xref: /openbmc/linux/kernel/power/snapshot.c (revision 74ce1896)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/io.h>
40 
41 #include "power.h"
42 
43 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
44 static bool hibernate_restore_protection;
45 static bool hibernate_restore_protection_active;
46 
47 void enable_restore_image_protection(void)
48 {
49 	hibernate_restore_protection = true;
50 }
51 
52 static inline void hibernate_restore_protection_begin(void)
53 {
54 	hibernate_restore_protection_active = hibernate_restore_protection;
55 }
56 
57 static inline void hibernate_restore_protection_end(void)
58 {
59 	hibernate_restore_protection_active = false;
60 }
61 
62 static inline void hibernate_restore_protect_page(void *page_address)
63 {
64 	if (hibernate_restore_protection_active)
65 		set_memory_ro((unsigned long)page_address, 1);
66 }
67 
68 static inline void hibernate_restore_unprotect_page(void *page_address)
69 {
70 	if (hibernate_restore_protection_active)
71 		set_memory_rw((unsigned long)page_address, 1);
72 }
73 #else
74 static inline void hibernate_restore_protection_begin(void) {}
75 static inline void hibernate_restore_protection_end(void) {}
76 static inline void hibernate_restore_protect_page(void *page_address) {}
77 static inline void hibernate_restore_unprotect_page(void *page_address) {}
78 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
79 
80 static int swsusp_page_is_free(struct page *);
81 static void swsusp_set_page_forbidden(struct page *);
82 static void swsusp_unset_page_forbidden(struct page *);
83 
84 /*
85  * Number of bytes to reserve for memory allocations made by device drivers
86  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
87  * cause image creation to fail (tunable via /sys/power/reserved_size).
88  */
89 unsigned long reserved_size;
90 
91 void __init hibernate_reserved_size_init(void)
92 {
93 	reserved_size = SPARE_PAGES * PAGE_SIZE;
94 }
95 
96 /*
97  * Preferred image size in bytes (tunable via /sys/power/image_size).
98  * When it is set to N, swsusp will do its best to ensure the image
99  * size will not exceed N bytes, but if that is impossible, it will
100  * try to create the smallest image possible.
101  */
102 unsigned long image_size;
103 
104 void __init hibernate_image_size_init(void)
105 {
106 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
107 }
108 
109 /*
110  * List of PBEs needed for restoring the pages that were allocated before
111  * the suspend and included in the suspend image, but have also been
112  * allocated by the "resume" kernel, so their contents cannot be written
113  * directly to their "original" page frames.
114  */
115 struct pbe *restore_pblist;
116 
117 /* struct linked_page is used to build chains of pages */
118 
119 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
120 
121 struct linked_page {
122 	struct linked_page *next;
123 	char data[LINKED_PAGE_DATA_SIZE];
124 } __packed;
125 
126 /*
127  * List of "safe" pages (ie. pages that were not used by the image kernel
128  * before hibernation) that may be used as temporary storage for image kernel
129  * memory contents.
130  */
131 static struct linked_page *safe_pages_list;
132 
133 /* Pointer to an auxiliary buffer (1 page) */
134 static void *buffer;
135 
136 #define PG_ANY		0
137 #define PG_SAFE		1
138 #define PG_UNSAFE_CLEAR	1
139 #define PG_UNSAFE_KEEP	0
140 
141 static unsigned int allocated_unsafe_pages;
142 
143 /**
144  * get_image_page - Allocate a page for a hibernation image.
145  * @gfp_mask: GFP mask for the allocation.
146  * @safe_needed: Get pages that were not used before hibernation (restore only)
147  *
148  * During image restoration, for storing the PBE list and the image data, we can
149  * only use memory pages that do not conflict with the pages used before
150  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
151  * using allocated_unsafe_pages.
152  *
153  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
154  * swsusp_free() can release it.
155  */
156 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
157 {
158 	void *res;
159 
160 	res = (void *)get_zeroed_page(gfp_mask);
161 	if (safe_needed)
162 		while (res && swsusp_page_is_free(virt_to_page(res))) {
163 			/* The page is unsafe, mark it for swsusp_free() */
164 			swsusp_set_page_forbidden(virt_to_page(res));
165 			allocated_unsafe_pages++;
166 			res = (void *)get_zeroed_page(gfp_mask);
167 		}
168 	if (res) {
169 		swsusp_set_page_forbidden(virt_to_page(res));
170 		swsusp_set_page_free(virt_to_page(res));
171 	}
172 	return res;
173 }
174 
175 static void *__get_safe_page(gfp_t gfp_mask)
176 {
177 	if (safe_pages_list) {
178 		void *ret = safe_pages_list;
179 
180 		safe_pages_list = safe_pages_list->next;
181 		memset(ret, 0, PAGE_SIZE);
182 		return ret;
183 	}
184 	return get_image_page(gfp_mask, PG_SAFE);
185 }
186 
187 unsigned long get_safe_page(gfp_t gfp_mask)
188 {
189 	return (unsigned long)__get_safe_page(gfp_mask);
190 }
191 
192 static struct page *alloc_image_page(gfp_t gfp_mask)
193 {
194 	struct page *page;
195 
196 	page = alloc_page(gfp_mask);
197 	if (page) {
198 		swsusp_set_page_forbidden(page);
199 		swsusp_set_page_free(page);
200 	}
201 	return page;
202 }
203 
204 static void recycle_safe_page(void *page_address)
205 {
206 	struct linked_page *lp = page_address;
207 
208 	lp->next = safe_pages_list;
209 	safe_pages_list = lp;
210 }
211 
212 /**
213  * free_image_page - Free a page allocated for hibernation image.
214  * @addr: Address of the page to free.
215  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
216  *
217  * The page to free should have been allocated by get_image_page() (page flags
218  * set by it are affected).
219  */
220 static inline void free_image_page(void *addr, int clear_nosave_free)
221 {
222 	struct page *page;
223 
224 	BUG_ON(!virt_addr_valid(addr));
225 
226 	page = virt_to_page(addr);
227 
228 	swsusp_unset_page_forbidden(page);
229 	if (clear_nosave_free)
230 		swsusp_unset_page_free(page);
231 
232 	__free_page(page);
233 }
234 
235 static inline void free_list_of_pages(struct linked_page *list,
236 				      int clear_page_nosave)
237 {
238 	while (list) {
239 		struct linked_page *lp = list->next;
240 
241 		free_image_page(list, clear_page_nosave);
242 		list = lp;
243 	}
244 }
245 
246 /*
247  * struct chain_allocator is used for allocating small objects out of
248  * a linked list of pages called 'the chain'.
249  *
250  * The chain grows each time when there is no room for a new object in
251  * the current page.  The allocated objects cannot be freed individually.
252  * It is only possible to free them all at once, by freeing the entire
253  * chain.
254  *
255  * NOTE: The chain allocator may be inefficient if the allocated objects
256  * are not much smaller than PAGE_SIZE.
257  */
258 struct chain_allocator {
259 	struct linked_page *chain;	/* the chain */
260 	unsigned int used_space;	/* total size of objects allocated out
261 					   of the current page */
262 	gfp_t gfp_mask;		/* mask for allocating pages */
263 	int safe_needed;	/* if set, only "safe" pages are allocated */
264 };
265 
266 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
267 		       int safe_needed)
268 {
269 	ca->chain = NULL;
270 	ca->used_space = LINKED_PAGE_DATA_SIZE;
271 	ca->gfp_mask = gfp_mask;
272 	ca->safe_needed = safe_needed;
273 }
274 
275 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
276 {
277 	void *ret;
278 
279 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
280 		struct linked_page *lp;
281 
282 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
283 					get_image_page(ca->gfp_mask, PG_ANY);
284 		if (!lp)
285 			return NULL;
286 
287 		lp->next = ca->chain;
288 		ca->chain = lp;
289 		ca->used_space = 0;
290 	}
291 	ret = ca->chain->data + ca->used_space;
292 	ca->used_space += size;
293 	return ret;
294 }
295 
296 /**
297  * Data types related to memory bitmaps.
298  *
299  * Memory bitmap is a structure consiting of many linked lists of
300  * objects.  The main list's elements are of type struct zone_bitmap
301  * and each of them corresonds to one zone.  For each zone bitmap
302  * object there is a list of objects of type struct bm_block that
303  * represent each blocks of bitmap in which information is stored.
304  *
305  * struct memory_bitmap contains a pointer to the main list of zone
306  * bitmap objects, a struct bm_position used for browsing the bitmap,
307  * and a pointer to the list of pages used for allocating all of the
308  * zone bitmap objects and bitmap block objects.
309  *
310  * NOTE: It has to be possible to lay out the bitmap in memory
311  * using only allocations of order 0.  Additionally, the bitmap is
312  * designed to work with arbitrary number of zones (this is over the
313  * top for now, but let's avoid making unnecessary assumptions ;-).
314  *
315  * struct zone_bitmap contains a pointer to a list of bitmap block
316  * objects and a pointer to the bitmap block object that has been
317  * most recently used for setting bits.  Additionally, it contains the
318  * PFNs that correspond to the start and end of the represented zone.
319  *
320  * struct bm_block contains a pointer to the memory page in which
321  * information is stored (in the form of a block of bitmap)
322  * It also contains the pfns that correspond to the start and end of
323  * the represented memory area.
324  *
325  * The memory bitmap is organized as a radix tree to guarantee fast random
326  * access to the bits. There is one radix tree for each zone (as returned
327  * from create_mem_extents).
328  *
329  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
330  * two linked lists for the nodes of the tree, one for the inner nodes and
331  * one for the leave nodes. The linked leave nodes are used for fast linear
332  * access of the memory bitmap.
333  *
334  * The struct rtree_node represents one node of the radix tree.
335  */
336 
337 #define BM_END_OF_MAP	(~0UL)
338 
339 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
340 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
341 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
342 
343 /*
344  * struct rtree_node is a wrapper struct to link the nodes
345  * of the rtree together for easy linear iteration over
346  * bits and easy freeing
347  */
348 struct rtree_node {
349 	struct list_head list;
350 	unsigned long *data;
351 };
352 
353 /*
354  * struct mem_zone_bm_rtree represents a bitmap used for one
355  * populated memory zone.
356  */
357 struct mem_zone_bm_rtree {
358 	struct list_head list;		/* Link Zones together         */
359 	struct list_head nodes;		/* Radix Tree inner nodes      */
360 	struct list_head leaves;	/* Radix Tree leaves           */
361 	unsigned long start_pfn;	/* Zone start page frame       */
362 	unsigned long end_pfn;		/* Zone end page frame + 1     */
363 	struct rtree_node *rtree;	/* Radix Tree Root             */
364 	int levels;			/* Number of Radix Tree Levels */
365 	unsigned int blocks;		/* Number of Bitmap Blocks     */
366 };
367 
368 /* strcut bm_position is used for browsing memory bitmaps */
369 
370 struct bm_position {
371 	struct mem_zone_bm_rtree *zone;
372 	struct rtree_node *node;
373 	unsigned long node_pfn;
374 	int node_bit;
375 };
376 
377 struct memory_bitmap {
378 	struct list_head zones;
379 	struct linked_page *p_list;	/* list of pages used to store zone
380 					   bitmap objects and bitmap block
381 					   objects */
382 	struct bm_position cur;	/* most recently used bit position */
383 };
384 
385 /* Functions that operate on memory bitmaps */
386 
387 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
388 #if BITS_PER_LONG == 32
389 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
390 #else
391 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
392 #endif
393 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
394 
395 /**
396  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397  *
398  * This function is used to allocate inner nodes as well as the
399  * leave nodes of the radix tree. It also adds the node to the
400  * corresponding linked list passed in by the *list parameter.
401  */
402 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
403 					   struct chain_allocator *ca,
404 					   struct list_head *list)
405 {
406 	struct rtree_node *node;
407 
408 	node = chain_alloc(ca, sizeof(struct rtree_node));
409 	if (!node)
410 		return NULL;
411 
412 	node->data = get_image_page(gfp_mask, safe_needed);
413 	if (!node->data)
414 		return NULL;
415 
416 	list_add_tail(&node->list, list);
417 
418 	return node;
419 }
420 
421 /**
422  * add_rtree_block - Add a new leave node to the radix tree.
423  *
424  * The leave nodes need to be allocated in order to keep the leaves
425  * linked list in order. This is guaranteed by the zone->blocks
426  * counter.
427  */
428 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
429 			   int safe_needed, struct chain_allocator *ca)
430 {
431 	struct rtree_node *node, *block, **dst;
432 	unsigned int levels_needed, block_nr;
433 	int i;
434 
435 	block_nr = zone->blocks;
436 	levels_needed = 0;
437 
438 	/* How many levels do we need for this block nr? */
439 	while (block_nr) {
440 		levels_needed += 1;
441 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
442 	}
443 
444 	/* Make sure the rtree has enough levels */
445 	for (i = zone->levels; i < levels_needed; i++) {
446 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
447 					&zone->nodes);
448 		if (!node)
449 			return -ENOMEM;
450 
451 		node->data[0] = (unsigned long)zone->rtree;
452 		zone->rtree = node;
453 		zone->levels += 1;
454 	}
455 
456 	/* Allocate new block */
457 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
458 	if (!block)
459 		return -ENOMEM;
460 
461 	/* Now walk the rtree to insert the block */
462 	node = zone->rtree;
463 	dst = &zone->rtree;
464 	block_nr = zone->blocks;
465 	for (i = zone->levels; i > 0; i--) {
466 		int index;
467 
468 		if (!node) {
469 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
470 						&zone->nodes);
471 			if (!node)
472 				return -ENOMEM;
473 			*dst = node;
474 		}
475 
476 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
477 		index &= BM_RTREE_LEVEL_MASK;
478 		dst = (struct rtree_node **)&((*dst)->data[index]);
479 		node = *dst;
480 	}
481 
482 	zone->blocks += 1;
483 	*dst = block;
484 
485 	return 0;
486 }
487 
488 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
489 			       int clear_nosave_free);
490 
491 /**
492  * create_zone_bm_rtree - Create a radix tree for one zone.
493  *
494  * Allocated the mem_zone_bm_rtree structure and initializes it.
495  * This function also allocated and builds the radix tree for the
496  * zone.
497  */
498 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
499 						      int safe_needed,
500 						      struct chain_allocator *ca,
501 						      unsigned long start,
502 						      unsigned long end)
503 {
504 	struct mem_zone_bm_rtree *zone;
505 	unsigned int i, nr_blocks;
506 	unsigned long pages;
507 
508 	pages = end - start;
509 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
510 	if (!zone)
511 		return NULL;
512 
513 	INIT_LIST_HEAD(&zone->nodes);
514 	INIT_LIST_HEAD(&zone->leaves);
515 	zone->start_pfn = start;
516 	zone->end_pfn = end;
517 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
518 
519 	for (i = 0; i < nr_blocks; i++) {
520 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
521 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
522 			return NULL;
523 		}
524 	}
525 
526 	return zone;
527 }
528 
529 /**
530  * free_zone_bm_rtree - Free the memory of the radix tree.
531  *
532  * Free all node pages of the radix tree. The mem_zone_bm_rtree
533  * structure itself is not freed here nor are the rtree_node
534  * structs.
535  */
536 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
537 			       int clear_nosave_free)
538 {
539 	struct rtree_node *node;
540 
541 	list_for_each_entry(node, &zone->nodes, list)
542 		free_image_page(node->data, clear_nosave_free);
543 
544 	list_for_each_entry(node, &zone->leaves, list)
545 		free_image_page(node->data, clear_nosave_free);
546 }
547 
548 static void memory_bm_position_reset(struct memory_bitmap *bm)
549 {
550 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
551 				  list);
552 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
553 				  struct rtree_node, list);
554 	bm->cur.node_pfn = 0;
555 	bm->cur.node_bit = 0;
556 }
557 
558 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
559 
560 struct mem_extent {
561 	struct list_head hook;
562 	unsigned long start;
563 	unsigned long end;
564 };
565 
566 /**
567  * free_mem_extents - Free a list of memory extents.
568  * @list: List of extents to free.
569  */
570 static void free_mem_extents(struct list_head *list)
571 {
572 	struct mem_extent *ext, *aux;
573 
574 	list_for_each_entry_safe(ext, aux, list, hook) {
575 		list_del(&ext->hook);
576 		kfree(ext);
577 	}
578 }
579 
580 /**
581  * create_mem_extents - Create a list of memory extents.
582  * @list: List to put the extents into.
583  * @gfp_mask: Mask to use for memory allocations.
584  *
585  * The extents represent contiguous ranges of PFNs.
586  */
587 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
588 {
589 	struct zone *zone;
590 
591 	INIT_LIST_HEAD(list);
592 
593 	for_each_populated_zone(zone) {
594 		unsigned long zone_start, zone_end;
595 		struct mem_extent *ext, *cur, *aux;
596 
597 		zone_start = zone->zone_start_pfn;
598 		zone_end = zone_end_pfn(zone);
599 
600 		list_for_each_entry(ext, list, hook)
601 			if (zone_start <= ext->end)
602 				break;
603 
604 		if (&ext->hook == list || zone_end < ext->start) {
605 			/* New extent is necessary */
606 			struct mem_extent *new_ext;
607 
608 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
609 			if (!new_ext) {
610 				free_mem_extents(list);
611 				return -ENOMEM;
612 			}
613 			new_ext->start = zone_start;
614 			new_ext->end = zone_end;
615 			list_add_tail(&new_ext->hook, &ext->hook);
616 			continue;
617 		}
618 
619 		/* Merge this zone's range of PFNs with the existing one */
620 		if (zone_start < ext->start)
621 			ext->start = zone_start;
622 		if (zone_end > ext->end)
623 			ext->end = zone_end;
624 
625 		/* More merging may be possible */
626 		cur = ext;
627 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
628 			if (zone_end < cur->start)
629 				break;
630 			if (zone_end < cur->end)
631 				ext->end = cur->end;
632 			list_del(&cur->hook);
633 			kfree(cur);
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 /**
641  * memory_bm_create - Allocate memory for a memory bitmap.
642  */
643 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
644 			    int safe_needed)
645 {
646 	struct chain_allocator ca;
647 	struct list_head mem_extents;
648 	struct mem_extent *ext;
649 	int error;
650 
651 	chain_init(&ca, gfp_mask, safe_needed);
652 	INIT_LIST_HEAD(&bm->zones);
653 
654 	error = create_mem_extents(&mem_extents, gfp_mask);
655 	if (error)
656 		return error;
657 
658 	list_for_each_entry(ext, &mem_extents, hook) {
659 		struct mem_zone_bm_rtree *zone;
660 
661 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
662 					    ext->start, ext->end);
663 		if (!zone) {
664 			error = -ENOMEM;
665 			goto Error;
666 		}
667 		list_add_tail(&zone->list, &bm->zones);
668 	}
669 
670 	bm->p_list = ca.chain;
671 	memory_bm_position_reset(bm);
672  Exit:
673 	free_mem_extents(&mem_extents);
674 	return error;
675 
676  Error:
677 	bm->p_list = ca.chain;
678 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
679 	goto Exit;
680 }
681 
682 /**
683  * memory_bm_free - Free memory occupied by the memory bitmap.
684  * @bm: Memory bitmap.
685  */
686 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
687 {
688 	struct mem_zone_bm_rtree *zone;
689 
690 	list_for_each_entry(zone, &bm->zones, list)
691 		free_zone_bm_rtree(zone, clear_nosave_free);
692 
693 	free_list_of_pages(bm->p_list, clear_nosave_free);
694 
695 	INIT_LIST_HEAD(&bm->zones);
696 }
697 
698 /**
699  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700  *
701  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
702  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
703  *
704  * Walk the radix tree to find the page containing the bit that represents @pfn
705  * and return the position of the bit in @addr and @bit_nr.
706  */
707 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
708 			      void **addr, unsigned int *bit_nr)
709 {
710 	struct mem_zone_bm_rtree *curr, *zone;
711 	struct rtree_node *node;
712 	int i, block_nr;
713 
714 	zone = bm->cur.zone;
715 
716 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
717 		goto zone_found;
718 
719 	zone = NULL;
720 
721 	/* Find the right zone */
722 	list_for_each_entry(curr, &bm->zones, list) {
723 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
724 			zone = curr;
725 			break;
726 		}
727 	}
728 
729 	if (!zone)
730 		return -EFAULT;
731 
732 zone_found:
733 	/*
734 	 * We have found the zone. Now walk the radix tree to find the leaf node
735 	 * for our PFN.
736 	 */
737 	node = bm->cur.node;
738 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
739 		goto node_found;
740 
741 	node      = zone->rtree;
742 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
743 
744 	for (i = zone->levels; i > 0; i--) {
745 		int index;
746 
747 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
748 		index &= BM_RTREE_LEVEL_MASK;
749 		BUG_ON(node->data[index] == 0);
750 		node = (struct rtree_node *)node->data[index];
751 	}
752 
753 node_found:
754 	/* Update last position */
755 	bm->cur.zone = zone;
756 	bm->cur.node = node;
757 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
758 
759 	/* Set return values */
760 	*addr = node->data;
761 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
762 
763 	return 0;
764 }
765 
766 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
767 {
768 	void *addr;
769 	unsigned int bit;
770 	int error;
771 
772 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
773 	BUG_ON(error);
774 	set_bit(bit, addr);
775 }
776 
777 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
778 {
779 	void *addr;
780 	unsigned int bit;
781 	int error;
782 
783 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
784 	if (!error)
785 		set_bit(bit, addr);
786 
787 	return error;
788 }
789 
790 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
791 {
792 	void *addr;
793 	unsigned int bit;
794 	int error;
795 
796 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
797 	BUG_ON(error);
798 	clear_bit(bit, addr);
799 }
800 
801 static void memory_bm_clear_current(struct memory_bitmap *bm)
802 {
803 	int bit;
804 
805 	bit = max(bm->cur.node_bit - 1, 0);
806 	clear_bit(bit, bm->cur.node->data);
807 }
808 
809 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
810 {
811 	void *addr;
812 	unsigned int bit;
813 	int error;
814 
815 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
816 	BUG_ON(error);
817 	return test_bit(bit, addr);
818 }
819 
820 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
821 {
822 	void *addr;
823 	unsigned int bit;
824 
825 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
826 }
827 
828 /*
829  * rtree_next_node - Jump to the next leaf node.
830  *
831  * Set the position to the beginning of the next node in the
832  * memory bitmap. This is either the next node in the current
833  * zone's radix tree or the first node in the radix tree of the
834  * next zone.
835  *
836  * Return true if there is a next node, false otherwise.
837  */
838 static bool rtree_next_node(struct memory_bitmap *bm)
839 {
840 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
841 		bm->cur.node = list_entry(bm->cur.node->list.next,
842 					  struct rtree_node, list);
843 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
844 		bm->cur.node_bit  = 0;
845 		touch_softlockup_watchdog();
846 		return true;
847 	}
848 
849 	/* No more nodes, goto next zone */
850 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
851 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
852 				  struct mem_zone_bm_rtree, list);
853 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
854 					  struct rtree_node, list);
855 		bm->cur.node_pfn = 0;
856 		bm->cur.node_bit = 0;
857 		return true;
858 	}
859 
860 	/* No more zones */
861 	return false;
862 }
863 
864 /**
865  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
866  * @bm: Memory bitmap.
867  *
868  * Starting from the last returned position this function searches for the next
869  * set bit in @bm and returns the PFN represented by it.  If no more bits are
870  * set, BM_END_OF_MAP is returned.
871  *
872  * It is required to run memory_bm_position_reset() before the first call to
873  * this function for the given memory bitmap.
874  */
875 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
876 {
877 	unsigned long bits, pfn, pages;
878 	int bit;
879 
880 	do {
881 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
882 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
883 		bit	  = find_next_bit(bm->cur.node->data, bits,
884 					  bm->cur.node_bit);
885 		if (bit < bits) {
886 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
887 			bm->cur.node_bit = bit + 1;
888 			return pfn;
889 		}
890 	} while (rtree_next_node(bm));
891 
892 	return BM_END_OF_MAP;
893 }
894 
895 /*
896  * This structure represents a range of page frames the contents of which
897  * should not be saved during hibernation.
898  */
899 struct nosave_region {
900 	struct list_head list;
901 	unsigned long start_pfn;
902 	unsigned long end_pfn;
903 };
904 
905 static LIST_HEAD(nosave_regions);
906 
907 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
908 {
909 	struct rtree_node *node;
910 
911 	list_for_each_entry(node, &zone->nodes, list)
912 		recycle_safe_page(node->data);
913 
914 	list_for_each_entry(node, &zone->leaves, list)
915 		recycle_safe_page(node->data);
916 }
917 
918 static void memory_bm_recycle(struct memory_bitmap *bm)
919 {
920 	struct mem_zone_bm_rtree *zone;
921 	struct linked_page *p_list;
922 
923 	list_for_each_entry(zone, &bm->zones, list)
924 		recycle_zone_bm_rtree(zone);
925 
926 	p_list = bm->p_list;
927 	while (p_list) {
928 		struct linked_page *lp = p_list;
929 
930 		p_list = lp->next;
931 		recycle_safe_page(lp);
932 	}
933 }
934 
935 /**
936  * register_nosave_region - Register a region of unsaveable memory.
937  *
938  * Register a range of page frames the contents of which should not be saved
939  * during hibernation (to be used in the early initialization code).
940  */
941 void __init __register_nosave_region(unsigned long start_pfn,
942 				     unsigned long end_pfn, int use_kmalloc)
943 {
944 	struct nosave_region *region;
945 
946 	if (start_pfn >= end_pfn)
947 		return;
948 
949 	if (!list_empty(&nosave_regions)) {
950 		/* Try to extend the previous region (they should be sorted) */
951 		region = list_entry(nosave_regions.prev,
952 					struct nosave_region, list);
953 		if (region->end_pfn == start_pfn) {
954 			region->end_pfn = end_pfn;
955 			goto Report;
956 		}
957 	}
958 	if (use_kmalloc) {
959 		/* During init, this shouldn't fail */
960 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
961 		BUG_ON(!region);
962 	} else {
963 		/* This allocation cannot fail */
964 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
965 	}
966 	region->start_pfn = start_pfn;
967 	region->end_pfn = end_pfn;
968 	list_add_tail(&region->list, &nosave_regions);
969  Report:
970 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
971 		(unsigned long long) start_pfn << PAGE_SHIFT,
972 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
973 }
974 
975 /*
976  * Set bits in this map correspond to the page frames the contents of which
977  * should not be saved during the suspend.
978  */
979 static struct memory_bitmap *forbidden_pages_map;
980 
981 /* Set bits in this map correspond to free page frames. */
982 static struct memory_bitmap *free_pages_map;
983 
984 /*
985  * Each page frame allocated for creating the image is marked by setting the
986  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
987  */
988 
989 void swsusp_set_page_free(struct page *page)
990 {
991 	if (free_pages_map)
992 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
993 }
994 
995 static int swsusp_page_is_free(struct page *page)
996 {
997 	return free_pages_map ?
998 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
999 }
1000 
1001 void swsusp_unset_page_free(struct page *page)
1002 {
1003 	if (free_pages_map)
1004 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1005 }
1006 
1007 static void swsusp_set_page_forbidden(struct page *page)
1008 {
1009 	if (forbidden_pages_map)
1010 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1011 }
1012 
1013 int swsusp_page_is_forbidden(struct page *page)
1014 {
1015 	return forbidden_pages_map ?
1016 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1017 }
1018 
1019 static void swsusp_unset_page_forbidden(struct page *page)
1020 {
1021 	if (forbidden_pages_map)
1022 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1023 }
1024 
1025 /**
1026  * mark_nosave_pages - Mark pages that should not be saved.
1027  * @bm: Memory bitmap.
1028  *
1029  * Set the bits in @bm that correspond to the page frames the contents of which
1030  * should not be saved.
1031  */
1032 static void mark_nosave_pages(struct memory_bitmap *bm)
1033 {
1034 	struct nosave_region *region;
1035 
1036 	if (list_empty(&nosave_regions))
1037 		return;
1038 
1039 	list_for_each_entry(region, &nosave_regions, list) {
1040 		unsigned long pfn;
1041 
1042 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1043 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1044 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1045 				- 1);
1046 
1047 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1048 			if (pfn_valid(pfn)) {
1049 				/*
1050 				 * It is safe to ignore the result of
1051 				 * mem_bm_set_bit_check() here, since we won't
1052 				 * touch the PFNs for which the error is
1053 				 * returned anyway.
1054 				 */
1055 				mem_bm_set_bit_check(bm, pfn);
1056 			}
1057 	}
1058 }
1059 
1060 /**
1061  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1062  *
1063  * Create bitmaps needed for marking page frames that should not be saved and
1064  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1065  * only modified if everything goes well, because we don't want the bits to be
1066  * touched before both bitmaps are set up.
1067  */
1068 int create_basic_memory_bitmaps(void)
1069 {
1070 	struct memory_bitmap *bm1, *bm2;
1071 	int error = 0;
1072 
1073 	if (forbidden_pages_map && free_pages_map)
1074 		return 0;
1075 	else
1076 		BUG_ON(forbidden_pages_map || free_pages_map);
1077 
1078 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1079 	if (!bm1)
1080 		return -ENOMEM;
1081 
1082 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1083 	if (error)
1084 		goto Free_first_object;
1085 
1086 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1087 	if (!bm2)
1088 		goto Free_first_bitmap;
1089 
1090 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1091 	if (error)
1092 		goto Free_second_object;
1093 
1094 	forbidden_pages_map = bm1;
1095 	free_pages_map = bm2;
1096 	mark_nosave_pages(forbidden_pages_map);
1097 
1098 	pr_debug("PM: Basic memory bitmaps created\n");
1099 
1100 	return 0;
1101 
1102  Free_second_object:
1103 	kfree(bm2);
1104  Free_first_bitmap:
1105  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1106  Free_first_object:
1107 	kfree(bm1);
1108 	return -ENOMEM;
1109 }
1110 
1111 /**
1112  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1113  *
1114  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1115  * auxiliary pointers are necessary so that the bitmaps themselves are not
1116  * referred to while they are being freed.
1117  */
1118 void free_basic_memory_bitmaps(void)
1119 {
1120 	struct memory_bitmap *bm1, *bm2;
1121 
1122 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1123 		return;
1124 
1125 	bm1 = forbidden_pages_map;
1126 	bm2 = free_pages_map;
1127 	forbidden_pages_map = NULL;
1128 	free_pages_map = NULL;
1129 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1130 	kfree(bm1);
1131 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1132 	kfree(bm2);
1133 
1134 	pr_debug("PM: Basic memory bitmaps freed\n");
1135 }
1136 
1137 void clear_free_pages(void)
1138 {
1139 #ifdef CONFIG_PAGE_POISONING_ZERO
1140 	struct memory_bitmap *bm = free_pages_map;
1141 	unsigned long pfn;
1142 
1143 	if (WARN_ON(!(free_pages_map)))
1144 		return;
1145 
1146 	memory_bm_position_reset(bm);
1147 	pfn = memory_bm_next_pfn(bm);
1148 	while (pfn != BM_END_OF_MAP) {
1149 		if (pfn_valid(pfn))
1150 			clear_highpage(pfn_to_page(pfn));
1151 
1152 		pfn = memory_bm_next_pfn(bm);
1153 	}
1154 	memory_bm_position_reset(bm);
1155 	pr_info("PM: free pages cleared after restore\n");
1156 #endif /* PAGE_POISONING_ZERO */
1157 }
1158 
1159 /**
1160  * snapshot_additional_pages - Estimate the number of extra pages needed.
1161  * @zone: Memory zone to carry out the computation for.
1162  *
1163  * Estimate the number of additional pages needed for setting up a hibernation
1164  * image data structures for @zone (usually, the returned value is greater than
1165  * the exact number).
1166  */
1167 unsigned int snapshot_additional_pages(struct zone *zone)
1168 {
1169 	unsigned int rtree, nodes;
1170 
1171 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1172 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1173 			      LINKED_PAGE_DATA_SIZE);
1174 	while (nodes > 1) {
1175 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1176 		rtree += nodes;
1177 	}
1178 
1179 	return 2 * rtree;
1180 }
1181 
1182 #ifdef CONFIG_HIGHMEM
1183 /**
1184  * count_free_highmem_pages - Compute the total number of free highmem pages.
1185  *
1186  * The returned number is system-wide.
1187  */
1188 static unsigned int count_free_highmem_pages(void)
1189 {
1190 	struct zone *zone;
1191 	unsigned int cnt = 0;
1192 
1193 	for_each_populated_zone(zone)
1194 		if (is_highmem(zone))
1195 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1196 
1197 	return cnt;
1198 }
1199 
1200 /**
1201  * saveable_highmem_page - Check if a highmem page is saveable.
1202  *
1203  * Determine whether a highmem page should be included in a hibernation image.
1204  *
1205  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1206  * and it isn't part of a free chunk of pages.
1207  */
1208 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1209 {
1210 	struct page *page;
1211 
1212 	if (!pfn_valid(pfn))
1213 		return NULL;
1214 
1215 	page = pfn_to_page(pfn);
1216 	if (page_zone(page) != zone)
1217 		return NULL;
1218 
1219 	BUG_ON(!PageHighMem(page));
1220 
1221 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1222 	    PageReserved(page))
1223 		return NULL;
1224 
1225 	if (page_is_guard(page))
1226 		return NULL;
1227 
1228 	return page;
1229 }
1230 
1231 /**
1232  * count_highmem_pages - Compute the total number of saveable highmem pages.
1233  */
1234 static unsigned int count_highmem_pages(void)
1235 {
1236 	struct zone *zone;
1237 	unsigned int n = 0;
1238 
1239 	for_each_populated_zone(zone) {
1240 		unsigned long pfn, max_zone_pfn;
1241 
1242 		if (!is_highmem(zone))
1243 			continue;
1244 
1245 		mark_free_pages(zone);
1246 		max_zone_pfn = zone_end_pfn(zone);
1247 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1248 			if (saveable_highmem_page(zone, pfn))
1249 				n++;
1250 	}
1251 	return n;
1252 }
1253 #else
1254 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1255 {
1256 	return NULL;
1257 }
1258 #endif /* CONFIG_HIGHMEM */
1259 
1260 /**
1261  * saveable_page - Check if the given page is saveable.
1262  *
1263  * Determine whether a non-highmem page should be included in a hibernation
1264  * image.
1265  *
1266  * We should save the page if it isn't Nosave, and is not in the range
1267  * of pages statically defined as 'unsaveable', and it isn't part of
1268  * a free chunk of pages.
1269  */
1270 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1271 {
1272 	struct page *page;
1273 
1274 	if (!pfn_valid(pfn))
1275 		return NULL;
1276 
1277 	page = pfn_to_page(pfn);
1278 	if (page_zone(page) != zone)
1279 		return NULL;
1280 
1281 	BUG_ON(PageHighMem(page));
1282 
1283 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1284 		return NULL;
1285 
1286 	if (PageReserved(page)
1287 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1288 		return NULL;
1289 
1290 	if (page_is_guard(page))
1291 		return NULL;
1292 
1293 	return page;
1294 }
1295 
1296 /**
1297  * count_data_pages - Compute the total number of saveable non-highmem pages.
1298  */
1299 static unsigned int count_data_pages(void)
1300 {
1301 	struct zone *zone;
1302 	unsigned long pfn, max_zone_pfn;
1303 	unsigned int n = 0;
1304 
1305 	for_each_populated_zone(zone) {
1306 		if (is_highmem(zone))
1307 			continue;
1308 
1309 		mark_free_pages(zone);
1310 		max_zone_pfn = zone_end_pfn(zone);
1311 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 			if (saveable_page(zone, pfn))
1313 				n++;
1314 	}
1315 	return n;
1316 }
1317 
1318 /*
1319  * This is needed, because copy_page and memcpy are not usable for copying
1320  * task structs.
1321  */
1322 static inline void do_copy_page(long *dst, long *src)
1323 {
1324 	int n;
1325 
1326 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1327 		*dst++ = *src++;
1328 }
1329 
1330 /**
1331  * safe_copy_page - Copy a page in a safe way.
1332  *
1333  * Check if the page we are going to copy is marked as present in the kernel
1334  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1335  * and in that case kernel_page_present() always returns 'true').
1336  */
1337 static void safe_copy_page(void *dst, struct page *s_page)
1338 {
1339 	if (kernel_page_present(s_page)) {
1340 		do_copy_page(dst, page_address(s_page));
1341 	} else {
1342 		kernel_map_pages(s_page, 1, 1);
1343 		do_copy_page(dst, page_address(s_page));
1344 		kernel_map_pages(s_page, 1, 0);
1345 	}
1346 }
1347 
1348 #ifdef CONFIG_HIGHMEM
1349 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1350 {
1351 	return is_highmem(zone) ?
1352 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1353 }
1354 
1355 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1356 {
1357 	struct page *s_page, *d_page;
1358 	void *src, *dst;
1359 
1360 	s_page = pfn_to_page(src_pfn);
1361 	d_page = pfn_to_page(dst_pfn);
1362 	if (PageHighMem(s_page)) {
1363 		src = kmap_atomic(s_page);
1364 		dst = kmap_atomic(d_page);
1365 		do_copy_page(dst, src);
1366 		kunmap_atomic(dst);
1367 		kunmap_atomic(src);
1368 	} else {
1369 		if (PageHighMem(d_page)) {
1370 			/*
1371 			 * The page pointed to by src may contain some kernel
1372 			 * data modified by kmap_atomic()
1373 			 */
1374 			safe_copy_page(buffer, s_page);
1375 			dst = kmap_atomic(d_page);
1376 			copy_page(dst, buffer);
1377 			kunmap_atomic(dst);
1378 		} else {
1379 			safe_copy_page(page_address(d_page), s_page);
1380 		}
1381 	}
1382 }
1383 #else
1384 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1385 
1386 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1387 {
1388 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1389 				pfn_to_page(src_pfn));
1390 }
1391 #endif /* CONFIG_HIGHMEM */
1392 
1393 static void copy_data_pages(struct memory_bitmap *copy_bm,
1394 			    struct memory_bitmap *orig_bm)
1395 {
1396 	struct zone *zone;
1397 	unsigned long pfn;
1398 
1399 	for_each_populated_zone(zone) {
1400 		unsigned long max_zone_pfn;
1401 
1402 		mark_free_pages(zone);
1403 		max_zone_pfn = zone_end_pfn(zone);
1404 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1405 			if (page_is_saveable(zone, pfn))
1406 				memory_bm_set_bit(orig_bm, pfn);
1407 	}
1408 	memory_bm_position_reset(orig_bm);
1409 	memory_bm_position_reset(copy_bm);
1410 	for(;;) {
1411 		pfn = memory_bm_next_pfn(orig_bm);
1412 		if (unlikely(pfn == BM_END_OF_MAP))
1413 			break;
1414 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1415 	}
1416 }
1417 
1418 /* Total number of image pages */
1419 static unsigned int nr_copy_pages;
1420 /* Number of pages needed for saving the original pfns of the image pages */
1421 static unsigned int nr_meta_pages;
1422 /*
1423  * Numbers of normal and highmem page frames allocated for hibernation image
1424  * before suspending devices.
1425  */
1426 static unsigned int alloc_normal, alloc_highmem;
1427 /*
1428  * Memory bitmap used for marking saveable pages (during hibernation) or
1429  * hibernation image pages (during restore)
1430  */
1431 static struct memory_bitmap orig_bm;
1432 /*
1433  * Memory bitmap used during hibernation for marking allocated page frames that
1434  * will contain copies of saveable pages.  During restore it is initially used
1435  * for marking hibernation image pages, but then the set bits from it are
1436  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1437  * used for marking "safe" highmem pages, but it has to be reinitialized for
1438  * this purpose.
1439  */
1440 static struct memory_bitmap copy_bm;
1441 
1442 /**
1443  * swsusp_free - Free pages allocated for hibernation image.
1444  *
1445  * Image pages are alocated before snapshot creation, so they need to be
1446  * released after resume.
1447  */
1448 void swsusp_free(void)
1449 {
1450 	unsigned long fb_pfn, fr_pfn;
1451 
1452 	if (!forbidden_pages_map || !free_pages_map)
1453 		goto out;
1454 
1455 	memory_bm_position_reset(forbidden_pages_map);
1456 	memory_bm_position_reset(free_pages_map);
1457 
1458 loop:
1459 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1460 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1461 
1462 	/*
1463 	 * Find the next bit set in both bitmaps. This is guaranteed to
1464 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1465 	 */
1466 	do {
1467 		if (fb_pfn < fr_pfn)
1468 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1469 		if (fr_pfn < fb_pfn)
1470 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1471 	} while (fb_pfn != fr_pfn);
1472 
1473 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1474 		struct page *page = pfn_to_page(fr_pfn);
1475 
1476 		memory_bm_clear_current(forbidden_pages_map);
1477 		memory_bm_clear_current(free_pages_map);
1478 		hibernate_restore_unprotect_page(page_address(page));
1479 		__free_page(page);
1480 		goto loop;
1481 	}
1482 
1483 out:
1484 	nr_copy_pages = 0;
1485 	nr_meta_pages = 0;
1486 	restore_pblist = NULL;
1487 	buffer = NULL;
1488 	alloc_normal = 0;
1489 	alloc_highmem = 0;
1490 	hibernate_restore_protection_end();
1491 }
1492 
1493 /* Helper functions used for the shrinking of memory. */
1494 
1495 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1496 
1497 /**
1498  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1499  * @nr_pages: Number of page frames to allocate.
1500  * @mask: GFP flags to use for the allocation.
1501  *
1502  * Return value: Number of page frames actually allocated
1503  */
1504 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1505 {
1506 	unsigned long nr_alloc = 0;
1507 
1508 	while (nr_pages > 0) {
1509 		struct page *page;
1510 
1511 		page = alloc_image_page(mask);
1512 		if (!page)
1513 			break;
1514 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1515 		if (PageHighMem(page))
1516 			alloc_highmem++;
1517 		else
1518 			alloc_normal++;
1519 		nr_pages--;
1520 		nr_alloc++;
1521 	}
1522 
1523 	return nr_alloc;
1524 }
1525 
1526 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1527 					      unsigned long avail_normal)
1528 {
1529 	unsigned long alloc;
1530 
1531 	if (avail_normal <= alloc_normal)
1532 		return 0;
1533 
1534 	alloc = avail_normal - alloc_normal;
1535 	if (nr_pages < alloc)
1536 		alloc = nr_pages;
1537 
1538 	return preallocate_image_pages(alloc, GFP_IMAGE);
1539 }
1540 
1541 #ifdef CONFIG_HIGHMEM
1542 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1543 {
1544 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1545 }
1546 
1547 /**
1548  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1549  */
1550 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1551 {
1552 	x *= multiplier;
1553 	do_div(x, base);
1554 	return (unsigned long)x;
1555 }
1556 
1557 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1558 						  unsigned long highmem,
1559 						  unsigned long total)
1560 {
1561 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1562 
1563 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1564 }
1565 #else /* CONFIG_HIGHMEM */
1566 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1567 {
1568 	return 0;
1569 }
1570 
1571 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1572 							 unsigned long highmem,
1573 							 unsigned long total)
1574 {
1575 	return 0;
1576 }
1577 #endif /* CONFIG_HIGHMEM */
1578 
1579 /**
1580  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1581  */
1582 static unsigned long free_unnecessary_pages(void)
1583 {
1584 	unsigned long save, to_free_normal, to_free_highmem, free;
1585 
1586 	save = count_data_pages();
1587 	if (alloc_normal >= save) {
1588 		to_free_normal = alloc_normal - save;
1589 		save = 0;
1590 	} else {
1591 		to_free_normal = 0;
1592 		save -= alloc_normal;
1593 	}
1594 	save += count_highmem_pages();
1595 	if (alloc_highmem >= save) {
1596 		to_free_highmem = alloc_highmem - save;
1597 	} else {
1598 		to_free_highmem = 0;
1599 		save -= alloc_highmem;
1600 		if (to_free_normal > save)
1601 			to_free_normal -= save;
1602 		else
1603 			to_free_normal = 0;
1604 	}
1605 	free = to_free_normal + to_free_highmem;
1606 
1607 	memory_bm_position_reset(&copy_bm);
1608 
1609 	while (to_free_normal > 0 || to_free_highmem > 0) {
1610 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1611 		struct page *page = pfn_to_page(pfn);
1612 
1613 		if (PageHighMem(page)) {
1614 			if (!to_free_highmem)
1615 				continue;
1616 			to_free_highmem--;
1617 			alloc_highmem--;
1618 		} else {
1619 			if (!to_free_normal)
1620 				continue;
1621 			to_free_normal--;
1622 			alloc_normal--;
1623 		}
1624 		memory_bm_clear_bit(&copy_bm, pfn);
1625 		swsusp_unset_page_forbidden(page);
1626 		swsusp_unset_page_free(page);
1627 		__free_page(page);
1628 	}
1629 
1630 	return free;
1631 }
1632 
1633 /**
1634  * minimum_image_size - Estimate the minimum acceptable size of an image.
1635  * @saveable: Number of saveable pages in the system.
1636  *
1637  * We want to avoid attempting to free too much memory too hard, so estimate the
1638  * minimum acceptable size of a hibernation image to use as the lower limit for
1639  * preallocating memory.
1640  *
1641  * We assume that the minimum image size should be proportional to
1642  *
1643  * [number of saveable pages] - [number of pages that can be freed in theory]
1644  *
1645  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1646  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1647  * minus mapped file pages.
1648  */
1649 static unsigned long minimum_image_size(unsigned long saveable)
1650 {
1651 	unsigned long size;
1652 
1653 	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1654 		+ global_node_page_state(NR_ACTIVE_ANON)
1655 		+ global_node_page_state(NR_INACTIVE_ANON)
1656 		+ global_node_page_state(NR_ACTIVE_FILE)
1657 		+ global_node_page_state(NR_INACTIVE_FILE)
1658 		- global_node_page_state(NR_FILE_MAPPED);
1659 
1660 	return saveable <= size ? 0 : saveable - size;
1661 }
1662 
1663 /**
1664  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665  *
1666  * To create a hibernation image it is necessary to make a copy of every page
1667  * frame in use.  We also need a number of page frames to be free during
1668  * hibernation for allocations made while saving the image and for device
1669  * drivers, in case they need to allocate memory from their hibernation
1670  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673  * total number of available page frames and allocate at least
1674  *
1675  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677  *
1678  * of them, which corresponds to the maximum size of a hibernation image.
1679  *
1680  * If image_size is set below the number following from the above formula,
1681  * the preallocation of memory is continued until the total number of saveable
1682  * pages in the system is below the requested image size or the minimum
1683  * acceptable image size returned by minimum_image_size(), whichever is greater.
1684  */
1685 int hibernate_preallocate_memory(void)
1686 {
1687 	struct zone *zone;
1688 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690 	ktime_t start, stop;
1691 	int error;
1692 
1693 	printk(KERN_INFO "PM: Preallocating image memory... ");
1694 	start = ktime_get();
1695 
1696 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697 	if (error)
1698 		goto err_out;
1699 
1700 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701 	if (error)
1702 		goto err_out;
1703 
1704 	alloc_normal = 0;
1705 	alloc_highmem = 0;
1706 
1707 	/* Count the number of saveable data pages. */
1708 	save_highmem = count_highmem_pages();
1709 	saveable = count_data_pages();
1710 
1711 	/*
1712 	 * Compute the total number of page frames we can use (count) and the
1713 	 * number of pages needed for image metadata (size).
1714 	 */
1715 	count = saveable;
1716 	saveable += save_highmem;
1717 	highmem = save_highmem;
1718 	size = 0;
1719 	for_each_populated_zone(zone) {
1720 		size += snapshot_additional_pages(zone);
1721 		if (is_highmem(zone))
1722 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723 		else
1724 			count += zone_page_state(zone, NR_FREE_PAGES);
1725 	}
1726 	avail_normal = count;
1727 	count += highmem;
1728 	count -= totalreserve_pages;
1729 
1730 	/* Add number of pages required for page keys (s390 only). */
1731 	size += page_key_additional_pages(saveable);
1732 
1733 	/* Compute the maximum number of saveable pages to leave in memory. */
1734 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736 	/* Compute the desired number of image pages specified by image_size. */
1737 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738 	if (size > max_size)
1739 		size = max_size;
1740 	/*
1741 	 * If the desired number of image pages is at least as large as the
1742 	 * current number of saveable pages in memory, allocate page frames for
1743 	 * the image and we're done.
1744 	 */
1745 	if (size >= saveable) {
1746 		pages = preallocate_image_highmem(save_highmem);
1747 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748 		goto out;
1749 	}
1750 
1751 	/* Estimate the minimum size of the image. */
1752 	pages = minimum_image_size(saveable);
1753 	/*
1754 	 * To avoid excessive pressure on the normal zone, leave room in it to
1755 	 * accommodate an image of the minimum size (unless it's already too
1756 	 * small, in which case don't preallocate pages from it at all).
1757 	 */
1758 	if (avail_normal > pages)
1759 		avail_normal -= pages;
1760 	else
1761 		avail_normal = 0;
1762 	if (size < pages)
1763 		size = min_t(unsigned long, pages, max_size);
1764 
1765 	/*
1766 	 * Let the memory management subsystem know that we're going to need a
1767 	 * large number of page frames to allocate and make it free some memory.
1768 	 * NOTE: If this is not done, performance will be hurt badly in some
1769 	 * test cases.
1770 	 */
1771 	shrink_all_memory(saveable - size);
1772 
1773 	/*
1774 	 * The number of saveable pages in memory was too high, so apply some
1775 	 * pressure to decrease it.  First, make room for the largest possible
1776 	 * image and fail if that doesn't work.  Next, try to decrease the size
1777 	 * of the image as much as indicated by 'size' using allocations from
1778 	 * highmem and non-highmem zones separately.
1779 	 */
1780 	pages_highmem = preallocate_image_highmem(highmem / 2);
1781 	alloc = count - max_size;
1782 	if (alloc > pages_highmem)
1783 		alloc -= pages_highmem;
1784 	else
1785 		alloc = 0;
1786 	pages = preallocate_image_memory(alloc, avail_normal);
1787 	if (pages < alloc) {
1788 		/* We have exhausted non-highmem pages, try highmem. */
1789 		alloc -= pages;
1790 		pages += pages_highmem;
1791 		pages_highmem = preallocate_image_highmem(alloc);
1792 		if (pages_highmem < alloc)
1793 			goto err_out;
1794 		pages += pages_highmem;
1795 		/*
1796 		 * size is the desired number of saveable pages to leave in
1797 		 * memory, so try to preallocate (all memory - size) pages.
1798 		 */
1799 		alloc = (count - pages) - size;
1800 		pages += preallocate_image_highmem(alloc);
1801 	} else {
1802 		/*
1803 		 * There are approximately max_size saveable pages at this point
1804 		 * and we want to reduce this number down to size.
1805 		 */
1806 		alloc = max_size - size;
1807 		size = preallocate_highmem_fraction(alloc, highmem, count);
1808 		pages_highmem += size;
1809 		alloc -= size;
1810 		size = preallocate_image_memory(alloc, avail_normal);
1811 		pages_highmem += preallocate_image_highmem(alloc - size);
1812 		pages += pages_highmem + size;
1813 	}
1814 
1815 	/*
1816 	 * We only need as many page frames for the image as there are saveable
1817 	 * pages in memory, but we have allocated more.  Release the excessive
1818 	 * ones now.
1819 	 */
1820 	pages -= free_unnecessary_pages();
1821 
1822  out:
1823 	stop = ktime_get();
1824 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1825 	swsusp_show_speed(start, stop, pages, "Allocated");
1826 
1827 	return 0;
1828 
1829  err_out:
1830 	printk(KERN_CONT "\n");
1831 	swsusp_free();
1832 	return -ENOMEM;
1833 }
1834 
1835 #ifdef CONFIG_HIGHMEM
1836 /**
1837  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838  *
1839  * Compute the number of non-highmem pages that will be necessary for creating
1840  * copies of highmem pages.
1841  */
1842 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843 {
1844 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845 
1846 	if (free_highmem >= nr_highmem)
1847 		nr_highmem = 0;
1848 	else
1849 		nr_highmem -= free_highmem;
1850 
1851 	return nr_highmem;
1852 }
1853 #else
1854 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855 #endif /* CONFIG_HIGHMEM */
1856 
1857 /**
1858  * enough_free_mem - Check if there is enough free memory for the image.
1859  */
1860 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861 {
1862 	struct zone *zone;
1863 	unsigned int free = alloc_normal;
1864 
1865 	for_each_populated_zone(zone)
1866 		if (!is_highmem(zone))
1867 			free += zone_page_state(zone, NR_FREE_PAGES);
1868 
1869 	nr_pages += count_pages_for_highmem(nr_highmem);
1870 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1871 		nr_pages, PAGES_FOR_IO, free);
1872 
1873 	return free > nr_pages + PAGES_FOR_IO;
1874 }
1875 
1876 #ifdef CONFIG_HIGHMEM
1877 /**
1878  * get_highmem_buffer - Allocate a buffer for highmem pages.
1879  *
1880  * If there are some highmem pages in the hibernation image, we may need a
1881  * buffer to copy them and/or load their data.
1882  */
1883 static inline int get_highmem_buffer(int safe_needed)
1884 {
1885 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1886 	return buffer ? 0 : -ENOMEM;
1887 }
1888 
1889 /**
1890  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891  *
1892  * Try to allocate as many pages as needed, but if the number of free highmem
1893  * pages is less than that, allocate them all.
1894  */
1895 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896 					       unsigned int nr_highmem)
1897 {
1898 	unsigned int to_alloc = count_free_highmem_pages();
1899 
1900 	if (to_alloc > nr_highmem)
1901 		to_alloc = nr_highmem;
1902 
1903 	nr_highmem -= to_alloc;
1904 	while (to_alloc-- > 0) {
1905 		struct page *page;
1906 
1907 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908 		memory_bm_set_bit(bm, page_to_pfn(page));
1909 	}
1910 	return nr_highmem;
1911 }
1912 #else
1913 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914 
1915 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916 					       unsigned int n) { return 0; }
1917 #endif /* CONFIG_HIGHMEM */
1918 
1919 /**
1920  * swsusp_alloc - Allocate memory for hibernation image.
1921  *
1922  * We first try to allocate as many highmem pages as there are
1923  * saveable highmem pages in the system.  If that fails, we allocate
1924  * non-highmem pages for the copies of the remaining highmem ones.
1925  *
1926  * In this approach it is likely that the copies of highmem pages will
1927  * also be located in the high memory, because of the way in which
1928  * copy_data_pages() works.
1929  */
1930 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931 			unsigned int nr_pages, unsigned int nr_highmem)
1932 {
1933 	if (nr_highmem > 0) {
1934 		if (get_highmem_buffer(PG_ANY))
1935 			goto err_out;
1936 		if (nr_highmem > alloc_highmem) {
1937 			nr_highmem -= alloc_highmem;
1938 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939 		}
1940 	}
1941 	if (nr_pages > alloc_normal) {
1942 		nr_pages -= alloc_normal;
1943 		while (nr_pages-- > 0) {
1944 			struct page *page;
1945 
1946 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1947 			if (!page)
1948 				goto err_out;
1949 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950 		}
1951 	}
1952 
1953 	return 0;
1954 
1955  err_out:
1956 	swsusp_free();
1957 	return -ENOMEM;
1958 }
1959 
1960 asmlinkage __visible int swsusp_save(void)
1961 {
1962 	unsigned int nr_pages, nr_highmem;
1963 
1964 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1965 
1966 	drain_local_pages(NULL);
1967 	nr_pages = count_data_pages();
1968 	nr_highmem = count_highmem_pages();
1969 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1970 
1971 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972 		printk(KERN_ERR "PM: Not enough free memory\n");
1973 		return -ENOMEM;
1974 	}
1975 
1976 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977 		printk(KERN_ERR "PM: Memory allocation failed\n");
1978 		return -ENOMEM;
1979 	}
1980 
1981 	/*
1982 	 * During allocating of suspend pagedir, new cold pages may appear.
1983 	 * Kill them.
1984 	 */
1985 	drain_local_pages(NULL);
1986 	copy_data_pages(&copy_bm, &orig_bm);
1987 
1988 	/*
1989 	 * End of critical section. From now on, we can write to memory,
1990 	 * but we should not touch disk. This specially means we must _not_
1991 	 * touch swap space! Except we must write out our image of course.
1992 	 */
1993 
1994 	nr_pages += nr_highmem;
1995 	nr_copy_pages = nr_pages;
1996 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997 
1998 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1999 		nr_pages);
2000 
2001 	return 0;
2002 }
2003 
2004 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2005 static int init_header_complete(struct swsusp_info *info)
2006 {
2007 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2008 	info->version_code = LINUX_VERSION_CODE;
2009 	return 0;
2010 }
2011 
2012 static char *check_image_kernel(struct swsusp_info *info)
2013 {
2014 	if (info->version_code != LINUX_VERSION_CODE)
2015 		return "kernel version";
2016 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2017 		return "system type";
2018 	if (strcmp(info->uts.release,init_utsname()->release))
2019 		return "kernel release";
2020 	if (strcmp(info->uts.version,init_utsname()->version))
2021 		return "version";
2022 	if (strcmp(info->uts.machine,init_utsname()->machine))
2023 		return "machine";
2024 	return NULL;
2025 }
2026 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2027 
2028 unsigned long snapshot_get_image_size(void)
2029 {
2030 	return nr_copy_pages + nr_meta_pages + 1;
2031 }
2032 
2033 static int init_header(struct swsusp_info *info)
2034 {
2035 	memset(info, 0, sizeof(struct swsusp_info));
2036 	info->num_physpages = get_num_physpages();
2037 	info->image_pages = nr_copy_pages;
2038 	info->pages = snapshot_get_image_size();
2039 	info->size = info->pages;
2040 	info->size <<= PAGE_SHIFT;
2041 	return init_header_complete(info);
2042 }
2043 
2044 /**
2045  * pack_pfns - Prepare PFNs for saving.
2046  * @bm: Memory bitmap.
2047  * @buf: Memory buffer to store the PFNs in.
2048  *
2049  * PFNs corresponding to set bits in @bm are stored in the area of memory
2050  * pointed to by @buf (1 page at a time).
2051  */
2052 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2053 {
2054 	int j;
2055 
2056 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2057 		buf[j] = memory_bm_next_pfn(bm);
2058 		if (unlikely(buf[j] == BM_END_OF_MAP))
2059 			break;
2060 		/* Save page key for data page (s390 only). */
2061 		page_key_read(buf + j);
2062 	}
2063 }
2064 
2065 /**
2066  * snapshot_read_next - Get the address to read the next image page from.
2067  * @handle: Snapshot handle to be used for the reading.
2068  *
2069  * On the first call, @handle should point to a zeroed snapshot_handle
2070  * structure.  The structure gets populated then and a pointer to it should be
2071  * passed to this function every next time.
2072  *
2073  * On success, the function returns a positive number.  Then, the caller
2074  * is allowed to read up to the returned number of bytes from the memory
2075  * location computed by the data_of() macro.
2076  *
2077  * The function returns 0 to indicate the end of the data stream condition,
2078  * and negative numbers are returned on errors.  If that happens, the structure
2079  * pointed to by @handle is not updated and should not be used any more.
2080  */
2081 int snapshot_read_next(struct snapshot_handle *handle)
2082 {
2083 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2084 		return 0;
2085 
2086 	if (!buffer) {
2087 		/* This makes the buffer be freed by swsusp_free() */
2088 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2089 		if (!buffer)
2090 			return -ENOMEM;
2091 	}
2092 	if (!handle->cur) {
2093 		int error;
2094 
2095 		error = init_header((struct swsusp_info *)buffer);
2096 		if (error)
2097 			return error;
2098 		handle->buffer = buffer;
2099 		memory_bm_position_reset(&orig_bm);
2100 		memory_bm_position_reset(&copy_bm);
2101 	} else if (handle->cur <= nr_meta_pages) {
2102 		clear_page(buffer);
2103 		pack_pfns(buffer, &orig_bm);
2104 	} else {
2105 		struct page *page;
2106 
2107 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2108 		if (PageHighMem(page)) {
2109 			/*
2110 			 * Highmem pages are copied to the buffer,
2111 			 * because we can't return with a kmapped
2112 			 * highmem page (we may not be called again).
2113 			 */
2114 			void *kaddr;
2115 
2116 			kaddr = kmap_atomic(page);
2117 			copy_page(buffer, kaddr);
2118 			kunmap_atomic(kaddr);
2119 			handle->buffer = buffer;
2120 		} else {
2121 			handle->buffer = page_address(page);
2122 		}
2123 	}
2124 	handle->cur++;
2125 	return PAGE_SIZE;
2126 }
2127 
2128 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2129 				    struct memory_bitmap *src)
2130 {
2131 	unsigned long pfn;
2132 
2133 	memory_bm_position_reset(src);
2134 	pfn = memory_bm_next_pfn(src);
2135 	while (pfn != BM_END_OF_MAP) {
2136 		memory_bm_set_bit(dst, pfn);
2137 		pfn = memory_bm_next_pfn(src);
2138 	}
2139 }
2140 
2141 /**
2142  * mark_unsafe_pages - Mark pages that were used before hibernation.
2143  *
2144  * Mark the pages that cannot be used for storing the image during restoration,
2145  * because they conflict with the pages that had been used before hibernation.
2146  */
2147 static void mark_unsafe_pages(struct memory_bitmap *bm)
2148 {
2149 	unsigned long pfn;
2150 
2151 	/* Clear the "free"/"unsafe" bit for all PFNs */
2152 	memory_bm_position_reset(free_pages_map);
2153 	pfn = memory_bm_next_pfn(free_pages_map);
2154 	while (pfn != BM_END_OF_MAP) {
2155 		memory_bm_clear_current(free_pages_map);
2156 		pfn = memory_bm_next_pfn(free_pages_map);
2157 	}
2158 
2159 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2160 	duplicate_memory_bitmap(free_pages_map, bm);
2161 
2162 	allocated_unsafe_pages = 0;
2163 }
2164 
2165 static int check_header(struct swsusp_info *info)
2166 {
2167 	char *reason;
2168 
2169 	reason = check_image_kernel(info);
2170 	if (!reason && info->num_physpages != get_num_physpages())
2171 		reason = "memory size";
2172 	if (reason) {
2173 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2174 		return -EPERM;
2175 	}
2176 	return 0;
2177 }
2178 
2179 /**
2180  * load header - Check the image header and copy the data from it.
2181  */
2182 static int load_header(struct swsusp_info *info)
2183 {
2184 	int error;
2185 
2186 	restore_pblist = NULL;
2187 	error = check_header(info);
2188 	if (!error) {
2189 		nr_copy_pages = info->image_pages;
2190 		nr_meta_pages = info->pages - info->image_pages - 1;
2191 	}
2192 	return error;
2193 }
2194 
2195 /**
2196  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2197  * @bm: Memory bitmap.
2198  * @buf: Area of memory containing the PFNs.
2199  *
2200  * For each element of the array pointed to by @buf (1 page at a time), set the
2201  * corresponding bit in @bm.
2202  */
2203 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2204 {
2205 	int j;
2206 
2207 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2208 		if (unlikely(buf[j] == BM_END_OF_MAP))
2209 			break;
2210 
2211 		/* Extract and buffer page key for data page (s390 only). */
2212 		page_key_memorize(buf + j);
2213 
2214 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2215 			memory_bm_set_bit(bm, buf[j]);
2216 		else
2217 			return -EFAULT;
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 #ifdef CONFIG_HIGHMEM
2224 /*
2225  * struct highmem_pbe is used for creating the list of highmem pages that
2226  * should be restored atomically during the resume from disk, because the page
2227  * frames they have occupied before the suspend are in use.
2228  */
2229 struct highmem_pbe {
2230 	struct page *copy_page;	/* data is here now */
2231 	struct page *orig_page;	/* data was here before the suspend */
2232 	struct highmem_pbe *next;
2233 };
2234 
2235 /*
2236  * List of highmem PBEs needed for restoring the highmem pages that were
2237  * allocated before the suspend and included in the suspend image, but have
2238  * also been allocated by the "resume" kernel, so their contents cannot be
2239  * written directly to their "original" page frames.
2240  */
2241 static struct highmem_pbe *highmem_pblist;
2242 
2243 /**
2244  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2245  * @bm: Memory bitmap.
2246  *
2247  * The bits in @bm that correspond to image pages are assumed to be set.
2248  */
2249 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2250 {
2251 	unsigned long pfn;
2252 	unsigned int cnt = 0;
2253 
2254 	memory_bm_position_reset(bm);
2255 	pfn = memory_bm_next_pfn(bm);
2256 	while (pfn != BM_END_OF_MAP) {
2257 		if (PageHighMem(pfn_to_page(pfn)))
2258 			cnt++;
2259 
2260 		pfn = memory_bm_next_pfn(bm);
2261 	}
2262 	return cnt;
2263 }
2264 
2265 static unsigned int safe_highmem_pages;
2266 
2267 static struct memory_bitmap *safe_highmem_bm;
2268 
2269 /**
2270  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2271  * @bm: Pointer to an uninitialized memory bitmap structure.
2272  * @nr_highmem_p: Pointer to the number of highmem image pages.
2273  *
2274  * Try to allocate as many highmem pages as there are highmem image pages
2275  * (@nr_highmem_p points to the variable containing the number of highmem image
2276  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2277  * hibernation image is restored entirely) have the corresponding bits set in
2278  * @bm (it must be unitialized).
2279  *
2280  * NOTE: This function should not be called if there are no highmem image pages.
2281  */
2282 static int prepare_highmem_image(struct memory_bitmap *bm,
2283 				 unsigned int *nr_highmem_p)
2284 {
2285 	unsigned int to_alloc;
2286 
2287 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2288 		return -ENOMEM;
2289 
2290 	if (get_highmem_buffer(PG_SAFE))
2291 		return -ENOMEM;
2292 
2293 	to_alloc = count_free_highmem_pages();
2294 	if (to_alloc > *nr_highmem_p)
2295 		to_alloc = *nr_highmem_p;
2296 	else
2297 		*nr_highmem_p = to_alloc;
2298 
2299 	safe_highmem_pages = 0;
2300 	while (to_alloc-- > 0) {
2301 		struct page *page;
2302 
2303 		page = alloc_page(__GFP_HIGHMEM);
2304 		if (!swsusp_page_is_free(page)) {
2305 			/* The page is "safe", set its bit the bitmap */
2306 			memory_bm_set_bit(bm, page_to_pfn(page));
2307 			safe_highmem_pages++;
2308 		}
2309 		/* Mark the page as allocated */
2310 		swsusp_set_page_forbidden(page);
2311 		swsusp_set_page_free(page);
2312 	}
2313 	memory_bm_position_reset(bm);
2314 	safe_highmem_bm = bm;
2315 	return 0;
2316 }
2317 
2318 static struct page *last_highmem_page;
2319 
2320 /**
2321  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2322  *
2323  * For a given highmem image page get a buffer that suspend_write_next() should
2324  * return to its caller to write to.
2325  *
2326  * If the page is to be saved to its "original" page frame or a copy of
2327  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2328  * the copy of the page is to be made in normal memory, so the address of
2329  * the copy is returned.
2330  *
2331  * If @buffer is returned, the caller of suspend_write_next() will write
2332  * the page's contents to @buffer, so they will have to be copied to the
2333  * right location on the next call to suspend_write_next() and it is done
2334  * with the help of copy_last_highmem_page().  For this purpose, if
2335  * @buffer is returned, @last_highmem_page is set to the page to which
2336  * the data will have to be copied from @buffer.
2337  */
2338 static void *get_highmem_page_buffer(struct page *page,
2339 				     struct chain_allocator *ca)
2340 {
2341 	struct highmem_pbe *pbe;
2342 	void *kaddr;
2343 
2344 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2345 		/*
2346 		 * We have allocated the "original" page frame and we can
2347 		 * use it directly to store the loaded page.
2348 		 */
2349 		last_highmem_page = page;
2350 		return buffer;
2351 	}
2352 	/*
2353 	 * The "original" page frame has not been allocated and we have to
2354 	 * use a "safe" page frame to store the loaded page.
2355 	 */
2356 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2357 	if (!pbe) {
2358 		swsusp_free();
2359 		return ERR_PTR(-ENOMEM);
2360 	}
2361 	pbe->orig_page = page;
2362 	if (safe_highmem_pages > 0) {
2363 		struct page *tmp;
2364 
2365 		/* Copy of the page will be stored in high memory */
2366 		kaddr = buffer;
2367 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2368 		safe_highmem_pages--;
2369 		last_highmem_page = tmp;
2370 		pbe->copy_page = tmp;
2371 	} else {
2372 		/* Copy of the page will be stored in normal memory */
2373 		kaddr = safe_pages_list;
2374 		safe_pages_list = safe_pages_list->next;
2375 		pbe->copy_page = virt_to_page(kaddr);
2376 	}
2377 	pbe->next = highmem_pblist;
2378 	highmem_pblist = pbe;
2379 	return kaddr;
2380 }
2381 
2382 /**
2383  * copy_last_highmem_page - Copy most the most recent highmem image page.
2384  *
2385  * Copy the contents of a highmem image from @buffer, where the caller of
2386  * snapshot_write_next() has stored them, to the right location represented by
2387  * @last_highmem_page .
2388  */
2389 static void copy_last_highmem_page(void)
2390 {
2391 	if (last_highmem_page) {
2392 		void *dst;
2393 
2394 		dst = kmap_atomic(last_highmem_page);
2395 		copy_page(dst, buffer);
2396 		kunmap_atomic(dst);
2397 		last_highmem_page = NULL;
2398 	}
2399 }
2400 
2401 static inline int last_highmem_page_copied(void)
2402 {
2403 	return !last_highmem_page;
2404 }
2405 
2406 static inline void free_highmem_data(void)
2407 {
2408 	if (safe_highmem_bm)
2409 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2410 
2411 	if (buffer)
2412 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2413 }
2414 #else
2415 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2416 
2417 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2418 					unsigned int *nr_highmem_p) { return 0; }
2419 
2420 static inline void *get_highmem_page_buffer(struct page *page,
2421 					    struct chain_allocator *ca)
2422 {
2423 	return ERR_PTR(-EINVAL);
2424 }
2425 
2426 static inline void copy_last_highmem_page(void) {}
2427 static inline int last_highmem_page_copied(void) { return 1; }
2428 static inline void free_highmem_data(void) {}
2429 #endif /* CONFIG_HIGHMEM */
2430 
2431 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2432 
2433 /**
2434  * prepare_image - Make room for loading hibernation image.
2435  * @new_bm: Unitialized memory bitmap structure.
2436  * @bm: Memory bitmap with unsafe pages marked.
2437  *
2438  * Use @bm to mark the pages that will be overwritten in the process of
2439  * restoring the system memory state from the suspend image ("unsafe" pages)
2440  * and allocate memory for the image.
2441  *
2442  * The idea is to allocate a new memory bitmap first and then allocate
2443  * as many pages as needed for image data, but without specifying what those
2444  * pages will be used for just yet.  Instead, we mark them all as allocated and
2445  * create a lists of "safe" pages to be used later.  On systems with high
2446  * memory a list of "safe" highmem pages is created too.
2447  */
2448 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2449 {
2450 	unsigned int nr_pages, nr_highmem;
2451 	struct linked_page *lp;
2452 	int error;
2453 
2454 	/* If there is no highmem, the buffer will not be necessary */
2455 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2456 	buffer = NULL;
2457 
2458 	nr_highmem = count_highmem_image_pages(bm);
2459 	mark_unsafe_pages(bm);
2460 
2461 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2462 	if (error)
2463 		goto Free;
2464 
2465 	duplicate_memory_bitmap(new_bm, bm);
2466 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2467 	if (nr_highmem > 0) {
2468 		error = prepare_highmem_image(bm, &nr_highmem);
2469 		if (error)
2470 			goto Free;
2471 	}
2472 	/*
2473 	 * Reserve some safe pages for potential later use.
2474 	 *
2475 	 * NOTE: This way we make sure there will be enough safe pages for the
2476 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2477 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2478 	 *
2479 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2480 	 */
2481 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2482 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2483 	while (nr_pages > 0) {
2484 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2485 		if (!lp) {
2486 			error = -ENOMEM;
2487 			goto Free;
2488 		}
2489 		lp->next = safe_pages_list;
2490 		safe_pages_list = lp;
2491 		nr_pages--;
2492 	}
2493 	/* Preallocate memory for the image */
2494 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2495 	while (nr_pages > 0) {
2496 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2497 		if (!lp) {
2498 			error = -ENOMEM;
2499 			goto Free;
2500 		}
2501 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2502 			/* The page is "safe", add it to the list */
2503 			lp->next = safe_pages_list;
2504 			safe_pages_list = lp;
2505 		}
2506 		/* Mark the page as allocated */
2507 		swsusp_set_page_forbidden(virt_to_page(lp));
2508 		swsusp_set_page_free(virt_to_page(lp));
2509 		nr_pages--;
2510 	}
2511 	return 0;
2512 
2513  Free:
2514 	swsusp_free();
2515 	return error;
2516 }
2517 
2518 /**
2519  * get_buffer - Get the address to store the next image data page.
2520  *
2521  * Get the address that snapshot_write_next() should return to its caller to
2522  * write to.
2523  */
2524 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2525 {
2526 	struct pbe *pbe;
2527 	struct page *page;
2528 	unsigned long pfn = memory_bm_next_pfn(bm);
2529 
2530 	if (pfn == BM_END_OF_MAP)
2531 		return ERR_PTR(-EFAULT);
2532 
2533 	page = pfn_to_page(pfn);
2534 	if (PageHighMem(page))
2535 		return get_highmem_page_buffer(page, ca);
2536 
2537 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2538 		/*
2539 		 * We have allocated the "original" page frame and we can
2540 		 * use it directly to store the loaded page.
2541 		 */
2542 		return page_address(page);
2543 
2544 	/*
2545 	 * The "original" page frame has not been allocated and we have to
2546 	 * use a "safe" page frame to store the loaded page.
2547 	 */
2548 	pbe = chain_alloc(ca, sizeof(struct pbe));
2549 	if (!pbe) {
2550 		swsusp_free();
2551 		return ERR_PTR(-ENOMEM);
2552 	}
2553 	pbe->orig_address = page_address(page);
2554 	pbe->address = safe_pages_list;
2555 	safe_pages_list = safe_pages_list->next;
2556 	pbe->next = restore_pblist;
2557 	restore_pblist = pbe;
2558 	return pbe->address;
2559 }
2560 
2561 /**
2562  * snapshot_write_next - Get the address to store the next image page.
2563  * @handle: Snapshot handle structure to guide the writing.
2564  *
2565  * On the first call, @handle should point to a zeroed snapshot_handle
2566  * structure.  The structure gets populated then and a pointer to it should be
2567  * passed to this function every next time.
2568  *
2569  * On success, the function returns a positive number.  Then, the caller
2570  * is allowed to write up to the returned number of bytes to the memory
2571  * location computed by the data_of() macro.
2572  *
2573  * The function returns 0 to indicate the "end of file" condition.  Negative
2574  * numbers are returned on errors, in which cases the structure pointed to by
2575  * @handle is not updated and should not be used any more.
2576  */
2577 int snapshot_write_next(struct snapshot_handle *handle)
2578 {
2579 	static struct chain_allocator ca;
2580 	int error = 0;
2581 
2582 	/* Check if we have already loaded the entire image */
2583 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2584 		return 0;
2585 
2586 	handle->sync_read = 1;
2587 
2588 	if (!handle->cur) {
2589 		if (!buffer)
2590 			/* This makes the buffer be freed by swsusp_free() */
2591 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2592 
2593 		if (!buffer)
2594 			return -ENOMEM;
2595 
2596 		handle->buffer = buffer;
2597 	} else if (handle->cur == 1) {
2598 		error = load_header(buffer);
2599 		if (error)
2600 			return error;
2601 
2602 		safe_pages_list = NULL;
2603 
2604 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2605 		if (error)
2606 			return error;
2607 
2608 		/* Allocate buffer for page keys. */
2609 		error = page_key_alloc(nr_copy_pages);
2610 		if (error)
2611 			return error;
2612 
2613 		hibernate_restore_protection_begin();
2614 	} else if (handle->cur <= nr_meta_pages + 1) {
2615 		error = unpack_orig_pfns(buffer, &copy_bm);
2616 		if (error)
2617 			return error;
2618 
2619 		if (handle->cur == nr_meta_pages + 1) {
2620 			error = prepare_image(&orig_bm, &copy_bm);
2621 			if (error)
2622 				return error;
2623 
2624 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2625 			memory_bm_position_reset(&orig_bm);
2626 			restore_pblist = NULL;
2627 			handle->buffer = get_buffer(&orig_bm, &ca);
2628 			handle->sync_read = 0;
2629 			if (IS_ERR(handle->buffer))
2630 				return PTR_ERR(handle->buffer);
2631 		}
2632 	} else {
2633 		copy_last_highmem_page();
2634 		/* Restore page key for data page (s390 only). */
2635 		page_key_write(handle->buffer);
2636 		hibernate_restore_protect_page(handle->buffer);
2637 		handle->buffer = get_buffer(&orig_bm, &ca);
2638 		if (IS_ERR(handle->buffer))
2639 			return PTR_ERR(handle->buffer);
2640 		if (handle->buffer != buffer)
2641 			handle->sync_read = 0;
2642 	}
2643 	handle->cur++;
2644 	return PAGE_SIZE;
2645 }
2646 
2647 /**
2648  * snapshot_write_finalize - Complete the loading of a hibernation image.
2649  *
2650  * Must be called after the last call to snapshot_write_next() in case the last
2651  * page in the image happens to be a highmem page and its contents should be
2652  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2653  * necessary any more.
2654  */
2655 void snapshot_write_finalize(struct snapshot_handle *handle)
2656 {
2657 	copy_last_highmem_page();
2658 	/* Restore page key for data page (s390 only). */
2659 	page_key_write(handle->buffer);
2660 	page_key_free();
2661 	hibernate_restore_protect_page(handle->buffer);
2662 	/* Do that only if we have loaded the image entirely */
2663 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2664 		memory_bm_recycle(&orig_bm);
2665 		free_highmem_data();
2666 	}
2667 }
2668 
2669 int snapshot_image_loaded(struct snapshot_handle *handle)
2670 {
2671 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2672 			handle->cur <= nr_meta_pages + nr_copy_pages);
2673 }
2674 
2675 #ifdef CONFIG_HIGHMEM
2676 /* Assumes that @buf is ready and points to a "safe" page */
2677 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2678 				       void *buf)
2679 {
2680 	void *kaddr1, *kaddr2;
2681 
2682 	kaddr1 = kmap_atomic(p1);
2683 	kaddr2 = kmap_atomic(p2);
2684 	copy_page(buf, kaddr1);
2685 	copy_page(kaddr1, kaddr2);
2686 	copy_page(kaddr2, buf);
2687 	kunmap_atomic(kaddr2);
2688 	kunmap_atomic(kaddr1);
2689 }
2690 
2691 /**
2692  * restore_highmem - Put highmem image pages into their original locations.
2693  *
2694  * For each highmem page that was in use before hibernation and is included in
2695  * the image, and also has been allocated by the "restore" kernel, swap its
2696  * current contents with the previous (ie. "before hibernation") ones.
2697  *
2698  * If the restore eventually fails, we can call this function once again and
2699  * restore the highmem state as seen by the restore kernel.
2700  */
2701 int restore_highmem(void)
2702 {
2703 	struct highmem_pbe *pbe = highmem_pblist;
2704 	void *buf;
2705 
2706 	if (!pbe)
2707 		return 0;
2708 
2709 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2710 	if (!buf)
2711 		return -ENOMEM;
2712 
2713 	while (pbe) {
2714 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2715 		pbe = pbe->next;
2716 	}
2717 	free_image_page(buf, PG_UNSAFE_CLEAR);
2718 	return 0;
2719 }
2720 #endif /* CONFIG_HIGHMEM */
2721