a part of a free chunk of pages.
1099  */
1100 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1101 {
1102 	struct page *page;
1103 
1104 	if (!pfn_valid(pfn))
1105 		return NULL;
1106 
1107 	page = pfn_to_page(pfn);
1108 	if (page_zone(page) != zone)
1109 		return NULL;
1110 
1111 	BUG_ON(!PageHighMem(page));
1112 
1113 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1114 	    PageReserved(page))
1115 		return NULL;
1116 
1117 	if (page_is_guard(page))
1118 		return NULL;
1119 
1120 	return page;
1121 }
1122 
1123 /**
1124  *	count_highmem_pages - compute the total number of saveable highmem
1125  *	pages.
1126  */
1127 
1128 static unsigned int count_highmem_pages(void)
1129 {
1130 	struct zone *zone;
1131 	unsigned int n = 0;
1132 
1133 	for_each_populated_zone(zone) {
1134 		unsigned long pfn, max_zone_pfn;
1135 
1136 		if (!is_highmem(zone))
1137 			continue;
1138 
1139 		mark_free_pages(zone);
1140 		max_zone_pfn = zone_end_pfn(zone);
1141 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1142 			if (saveable_highmem_page(zone, pfn))
1143 				n++;
1144 	}
1145 	return n;
1146 }
1147 #else
1148 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1149 {
1150 	return NULL;
1151 }
1152 #endif /* CONFIG_HIGHMEM */
1153 
1154 /**
1155  *	saveable_page - Determine whether a non-highmem page should be included
1156  *	in the suspend image.
1157  *
1158  *	We should save the page if it isn't Nosave, and is not in the range
1159  *	of pages statically defined as 'unsaveable', and it isn't a part of
1160  *	a free chunk of pages.
1161  */
1162 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1163 {
1164 	struct page *page;
1165 
1166 	if (!pfn_valid(pfn))
1167 		return NULL;
1168 
1169 	page = pfn_to_page(pfn);
1170 	if (page_zone(page) != zone)
1171 		return NULL;
1172 
1173 	BUG_ON(PageHighMem(page));
1174 
1175 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1176 		return NULL;
1177 
1178 	if (PageReserved(page)
1179 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1180 		return NULL;
1181 
1182 	if (page_is_guard(page))
1183 		return NULL;
1184 
1185 	return page;
1186 }
1187 
1188 /**
1189  *	count_data_pages - compute the total number of saveable non-highmem
1190  *	pages.
1191  */
1192 
1193 static unsigned int count_data_pages(void)
1194 {
1195 	struct zone *zone;
1196 	unsigned long pfn, max_zone_pfn;
1197 	unsigned int n = 0;
1198 
1199 	for_each_populated_zone(zone) {
1200 		if (is_highmem(zone))
1201 			continue;
1202 
1203 		mark_free_pages(zone);
1204 		max_zone_pfn = zone_end_pfn(zone);
1205 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1206 			if (saveable_page(zone, pfn))
1207 				n++;
1208 	}
1209 	return n;
1210 }
1211 
1212 /* This is needed, because copy_page and memcpy are not usable for copying
1213  * task structs.
1214  */
1215 static inline void do_copy_page(long *dst, long *src)
1216 {
1217 	int n;
1218 
1219 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1220 		*dst++ = *src++;
1221 }
1222 
1223 
1224 /**
1225  *	safe_copy_page - check if the page we are going to copy is marked as
1226  *		present in the kernel page tables (this always is the case if
1227  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1228  *		kernel_page_present() always returns 'true').
1229  */
1230 static void safe_copy_page(void *dst, struct page *s_page)
1231 {
1232 	if (kernel_page_present(s_page)) {
1233 		do_copy_page(dst, page_address(s_page));
1234 	} else {
1235 		kernel_map_pages(s_page, 1, 1);
1236 		do_copy_page(dst, page_address(s_page));
1237 		kernel_map_pages(s_page, 1, 0);
1238 	}
1239 }
1240 
1241 
1242 #ifdef CONFIG_HIGHMEM
1243 static inline struct page *
1244 page_is_saveable(struct zone *zone, unsigned long pfn)
1245 {
1246 	return is_highmem(zone) ?
1247 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1248 }
1249 
1250 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1251 {
1252 	struct page *s_page, *d_page;
1253 	void *src, *dst;
1254 
1255 	s_page = pfn_to_page(src_pfn);
1256 	d_page = pfn_to_page(dst_pfn);
1257 	if (PageHighMem(s_page)) {
1258 		src = kmap_atomic(s_page);
1259 		dst = kmap_atomic(d_page);
1260 		do_copy_page(dst, src);
1261 		kunmap_atomic(dst);
1262 		kunmap_atomic(src);
1263 	} else {
1264 		if (PageHighMem(d_page)) {
1265 			/* Page pointed to by src may contain some kernel
1266 			 * data modified by kmap_atomic()
1267 			 */
1268 			safe_copy_page(buffer, s_page);
1269 			dst = kmap_atomic(d_page);
1270 			copy_page(dst, buffer);
1271 			kunmap_atomic(dst);
1272 		} else {
1273 			safe_copy_page(page_address(d_page), s_page);
1274 		}
1275 	}
1276 }
1277 #else
1278 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1279 
1280 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1281 {
1282 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1283 				pfn_to_page(src_pfn));
1284 }
1285 #endif /* CONFIG_HIGHMEM */
1286 
1287 static void
1288 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1289 {
1290 	struct zone *zone;
1291 	unsigned long pfn;
1292 
1293 	for_each_populated_zone(zone) {
1294 		unsigned long max_zone_pfn;
1295 
1296 		mark_free_pages(zone);
1297 		max_zone_pfn = zone_end_pfn(zone);
1298 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 			if (page_is_saveable(zone, pfn))
1300 				memory_bm_set_bit(orig_bm, pfn);
1301 	}
1302 	memory_bm_position_reset(orig_bm);
1303 	memory_bm_position_reset(copy_bm);
1304 	for(;;) {
1305 		pfn = memory_bm_next_pfn(orig_bm);
1306 		if (unlikely(pfn == BM_END_OF_MAP))
1307 			break;
1308 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1309 	}
1310 }
1311 
1312 /* Total number of image pages */
1313 static unsigned int nr_copy_pages;
1314 /* Number of pages needed for saving the original pfns of the image pages */
1315 static unsigned int nr_meta_pages;
1316 /*
1317  * Numbers of normal and highmem page frames allocated for hibernation image
1318  * before suspending devices.
1319  */
1320 unsigned int alloc_normal, alloc_highmem;
1321 /*
1322  * Memory bitmap used for marking saveable pages (during hibernation) or
1323  * hibernation image pages (during restore)
1324  */
1325 static struct memory_bitmap orig_bm;
1326 /*
1327  * Memory bitmap used during hibernation for marking allocated page frames that
1328  * will contain copies of saveable pages.  During restore it is initially used
1329  * for marking hibernation image pages, but then the set bits from it are
1330  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1331  * used for marking "safe" highmem pages, but it has to be reinitialized for
1332  * this purpose.
1333  */
1334 static struct memory_bitmap copy_bm;
1335 
1336 /**
1337  *	swsusp_free - free pages allocated for the suspend.
1338  *
1339  *	Suspend pages are alocated before the atomic copy is made, so we
1340  *	need to release them after the resume.
1341  */
1342 
1343 void swsusp_free(void)
1344 {
1345 	unsigned long fb_pfn, fr_pfn;
1346 
1347 	if (!forbidden_pages_map || !free_pages_map)
1348 		goto out;
1349 
1350 	memory_bm_position_reset(forbidden_pages_map);
1351 	memory_bm_position_reset(free_pages_map);
1352 
1353 loop:
1354 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1355 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1356 
1357 	/*
1358 	 * Find the next bit set in both bitmaps. This is guaranteed to
1359 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1360 	 */
1361 	do {
1362 		if (fb_pfn < fr_pfn)
1363 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1364 		if (fr_pfn < fb_pfn)
1365 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1366 	} while (fb_pfn != fr_pfn);
1367 
1368 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1369 		struct page *page = pfn_to_page(fr_pfn);
1370 
1371 		memory_bm_clear_current(forbidden_pages_map);
1372 		memory_bm_clear_current(free_pages_map);
1373 		__free_page(page);
1374 		goto loop;
1375 	}
1376 
1377 out:
1378 	nr_copy_pages = 0;
1379 	nr_meta_pages = 0;
1380 	restore_pblist = NULL;
1381 	buffer = NULL;
1382 	alloc_normal = 0;
1383 	alloc_highmem = 0;
1384 }
1385 
1386 /* Helper functions used for the shrinking of memory. */
1387 
1388 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1389 
1390 /**
1391  * preallocate_image_pages - Allocate a number of pages for hibernation image
1392  * @nr_pages: Number of page frames to allocate.
1393  * @mask: GFP flags to use for the allocation.
1394  *
1395  * Return value: Number of page frames actually allocated
1396  */
1397 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1398 {
1399 	unsigned long nr_alloc = 0;
1400 
1401 	while (nr_pages > 0) {
1402 		struct page *page;
1403 
1404 		page = alloc_image_page(mask);
1405 		if (!page)
1406 			break;
1407 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1408 		if (PageHighMem(page))
1409 			alloc_highmem++;
1410 		else
1411 			alloc_normal++;
1412 		nr_pages--;
1413 		nr_alloc++;
1414 	}
1415 
1416 	return nr_alloc;
1417 }
1418 
1419 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1420 					      unsigned long avail_normal)
1421 {
1422 	unsigned long alloc;
1423 
1424 	if (avail_normal <= alloc_normal)
1425 		return 0;
1426 
1427 	alloc = avail_normal - alloc_normal;
1428 	if (nr_pages < alloc)
1429 		alloc = nr_pages;
1430 
1431 	return preallocate_image_pages(alloc, GFP_IMAGE);
1432 }
1433 
1434 #ifdef CONFIG_HIGHMEM
1435 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1436 {
1437 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1438 }
1439 
1440 /**
1441  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1442  */
1443 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1444 {
1445 	x *= multiplier;
1446 	do_div(x, base);
1447 	return (unsigned long)x;
1448 }
1449 
1450 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1451 						unsigned long highmem,
1452 						unsigned long total)
1453 {
1454 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1455 
1456 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1457 }
1458 #else /* CONFIG_HIGHMEM */
1459 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1460 {
1461 	return 0;
1462 }
1463 
1464 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1465 						unsigned long highmem,
1466 						unsigned long total)
1467 {
1468 	return 0;
1469 }
1470 #endif /* CONFIG_HIGHMEM */
1471 
1472 /**
1473  * free_unnecessary_pages - Release preallocated pages not needed for the image
1474  */
1475 static void free_unnecessary_pages(void)
1476 {
1477 	unsigned long save, to_free_normal, to_free_highmem;
1478 
1479 	save = count_data_pages();
1480 	if (alloc_normal >= save) {
1481 		to_free_normal = alloc_normal - save;
1482 		save = 0;
1483 	} else {
1484 		to_free_normal = 0;
1485 		save -= alloc_normal;
1486 	}
1487 	save += count_highmem_pages();
1488 	if (alloc_highmem >= save) {
1489 		to_free_highmem = alloc_highmem - save;
1490 	} else {
1491 		to_free_highmem = 0;
1492 		save -= alloc_highmem;
1493 		if (to_free_normal > save)
1494 			to_free_normal -= save;
1495 		else
1496 			to_free_normal = 0;
1497 	}
1498 
1499 	memory_bm_position_reset(&copy_bm);
1500 
1501 	while (to_free_normal > 0 || to_free_highmem > 0) {
1502 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1503 		struct page *page = pfn_to_page(pfn);
1504 
1505 		if (PageHighMem(page)) {
1506 			if (!to_free_highmem)
1507 				continue;
1508 			to_free_highmem--;
1509 			alloc_highmem--;
1510 		} else {
1511 			if (!to_free_normal)
1512 				continue;
1513 			to_free_normal--;
1514 			alloc_normal--;
1515 		}
1516 		memory_bm_clear_bit(&copy_bm, pfn);
1517 		swsusp_unset_page_forbidden(page);
1518 		swsusp_unset_page_free(page);
1519 		__free_page(page);
1520 	}
1521 }
1522 
1523 /**
1524  * minimum_image_size - Estimate the minimum acceptable size of an image
1525  * @saveable: Number of saveable pages in the system.
1526  *
1527  * We want to avoid attempting to free too much memory too hard, so estimate the
1528  * minimum acceptable size of a hibernation image to use as the lower limit for
1529  * preallocating memory.
1530  *
1531  * We assume that the minimum image size should be proportional to
1532  *
1533  * [number of saveable pages] - [number of pages that can be freed in theory]
1534  *
1535  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1536  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1537  * minus mapped file pages.
1538  */
1539 static unsigned long minimum_image_size(unsigned long saveable)
1540 {
1541 	unsigned long size;
1542 
1543 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1544 		+ global_page_state(NR_ACTIVE_ANON)
1545 		+ global_page_state(NR_INACTIVE_ANON)
1546 		+ global_page_state(NR_ACTIVE_FILE)
1547 		+ global_page_state(NR_INACTIVE_FILE)
1548 		- global_page_state(NR_FILE_MAPPED);
1549 
1550 	return saveable <= size ? 0 : saveable - size;
1551 }
1552 
1553 /**
1554  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1555  *
1556  * To create a hibernation image it is necessary to make a copy of every page
1557  * frame in use.  We also need a number of page frames to be free during
1558  * hibernation for allocations made while saving the image and for device
1559  * drivers, in case they need to allocate memory from their hibernation
1560  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1561  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1562  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1563  * total number of available page frames and allocate at least
1564  *
1565  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1566  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1567  *
1568  * of them, which corresponds to the maximum size of a hibernation image.
1569  *
1570  * If image_size is set below the number following from the above formula,
1571  * the preallocation of memory is continued until the total number of saveable
1572  * pages in the system is below the requested image size or the minimum
1573  * acceptable image size returned by minimum_image_size(), whichever is greater.
1574  */
1575 int hibernate_preallocate_memory(void)
1576 {
1577 	struct zone *zone;
1578 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1579 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1580 	ktime_t start, stop;
1581 	int error;
1582 
1583 	printk(KERN_INFO "PM: Preallocating image memory... ");
1584 	start = ktime_get();
1585 
1586 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1587 	if (error)
1588 		goto err_out;
1589 
1590 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1591 	if (error)
1592 		goto err_out;
1593 
1594 	alloc_normal = 0;
1595 	alloc_highmem = 0;
1596 
1597 	/* Count the number of saveable data pages. */
1598 	save_highmem = count_highmem_pages();
1599 	saveable = count_data_pages();
1600 
1601 	/*
1602 	 * Compute the total number of page frames we can use (count) and the
1603 	 * number of pages needed for image metadata (size).
1604 	 */
1605 	count = saveable;
1606 	saveable += save_highmem;
1607 	highmem = save_highmem;
1608 	size = 0;
1609 	for_each_populated_zone(zone) {
1610 		size += snapshot_additional_pages(zone);
1611 		if (is_highmem(zone))
1612 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1613 		else
1614 			count += zone_page_state(zone, NR_FREE_PAGES);
1615 	}
1616 	avail_normal = count;
1617 	count += highmem;
1618 	count -= totalreserve_pages;
1619 
1620 	/* Add number of pages required for page keys (s390 only). */
1621 	size += page_key_additional_pages(saveable);
1622 
1623 	/* Compute the maximum number of saveable pages to leave in memory. */
1624 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1625 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1626 	/* Compute the desired number of image pages specified by image_size. */
1627 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1628 	if (size > max_size)
1629 		size = max_size;
1630 	/*
1631 	 * If the desired number of image pages is at least as large as the
1632 	 * current number of saveable pages in memory, allocate page frames for
1633 	 * the image and we're done.
1634 	 */
1635 	if (size >= saveable) {
1636 		pages = preallocate_image_highmem(save_highmem);
1637 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1638 		goto out;
1639 	}
1640 
1641 	/* Estimate the minimum size of the image. */
1642 	pages = minimum_image_size(saveable);
1643 	/*
1644 	 * To avoid excessive pressure on the normal zone, leave room in it to
1645 	 * accommodate an image of the minimum size (unless it's already too
1646 	 * small, in which case don't preallocate pages from it at all).
1647 	 */
1648 	if (avail_normal > pages)
1649 		avail_normal -= pages;
1650 	else
1651 		avail_normal = 0;
1652 	if (size < pages)
1653 		size = min_t(unsigned long, pages, max_size);
1654 
1655 	/*
1656 	 * Let the memory management subsystem know that we're going to need a
1657 	 * large number of page frames to allocate and make it free some memory.
1658 	 * NOTE: If this is not done, performance will be hurt badly in some
1659 	 * test cases.
1660 	 */
1661 	shrink_all_memory(saveable - size);
1662 
1663 	/*
1664 	 * The number of saveable pages in memory was too high, so apply some
1665 	 * pressure to decrease it.  First, make room for the largest possible
1666 	 * image and fail if that doesn't work.  Next, try to decrease the size
1667 	 * of the image as much as indicated by 'size' using allocations from
1668 	 * highmem and non-highmem zones separately.
1669 	 */
1670 	pages_highmem = preallocate_image_highmem(highmem / 2);
1671 	alloc = count - max_size;
1672 	if (alloc > pages_highmem)
1673 		alloc -= pages_highmem;
1674 	else
1675 		alloc = 0;
1676 	pages = preallocate_image_memory(alloc, avail_normal);
1677 	if (pages < alloc) {
1678 		/* We have exhausted non-highmem pages, try highmem. */
1679 		alloc -= pages;
1680 		pages += pages_highmem;
1681 		pages_highmem = preallocate_image_highmem(alloc);
1682 		if (pages_highmem < alloc)
1683 			goto err_out;
1684 		pages += pages_highmem;
1685 		/*
1686 		 * size is the desired number of saveable pages to leave in
1687 		 * memory, so try to preallocate (all memory - size) pages.
1688 		 */
1689 		alloc = (count - pages) - size;
1690 		pages += preallocate_image_highmem(alloc);
1691 	} else {
1692 		/*
1693 		 * There are approximately max_size saveable pages at this point
1694 		 * and we want to reduce this number down to size.
1695 		 */
1696 		alloc = max_size - size;
1697 		size = preallocate_highmem_fraction(alloc, highmem, count);
1698 		pages_highmem += size;
1699 		alloc -= size;
1700 		size = preallocate_image_memory(alloc, avail_normal);
1701 		pages_highmem += preallocate_image_highmem(alloc - size);
1702 		pages += pages_highmem + size;
1703 	}
1704 
1705 	/*
1706 	 * We only need as many page frames for the image as there are saveable
1707 	 * pages in memory, but we have allocated more.  Release the excessive
1708 	 * ones now.
1709 	 */
1710 	free_unnecessary_pages();
1711 
1712  out:
1713 	stop = ktime_get();
1714 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1715 	swsusp_show_speed(start, stop, pages, "Allocated");
1716 
1717 	return 0;
1718 
1719  err_out:
1720 	printk(KERN_CONT "\n");
1721 	swsusp_free();
1722 	return -ENOMEM;
1723 }
1724 
1725 #ifdef CONFIG_HIGHMEM
1726 /**
1727   *	count_pages_for_highmem - compute the number of non-highmem pages
1728   *	that will be necessary for creating copies of highmem pages.
1729   */
1730 
1731 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1732 {
1733 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1734 
1735 	if (free_highmem >= nr_highmem)
1736 		nr_highmem = 0;
1737 	else
1738 		nr_highmem -= free_highmem;
1739 
1740 	return nr_highmem;
1741 }
1742 #else
1743 static unsigned int
1744 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1745 #endif /* CONFIG_HIGHMEM */
1746 
1747 /**
1748  *	enough_free_mem - Make sure we have enough free memory for the
1749  *	snapshot image.
1750  */
1751 
1752 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1753 {
1754 	struct zone *zone;
1755 	unsigned int free = alloc_normal;
1756 
1757 	for_each_populated_zone(zone)
1758 		if (!is_highmem(zone))
1759 			free += zone_page_state(zone, NR_FREE_PAGES);
1760 
1761 	nr_pages += count_pages_for_highmem(nr_highmem);
1762 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1763 		nr_pages, PAGES_FOR_IO, free);
1764 
1765 	return free > nr_pages + PAGES_FOR_IO;
1766 }
1767 
1768 #ifdef CONFIG_HIGHMEM
1769 /**
1770  *	get_highmem_buffer - if there are some highmem pages in the suspend
1771  *	image, we may need the buffer to copy them and/or load their data.
1772  */
1773 
1774 static inline int get_highmem_buffer(int safe_needed)
1775 {
1776 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1777 	return buffer ? 0 : -ENOMEM;
1778 }
1779 
1780 /**
1781  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1782  *	Try to allocate as many pages as needed, but if the number of free
1783  *	highmem pages is lesser than that, allocate them all.
1784  */
1785 
1786 static inline unsigned int
1787 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1788 {
1789 	unsigned int to_alloc = count_free_highmem_pages();
1790 
1791 	if (to_alloc > nr_highmem)
1792 		to_alloc = nr_highmem;
1793 
1794 	nr_highmem -= to_alloc;
1795 	while (to_alloc-- > 0) {
1796 		struct page *page;
1797 
1798 		page = alloc_image_page(__GFP_HIGHMEM);
1799 		memory_bm_set_bit(bm, page_to_pfn(page));
1800 	}
1801 	return nr_highmem;
1802 }
1803 #else
1804 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1805 
1806 static inline unsigned int
1807 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1808 #endif /* CONFIG_HIGHMEM */
1809 
1810 /**
1811  *	swsusp_alloc - allocate memory for the suspend image
1812  *
1813  *	We first try to allocate as many highmem pages as there are
1814  *	saveable highmem pages in the system.  If that fails, we allocate
1815  *	non-highmem pages for the copies of the remaining highmem ones.
1816  *
1817  *	In this approach it is likely that the copies of highmem pages will
1818  *	also be located in the high memory, because of the way in which
1819  *	copy_data_pages() works.
1820  */
1821 
1822 static int
1823 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1824 		unsigned int nr_pages, unsigned int nr_highmem)
1825 {
1826 	if (nr_highmem > 0) {
1827 		if (get_highmem_buffer(PG_ANY))
1828 			goto err_out;
1829 		if (nr_highmem > alloc_highmem) {
1830 			nr_highmem -= alloc_highmem;
1831 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1832 		}
1833 	}
1834 	if (nr_pages > alloc_normal) {
1835 		nr_pages -= alloc_normal;
1836 		while (nr_pages-- > 0) {
1837 			struct page *page;
1838 
1839 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1840 			if (!page)
1841 				goto err_out;
1842 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1843 		}
1844 	}
1845 
1846 	return 0;
1847 
1848  err_out:
1849 	swsusp_free();
1850 	return -ENOMEM;
1851 }
1852 
1853 asmlinkage __visible int swsusp_save(void)
1854 {
1855 	unsigned int nr_pages, nr_highmem;
1856 
1857 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1858 
1859 	drain_local_pages(NULL);
1860 	nr_pages = count_data_pages();
1861 	nr_highmem = count_highmem_pages();
1862 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1863 
1864 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1865 		printk(KERN_ERR "PM: Not enough free memory\n");
1866 		return -ENOMEM;
1867 	}
1868 
1869 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1870 		printk(KERN_ERR "PM: Memory allocation failed\n");
1871 		return -ENOMEM;
1872 	}
1873 
1874 	/* During allocating of suspend pagedir, new cold pages may appear.
1875 	 * Kill them.
1876 	 */
1877 	drain_local_pages(NULL);
1878 	copy_data_pages(&copy_bm, &orig_bm);
1879 
1880 	/*
1881 	 * End of critical section. From now on, we can write to memory,
1882 	 * but we should not touch disk. This specially means we must _not_
1883 	 * touch swap space! Except we must write out our image of course.
1884 	 */
1885 
1886 	nr_pages += nr_highmem;
1887 	nr_copy_pages = nr_pages;
1888 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1889 
1890 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1891 		nr_pages);
1892 
1893 	return 0;
1894 }
1895 
1896 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1897 static int init_header_complete(struct swsusp_info *info)
1898 {
1899 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1900 	info->version_code = LINUX_VERSION_CODE;
1901 	return 0;
1902 }
1903 
1904 static char *check_image_kernel(struct swsusp_info *info)
1905 {
1906 	if (info->version_code != LINUX_VERSION_CODE)
1907 		return "kernel version";
1908 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1909 		return "system type";
1910 	if (strcmp(info->uts.release,init_utsname()->release))
1911 		return "kernel release";
1912 	if (strcmp(info->uts.version,init_utsname()->version))
1913 		return "version";
1914 	if (strcmp(info->uts.machine,init_utsname()->machine))
1915 		return "machine";
1916 	return NULL;
1917 }
1918 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1919 
1920 unsigned long snapshot_get_image_size(void)
1921 {
1922 	return nr_copy_pages + nr_meta_pages + 1;
1923 }
1924 
1925 static int init_header(struct swsusp_info *info)
1926 {
1927 	memset(info, 0, sizeof(struct swsusp_info));
1928 	info->num_physpages = get_num_physpages();
1929 	info->image_pages = nr_copy_pages;
1930 	info->pages = snapshot_get_image_size();
1931 	info->size = info->pages;
1932 	info->size <<= PAGE_SHIFT;
1933 	return init_header_complete(info);
1934 }
1935 
1936 /**
1937  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1938  *	are stored in the array @buf[] (1 page at a time)
1939  */
1940 
1941 static inline void
1942 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1943 {
1944 	int j;
1945 
1946 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1947 		buf[j] = memory_bm_next_pfn(bm);
1948 		if (unlikely(buf[j] == BM_END_OF_MAP))
1949 			break;
1950 		/* Save page key for data page (s390 only). */
1951 		page_key_read(buf + j);
1952 	}
1953 }
1954 
1955 /**
1956  *	snapshot_read_next - used for reading the system memory snapshot.
1957  *
1958  *	On the first call to it @handle should point to a zeroed
1959  *	snapshot_handle structure.  The structure gets updated and a pointer
1960  *	to it should be passed to this function every next time.
1961  *
1962  *	On success the function returns a positive number.  Then, the caller
1963  *	is allowed to read up to the returned number of bytes from the memory
1964  *	location computed by the data_of() macro.
1965  *
1966  *	The function returns 0 to indicate the end of data stream condition,
1967  *	and a negative number is returned on error.  In such cases the
1968  *	structure pointed to by @handle is not updated and should not be used
1969  *	any more.
1970  */
1971 
1972 int snapshot_read_next(struct snapshot_handle *handle)
1973 {
1974 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1975 		return 0;
1976 
1977 	if (!buffer) {
1978 		/* This makes the buffer be freed by swsusp_free() */
1979 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1980 		if (!buffer)
1981 			return -ENOMEM;
1982 	}
1983 	if (!handle->cur) {
1984 		int error;
1985 
1986 		error = init_header((struct swsusp_info *)buffer);
1987 		if (error)
1988 			return error;
1989 		handle->buffer = buffer;
1990 		memory_bm_position_reset(&orig_bm);
1991 		memory_bm_position_reset(&copy_bm);
1992 	} else if (handle->cur <= nr_meta_pages) {
1993 		clear_page(buffer);
1994 		pack_pfns(buffer, &orig_bm);
1995 	} else {
1996 		struct page *page;
1997 
1998 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1999 		if (PageHighMem(page)) {
2000 			/* Highmem pages are copied to the buffer,
2001 			 * because we can't return with a kmapped
2002 			 * highmem page (we may not be called again).
2003 			 */
2004 			void *kaddr;
2005 
2006 			kaddr = kmap_atomic(page);
2007 			copy_page(buffer, kaddr);
2008 			kunmap_atomic(kaddr);
2009 			handle->buffer = buffer;
2010 		} else {
2011 			handle->buffer = page_address(page);
2012 		}
2013 	}
2014 	handle->cur++;
2015 	return PAGE_SIZE;
2016 }
2017 
2018 /**
2019  *	mark_unsafe_pages - mark the pages that cannot be used for storing
2020  *	the image during resume, because they conflict with the pages that
2021  *	had been used before suspend
2022  */
2023 
2024 static int mark_unsafe_pages(struct memory_bitmap *bm)
2025 {
2026 	struct zone *zone;
2027 	unsigned long pfn, max_zone_pfn;
2028 
2029 	/* Clear page flags */
2030 	for_each_populated_zone(zone) {
2031 		max_zone_pfn = zone_end_pfn(zone);
2032 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2033 			if (pfn_valid(pfn))
2034 				swsusp_unset_page_free(pfn_to_page(pfn));
2035 	}
2036 
2037 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2038 	memory_bm_position_reset(bm);
2039 	do {
2040 		pfn = memory_bm_next_pfn(bm);
2041 		if (likely(pfn != BM_END_OF_MAP)) {
2042 			if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
2043 				swsusp_set_page_free(pfn_to_page(pfn));
2044 			else
2045 				return -EFAULT;
2046 		}
2047 	} while (pfn != BM_END_OF_MAP);
2048 
2049 	allocated_unsafe_pages = 0;
2050 
2051 	return 0;
2052 }
2053 
2054 static void
2055 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2056 {
2057 	unsigned long pfn;
2058 
2059 	memory_bm_position_reset(src);
2060 	pfn = memory_bm_next_pfn(src);
2061 	while (pfn != BM_END_OF_MAP) {
2062 		memory_bm_set_bit(dst, pfn);
2063 		pfn = memory_bm_next_pfn(src);
2064 	}
2065 }
2066 
2067 static int check_header(struct swsusp_info *info)
2068 {
2069 	char *reason;
2070 
2071 	reason = check_image_kernel(info);
2072 	if (!reason && info->num_physpages != get_num_physpages())
2073 		reason = "memory size";
2074 	if (reason) {
2075 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2076 		return -EPERM;
2077 	}
2078 	return 0;
2079 }
2080 
2081 /**
2082  *	load header - check the image header and copy data from it
2083  */
2084 
2085 static int
2086 load_header(struct swsusp_info *info)
2087 {
2088 	int error;
2089 
2090 	restore_pblist = NULL;
2091 	error = check_header(info);
2092 	if (!error) {
2093 		nr_copy_pages = info->image_pages;
2094 		nr_meta_pages = info->pages - info->image_pages - 1;
2095 	}
2096 	return error;
2097 }
2098 
2099 /**
2100  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2101  *	the corresponding bit in the memory bitmap @bm
2102  */
2103 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2104 {
2105 	int j;
2106 
2107 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2108 		if (unlikely(buf[j] == BM_END_OF_MAP))
2109 			break;
2110 
2111 		/* Extract and buffer page key for data page (s390 only). */
2112 		page_key_memorize(buf + j);
2113 
2114 		if (memory_bm_pfn_present(bm, buf[j]))
2115 			memory_bm_set_bit(bm, buf[j]);
2116 		else
2117 			return -EFAULT;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 /* List of "safe" pages that may be used to store data loaded from the suspend
2124  * image
2125  */
2126 static struct linked_page *safe_pages_list;
2127 
2128 #ifdef CONFIG_HIGHMEM
2129 /* struct highmem_pbe is used for creating the list of highmem pages that
2130  * should be restored atomically during the resume from disk, because the page
2131  * frames they have occupied before the suspend are in use.
2132  */
2133 struct highmem_pbe {
2134 	struct page *copy_page;	/* data is here now */
2135 	struct page *orig_page;	/* data was here before the suspend */
2136 	struct highmem_pbe *next;
2137 };
2138 
2139 /* List of highmem PBEs needed for restoring the highmem pages that were
2140  * allocated before the suspend and included in the suspend image, but have
2141  * also been allocated by the "resume" kernel, so their contents cannot be
2142  * written directly to their "original" page frames.
2143  */
2144 static struct highmem_pbe *highmem_pblist;
2145 
2146 /**
2147  *	count_highmem_image_pages - compute the number of highmem pages in the
2148  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2149  *	image pages are assumed to be set.
2150  */
2151 
2152 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2153 {
2154 	unsigned long pfn;
2155 	unsigned int cnt = 0;
2156 
2157 	memory_bm_position_reset(bm);
2158 	pfn = memory_bm_next_pfn(bm);
2159 	while (pfn != BM_END_OF_MAP) {
2160 		if (PageHighMem(pfn_to_page(pfn)))
2161 			cnt++;
2162 
2163 		pfn = memory_bm_next_pfn(bm);
2164 	}
2165 	return cnt;
2166 }
2167 
2168 /**
2169  *	prepare_highmem_image - try to allocate as many highmem pages as
2170  *	there are highmem image pages (@nr_highmem_p points to the variable
2171  *	containing the number of highmem image pages).  The pages that are
2172  *	"safe" (ie. will not be overwritten when the suspend image is
2173  *	restored) have the corresponding bits set in @bm (it must be
2174  *	unitialized).
2175  *
2176  *	NOTE: This function should not be called if there are no highmem
2177  *	image pages.
2178  */
2179 
2180 static unsigned int safe_highmem_pages;
2181 
2182 static struct memory_bitmap *safe_highmem_bm;
2183 
2184 static int
2185 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2186 {
2187 	unsigned int to_alloc;
2188 
2189 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2190 		return -ENOMEM;
2191 
2192 	if (get_highmem_buffer(PG_SAFE))
2193 		return -ENOMEM;
2194 
2195 	to_alloc = count_free_highmem_pages();
2196 	if (to_alloc > *nr_highmem_p)
2197 		to_alloc = *nr_highmem_p;
2198 	else
2199 		*nr_highmem_p = to_alloc;
2200 
2201 	safe_highmem_pages = 0;
2202 	while (to_alloc-- > 0) {
2203 		struct page *page;
2204 
2205 		page = alloc_page(__GFP_HIGHMEM);
2206 		if (!swsusp_page_is_free(page)) {
2207 			/* The page is "safe", set its bit the bitmap */
2208 			memory_bm_set_bit(bm, page_to_pfn(page));
2209 			safe_highmem_pages++;
2210 		}
2211 		/* Mark the page as allocated */
2212 		swsusp_set_page_forbidden(page);
2213 		swsusp_set_page_free(page);
2214 	}
2215 	memory_bm_position_reset(bm);
2216 	safe_highmem_bm = bm;
2217 	return 0;
2218 }
2219 
2220 /**
2221  *	get_highmem_page_buffer - for given highmem image page find the buffer
2222  *	that suspend_write_next() should set for its caller to write to.
2223  *
2224  *	If the page is to be saved to its "original" page frame or a copy of
2225  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2226  *	the copy of the page is to be made in normal memory, so the address of
2227  *	the copy is returned.
2228  *
2229  *	If @buffer is returned, the caller of suspend_write_next() will write
2230  *	the page's contents to @buffer, so they will have to be copied to the
2231  *	right location on the next call to suspend_write_next() and it is done
2232  *	with the help of copy_last_highmem_page().  For this purpose, if
2233  *	@buffer is returned, @last_highmem page is set to the page to which
2234  *	the data will have to be copied from @buffer.
2235  */
2236 
2237 static struct page *last_highmem_page;
2238 
2239 static void *
2240 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2241 {
2242 	struct highmem_pbe *pbe;
2243 	void *kaddr;
2244 
2245 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2246 		/* We have allocated the "original" page frame and we can
2247 		 * use it directly to store the loaded page.
2248 		 */
2249 		last_highmem_page = page;
2250 		return buffer;
2251 	}
2252 	/* The "original" page frame has not been allocated and we have to
2253 	 * use a "safe" page frame to store the loaded page.
2254 	 */
2255 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2256 	if (!pbe) {
2257 		swsusp_free();
2258 		return ERR_PTR(-ENOMEM);
2259 	}
2260 	pbe->orig_page = page;
2261 	if (safe_highmem_pages > 0) {
2262 		struct page *tmp;
2263 
2264 		/* Copy of the page will be stored in high memory */
2265 		kaddr = buffer;
2266 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2267 		safe_highmem_pages--;
2268 		last_highmem_page = tmp;
2269 		pbe->copy_page = tmp;
2270 	} else {
2271 		/* Copy of the page will be stored in normal memory */
2272 		kaddr = safe_pages_list;
2273 		safe_pages_list = safe_pages_list->next;
2274 		pbe->copy_page = virt_to_page(kaddr);
2275 	}
2276 	pbe->next = highmem_pblist;
2277 	highmem_pblist = pbe;
2278 	return kaddr;
2279 }
2280 
2281 /**
2282  *	copy_last_highmem_page - copy the contents of a highmem image from
2283  *	@buffer, where the caller of snapshot_write_next() has place them,
2284  *	to the right location represented by @last_highmem_page .
2285  */
2286 
2287 static void copy_last_highmem_page(void)
2288 {
2289 	if (last_highmem_page) {
2290 		void *dst;
2291 
2292 		dst = kmap_atomic(last_highmem_page);
2293 		copy_page(dst, buffer);
2294 		kunmap_atomic(dst);
2295 		last_highmem_page = NULL;
2296 	}
2297 }
2298 
2299 static inline int last_highmem_page_copied(void)
2300 {
2301 	return !last_highmem_page;
2302 }
2303 
2304 static inline void free_highmem_data(void)
2305 {
2306 	if (safe_highmem_bm)
2307 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2308 
2309 	if (buffer)
2310 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2311 }
2312 #else
2313 static inline int get_safe_write_buffer(void) { return 0; }
2314 
2315 static unsigned int
2316 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2317 
2318 static inline int
2319 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2320 {
2321 	return 0;
2322 }
2323 
2324 static inline void *
2325 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2326 {
2327 	return ERR_PTR(-EINVAL);
2328 }
2329 
2330 static inline void copy_last_highmem_page(void) {}
2331 static inline int last_highmem_page_copied(void) { return 1; }
2332 static inline void free_highmem_data(void) {}
2333 #endif /* CONFIG_HIGHMEM */
2334 
2335 /**
2336  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2337  *	be overwritten in the process of restoring the system memory state
2338  *	from the suspend image ("unsafe" pages) and allocate memory for the
2339  *	image.
2340  *
2341  *	The idea is to allocate a new memory bitmap first and then allocate
2342  *	as many pages as needed for the image data, but not to assign these
2343  *	pages to specific tasks initially.  Instead, we just mark them as
2344  *	allocated and create a lists of "safe" pages that will be used
2345  *	later.  On systems with high memory a list of "safe" highmem pages is
2346  *	also created.
2347  */
2348 
2349 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2350 
2351 static int
2352 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2353 {
2354 	unsigned int nr_pages, nr_highmem;
2355 	struct linked_page *sp_list, *lp;
2356 	int error;
2357 
2358 	/* If there is no highmem, the buffer will not be necessary */
2359 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2360 	buffer = NULL;
2361 
2362 	nr_highmem = count_highmem_image_pages(bm);
2363 	error = mark_unsafe_pages(bm);
2364 	if (error)
2365 		goto Free;
2366 
2367 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2368 	if (error)
2369 		goto Free;
2370 
2371 	duplicate_memory_bitmap(new_bm, bm);
2372 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2373 	if (nr_highmem > 0) {
2374 		error = prepare_highmem_image(bm, &nr_highmem);
2375 		if (error)
2376 			goto Free;
2377 	}
2378 	/* Reserve some safe pages for potential later use.
2379 	 *
2380 	 * NOTE: This way we make sure there will be enough safe pages for the
2381 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2382 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2383 	 */
2384 	sp_list = NULL;
2385 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2386 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2387 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2388 	while (nr_pages > 0) {
2389 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2390 		if (!lp) {
2391 			error = -ENOMEM;
2392 			goto Free;
2393 		}
2394 		lp->next = sp_list;
2395 		sp_list = lp;
2396 		nr_pages--;
2397 	}
2398 	/* Preallocate memory for the image */
2399 	safe_pages_list = NULL;
2400 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2401 	while (nr_pages > 0) {
2402 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2403 		if (!lp) {
2404 			error = -ENOMEM;
2405 			goto Free;
2406 		}
2407 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2408 			/* The page is "safe", add it to the list */
2409 			lp->next = safe_pages_list;
2410 			safe_pages_list = lp;
2411 		}
2412 		/* Mark the page as allocated */
2413 		swsusp_set_page_forbidden(virt_to_page(lp));
2414 		swsusp_set_page_free(virt_to_page(lp));
2415 		nr_pages--;
2416 	}
2417 	/* Free the reserved safe pages so that chain_alloc() can use them */
2418 	while (sp_list) {
2419 		lp = sp_list->next;
2420 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2421 		sp_list = lp;
2422 	}
2423 	return 0;
2424 
2425  Free:
2426 	swsusp_free();
2427 	return error;
2428 }
2429 
2430 /**
2431  *	get_buffer - compute the address that snapshot_write_next() should
2432  *	set for its caller to write to.
2433  */
2434 
2435 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2436 {
2437 	struct pbe *pbe;
2438 	struct page *page;
2439 	unsigned long pfn = memory_bm_next_pfn(bm);
2440 
2441 	if (pfn == BM_END_OF_MAP)
2442 		return ERR_PTR(-EFAULT);
2443 
2444 	page = pfn_to_page(pfn);
2445 	if (PageHighMem(page))
2446 		return get_highmem_page_buffer(page, ca);
2447 
2448 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2449 		/* We have allocated the "original" page frame and we can
2450 		 * use it directly to store the loaded page.
2451 		 */
2452 		return page_address(page);
2453 
2454 	/* The "original" page frame has not been allocated and we have to
2455 	 * use a "safe" page frame to store the loaded page.
2456 	 */
2457 	pbe = chain_alloc(ca, sizeof(struct pbe));
2458 	if (!pbe) {
2459 		swsusp_free();
2460 		return ERR_PTR(-ENOMEM);
2461 	}
2462 	pbe->orig_address = page_address(page);
2463 	pbe->address = safe_pages_list;
2464 	safe_pages_list = safe_pages_list->next;
2465 	pbe->next = restore_pblist;
2466 	restore_pblist = pbe;
2467 	return pbe->address;
2468 }
2469 
2470 /**
2471  *	snapshot_write_next - used for writing the system memory snapshot.
2472  *
2473  *	On the first call to it @handle should point to a zeroed
2474  *	snapshot_handle structure.  The structure gets updated and a pointer
2475  *	to it should be passed to this function every next time.
2476  *
2477  *	On success the function returns a positive number.  Then, the caller
2478  *	is allowed to write up to the returned number of bytes to the memory
2479  *	location computed by the data_of() macro.
2480  *
2481  *	The function returns 0 to indicate the "end of file" condition,
2482  *	and a negative number is returned on error.  In such cases the
2483  *	structure pointed to by @handle is not updated and should not be used
2484  *	any more.
2485  */
2486 
2487 int snapshot_write_next(struct snapshot_handle *handle)
2488 {
2489 	static struct chain_allocator ca;
2490 	int error = 0;
2491 
2492 	/* Check if we have already loaded the entire image */
2493 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2494 		return 0;
2495 
2496 	handle->sync_read = 1;
2497 
2498 	if (!handle->cur) {
2499 		if (!buffer)
2500 			/* This makes the buffer be freed by swsusp_free() */
2501 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2502 
2503 		if (!buffer)
2504 			return -ENOMEM;
2505 
2506 		handle->buffer = buffer;
2507 	} else if (handle->cur == 1) {
2508 		error = load_header(buffer);
2509 		if (error)
2510 			return error;
2511 
2512 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2513 		if (error)
2514 			return error;
2515 
2516 		/* Allocate buffer for page keys. */
2517 		error = page_key_alloc(nr_copy_pages);
2518 		if (error)
2519 			return error;
2520 
2521 	} else if (handle->cur <= nr_meta_pages + 1) {
2522 		error = unpack_orig_pfns(buffer, &copy_bm);
2523 		if (error)
2524 			return error;
2525 
2526 		if (handle->cur == nr_meta_pages + 1) {
2527 			error = prepare_image(&orig_bm, &copy_bm);
2528 			if (error)
2529 				return error;
2530 
2531 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2532 			memory_bm_position_reset(&orig_bm);
2533 			restore_pblist = NULL;
2534 			handle->buffer = get_buffer(&orig_bm, &ca);
2535 			handle->sync_read = 0;
2536 			if (IS_ERR(handle->buffer))
2537 				return PTR_ERR(handle->buffer);
2538 		}
2539 	} else {
2540 		copy_last_highmem_page();
2541 		/* Restore page key for data page (s390 only). */
2542 		page_key_write(handle->buffer);
2543 		handle->buffer = get_buffer(&orig_bm, &ca);
2544 		if (IS_ERR(handle->buffer))
2545 			return PTR_ERR(handle->buffer);
2546 		if (handle->buffer != buffer)
2547 			handle->sync_read = 0;
2548 	}
2549 	handle->cur++;
2550 	return PAGE_SIZE;
2551 }
2552 
2553 /**
2554  *	snapshot_write_finalize - must be called after the last call to
2555  *	snapshot_write_next() in case the last page in the image happens
2556  *	to be a highmem page and its contents should be stored in the
2557  *	highmem.  Additionally, it releases the memory that will not be
2558  *	used any more.
2559  */
2560 
2561 void snapshot_write_finalize(struct snapshot_handle *handle)
2562 {
2563 	copy_last_highmem_page();
2564 	/* Restore page key for data page (s390 only). */
2565 	page_key_write(handle->buffer);
2566 	page_key_free();
2567 	/* Free only if we have loaded the image entirely */
2568 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2569 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2570 		free_highmem_data();
2571 	}
2572 }
2573 
2574 int snapshot_image_loaded(struct snapshot_handle *handle)
2575 {
2576 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2577 			handle->cur <= nr_meta_pages + nr_copy_pages);
2578 }
2579 
2580 #ifdef CONFIG_HIGHMEM
2581 /* Assumes that @buf is ready and points to a "safe" page */
2582 static inline void
2583 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2584 {
2585 	void *kaddr1, *kaddr2;
2586 
2587 	kaddr1 = kmap_atomic(p1);
2588 	kaddr2 = kmap_atomic(p2);
2589 	copy_page(buf, kaddr1);
2590 	copy_page(kaddr1, kaddr2);
2591 	copy_page(kaddr2, buf);
2592 	kunmap_atomic(kaddr2);
2593 	kunmap_atomic(kaddr1);
2594 }
2595 
2596 /**
2597  *	restore_highmem - for each highmem page that was allocated before
2598  *	the suspend and included in the suspend image, and also has been
2599  *	allocated by the "resume" kernel swap its current (ie. "before
2600  *	resume") contents with the previous (ie. "before suspend") one.
2601  *
2602  *	If the resume eventually fails, we can call this function once
2603  *	again and restore the "before resume" highmem state.
2604  */
2605 
2606 int restore_highmem(void)
2607 {
2608 	struct highmem_pbe *pbe = highmem_pblist;
2609 	void *buf;
2610 
2611 	if (!pbe)
2612 		return 0;
2613 
2614 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2615 	if (!buf)
2616 		return -ENOMEM;
2617 
2618 	while (pbe) {
2619 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2620 		pbe = pbe->next;
2621 	}
2622 	free_image_page(buf, PG_UNSAFE_CLEAR);
2623 	return 0;
2624 }
2625 #endif /* CONFIG_HIGHMEM */
2626