xref: /openbmc/linux/kernel/power/snapshot.c (revision 6dfcd296)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
32 
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
38 
39 #include "power.h"
40 
41 #ifdef CONFIG_DEBUG_RODATA
42 static bool hibernate_restore_protection;
43 static bool hibernate_restore_protection_active;
44 
45 void enable_restore_image_protection(void)
46 {
47 	hibernate_restore_protection = true;
48 }
49 
50 static inline void hibernate_restore_protection_begin(void)
51 {
52 	hibernate_restore_protection_active = hibernate_restore_protection;
53 }
54 
55 static inline void hibernate_restore_protection_end(void)
56 {
57 	hibernate_restore_protection_active = false;
58 }
59 
60 static inline void hibernate_restore_protect_page(void *page_address)
61 {
62 	if (hibernate_restore_protection_active)
63 		set_memory_ro((unsigned long)page_address, 1);
64 }
65 
66 static inline void hibernate_restore_unprotect_page(void *page_address)
67 {
68 	if (hibernate_restore_protection_active)
69 		set_memory_rw((unsigned long)page_address, 1);
70 }
71 #else
72 static inline void hibernate_restore_protection_begin(void) {}
73 static inline void hibernate_restore_protection_end(void) {}
74 static inline void hibernate_restore_protect_page(void *page_address) {}
75 static inline void hibernate_restore_unprotect_page(void *page_address) {}
76 #endif /* CONFIG_DEBUG_RODATA */
77 
78 static int swsusp_page_is_free(struct page *);
79 static void swsusp_set_page_forbidden(struct page *);
80 static void swsusp_unset_page_forbidden(struct page *);
81 
82 /*
83  * Number of bytes to reserve for memory allocations made by device drivers
84  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
85  * cause image creation to fail (tunable via /sys/power/reserved_size).
86  */
87 unsigned long reserved_size;
88 
89 void __init hibernate_reserved_size_init(void)
90 {
91 	reserved_size = SPARE_PAGES * PAGE_SIZE;
92 }
93 
94 /*
95  * Preferred image size in bytes (tunable via /sys/power/image_size).
96  * When it is set to N, swsusp will do its best to ensure the image
97  * size will not exceed N bytes, but if that is impossible, it will
98  * try to create the smallest image possible.
99  */
100 unsigned long image_size;
101 
102 void __init hibernate_image_size_init(void)
103 {
104 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
105 }
106 
107 /*
108  * List of PBEs needed for restoring the pages that were allocated before
109  * the suspend and included in the suspend image, but have also been
110  * allocated by the "resume" kernel, so their contents cannot be written
111  * directly to their "original" page frames.
112  */
113 struct pbe *restore_pblist;
114 
115 /* struct linked_page is used to build chains of pages */
116 
117 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
118 
119 struct linked_page {
120 	struct linked_page *next;
121 	char data[LINKED_PAGE_DATA_SIZE];
122 } __packed;
123 
124 /*
125  * List of "safe" pages (ie. pages that were not used by the image kernel
126  * before hibernation) that may be used as temporary storage for image kernel
127  * memory contents.
128  */
129 static struct linked_page *safe_pages_list;
130 
131 /* Pointer to an auxiliary buffer (1 page) */
132 static void *buffer;
133 
134 #define PG_ANY		0
135 #define PG_SAFE		1
136 #define PG_UNSAFE_CLEAR	1
137 #define PG_UNSAFE_KEEP	0
138 
139 static unsigned int allocated_unsafe_pages;
140 
141 /**
142  * get_image_page - Allocate a page for a hibernation image.
143  * @gfp_mask: GFP mask for the allocation.
144  * @safe_needed: Get pages that were not used before hibernation (restore only)
145  *
146  * During image restoration, for storing the PBE list and the image data, we can
147  * only use memory pages that do not conflict with the pages used before
148  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
149  * using allocated_unsafe_pages.
150  *
151  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
152  * swsusp_free() can release it.
153  */
154 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
155 {
156 	void *res;
157 
158 	res = (void *)get_zeroed_page(gfp_mask);
159 	if (safe_needed)
160 		while (res && swsusp_page_is_free(virt_to_page(res))) {
161 			/* The page is unsafe, mark it for swsusp_free() */
162 			swsusp_set_page_forbidden(virt_to_page(res));
163 			allocated_unsafe_pages++;
164 			res = (void *)get_zeroed_page(gfp_mask);
165 		}
166 	if (res) {
167 		swsusp_set_page_forbidden(virt_to_page(res));
168 		swsusp_set_page_free(virt_to_page(res));
169 	}
170 	return res;
171 }
172 
173 static void *__get_safe_page(gfp_t gfp_mask)
174 {
175 	if (safe_pages_list) {
176 		void *ret = safe_pages_list;
177 
178 		safe_pages_list = safe_pages_list->next;
179 		memset(ret, 0, PAGE_SIZE);
180 		return ret;
181 	}
182 	return get_image_page(gfp_mask, PG_SAFE);
183 }
184 
185 unsigned long get_safe_page(gfp_t gfp_mask)
186 {
187 	return (unsigned long)__get_safe_page(gfp_mask);
188 }
189 
190 static struct page *alloc_image_page(gfp_t gfp_mask)
191 {
192 	struct page *page;
193 
194 	page = alloc_page(gfp_mask);
195 	if (page) {
196 		swsusp_set_page_forbidden(page);
197 		swsusp_set_page_free(page);
198 	}
199 	return page;
200 }
201 
202 static void recycle_safe_page(void *page_address)
203 {
204 	struct linked_page *lp = page_address;
205 
206 	lp->next = safe_pages_list;
207 	safe_pages_list = lp;
208 }
209 
210 /**
211  * free_image_page - Free a page allocated for hibernation image.
212  * @addr: Address of the page to free.
213  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
214  *
215  * The page to free should have been allocated by get_image_page() (page flags
216  * set by it are affected).
217  */
218 static inline void free_image_page(void *addr, int clear_nosave_free)
219 {
220 	struct page *page;
221 
222 	BUG_ON(!virt_addr_valid(addr));
223 
224 	page = virt_to_page(addr);
225 
226 	swsusp_unset_page_forbidden(page);
227 	if (clear_nosave_free)
228 		swsusp_unset_page_free(page);
229 
230 	__free_page(page);
231 }
232 
233 static inline void free_list_of_pages(struct linked_page *list,
234 				      int clear_page_nosave)
235 {
236 	while (list) {
237 		struct linked_page *lp = list->next;
238 
239 		free_image_page(list, clear_page_nosave);
240 		list = lp;
241 	}
242 }
243 
244 /*
245  * struct chain_allocator is used for allocating small objects out of
246  * a linked list of pages called 'the chain'.
247  *
248  * The chain grows each time when there is no room for a new object in
249  * the current page.  The allocated objects cannot be freed individually.
250  * It is only possible to free them all at once, by freeing the entire
251  * chain.
252  *
253  * NOTE: The chain allocator may be inefficient if the allocated objects
254  * are not much smaller than PAGE_SIZE.
255  */
256 struct chain_allocator {
257 	struct linked_page *chain;	/* the chain */
258 	unsigned int used_space;	/* total size of objects allocated out
259 					   of the current page */
260 	gfp_t gfp_mask;		/* mask for allocating pages */
261 	int safe_needed;	/* if set, only "safe" pages are allocated */
262 };
263 
264 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
265 		       int safe_needed)
266 {
267 	ca->chain = NULL;
268 	ca->used_space = LINKED_PAGE_DATA_SIZE;
269 	ca->gfp_mask = gfp_mask;
270 	ca->safe_needed = safe_needed;
271 }
272 
273 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
274 {
275 	void *ret;
276 
277 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
278 		struct linked_page *lp;
279 
280 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
281 					get_image_page(ca->gfp_mask, PG_ANY);
282 		if (!lp)
283 			return NULL;
284 
285 		lp->next = ca->chain;
286 		ca->chain = lp;
287 		ca->used_space = 0;
288 	}
289 	ret = ca->chain->data + ca->used_space;
290 	ca->used_space += size;
291 	return ret;
292 }
293 
294 /**
295  * Data types related to memory bitmaps.
296  *
297  * Memory bitmap is a structure consiting of many linked lists of
298  * objects.  The main list's elements are of type struct zone_bitmap
299  * and each of them corresonds to one zone.  For each zone bitmap
300  * object there is a list of objects of type struct bm_block that
301  * represent each blocks of bitmap in which information is stored.
302  *
303  * struct memory_bitmap contains a pointer to the main list of zone
304  * bitmap objects, a struct bm_position used for browsing the bitmap,
305  * and a pointer to the list of pages used for allocating all of the
306  * zone bitmap objects and bitmap block objects.
307  *
308  * NOTE: It has to be possible to lay out the bitmap in memory
309  * using only allocations of order 0.  Additionally, the bitmap is
310  * designed to work with arbitrary number of zones (this is over the
311  * top for now, but let's avoid making unnecessary assumptions ;-).
312  *
313  * struct zone_bitmap contains a pointer to a list of bitmap block
314  * objects and a pointer to the bitmap block object that has been
315  * most recently used for setting bits.  Additionally, it contains the
316  * PFNs that correspond to the start and end of the represented zone.
317  *
318  * struct bm_block contains a pointer to the memory page in which
319  * information is stored (in the form of a block of bitmap)
320  * It also contains the pfns that correspond to the start and end of
321  * the represented memory area.
322  *
323  * The memory bitmap is organized as a radix tree to guarantee fast random
324  * access to the bits. There is one radix tree for each zone (as returned
325  * from create_mem_extents).
326  *
327  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
328  * two linked lists for the nodes of the tree, one for the inner nodes and
329  * one for the leave nodes. The linked leave nodes are used for fast linear
330  * access of the memory bitmap.
331  *
332  * The struct rtree_node represents one node of the radix tree.
333  */
334 
335 #define BM_END_OF_MAP	(~0UL)
336 
337 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
338 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
339 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
340 
341 /*
342  * struct rtree_node is a wrapper struct to link the nodes
343  * of the rtree together for easy linear iteration over
344  * bits and easy freeing
345  */
346 struct rtree_node {
347 	struct list_head list;
348 	unsigned long *data;
349 };
350 
351 /*
352  * struct mem_zone_bm_rtree represents a bitmap used for one
353  * populated memory zone.
354  */
355 struct mem_zone_bm_rtree {
356 	struct list_head list;		/* Link Zones together         */
357 	struct list_head nodes;		/* Radix Tree inner nodes      */
358 	struct list_head leaves;	/* Radix Tree leaves           */
359 	unsigned long start_pfn;	/* Zone start page frame       */
360 	unsigned long end_pfn;		/* Zone end page frame + 1     */
361 	struct rtree_node *rtree;	/* Radix Tree Root             */
362 	int levels;			/* Number of Radix Tree Levels */
363 	unsigned int blocks;		/* Number of Bitmap Blocks     */
364 };
365 
366 /* strcut bm_position is used for browsing memory bitmaps */
367 
368 struct bm_position {
369 	struct mem_zone_bm_rtree *zone;
370 	struct rtree_node *node;
371 	unsigned long node_pfn;
372 	int node_bit;
373 };
374 
375 struct memory_bitmap {
376 	struct list_head zones;
377 	struct linked_page *p_list;	/* list of pages used to store zone
378 					   bitmap objects and bitmap block
379 					   objects */
380 	struct bm_position cur;	/* most recently used bit position */
381 };
382 
383 /* Functions that operate on memory bitmaps */
384 
385 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
386 #if BITS_PER_LONG == 32
387 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
388 #else
389 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
390 #endif
391 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
392 
393 /**
394  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
395  *
396  * This function is used to allocate inner nodes as well as the
397  * leave nodes of the radix tree. It also adds the node to the
398  * corresponding linked list passed in by the *list parameter.
399  */
400 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
401 					   struct chain_allocator *ca,
402 					   struct list_head *list)
403 {
404 	struct rtree_node *node;
405 
406 	node = chain_alloc(ca, sizeof(struct rtree_node));
407 	if (!node)
408 		return NULL;
409 
410 	node->data = get_image_page(gfp_mask, safe_needed);
411 	if (!node->data)
412 		return NULL;
413 
414 	list_add_tail(&node->list, list);
415 
416 	return node;
417 }
418 
419 /**
420  * add_rtree_block - Add a new leave node to the radix tree.
421  *
422  * The leave nodes need to be allocated in order to keep the leaves
423  * linked list in order. This is guaranteed by the zone->blocks
424  * counter.
425  */
426 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
427 			   int safe_needed, struct chain_allocator *ca)
428 {
429 	struct rtree_node *node, *block, **dst;
430 	unsigned int levels_needed, block_nr;
431 	int i;
432 
433 	block_nr = zone->blocks;
434 	levels_needed = 0;
435 
436 	/* How many levels do we need for this block nr? */
437 	while (block_nr) {
438 		levels_needed += 1;
439 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
440 	}
441 
442 	/* Make sure the rtree has enough levels */
443 	for (i = zone->levels; i < levels_needed; i++) {
444 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
445 					&zone->nodes);
446 		if (!node)
447 			return -ENOMEM;
448 
449 		node->data[0] = (unsigned long)zone->rtree;
450 		zone->rtree = node;
451 		zone->levels += 1;
452 	}
453 
454 	/* Allocate new block */
455 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
456 	if (!block)
457 		return -ENOMEM;
458 
459 	/* Now walk the rtree to insert the block */
460 	node = zone->rtree;
461 	dst = &zone->rtree;
462 	block_nr = zone->blocks;
463 	for (i = zone->levels; i > 0; i--) {
464 		int index;
465 
466 		if (!node) {
467 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
468 						&zone->nodes);
469 			if (!node)
470 				return -ENOMEM;
471 			*dst = node;
472 		}
473 
474 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
475 		index &= BM_RTREE_LEVEL_MASK;
476 		dst = (struct rtree_node **)&((*dst)->data[index]);
477 		node = *dst;
478 	}
479 
480 	zone->blocks += 1;
481 	*dst = block;
482 
483 	return 0;
484 }
485 
486 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
487 			       int clear_nosave_free);
488 
489 /**
490  * create_zone_bm_rtree - Create a radix tree for one zone.
491  *
492  * Allocated the mem_zone_bm_rtree structure and initializes it.
493  * This function also allocated and builds the radix tree for the
494  * zone.
495  */
496 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
497 						      int safe_needed,
498 						      struct chain_allocator *ca,
499 						      unsigned long start,
500 						      unsigned long end)
501 {
502 	struct mem_zone_bm_rtree *zone;
503 	unsigned int i, nr_blocks;
504 	unsigned long pages;
505 
506 	pages = end - start;
507 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
508 	if (!zone)
509 		return NULL;
510 
511 	INIT_LIST_HEAD(&zone->nodes);
512 	INIT_LIST_HEAD(&zone->leaves);
513 	zone->start_pfn = start;
514 	zone->end_pfn = end;
515 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
516 
517 	for (i = 0; i < nr_blocks; i++) {
518 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
519 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
520 			return NULL;
521 		}
522 	}
523 
524 	return zone;
525 }
526 
527 /**
528  * free_zone_bm_rtree - Free the memory of the radix tree.
529  *
530  * Free all node pages of the radix tree. The mem_zone_bm_rtree
531  * structure itself is not freed here nor are the rtree_node
532  * structs.
533  */
534 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
535 			       int clear_nosave_free)
536 {
537 	struct rtree_node *node;
538 
539 	list_for_each_entry(node, &zone->nodes, list)
540 		free_image_page(node->data, clear_nosave_free);
541 
542 	list_for_each_entry(node, &zone->leaves, list)
543 		free_image_page(node->data, clear_nosave_free);
544 }
545 
546 static void memory_bm_position_reset(struct memory_bitmap *bm)
547 {
548 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
549 				  list);
550 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
551 				  struct rtree_node, list);
552 	bm->cur.node_pfn = 0;
553 	bm->cur.node_bit = 0;
554 }
555 
556 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
557 
558 struct mem_extent {
559 	struct list_head hook;
560 	unsigned long start;
561 	unsigned long end;
562 };
563 
564 /**
565  * free_mem_extents - Free a list of memory extents.
566  * @list: List of extents to free.
567  */
568 static void free_mem_extents(struct list_head *list)
569 {
570 	struct mem_extent *ext, *aux;
571 
572 	list_for_each_entry_safe(ext, aux, list, hook) {
573 		list_del(&ext->hook);
574 		kfree(ext);
575 	}
576 }
577 
578 /**
579  * create_mem_extents - Create a list of memory extents.
580  * @list: List to put the extents into.
581  * @gfp_mask: Mask to use for memory allocations.
582  *
583  * The extents represent contiguous ranges of PFNs.
584  */
585 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
586 {
587 	struct zone *zone;
588 
589 	INIT_LIST_HEAD(list);
590 
591 	for_each_populated_zone(zone) {
592 		unsigned long zone_start, zone_end;
593 		struct mem_extent *ext, *cur, *aux;
594 
595 		zone_start = zone->zone_start_pfn;
596 		zone_end = zone_end_pfn(zone);
597 
598 		list_for_each_entry(ext, list, hook)
599 			if (zone_start <= ext->end)
600 				break;
601 
602 		if (&ext->hook == list || zone_end < ext->start) {
603 			/* New extent is necessary */
604 			struct mem_extent *new_ext;
605 
606 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
607 			if (!new_ext) {
608 				free_mem_extents(list);
609 				return -ENOMEM;
610 			}
611 			new_ext->start = zone_start;
612 			new_ext->end = zone_end;
613 			list_add_tail(&new_ext->hook, &ext->hook);
614 			continue;
615 		}
616 
617 		/* Merge this zone's range of PFNs with the existing one */
618 		if (zone_start < ext->start)
619 			ext->start = zone_start;
620 		if (zone_end > ext->end)
621 			ext->end = zone_end;
622 
623 		/* More merging may be possible */
624 		cur = ext;
625 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
626 			if (zone_end < cur->start)
627 				break;
628 			if (zone_end < cur->end)
629 				ext->end = cur->end;
630 			list_del(&cur->hook);
631 			kfree(cur);
632 		}
633 	}
634 
635 	return 0;
636 }
637 
638 /**
639  * memory_bm_create - Allocate memory for a memory bitmap.
640  */
641 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
642 			    int safe_needed)
643 {
644 	struct chain_allocator ca;
645 	struct list_head mem_extents;
646 	struct mem_extent *ext;
647 	int error;
648 
649 	chain_init(&ca, gfp_mask, safe_needed);
650 	INIT_LIST_HEAD(&bm->zones);
651 
652 	error = create_mem_extents(&mem_extents, gfp_mask);
653 	if (error)
654 		return error;
655 
656 	list_for_each_entry(ext, &mem_extents, hook) {
657 		struct mem_zone_bm_rtree *zone;
658 
659 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
660 					    ext->start, ext->end);
661 		if (!zone) {
662 			error = -ENOMEM;
663 			goto Error;
664 		}
665 		list_add_tail(&zone->list, &bm->zones);
666 	}
667 
668 	bm->p_list = ca.chain;
669 	memory_bm_position_reset(bm);
670  Exit:
671 	free_mem_extents(&mem_extents);
672 	return error;
673 
674  Error:
675 	bm->p_list = ca.chain;
676 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
677 	goto Exit;
678 }
679 
680 /**
681  * memory_bm_free - Free memory occupied by the memory bitmap.
682  * @bm: Memory bitmap.
683  */
684 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
685 {
686 	struct mem_zone_bm_rtree *zone;
687 
688 	list_for_each_entry(zone, &bm->zones, list)
689 		free_zone_bm_rtree(zone, clear_nosave_free);
690 
691 	free_list_of_pages(bm->p_list, clear_nosave_free);
692 
693 	INIT_LIST_HEAD(&bm->zones);
694 }
695 
696 /**
697  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
698  *
699  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
700  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
701  *
702  * Walk the radix tree to find the page containing the bit that represents @pfn
703  * and return the position of the bit in @addr and @bit_nr.
704  */
705 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
706 			      void **addr, unsigned int *bit_nr)
707 {
708 	struct mem_zone_bm_rtree *curr, *zone;
709 	struct rtree_node *node;
710 	int i, block_nr;
711 
712 	zone = bm->cur.zone;
713 
714 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
715 		goto zone_found;
716 
717 	zone = NULL;
718 
719 	/* Find the right zone */
720 	list_for_each_entry(curr, &bm->zones, list) {
721 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
722 			zone = curr;
723 			break;
724 		}
725 	}
726 
727 	if (!zone)
728 		return -EFAULT;
729 
730 zone_found:
731 	/*
732 	 * We have found the zone. Now walk the radix tree to find the leaf node
733 	 * for our PFN.
734 	 */
735 	node = bm->cur.node;
736 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
737 		goto node_found;
738 
739 	node      = zone->rtree;
740 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
741 
742 	for (i = zone->levels; i > 0; i--) {
743 		int index;
744 
745 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
746 		index &= BM_RTREE_LEVEL_MASK;
747 		BUG_ON(node->data[index] == 0);
748 		node = (struct rtree_node *)node->data[index];
749 	}
750 
751 node_found:
752 	/* Update last position */
753 	bm->cur.zone = zone;
754 	bm->cur.node = node;
755 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
756 
757 	/* Set return values */
758 	*addr = node->data;
759 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
760 
761 	return 0;
762 }
763 
764 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
765 {
766 	void *addr;
767 	unsigned int bit;
768 	int error;
769 
770 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
771 	BUG_ON(error);
772 	set_bit(bit, addr);
773 }
774 
775 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
776 {
777 	void *addr;
778 	unsigned int bit;
779 	int error;
780 
781 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
782 	if (!error)
783 		set_bit(bit, addr);
784 
785 	return error;
786 }
787 
788 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
789 {
790 	void *addr;
791 	unsigned int bit;
792 	int error;
793 
794 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
795 	BUG_ON(error);
796 	clear_bit(bit, addr);
797 }
798 
799 static void memory_bm_clear_current(struct memory_bitmap *bm)
800 {
801 	int bit;
802 
803 	bit = max(bm->cur.node_bit - 1, 0);
804 	clear_bit(bit, bm->cur.node->data);
805 }
806 
807 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
808 {
809 	void *addr;
810 	unsigned int bit;
811 	int error;
812 
813 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
814 	BUG_ON(error);
815 	return test_bit(bit, addr);
816 }
817 
818 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
819 {
820 	void *addr;
821 	unsigned int bit;
822 
823 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
824 }
825 
826 /*
827  * rtree_next_node - Jump to the next leaf node.
828  *
829  * Set the position to the beginning of the next node in the
830  * memory bitmap. This is either the next node in the current
831  * zone's radix tree or the first node in the radix tree of the
832  * next zone.
833  *
834  * Return true if there is a next node, false otherwise.
835  */
836 static bool rtree_next_node(struct memory_bitmap *bm)
837 {
838 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
839 		bm->cur.node = list_entry(bm->cur.node->list.next,
840 					  struct rtree_node, list);
841 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
842 		bm->cur.node_bit  = 0;
843 		touch_softlockup_watchdog();
844 		return true;
845 	}
846 
847 	/* No more nodes, goto next zone */
848 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
849 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
850 				  struct mem_zone_bm_rtree, list);
851 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
852 					  struct rtree_node, list);
853 		bm->cur.node_pfn = 0;
854 		bm->cur.node_bit = 0;
855 		return true;
856 	}
857 
858 	/* No more zones */
859 	return false;
860 }
861 
862 /**
863  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
864  * @bm: Memory bitmap.
865  *
866  * Starting from the last returned position this function searches for the next
867  * set bit in @bm and returns the PFN represented by it.  If no more bits are
868  * set, BM_END_OF_MAP is returned.
869  *
870  * It is required to run memory_bm_position_reset() before the first call to
871  * this function for the given memory bitmap.
872  */
873 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
874 {
875 	unsigned long bits, pfn, pages;
876 	int bit;
877 
878 	do {
879 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
880 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
881 		bit	  = find_next_bit(bm->cur.node->data, bits,
882 					  bm->cur.node_bit);
883 		if (bit < bits) {
884 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
885 			bm->cur.node_bit = bit + 1;
886 			return pfn;
887 		}
888 	} while (rtree_next_node(bm));
889 
890 	return BM_END_OF_MAP;
891 }
892 
893 /*
894  * This structure represents a range of page frames the contents of which
895  * should not be saved during hibernation.
896  */
897 struct nosave_region {
898 	struct list_head list;
899 	unsigned long start_pfn;
900 	unsigned long end_pfn;
901 };
902 
903 static LIST_HEAD(nosave_regions);
904 
905 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
906 {
907 	struct rtree_node *node;
908 
909 	list_for_each_entry(node, &zone->nodes, list)
910 		recycle_safe_page(node->data);
911 
912 	list_for_each_entry(node, &zone->leaves, list)
913 		recycle_safe_page(node->data);
914 }
915 
916 static void memory_bm_recycle(struct memory_bitmap *bm)
917 {
918 	struct mem_zone_bm_rtree *zone;
919 	struct linked_page *p_list;
920 
921 	list_for_each_entry(zone, &bm->zones, list)
922 		recycle_zone_bm_rtree(zone);
923 
924 	p_list = bm->p_list;
925 	while (p_list) {
926 		struct linked_page *lp = p_list;
927 
928 		p_list = lp->next;
929 		recycle_safe_page(lp);
930 	}
931 }
932 
933 /**
934  * register_nosave_region - Register a region of unsaveable memory.
935  *
936  * Register a range of page frames the contents of which should not be saved
937  * during hibernation (to be used in the early initialization code).
938  */
939 void __init __register_nosave_region(unsigned long start_pfn,
940 				     unsigned long end_pfn, int use_kmalloc)
941 {
942 	struct nosave_region *region;
943 
944 	if (start_pfn >= end_pfn)
945 		return;
946 
947 	if (!list_empty(&nosave_regions)) {
948 		/* Try to extend the previous region (they should be sorted) */
949 		region = list_entry(nosave_regions.prev,
950 					struct nosave_region, list);
951 		if (region->end_pfn == start_pfn) {
952 			region->end_pfn = end_pfn;
953 			goto Report;
954 		}
955 	}
956 	if (use_kmalloc) {
957 		/* During init, this shouldn't fail */
958 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
959 		BUG_ON(!region);
960 	} else {
961 		/* This allocation cannot fail */
962 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
963 	}
964 	region->start_pfn = start_pfn;
965 	region->end_pfn = end_pfn;
966 	list_add_tail(&region->list, &nosave_regions);
967  Report:
968 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
969 		(unsigned long long) start_pfn << PAGE_SHIFT,
970 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
971 }
972 
973 /*
974  * Set bits in this map correspond to the page frames the contents of which
975  * should not be saved during the suspend.
976  */
977 static struct memory_bitmap *forbidden_pages_map;
978 
979 /* Set bits in this map correspond to free page frames. */
980 static struct memory_bitmap *free_pages_map;
981 
982 /*
983  * Each page frame allocated for creating the image is marked by setting the
984  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
985  */
986 
987 void swsusp_set_page_free(struct page *page)
988 {
989 	if (free_pages_map)
990 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
991 }
992 
993 static int swsusp_page_is_free(struct page *page)
994 {
995 	return free_pages_map ?
996 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
997 }
998 
999 void swsusp_unset_page_free(struct page *page)
1000 {
1001 	if (free_pages_map)
1002 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1003 }
1004 
1005 static void swsusp_set_page_forbidden(struct page *page)
1006 {
1007 	if (forbidden_pages_map)
1008 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1009 }
1010 
1011 int swsusp_page_is_forbidden(struct page *page)
1012 {
1013 	return forbidden_pages_map ?
1014 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1015 }
1016 
1017 static void swsusp_unset_page_forbidden(struct page *page)
1018 {
1019 	if (forbidden_pages_map)
1020 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1021 }
1022 
1023 /**
1024  * mark_nosave_pages - Mark pages that should not be saved.
1025  * @bm: Memory bitmap.
1026  *
1027  * Set the bits in @bm that correspond to the page frames the contents of which
1028  * should not be saved.
1029  */
1030 static void mark_nosave_pages(struct memory_bitmap *bm)
1031 {
1032 	struct nosave_region *region;
1033 
1034 	if (list_empty(&nosave_regions))
1035 		return;
1036 
1037 	list_for_each_entry(region, &nosave_regions, list) {
1038 		unsigned long pfn;
1039 
1040 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1041 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1042 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1043 				- 1);
1044 
1045 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1046 			if (pfn_valid(pfn)) {
1047 				/*
1048 				 * It is safe to ignore the result of
1049 				 * mem_bm_set_bit_check() here, since we won't
1050 				 * touch the PFNs for which the error is
1051 				 * returned anyway.
1052 				 */
1053 				mem_bm_set_bit_check(bm, pfn);
1054 			}
1055 	}
1056 }
1057 
1058 /**
1059  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1060  *
1061  * Create bitmaps needed for marking page frames that should not be saved and
1062  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1063  * only modified if everything goes well, because we don't want the bits to be
1064  * touched before both bitmaps are set up.
1065  */
1066 int create_basic_memory_bitmaps(void)
1067 {
1068 	struct memory_bitmap *bm1, *bm2;
1069 	int error = 0;
1070 
1071 	if (forbidden_pages_map && free_pages_map)
1072 		return 0;
1073 	else
1074 		BUG_ON(forbidden_pages_map || free_pages_map);
1075 
1076 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1077 	if (!bm1)
1078 		return -ENOMEM;
1079 
1080 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1081 	if (error)
1082 		goto Free_first_object;
1083 
1084 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1085 	if (!bm2)
1086 		goto Free_first_bitmap;
1087 
1088 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1089 	if (error)
1090 		goto Free_second_object;
1091 
1092 	forbidden_pages_map = bm1;
1093 	free_pages_map = bm2;
1094 	mark_nosave_pages(forbidden_pages_map);
1095 
1096 	pr_debug("PM: Basic memory bitmaps created\n");
1097 
1098 	return 0;
1099 
1100  Free_second_object:
1101 	kfree(bm2);
1102  Free_first_bitmap:
1103  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1104  Free_first_object:
1105 	kfree(bm1);
1106 	return -ENOMEM;
1107 }
1108 
1109 /**
1110  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1111  *
1112  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1113  * auxiliary pointers are necessary so that the bitmaps themselves are not
1114  * referred to while they are being freed.
1115  */
1116 void free_basic_memory_bitmaps(void)
1117 {
1118 	struct memory_bitmap *bm1, *bm2;
1119 
1120 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1121 		return;
1122 
1123 	bm1 = forbidden_pages_map;
1124 	bm2 = free_pages_map;
1125 	forbidden_pages_map = NULL;
1126 	free_pages_map = NULL;
1127 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1128 	kfree(bm1);
1129 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1130 	kfree(bm2);
1131 
1132 	pr_debug("PM: Basic memory bitmaps freed\n");
1133 }
1134 
1135 void clear_free_pages(void)
1136 {
1137 #ifdef CONFIG_PAGE_POISONING_ZERO
1138 	struct memory_bitmap *bm = free_pages_map;
1139 	unsigned long pfn;
1140 
1141 	if (WARN_ON(!(free_pages_map)))
1142 		return;
1143 
1144 	memory_bm_position_reset(bm);
1145 	pfn = memory_bm_next_pfn(bm);
1146 	while (pfn != BM_END_OF_MAP) {
1147 		if (pfn_valid(pfn))
1148 			clear_highpage(pfn_to_page(pfn));
1149 
1150 		pfn = memory_bm_next_pfn(bm);
1151 	}
1152 	memory_bm_position_reset(bm);
1153 	pr_info("PM: free pages cleared after restore\n");
1154 #endif /* PAGE_POISONING_ZERO */
1155 }
1156 
1157 /**
1158  * snapshot_additional_pages - Estimate the number of extra pages needed.
1159  * @zone: Memory zone to carry out the computation for.
1160  *
1161  * Estimate the number of additional pages needed for setting up a hibernation
1162  * image data structures for @zone (usually, the returned value is greater than
1163  * the exact number).
1164  */
1165 unsigned int snapshot_additional_pages(struct zone *zone)
1166 {
1167 	unsigned int rtree, nodes;
1168 
1169 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1170 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1171 			      LINKED_PAGE_DATA_SIZE);
1172 	while (nodes > 1) {
1173 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1174 		rtree += nodes;
1175 	}
1176 
1177 	return 2 * rtree;
1178 }
1179 
1180 #ifdef CONFIG_HIGHMEM
1181 /**
1182  * count_free_highmem_pages - Compute the total number of free highmem pages.
1183  *
1184  * The returned number is system-wide.
1185  */
1186 static unsigned int count_free_highmem_pages(void)
1187 {
1188 	struct zone *zone;
1189 	unsigned int cnt = 0;
1190 
1191 	for_each_populated_zone(zone)
1192 		if (is_highmem(zone))
1193 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1194 
1195 	return cnt;
1196 }
1197 
1198 /**
1199  * saveable_highmem_page - Check if a highmem page is saveable.
1200  *
1201  * Determine whether a highmem page should be included in a hibernation image.
1202  *
1203  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1204  * and it isn't part of a free chunk of pages.
1205  */
1206 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1207 {
1208 	struct page *page;
1209 
1210 	if (!pfn_valid(pfn))
1211 		return NULL;
1212 
1213 	page = pfn_to_page(pfn);
1214 	if (page_zone(page) != zone)
1215 		return NULL;
1216 
1217 	BUG_ON(!PageHighMem(page));
1218 
1219 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1220 	    PageReserved(page))
1221 		return NULL;
1222 
1223 	if (page_is_guard(page))
1224 		return NULL;
1225 
1226 	return page;
1227 }
1228 
1229 /**
1230  * count_highmem_pages - Compute the total number of saveable highmem pages.
1231  */
1232 static unsigned int count_highmem_pages(void)
1233 {
1234 	struct zone *zone;
1235 	unsigned int n = 0;
1236 
1237 	for_each_populated_zone(zone) {
1238 		unsigned long pfn, max_zone_pfn;
1239 
1240 		if (!is_highmem(zone))
1241 			continue;
1242 
1243 		mark_free_pages(zone);
1244 		max_zone_pfn = zone_end_pfn(zone);
1245 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1246 			if (saveable_highmem_page(zone, pfn))
1247 				n++;
1248 	}
1249 	return n;
1250 }
1251 #else
1252 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1253 {
1254 	return NULL;
1255 }
1256 #endif /* CONFIG_HIGHMEM */
1257 
1258 /**
1259  * saveable_page - Check if the given page is saveable.
1260  *
1261  * Determine whether a non-highmem page should be included in a hibernation
1262  * image.
1263  *
1264  * We should save the page if it isn't Nosave, and is not in the range
1265  * of pages statically defined as 'unsaveable', and it isn't part of
1266  * a free chunk of pages.
1267  */
1268 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1269 {
1270 	struct page *page;
1271 
1272 	if (!pfn_valid(pfn))
1273 		return NULL;
1274 
1275 	page = pfn_to_page(pfn);
1276 	if (page_zone(page) != zone)
1277 		return NULL;
1278 
1279 	BUG_ON(PageHighMem(page));
1280 
1281 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1282 		return NULL;
1283 
1284 	if (PageReserved(page)
1285 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1286 		return NULL;
1287 
1288 	if (page_is_guard(page))
1289 		return NULL;
1290 
1291 	return page;
1292 }
1293 
1294 /**
1295  * count_data_pages - Compute the total number of saveable non-highmem pages.
1296  */
1297 static unsigned int count_data_pages(void)
1298 {
1299 	struct zone *zone;
1300 	unsigned long pfn, max_zone_pfn;
1301 	unsigned int n = 0;
1302 
1303 	for_each_populated_zone(zone) {
1304 		if (is_highmem(zone))
1305 			continue;
1306 
1307 		mark_free_pages(zone);
1308 		max_zone_pfn = zone_end_pfn(zone);
1309 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1310 			if (saveable_page(zone, pfn))
1311 				n++;
1312 	}
1313 	return n;
1314 }
1315 
1316 /*
1317  * This is needed, because copy_page and memcpy are not usable for copying
1318  * task structs.
1319  */
1320 static inline void do_copy_page(long *dst, long *src)
1321 {
1322 	int n;
1323 
1324 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1325 		*dst++ = *src++;
1326 }
1327 
1328 /**
1329  * safe_copy_page - Copy a page in a safe way.
1330  *
1331  * Check if the page we are going to copy is marked as present in the kernel
1332  * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1333  * and in that case kernel_page_present() always returns 'true').
1334  */
1335 static void safe_copy_page(void *dst, struct page *s_page)
1336 {
1337 	if (kernel_page_present(s_page)) {
1338 		do_copy_page(dst, page_address(s_page));
1339 	} else {
1340 		kernel_map_pages(s_page, 1, 1);
1341 		do_copy_page(dst, page_address(s_page));
1342 		kernel_map_pages(s_page, 1, 0);
1343 	}
1344 }
1345 
1346 #ifdef CONFIG_HIGHMEM
1347 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1348 {
1349 	return is_highmem(zone) ?
1350 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1351 }
1352 
1353 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1354 {
1355 	struct page *s_page, *d_page;
1356 	void *src, *dst;
1357 
1358 	s_page = pfn_to_page(src_pfn);
1359 	d_page = pfn_to_page(dst_pfn);
1360 	if (PageHighMem(s_page)) {
1361 		src = kmap_atomic(s_page);
1362 		dst = kmap_atomic(d_page);
1363 		do_copy_page(dst, src);
1364 		kunmap_atomic(dst);
1365 		kunmap_atomic(src);
1366 	} else {
1367 		if (PageHighMem(d_page)) {
1368 			/*
1369 			 * The page pointed to by src may contain some kernel
1370 			 * data modified by kmap_atomic()
1371 			 */
1372 			safe_copy_page(buffer, s_page);
1373 			dst = kmap_atomic(d_page);
1374 			copy_page(dst, buffer);
1375 			kunmap_atomic(dst);
1376 		} else {
1377 			safe_copy_page(page_address(d_page), s_page);
1378 		}
1379 	}
1380 }
1381 #else
1382 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1383 
1384 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1385 {
1386 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1387 				pfn_to_page(src_pfn));
1388 }
1389 #endif /* CONFIG_HIGHMEM */
1390 
1391 static void copy_data_pages(struct memory_bitmap *copy_bm,
1392 			    struct memory_bitmap *orig_bm)
1393 {
1394 	struct zone *zone;
1395 	unsigned long pfn;
1396 
1397 	for_each_populated_zone(zone) {
1398 		unsigned long max_zone_pfn;
1399 
1400 		mark_free_pages(zone);
1401 		max_zone_pfn = zone_end_pfn(zone);
1402 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1403 			if (page_is_saveable(zone, pfn))
1404 				memory_bm_set_bit(orig_bm, pfn);
1405 	}
1406 	memory_bm_position_reset(orig_bm);
1407 	memory_bm_position_reset(copy_bm);
1408 	for(;;) {
1409 		pfn = memory_bm_next_pfn(orig_bm);
1410 		if (unlikely(pfn == BM_END_OF_MAP))
1411 			break;
1412 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1413 	}
1414 }
1415 
1416 /* Total number of image pages */
1417 static unsigned int nr_copy_pages;
1418 /* Number of pages needed for saving the original pfns of the image pages */
1419 static unsigned int nr_meta_pages;
1420 /*
1421  * Numbers of normal and highmem page frames allocated for hibernation image
1422  * before suspending devices.
1423  */
1424 unsigned int alloc_normal, alloc_highmem;
1425 /*
1426  * Memory bitmap used for marking saveable pages (during hibernation) or
1427  * hibernation image pages (during restore)
1428  */
1429 static struct memory_bitmap orig_bm;
1430 /*
1431  * Memory bitmap used during hibernation for marking allocated page frames that
1432  * will contain copies of saveable pages.  During restore it is initially used
1433  * for marking hibernation image pages, but then the set bits from it are
1434  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1435  * used for marking "safe" highmem pages, but it has to be reinitialized for
1436  * this purpose.
1437  */
1438 static struct memory_bitmap copy_bm;
1439 
1440 /**
1441  * swsusp_free - Free pages allocated for hibernation image.
1442  *
1443  * Image pages are alocated before snapshot creation, so they need to be
1444  * released after resume.
1445  */
1446 void swsusp_free(void)
1447 {
1448 	unsigned long fb_pfn, fr_pfn;
1449 
1450 	if (!forbidden_pages_map || !free_pages_map)
1451 		goto out;
1452 
1453 	memory_bm_position_reset(forbidden_pages_map);
1454 	memory_bm_position_reset(free_pages_map);
1455 
1456 loop:
1457 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1458 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1459 
1460 	/*
1461 	 * Find the next bit set in both bitmaps. This is guaranteed to
1462 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1463 	 */
1464 	do {
1465 		if (fb_pfn < fr_pfn)
1466 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1467 		if (fr_pfn < fb_pfn)
1468 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1469 	} while (fb_pfn != fr_pfn);
1470 
1471 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1472 		struct page *page = pfn_to_page(fr_pfn);
1473 
1474 		memory_bm_clear_current(forbidden_pages_map);
1475 		memory_bm_clear_current(free_pages_map);
1476 		hibernate_restore_unprotect_page(page_address(page));
1477 		__free_page(page);
1478 		goto loop;
1479 	}
1480 
1481 out:
1482 	nr_copy_pages = 0;
1483 	nr_meta_pages = 0;
1484 	restore_pblist = NULL;
1485 	buffer = NULL;
1486 	alloc_normal = 0;
1487 	alloc_highmem = 0;
1488 	hibernate_restore_protection_end();
1489 }
1490 
1491 /* Helper functions used for the shrinking of memory. */
1492 
1493 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1494 
1495 /**
1496  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1497  * @nr_pages: Number of page frames to allocate.
1498  * @mask: GFP flags to use for the allocation.
1499  *
1500  * Return value: Number of page frames actually allocated
1501  */
1502 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1503 {
1504 	unsigned long nr_alloc = 0;
1505 
1506 	while (nr_pages > 0) {
1507 		struct page *page;
1508 
1509 		page = alloc_image_page(mask);
1510 		if (!page)
1511 			break;
1512 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1513 		if (PageHighMem(page))
1514 			alloc_highmem++;
1515 		else
1516 			alloc_normal++;
1517 		nr_pages--;
1518 		nr_alloc++;
1519 	}
1520 
1521 	return nr_alloc;
1522 }
1523 
1524 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1525 					      unsigned long avail_normal)
1526 {
1527 	unsigned long alloc;
1528 
1529 	if (avail_normal <= alloc_normal)
1530 		return 0;
1531 
1532 	alloc = avail_normal - alloc_normal;
1533 	if (nr_pages < alloc)
1534 		alloc = nr_pages;
1535 
1536 	return preallocate_image_pages(alloc, GFP_IMAGE);
1537 }
1538 
1539 #ifdef CONFIG_HIGHMEM
1540 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1541 {
1542 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1543 }
1544 
1545 /**
1546  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1547  */
1548 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1549 {
1550 	x *= multiplier;
1551 	do_div(x, base);
1552 	return (unsigned long)x;
1553 }
1554 
1555 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1556 						  unsigned long highmem,
1557 						  unsigned long total)
1558 {
1559 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1560 
1561 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1562 }
1563 #else /* CONFIG_HIGHMEM */
1564 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1565 {
1566 	return 0;
1567 }
1568 
1569 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1570 							 unsigned long highmem,
1571 							 unsigned long total)
1572 {
1573 	return 0;
1574 }
1575 #endif /* CONFIG_HIGHMEM */
1576 
1577 /**
1578  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1579  */
1580 static unsigned long free_unnecessary_pages(void)
1581 {
1582 	unsigned long save, to_free_normal, to_free_highmem, free;
1583 
1584 	save = count_data_pages();
1585 	if (alloc_normal >= save) {
1586 		to_free_normal = alloc_normal - save;
1587 		save = 0;
1588 	} else {
1589 		to_free_normal = 0;
1590 		save -= alloc_normal;
1591 	}
1592 	save += count_highmem_pages();
1593 	if (alloc_highmem >= save) {
1594 		to_free_highmem = alloc_highmem - save;
1595 	} else {
1596 		to_free_highmem = 0;
1597 		save -= alloc_highmem;
1598 		if (to_free_normal > save)
1599 			to_free_normal -= save;
1600 		else
1601 			to_free_normal = 0;
1602 	}
1603 	free = to_free_normal + to_free_highmem;
1604 
1605 	memory_bm_position_reset(&copy_bm);
1606 
1607 	while (to_free_normal > 0 || to_free_highmem > 0) {
1608 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1609 		struct page *page = pfn_to_page(pfn);
1610 
1611 		if (PageHighMem(page)) {
1612 			if (!to_free_highmem)
1613 				continue;
1614 			to_free_highmem--;
1615 			alloc_highmem--;
1616 		} else {
1617 			if (!to_free_normal)
1618 				continue;
1619 			to_free_normal--;
1620 			alloc_normal--;
1621 		}
1622 		memory_bm_clear_bit(&copy_bm, pfn);
1623 		swsusp_unset_page_forbidden(page);
1624 		swsusp_unset_page_free(page);
1625 		__free_page(page);
1626 	}
1627 
1628 	return free;
1629 }
1630 
1631 /**
1632  * minimum_image_size - Estimate the minimum acceptable size of an image.
1633  * @saveable: Number of saveable pages in the system.
1634  *
1635  * We want to avoid attempting to free too much memory too hard, so estimate the
1636  * minimum acceptable size of a hibernation image to use as the lower limit for
1637  * preallocating memory.
1638  *
1639  * We assume that the minimum image size should be proportional to
1640  *
1641  * [number of saveable pages] - [number of pages that can be freed in theory]
1642  *
1643  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1644  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1645  * minus mapped file pages.
1646  */
1647 static unsigned long minimum_image_size(unsigned long saveable)
1648 {
1649 	unsigned long size;
1650 
1651 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1652 		+ global_node_page_state(NR_ACTIVE_ANON)
1653 		+ global_node_page_state(NR_INACTIVE_ANON)
1654 		+ global_node_page_state(NR_ACTIVE_FILE)
1655 		+ global_node_page_state(NR_INACTIVE_FILE)
1656 		- global_node_page_state(NR_FILE_MAPPED);
1657 
1658 	return saveable <= size ? 0 : saveable - size;
1659 }
1660 
1661 /**
1662  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1663  *
1664  * To create a hibernation image it is necessary to make a copy of every page
1665  * frame in use.  We also need a number of page frames to be free during
1666  * hibernation for allocations made while saving the image and for device
1667  * drivers, in case they need to allocate memory from their hibernation
1668  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1669  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1670  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1671  * total number of available page frames and allocate at least
1672  *
1673  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1674  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1675  *
1676  * of them, which corresponds to the maximum size of a hibernation image.
1677  *
1678  * If image_size is set below the number following from the above formula,
1679  * the preallocation of memory is continued until the total number of saveable
1680  * pages in the system is below the requested image size or the minimum
1681  * acceptable image size returned by minimum_image_size(), whichever is greater.
1682  */
1683 int hibernate_preallocate_memory(void)
1684 {
1685 	struct zone *zone;
1686 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1687 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1688 	ktime_t start, stop;
1689 	int error;
1690 
1691 	printk(KERN_INFO "PM: Preallocating image memory... ");
1692 	start = ktime_get();
1693 
1694 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1695 	if (error)
1696 		goto err_out;
1697 
1698 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1699 	if (error)
1700 		goto err_out;
1701 
1702 	alloc_normal = 0;
1703 	alloc_highmem = 0;
1704 
1705 	/* Count the number of saveable data pages. */
1706 	save_highmem = count_highmem_pages();
1707 	saveable = count_data_pages();
1708 
1709 	/*
1710 	 * Compute the total number of page frames we can use (count) and the
1711 	 * number of pages needed for image metadata (size).
1712 	 */
1713 	count = saveable;
1714 	saveable += save_highmem;
1715 	highmem = save_highmem;
1716 	size = 0;
1717 	for_each_populated_zone(zone) {
1718 		size += snapshot_additional_pages(zone);
1719 		if (is_highmem(zone))
1720 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1721 		else
1722 			count += zone_page_state(zone, NR_FREE_PAGES);
1723 	}
1724 	avail_normal = count;
1725 	count += highmem;
1726 	count -= totalreserve_pages;
1727 
1728 	/* Add number of pages required for page keys (s390 only). */
1729 	size += page_key_additional_pages(saveable);
1730 
1731 	/* Compute the maximum number of saveable pages to leave in memory. */
1732 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1733 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1734 	/* Compute the desired number of image pages specified by image_size. */
1735 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1736 	if (size > max_size)
1737 		size = max_size;
1738 	/*
1739 	 * If the desired number of image pages is at least as large as the
1740 	 * current number of saveable pages in memory, allocate page frames for
1741 	 * the image and we're done.
1742 	 */
1743 	if (size >= saveable) {
1744 		pages = preallocate_image_highmem(save_highmem);
1745 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1746 		goto out;
1747 	}
1748 
1749 	/* Estimate the minimum size of the image. */
1750 	pages = minimum_image_size(saveable);
1751 	/*
1752 	 * To avoid excessive pressure on the normal zone, leave room in it to
1753 	 * accommodate an image of the minimum size (unless it's already too
1754 	 * small, in which case don't preallocate pages from it at all).
1755 	 */
1756 	if (avail_normal > pages)
1757 		avail_normal -= pages;
1758 	else
1759 		avail_normal = 0;
1760 	if (size < pages)
1761 		size = min_t(unsigned long, pages, max_size);
1762 
1763 	/*
1764 	 * Let the memory management subsystem know that we're going to need a
1765 	 * large number of page frames to allocate and make it free some memory.
1766 	 * NOTE: If this is not done, performance will be hurt badly in some
1767 	 * test cases.
1768 	 */
1769 	shrink_all_memory(saveable - size);
1770 
1771 	/*
1772 	 * The number of saveable pages in memory was too high, so apply some
1773 	 * pressure to decrease it.  First, make room for the largest possible
1774 	 * image and fail if that doesn't work.  Next, try to decrease the size
1775 	 * of the image as much as indicated by 'size' using allocations from
1776 	 * highmem and non-highmem zones separately.
1777 	 */
1778 	pages_highmem = preallocate_image_highmem(highmem / 2);
1779 	alloc = count - max_size;
1780 	if (alloc > pages_highmem)
1781 		alloc -= pages_highmem;
1782 	else
1783 		alloc = 0;
1784 	pages = preallocate_image_memory(alloc, avail_normal);
1785 	if (pages < alloc) {
1786 		/* We have exhausted non-highmem pages, try highmem. */
1787 		alloc -= pages;
1788 		pages += pages_highmem;
1789 		pages_highmem = preallocate_image_highmem(alloc);
1790 		if (pages_highmem < alloc)
1791 			goto err_out;
1792 		pages += pages_highmem;
1793 		/*
1794 		 * size is the desired number of saveable pages to leave in
1795 		 * memory, so try to preallocate (all memory - size) pages.
1796 		 */
1797 		alloc = (count - pages) - size;
1798 		pages += preallocate_image_highmem(alloc);
1799 	} else {
1800 		/*
1801 		 * There are approximately max_size saveable pages at this point
1802 		 * and we want to reduce this number down to size.
1803 		 */
1804 		alloc = max_size - size;
1805 		size = preallocate_highmem_fraction(alloc, highmem, count);
1806 		pages_highmem += size;
1807 		alloc -= size;
1808 		size = preallocate_image_memory(alloc, avail_normal);
1809 		pages_highmem += preallocate_image_highmem(alloc - size);
1810 		pages += pages_highmem + size;
1811 	}
1812 
1813 	/*
1814 	 * We only need as many page frames for the image as there are saveable
1815 	 * pages in memory, but we have allocated more.  Release the excessive
1816 	 * ones now.
1817 	 */
1818 	pages -= free_unnecessary_pages();
1819 
1820  out:
1821 	stop = ktime_get();
1822 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1823 	swsusp_show_speed(start, stop, pages, "Allocated");
1824 
1825 	return 0;
1826 
1827  err_out:
1828 	printk(KERN_CONT "\n");
1829 	swsusp_free();
1830 	return -ENOMEM;
1831 }
1832 
1833 #ifdef CONFIG_HIGHMEM
1834 /**
1835  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1836  *
1837  * Compute the number of non-highmem pages that will be necessary for creating
1838  * copies of highmem pages.
1839  */
1840 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1841 {
1842 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1843 
1844 	if (free_highmem >= nr_highmem)
1845 		nr_highmem = 0;
1846 	else
1847 		nr_highmem -= free_highmem;
1848 
1849 	return nr_highmem;
1850 }
1851 #else
1852 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1853 #endif /* CONFIG_HIGHMEM */
1854 
1855 /**
1856  * enough_free_mem - Check if there is enough free memory for the image.
1857  */
1858 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1859 {
1860 	struct zone *zone;
1861 	unsigned int free = alloc_normal;
1862 
1863 	for_each_populated_zone(zone)
1864 		if (!is_highmem(zone))
1865 			free += zone_page_state(zone, NR_FREE_PAGES);
1866 
1867 	nr_pages += count_pages_for_highmem(nr_highmem);
1868 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1869 		nr_pages, PAGES_FOR_IO, free);
1870 
1871 	return free > nr_pages + PAGES_FOR_IO;
1872 }
1873 
1874 #ifdef CONFIG_HIGHMEM
1875 /**
1876  * get_highmem_buffer - Allocate a buffer for highmem pages.
1877  *
1878  * If there are some highmem pages in the hibernation image, we may need a
1879  * buffer to copy them and/or load their data.
1880  */
1881 static inline int get_highmem_buffer(int safe_needed)
1882 {
1883 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1884 	return buffer ? 0 : -ENOMEM;
1885 }
1886 
1887 /**
1888  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1889  *
1890  * Try to allocate as many pages as needed, but if the number of free highmem
1891  * pages is less than that, allocate them all.
1892  */
1893 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1894 					       unsigned int nr_highmem)
1895 {
1896 	unsigned int to_alloc = count_free_highmem_pages();
1897 
1898 	if (to_alloc > nr_highmem)
1899 		to_alloc = nr_highmem;
1900 
1901 	nr_highmem -= to_alloc;
1902 	while (to_alloc-- > 0) {
1903 		struct page *page;
1904 
1905 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1906 		memory_bm_set_bit(bm, page_to_pfn(page));
1907 	}
1908 	return nr_highmem;
1909 }
1910 #else
1911 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1912 
1913 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1914 					       unsigned int n) { return 0; }
1915 #endif /* CONFIG_HIGHMEM */
1916 
1917 /**
1918  * swsusp_alloc - Allocate memory for hibernation image.
1919  *
1920  * We first try to allocate as many highmem pages as there are
1921  * saveable highmem pages in the system.  If that fails, we allocate
1922  * non-highmem pages for the copies of the remaining highmem ones.
1923  *
1924  * In this approach it is likely that the copies of highmem pages will
1925  * also be located in the high memory, because of the way in which
1926  * copy_data_pages() works.
1927  */
1928 static int swsusp_alloc(struct memory_bitmap *orig_bm,
1929 			struct memory_bitmap *copy_bm,
1930 			unsigned int nr_pages, unsigned int nr_highmem)
1931 {
1932 	if (nr_highmem > 0) {
1933 		if (get_highmem_buffer(PG_ANY))
1934 			goto err_out;
1935 		if (nr_highmem > alloc_highmem) {
1936 			nr_highmem -= alloc_highmem;
1937 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1938 		}
1939 	}
1940 	if (nr_pages > alloc_normal) {
1941 		nr_pages -= alloc_normal;
1942 		while (nr_pages-- > 0) {
1943 			struct page *page;
1944 
1945 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1946 			if (!page)
1947 				goto err_out;
1948 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1949 		}
1950 	}
1951 
1952 	return 0;
1953 
1954  err_out:
1955 	swsusp_free();
1956 	return -ENOMEM;
1957 }
1958 
1959 asmlinkage __visible int swsusp_save(void)
1960 {
1961 	unsigned int nr_pages, nr_highmem;
1962 
1963 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1964 
1965 	drain_local_pages(NULL);
1966 	nr_pages = count_data_pages();
1967 	nr_highmem = count_highmem_pages();
1968 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1969 
1970 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1971 		printk(KERN_ERR "PM: Not enough free memory\n");
1972 		return -ENOMEM;
1973 	}
1974 
1975 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1976 		printk(KERN_ERR "PM: Memory allocation failed\n");
1977 		return -ENOMEM;
1978 	}
1979 
1980 	/*
1981 	 * During allocating of suspend pagedir, new cold pages may appear.
1982 	 * Kill them.
1983 	 */
1984 	drain_local_pages(NULL);
1985 	copy_data_pages(&copy_bm, &orig_bm);
1986 
1987 	/*
1988 	 * End of critical section. From now on, we can write to memory,
1989 	 * but we should not touch disk. This specially means we must _not_
1990 	 * touch swap space! Except we must write out our image of course.
1991 	 */
1992 
1993 	nr_pages += nr_highmem;
1994 	nr_copy_pages = nr_pages;
1995 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1996 
1997 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1998 		nr_pages);
1999 
2000 	return 0;
2001 }
2002 
2003 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004 static int init_header_complete(struct swsusp_info *info)
2005 {
2006 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007 	info->version_code = LINUX_VERSION_CODE;
2008 	return 0;
2009 }
2010 
2011 static char *check_image_kernel(struct swsusp_info *info)
2012 {
2013 	if (info->version_code != LINUX_VERSION_CODE)
2014 		return "kernel version";
2015 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016 		return "system type";
2017 	if (strcmp(info->uts.release,init_utsname()->release))
2018 		return "kernel release";
2019 	if (strcmp(info->uts.version,init_utsname()->version))
2020 		return "version";
2021 	if (strcmp(info->uts.machine,init_utsname()->machine))
2022 		return "machine";
2023 	return NULL;
2024 }
2025 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026 
2027 unsigned long snapshot_get_image_size(void)
2028 {
2029 	return nr_copy_pages + nr_meta_pages + 1;
2030 }
2031 
2032 static int init_header(struct swsusp_info *info)
2033 {
2034 	memset(info, 0, sizeof(struct swsusp_info));
2035 	info->num_physpages = get_num_physpages();
2036 	info->image_pages = nr_copy_pages;
2037 	info->pages = snapshot_get_image_size();
2038 	info->size = info->pages;
2039 	info->size <<= PAGE_SHIFT;
2040 	return init_header_complete(info);
2041 }
2042 
2043 /**
2044  * pack_pfns - Prepare PFNs for saving.
2045  * @bm: Memory bitmap.
2046  * @buf: Memory buffer to store the PFNs in.
2047  *
2048  * PFNs corresponding to set bits in @bm are stored in the area of memory
2049  * pointed to by @buf (1 page at a time).
2050  */
2051 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2052 {
2053 	int j;
2054 
2055 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056 		buf[j] = memory_bm_next_pfn(bm);
2057 		if (unlikely(buf[j] == BM_END_OF_MAP))
2058 			break;
2059 		/* Save page key for data page (s390 only). */
2060 		page_key_read(buf + j);
2061 	}
2062 }
2063 
2064 /**
2065  * snapshot_read_next - Get the address to read the next image page from.
2066  * @handle: Snapshot handle to be used for the reading.
2067  *
2068  * On the first call, @handle should point to a zeroed snapshot_handle
2069  * structure.  The structure gets populated then and a pointer to it should be
2070  * passed to this function every next time.
2071  *
2072  * On success, the function returns a positive number.  Then, the caller
2073  * is allowed to read up to the returned number of bytes from the memory
2074  * location computed by the data_of() macro.
2075  *
2076  * The function returns 0 to indicate the end of the data stream condition,
2077  * and negative numbers are returned on errors.  If that happens, the structure
2078  * pointed to by @handle is not updated and should not be used any more.
2079  */
2080 int snapshot_read_next(struct snapshot_handle *handle)
2081 {
2082 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083 		return 0;
2084 
2085 	if (!buffer) {
2086 		/* This makes the buffer be freed by swsusp_free() */
2087 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088 		if (!buffer)
2089 			return -ENOMEM;
2090 	}
2091 	if (!handle->cur) {
2092 		int error;
2093 
2094 		error = init_header((struct swsusp_info *)buffer);
2095 		if (error)
2096 			return error;
2097 		handle->buffer = buffer;
2098 		memory_bm_position_reset(&orig_bm);
2099 		memory_bm_position_reset(&copy_bm);
2100 	} else if (handle->cur <= nr_meta_pages) {
2101 		clear_page(buffer);
2102 		pack_pfns(buffer, &orig_bm);
2103 	} else {
2104 		struct page *page;
2105 
2106 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107 		if (PageHighMem(page)) {
2108 			/*
2109 			 * Highmem pages are copied to the buffer,
2110 			 * because we can't return with a kmapped
2111 			 * highmem page (we may not be called again).
2112 			 */
2113 			void *kaddr;
2114 
2115 			kaddr = kmap_atomic(page);
2116 			copy_page(buffer, kaddr);
2117 			kunmap_atomic(kaddr);
2118 			handle->buffer = buffer;
2119 		} else {
2120 			handle->buffer = page_address(page);
2121 		}
2122 	}
2123 	handle->cur++;
2124 	return PAGE_SIZE;
2125 }
2126 
2127 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128 				    struct memory_bitmap *src)
2129 {
2130 	unsigned long pfn;
2131 
2132 	memory_bm_position_reset(src);
2133 	pfn = memory_bm_next_pfn(src);
2134 	while (pfn != BM_END_OF_MAP) {
2135 		memory_bm_set_bit(dst, pfn);
2136 		pfn = memory_bm_next_pfn(src);
2137 	}
2138 }
2139 
2140 /**
2141  * mark_unsafe_pages - Mark pages that were used before hibernation.
2142  *
2143  * Mark the pages that cannot be used for storing the image during restoration,
2144  * because they conflict with the pages that had been used before hibernation.
2145  */
2146 static void mark_unsafe_pages(struct memory_bitmap *bm)
2147 {
2148 	unsigned long pfn;
2149 
2150 	/* Clear the "free"/"unsafe" bit for all PFNs */
2151 	memory_bm_position_reset(free_pages_map);
2152 	pfn = memory_bm_next_pfn(free_pages_map);
2153 	while (pfn != BM_END_OF_MAP) {
2154 		memory_bm_clear_current(free_pages_map);
2155 		pfn = memory_bm_next_pfn(free_pages_map);
2156 	}
2157 
2158 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159 	duplicate_memory_bitmap(free_pages_map, bm);
2160 
2161 	allocated_unsafe_pages = 0;
2162 }
2163 
2164 static int check_header(struct swsusp_info *info)
2165 {
2166 	char *reason;
2167 
2168 	reason = check_image_kernel(info);
2169 	if (!reason && info->num_physpages != get_num_physpages())
2170 		reason = "memory size";
2171 	if (reason) {
2172 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2173 		return -EPERM;
2174 	}
2175 	return 0;
2176 }
2177 
2178 /**
2179  * load header - Check the image header and copy the data from it.
2180  */
2181 static int load_header(struct swsusp_info *info)
2182 {
2183 	int error;
2184 
2185 	restore_pblist = NULL;
2186 	error = check_header(info);
2187 	if (!error) {
2188 		nr_copy_pages = info->image_pages;
2189 		nr_meta_pages = info->pages - info->image_pages - 1;
2190 	}
2191 	return error;
2192 }
2193 
2194 /**
2195  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196  * @bm: Memory bitmap.
2197  * @buf: Area of memory containing the PFNs.
2198  *
2199  * For each element of the array pointed to by @buf (1 page at a time), set the
2200  * corresponding bit in @bm.
2201  */
2202 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203 {
2204 	int j;
2205 
2206 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207 		if (unlikely(buf[j] == BM_END_OF_MAP))
2208 			break;
2209 
2210 		/* Extract and buffer page key for data page (s390 only). */
2211 		page_key_memorize(buf + j);
2212 
2213 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214 			memory_bm_set_bit(bm, buf[j]);
2215 		else
2216 			return -EFAULT;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 #ifdef CONFIG_HIGHMEM
2223 /*
2224  * struct highmem_pbe is used for creating the list of highmem pages that
2225  * should be restored atomically during the resume from disk, because the page
2226  * frames they have occupied before the suspend are in use.
2227  */
2228 struct highmem_pbe {
2229 	struct page *copy_page;	/* data is here now */
2230 	struct page *orig_page;	/* data was here before the suspend */
2231 	struct highmem_pbe *next;
2232 };
2233 
2234 /*
2235  * List of highmem PBEs needed for restoring the highmem pages that were
2236  * allocated before the suspend and included in the suspend image, but have
2237  * also been allocated by the "resume" kernel, so their contents cannot be
2238  * written directly to their "original" page frames.
2239  */
2240 static struct highmem_pbe *highmem_pblist;
2241 
2242 /**
2243  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244  * @bm: Memory bitmap.
2245  *
2246  * The bits in @bm that correspond to image pages are assumed to be set.
2247  */
2248 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249 {
2250 	unsigned long pfn;
2251 	unsigned int cnt = 0;
2252 
2253 	memory_bm_position_reset(bm);
2254 	pfn = memory_bm_next_pfn(bm);
2255 	while (pfn != BM_END_OF_MAP) {
2256 		if (PageHighMem(pfn_to_page(pfn)))
2257 			cnt++;
2258 
2259 		pfn = memory_bm_next_pfn(bm);
2260 	}
2261 	return cnt;
2262 }
2263 
2264 static unsigned int safe_highmem_pages;
2265 
2266 static struct memory_bitmap *safe_highmem_bm;
2267 
2268 /**
2269  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270  * @bm: Pointer to an uninitialized memory bitmap structure.
2271  * @nr_highmem_p: Pointer to the number of highmem image pages.
2272  *
2273  * Try to allocate as many highmem pages as there are highmem image pages
2274  * (@nr_highmem_p points to the variable containing the number of highmem image
2275  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276  * hibernation image is restored entirely) have the corresponding bits set in
2277  * @bm (it must be unitialized).
2278  *
2279  * NOTE: This function should not be called if there are no highmem image pages.
2280  */
2281 static int prepare_highmem_image(struct memory_bitmap *bm,
2282 				 unsigned int *nr_highmem_p)
2283 {
2284 	unsigned int to_alloc;
2285 
2286 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287 		return -ENOMEM;
2288 
2289 	if (get_highmem_buffer(PG_SAFE))
2290 		return -ENOMEM;
2291 
2292 	to_alloc = count_free_highmem_pages();
2293 	if (to_alloc > *nr_highmem_p)
2294 		to_alloc = *nr_highmem_p;
2295 	else
2296 		*nr_highmem_p = to_alloc;
2297 
2298 	safe_highmem_pages = 0;
2299 	while (to_alloc-- > 0) {
2300 		struct page *page;
2301 
2302 		page = alloc_page(__GFP_HIGHMEM);
2303 		if (!swsusp_page_is_free(page)) {
2304 			/* The page is "safe", set its bit the bitmap */
2305 			memory_bm_set_bit(bm, page_to_pfn(page));
2306 			safe_highmem_pages++;
2307 		}
2308 		/* Mark the page as allocated */
2309 		swsusp_set_page_forbidden(page);
2310 		swsusp_set_page_free(page);
2311 	}
2312 	memory_bm_position_reset(bm);
2313 	safe_highmem_bm = bm;
2314 	return 0;
2315 }
2316 
2317 static struct page *last_highmem_page;
2318 
2319 /**
2320  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321  *
2322  * For a given highmem image page get a buffer that suspend_write_next() should
2323  * return to its caller to write to.
2324  *
2325  * If the page is to be saved to its "original" page frame or a copy of
2326  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327  * the copy of the page is to be made in normal memory, so the address of
2328  * the copy is returned.
2329  *
2330  * If @buffer is returned, the caller of suspend_write_next() will write
2331  * the page's contents to @buffer, so they will have to be copied to the
2332  * right location on the next call to suspend_write_next() and it is done
2333  * with the help of copy_last_highmem_page().  For this purpose, if
2334  * @buffer is returned, @last_highmem_page is set to the page to which
2335  * the data will have to be copied from @buffer.
2336  */
2337 static void *get_highmem_page_buffer(struct page *page,
2338 				     struct chain_allocator *ca)
2339 {
2340 	struct highmem_pbe *pbe;
2341 	void *kaddr;
2342 
2343 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344 		/*
2345 		 * We have allocated the "original" page frame and we can
2346 		 * use it directly to store the loaded page.
2347 		 */
2348 		last_highmem_page = page;
2349 		return buffer;
2350 	}
2351 	/*
2352 	 * The "original" page frame has not been allocated and we have to
2353 	 * use a "safe" page frame to store the loaded page.
2354 	 */
2355 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356 	if (!pbe) {
2357 		swsusp_free();
2358 		return ERR_PTR(-ENOMEM);
2359 	}
2360 	pbe->orig_page = page;
2361 	if (safe_highmem_pages > 0) {
2362 		struct page *tmp;
2363 
2364 		/* Copy of the page will be stored in high memory */
2365 		kaddr = buffer;
2366 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367 		safe_highmem_pages--;
2368 		last_highmem_page = tmp;
2369 		pbe->copy_page = tmp;
2370 	} else {
2371 		/* Copy of the page will be stored in normal memory */
2372 		kaddr = safe_pages_list;
2373 		safe_pages_list = safe_pages_list->next;
2374 		pbe->copy_page = virt_to_page(kaddr);
2375 	}
2376 	pbe->next = highmem_pblist;
2377 	highmem_pblist = pbe;
2378 	return kaddr;
2379 }
2380 
2381 /**
2382  * copy_last_highmem_page - Copy most the most recent highmem image page.
2383  *
2384  * Copy the contents of a highmem image from @buffer, where the caller of
2385  * snapshot_write_next() has stored them, to the right location represented by
2386  * @last_highmem_page .
2387  */
2388 static void copy_last_highmem_page(void)
2389 {
2390 	if (last_highmem_page) {
2391 		void *dst;
2392 
2393 		dst = kmap_atomic(last_highmem_page);
2394 		copy_page(dst, buffer);
2395 		kunmap_atomic(dst);
2396 		last_highmem_page = NULL;
2397 	}
2398 }
2399 
2400 static inline int last_highmem_page_copied(void)
2401 {
2402 	return !last_highmem_page;
2403 }
2404 
2405 static inline void free_highmem_data(void)
2406 {
2407 	if (safe_highmem_bm)
2408 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409 
2410 	if (buffer)
2411 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412 }
2413 #else
2414 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415 
2416 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417 					unsigned int *nr_highmem_p) { return 0; }
2418 
2419 static inline void *get_highmem_page_buffer(struct page *page,
2420 					    struct chain_allocator *ca)
2421 {
2422 	return ERR_PTR(-EINVAL);
2423 }
2424 
2425 static inline void copy_last_highmem_page(void) {}
2426 static inline int last_highmem_page_copied(void) { return 1; }
2427 static inline void free_highmem_data(void) {}
2428 #endif /* CONFIG_HIGHMEM */
2429 
2430 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431 
2432 /**
2433  * prepare_image - Make room for loading hibernation image.
2434  * @new_bm: Unitialized memory bitmap structure.
2435  * @bm: Memory bitmap with unsafe pages marked.
2436  *
2437  * Use @bm to mark the pages that will be overwritten in the process of
2438  * restoring the system memory state from the suspend image ("unsafe" pages)
2439  * and allocate memory for the image.
2440  *
2441  * The idea is to allocate a new memory bitmap first and then allocate
2442  * as many pages as needed for image data, but without specifying what those
2443  * pages will be used for just yet.  Instead, we mark them all as allocated and
2444  * create a lists of "safe" pages to be used later.  On systems with high
2445  * memory a list of "safe" highmem pages is created too.
2446  */
2447 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2448 {
2449 	unsigned int nr_pages, nr_highmem;
2450 	struct linked_page *lp;
2451 	int error;
2452 
2453 	/* If there is no highmem, the buffer will not be necessary */
2454 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455 	buffer = NULL;
2456 
2457 	nr_highmem = count_highmem_image_pages(bm);
2458 	mark_unsafe_pages(bm);
2459 
2460 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461 	if (error)
2462 		goto Free;
2463 
2464 	duplicate_memory_bitmap(new_bm, bm);
2465 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466 	if (nr_highmem > 0) {
2467 		error = prepare_highmem_image(bm, &nr_highmem);
2468 		if (error)
2469 			goto Free;
2470 	}
2471 	/*
2472 	 * Reserve some safe pages for potential later use.
2473 	 *
2474 	 * NOTE: This way we make sure there will be enough safe pages for the
2475 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477 	 *
2478 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479 	 */
2480 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482 	while (nr_pages > 0) {
2483 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484 		if (!lp) {
2485 			error = -ENOMEM;
2486 			goto Free;
2487 		}
2488 		lp->next = safe_pages_list;
2489 		safe_pages_list = lp;
2490 		nr_pages--;
2491 	}
2492 	/* Preallocate memory for the image */
2493 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494 	while (nr_pages > 0) {
2495 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496 		if (!lp) {
2497 			error = -ENOMEM;
2498 			goto Free;
2499 		}
2500 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501 			/* The page is "safe", add it to the list */
2502 			lp->next = safe_pages_list;
2503 			safe_pages_list = lp;
2504 		}
2505 		/* Mark the page as allocated */
2506 		swsusp_set_page_forbidden(virt_to_page(lp));
2507 		swsusp_set_page_free(virt_to_page(lp));
2508 		nr_pages--;
2509 	}
2510 	return 0;
2511 
2512  Free:
2513 	swsusp_free();
2514 	return error;
2515 }
2516 
2517 /**
2518  * get_buffer - Get the address to store the next image data page.
2519  *
2520  * Get the address that snapshot_write_next() should return to its caller to
2521  * write to.
2522  */
2523 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524 {
2525 	struct pbe *pbe;
2526 	struct page *page;
2527 	unsigned long pfn = memory_bm_next_pfn(bm);
2528 
2529 	if (pfn == BM_END_OF_MAP)
2530 		return ERR_PTR(-EFAULT);
2531 
2532 	page = pfn_to_page(pfn);
2533 	if (PageHighMem(page))
2534 		return get_highmem_page_buffer(page, ca);
2535 
2536 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537 		/*
2538 		 * We have allocated the "original" page frame and we can
2539 		 * use it directly to store the loaded page.
2540 		 */
2541 		return page_address(page);
2542 
2543 	/*
2544 	 * The "original" page frame has not been allocated and we have to
2545 	 * use a "safe" page frame to store the loaded page.
2546 	 */
2547 	pbe = chain_alloc(ca, sizeof(struct pbe));
2548 	if (!pbe) {
2549 		swsusp_free();
2550 		return ERR_PTR(-ENOMEM);
2551 	}
2552 	pbe->orig_address = page_address(page);
2553 	pbe->address = safe_pages_list;
2554 	safe_pages_list = safe_pages_list->next;
2555 	pbe->next = restore_pblist;
2556 	restore_pblist = pbe;
2557 	return pbe->address;
2558 }
2559 
2560 /**
2561  * snapshot_write_next - Get the address to store the next image page.
2562  * @handle: Snapshot handle structure to guide the writing.
2563  *
2564  * On the first call, @handle should point to a zeroed snapshot_handle
2565  * structure.  The structure gets populated then and a pointer to it should be
2566  * passed to this function every next time.
2567  *
2568  * On success, the function returns a positive number.  Then, the caller
2569  * is allowed to write up to the returned number of bytes to the memory
2570  * location computed by the data_of() macro.
2571  *
2572  * The function returns 0 to indicate the "end of file" condition.  Negative
2573  * numbers are returned on errors, in which cases the structure pointed to by
2574  * @handle is not updated and should not be used any more.
2575  */
2576 int snapshot_write_next(struct snapshot_handle *handle)
2577 {
2578 	static struct chain_allocator ca;
2579 	int error = 0;
2580 
2581 	/* Check if we have already loaded the entire image */
2582 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583 		return 0;
2584 
2585 	handle->sync_read = 1;
2586 
2587 	if (!handle->cur) {
2588 		if (!buffer)
2589 			/* This makes the buffer be freed by swsusp_free() */
2590 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591 
2592 		if (!buffer)
2593 			return -ENOMEM;
2594 
2595 		handle->buffer = buffer;
2596 	} else if (handle->cur == 1) {
2597 		error = load_header(buffer);
2598 		if (error)
2599 			return error;
2600 
2601 		safe_pages_list = NULL;
2602 
2603 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604 		if (error)
2605 			return error;
2606 
2607 		/* Allocate buffer for page keys. */
2608 		error = page_key_alloc(nr_copy_pages);
2609 		if (error)
2610 			return error;
2611 
2612 		hibernate_restore_protection_begin();
2613 	} else if (handle->cur <= nr_meta_pages + 1) {
2614 		error = unpack_orig_pfns(buffer, &copy_bm);
2615 		if (error)
2616 			return error;
2617 
2618 		if (handle->cur == nr_meta_pages + 1) {
2619 			error = prepare_image(&orig_bm, &copy_bm);
2620 			if (error)
2621 				return error;
2622 
2623 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624 			memory_bm_position_reset(&orig_bm);
2625 			restore_pblist = NULL;
2626 			handle->buffer = get_buffer(&orig_bm, &ca);
2627 			handle->sync_read = 0;
2628 			if (IS_ERR(handle->buffer))
2629 				return PTR_ERR(handle->buffer);
2630 		}
2631 	} else {
2632 		copy_last_highmem_page();
2633 		/* Restore page key for data page (s390 only). */
2634 		page_key_write(handle->buffer);
2635 		hibernate_restore_protect_page(handle->buffer);
2636 		handle->buffer = get_buffer(&orig_bm, &ca);
2637 		if (IS_ERR(handle->buffer))
2638 			return PTR_ERR(handle->buffer);
2639 		if (handle->buffer != buffer)
2640 			handle->sync_read = 0;
2641 	}
2642 	handle->cur++;
2643 	return PAGE_SIZE;
2644 }
2645 
2646 /**
2647  * snapshot_write_finalize - Complete the loading of a hibernation image.
2648  *
2649  * Must be called after the last call to snapshot_write_next() in case the last
2650  * page in the image happens to be a highmem page and its contents should be
2651  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652  * necessary any more.
2653  */
2654 void snapshot_write_finalize(struct snapshot_handle *handle)
2655 {
2656 	copy_last_highmem_page();
2657 	/* Restore page key for data page (s390 only). */
2658 	page_key_write(handle->buffer);
2659 	page_key_free();
2660 	hibernate_restore_protect_page(handle->buffer);
2661 	/* Do that only if we have loaded the image entirely */
2662 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663 		memory_bm_recycle(&orig_bm);
2664 		free_highmem_data();
2665 	}
2666 }
2667 
2668 int snapshot_image_loaded(struct snapshot_handle *handle)
2669 {
2670 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671 			handle->cur <= nr_meta_pages + nr_copy_pages);
2672 }
2673 
2674 #ifdef CONFIG_HIGHMEM
2675 /* Assumes that @buf is ready and points to a "safe" page */
2676 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677 				       void *buf)
2678 {
2679 	void *kaddr1, *kaddr2;
2680 
2681 	kaddr1 = kmap_atomic(p1);
2682 	kaddr2 = kmap_atomic(p2);
2683 	copy_page(buf, kaddr1);
2684 	copy_page(kaddr1, kaddr2);
2685 	copy_page(kaddr2, buf);
2686 	kunmap_atomic(kaddr2);
2687 	kunmap_atomic(kaddr1);
2688 }
2689 
2690 /**
2691  * restore_highmem - Put highmem image pages into their original locations.
2692  *
2693  * For each highmem page that was in use before hibernation and is included in
2694  * the image, and also has been allocated by the "restore" kernel, swap its
2695  * current contents with the previous (ie. "before hibernation") ones.
2696  *
2697  * If the restore eventually fails, we can call this function once again and
2698  * restore the highmem state as seen by the restore kernel.
2699  */
2700 int restore_highmem(void)
2701 {
2702 	struct highmem_pbe *pbe = highmem_pblist;
2703 	void *buf;
2704 
2705 	if (!pbe)
2706 		return 0;
2707 
2708 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709 	if (!buf)
2710 		return -ENOMEM;
2711 
2712 	while (pbe) {
2713 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714 		pbe = pbe->next;
2715 	}
2716 	free_image_page(buf, PG_UNSAFE_CLEAR);
2717 	return 0;
2718 }
2719 #endif /* CONFIG_HIGHMEM */
2720