1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 static int swsusp_page_is_free(struct page *); 38 static void swsusp_set_page_forbidden(struct page *); 39 static void swsusp_unset_page_forbidden(struct page *); 40 41 /* List of PBEs needed for restoring the pages that were allocated before 42 * the suspend and included in the suspend image, but have also been 43 * allocated by the "resume" kernel, so their contents cannot be written 44 * directly to their "original" page frames. 45 */ 46 struct pbe *restore_pblist; 47 48 /* Pointer to an auxiliary buffer (1 page) */ 49 static void *buffer; 50 51 /** 52 * @safe_needed - on resume, for storing the PBE list and the image, 53 * we can only use memory pages that do not conflict with the pages 54 * used before suspend. The unsafe pages have PageNosaveFree set 55 * and we count them using unsafe_pages. 56 * 57 * Each allocated image page is marked as PageNosave and PageNosaveFree 58 * so that swsusp_free() can release it. 59 */ 60 61 #define PG_ANY 0 62 #define PG_SAFE 1 63 #define PG_UNSAFE_CLEAR 1 64 #define PG_UNSAFE_KEEP 0 65 66 static unsigned int allocated_unsafe_pages; 67 68 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 69 { 70 void *res; 71 72 res = (void *)get_zeroed_page(gfp_mask); 73 if (safe_needed) 74 while (res && swsusp_page_is_free(virt_to_page(res))) { 75 /* The page is unsafe, mark it for swsusp_free() */ 76 swsusp_set_page_forbidden(virt_to_page(res)); 77 allocated_unsafe_pages++; 78 res = (void *)get_zeroed_page(gfp_mask); 79 } 80 if (res) { 81 swsusp_set_page_forbidden(virt_to_page(res)); 82 swsusp_set_page_free(virt_to_page(res)); 83 } 84 return res; 85 } 86 87 unsigned long get_safe_page(gfp_t gfp_mask) 88 { 89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 90 } 91 92 static struct page *alloc_image_page(gfp_t gfp_mask) 93 { 94 struct page *page; 95 96 page = alloc_page(gfp_mask); 97 if (page) { 98 swsusp_set_page_forbidden(page); 99 swsusp_set_page_free(page); 100 } 101 return page; 102 } 103 104 /** 105 * free_image_page - free page represented by @addr, allocated with 106 * get_image_page (page flags set by it must be cleared) 107 */ 108 109 static inline void free_image_page(void *addr, int clear_nosave_free) 110 { 111 struct page *page; 112 113 BUG_ON(!virt_addr_valid(addr)); 114 115 page = virt_to_page(addr); 116 117 swsusp_unset_page_forbidden(page); 118 if (clear_nosave_free) 119 swsusp_unset_page_free(page); 120 121 __free_page(page); 122 } 123 124 /* struct linked_page is used to build chains of pages */ 125 126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 127 128 struct linked_page { 129 struct linked_page *next; 130 char data[LINKED_PAGE_DATA_SIZE]; 131 } __attribute__((packed)); 132 133 static inline void 134 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 135 { 136 while (list) { 137 struct linked_page *lp = list->next; 138 139 free_image_page(list, clear_page_nosave); 140 list = lp; 141 } 142 } 143 144 /** 145 * struct chain_allocator is used for allocating small objects out of 146 * a linked list of pages called 'the chain'. 147 * 148 * The chain grows each time when there is no room for a new object in 149 * the current page. The allocated objects cannot be freed individually. 150 * It is only possible to free them all at once, by freeing the entire 151 * chain. 152 * 153 * NOTE: The chain allocator may be inefficient if the allocated objects 154 * are not much smaller than PAGE_SIZE. 155 */ 156 157 struct chain_allocator { 158 struct linked_page *chain; /* the chain */ 159 unsigned int used_space; /* total size of objects allocated out 160 * of the current page 161 */ 162 gfp_t gfp_mask; /* mask for allocating pages */ 163 int safe_needed; /* if set, only "safe" pages are allocated */ 164 }; 165 166 static void 167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 168 { 169 ca->chain = NULL; 170 ca->used_space = LINKED_PAGE_DATA_SIZE; 171 ca->gfp_mask = gfp_mask; 172 ca->safe_needed = safe_needed; 173 } 174 175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 176 { 177 void *ret; 178 179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 180 struct linked_page *lp; 181 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 183 if (!lp) 184 return NULL; 185 186 lp->next = ca->chain; 187 ca->chain = lp; 188 ca->used_space = 0; 189 } 190 ret = ca->chain->data + ca->used_space; 191 ca->used_space += size; 192 return ret; 193 } 194 195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 196 { 197 free_list_of_pages(ca->chain, clear_page_nosave); 198 memset(ca, 0, sizeof(struct chain_allocator)); 199 } 200 201 /** 202 * Data types related to memory bitmaps. 203 * 204 * Memory bitmap is a structure consiting of many linked lists of 205 * objects. The main list's elements are of type struct zone_bitmap 206 * and each of them corresonds to one zone. For each zone bitmap 207 * object there is a list of objects of type struct bm_block that 208 * represent each blocks of bit chunks in which information is 209 * stored. 210 * 211 * struct memory_bitmap contains a pointer to the main list of zone 212 * bitmap objects, a struct bm_position used for browsing the bitmap, 213 * and a pointer to the list of pages used for allocating all of the 214 * zone bitmap objects and bitmap block objects. 215 * 216 * NOTE: It has to be possible to lay out the bitmap in memory 217 * using only allocations of order 0. Additionally, the bitmap is 218 * designed to work with arbitrary number of zones (this is over the 219 * top for now, but let's avoid making unnecessary assumptions ;-). 220 * 221 * struct zone_bitmap contains a pointer to a list of bitmap block 222 * objects and a pointer to the bitmap block object that has been 223 * most recently used for setting bits. Additionally, it contains the 224 * pfns that correspond to the start and end of the represented zone. 225 * 226 * struct bm_block contains a pointer to the memory page in which 227 * information is stored (in the form of a block of bit chunks 228 * of type unsigned long each). It also contains the pfns that 229 * correspond to the start and end of the represented memory area and 230 * the number of bit chunks in the block. 231 */ 232 233 #define BM_END_OF_MAP (~0UL) 234 235 #define BM_CHUNKS_PER_BLOCK (PAGE_SIZE / sizeof(long)) 236 #define BM_BITS_PER_CHUNK (sizeof(long) << 3) 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 238 239 struct bm_block { 240 struct bm_block *next; /* next element of the list */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned int size; /* number of bit chunks */ 244 unsigned long *data; /* chunks of bits representing pages */ 245 }; 246 247 struct zone_bitmap { 248 struct zone_bitmap *next; /* next element of the list */ 249 unsigned long start_pfn; /* minimal pfn in this zone */ 250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 251 struct bm_block *bm_blocks; /* list of bitmap blocks */ 252 struct bm_block *cur_block; /* recently used bitmap block */ 253 }; 254 255 /* strcut bm_position is used for browsing memory bitmaps */ 256 257 struct bm_position { 258 struct zone_bitmap *zone_bm; 259 struct bm_block *block; 260 int chunk; 261 int bit; 262 }; 263 264 struct memory_bitmap { 265 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 266 struct linked_page *p_list; /* list of pages used to store zone 267 * bitmap objects and bitmap block 268 * objects 269 */ 270 struct bm_position cur; /* most recently used bit position */ 271 }; 272 273 /* Functions that operate on memory bitmaps */ 274 275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm) 276 { 277 bm->cur.chunk = 0; 278 bm->cur.bit = -1; 279 } 280 281 static void memory_bm_position_reset(struct memory_bitmap *bm) 282 { 283 struct zone_bitmap *zone_bm; 284 285 zone_bm = bm->zone_bm_list; 286 bm->cur.zone_bm = zone_bm; 287 bm->cur.block = zone_bm->bm_blocks; 288 memory_bm_reset_chunk(bm); 289 } 290 291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 292 293 /** 294 * create_bm_block_list - create a list of block bitmap objects 295 */ 296 297 static inline struct bm_block * 298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 299 { 300 struct bm_block *bblist = NULL; 301 302 while (nr_blocks-- > 0) { 303 struct bm_block *bb; 304 305 bb = chain_alloc(ca, sizeof(struct bm_block)); 306 if (!bb) 307 return NULL; 308 309 bb->next = bblist; 310 bblist = bb; 311 } 312 return bblist; 313 } 314 315 /** 316 * create_zone_bm_list - create a list of zone bitmap objects 317 */ 318 319 static inline struct zone_bitmap * 320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 321 { 322 struct zone_bitmap *zbmlist = NULL; 323 324 while (nr_zones-- > 0) { 325 struct zone_bitmap *zbm; 326 327 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 328 if (!zbm) 329 return NULL; 330 331 zbm->next = zbmlist; 332 zbmlist = zbm; 333 } 334 return zbmlist; 335 } 336 337 /** 338 * memory_bm_create - allocate memory for a memory bitmap 339 */ 340 341 static int 342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 343 { 344 struct chain_allocator ca; 345 struct zone *zone; 346 struct zone_bitmap *zone_bm; 347 struct bm_block *bb; 348 unsigned int nr; 349 350 chain_init(&ca, gfp_mask, safe_needed); 351 352 /* Compute the number of zones */ 353 nr = 0; 354 for_each_zone(zone) 355 if (populated_zone(zone)) 356 nr++; 357 358 /* Allocate the list of zones bitmap objects */ 359 zone_bm = create_zone_bm_list(nr, &ca); 360 bm->zone_bm_list = zone_bm; 361 if (!zone_bm) { 362 chain_free(&ca, PG_UNSAFE_CLEAR); 363 return -ENOMEM; 364 } 365 366 /* Initialize the zone bitmap objects */ 367 for_each_zone(zone) { 368 unsigned long pfn; 369 370 if (!populated_zone(zone)) 371 continue; 372 373 zone_bm->start_pfn = zone->zone_start_pfn; 374 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 375 /* Allocate the list of bitmap block objects */ 376 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 377 bb = create_bm_block_list(nr, &ca); 378 zone_bm->bm_blocks = bb; 379 zone_bm->cur_block = bb; 380 if (!bb) 381 goto Free; 382 383 nr = zone->spanned_pages; 384 pfn = zone->zone_start_pfn; 385 /* Initialize the bitmap block objects */ 386 while (bb) { 387 unsigned long *ptr; 388 389 ptr = get_image_page(gfp_mask, safe_needed); 390 bb->data = ptr; 391 if (!ptr) 392 goto Free; 393 394 bb->start_pfn = pfn; 395 if (nr >= BM_BITS_PER_BLOCK) { 396 pfn += BM_BITS_PER_BLOCK; 397 bb->size = BM_CHUNKS_PER_BLOCK; 398 nr -= BM_BITS_PER_BLOCK; 399 } else { 400 /* This is executed only once in the loop */ 401 pfn += nr; 402 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK); 403 } 404 bb->end_pfn = pfn; 405 bb = bb->next; 406 } 407 zone_bm = zone_bm->next; 408 } 409 bm->p_list = ca.chain; 410 memory_bm_position_reset(bm); 411 return 0; 412 413 Free: 414 bm->p_list = ca.chain; 415 memory_bm_free(bm, PG_UNSAFE_CLEAR); 416 return -ENOMEM; 417 } 418 419 /** 420 * memory_bm_free - free memory occupied by the memory bitmap @bm 421 */ 422 423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 424 { 425 struct zone_bitmap *zone_bm; 426 427 /* Free the list of bit blocks for each zone_bitmap object */ 428 zone_bm = bm->zone_bm_list; 429 while (zone_bm) { 430 struct bm_block *bb; 431 432 bb = zone_bm->bm_blocks; 433 while (bb) { 434 if (bb->data) 435 free_image_page(bb->data, clear_nosave_free); 436 bb = bb->next; 437 } 438 zone_bm = zone_bm->next; 439 } 440 free_list_of_pages(bm->p_list, clear_nosave_free); 441 bm->zone_bm_list = NULL; 442 } 443 444 /** 445 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 446 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 447 * of @bm->cur_zone_bm are updated. 448 */ 449 450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 451 void **addr, unsigned int *bit_nr) 452 { 453 struct zone_bitmap *zone_bm; 454 struct bm_block *bb; 455 456 /* Check if the pfn is from the current zone */ 457 zone_bm = bm->cur.zone_bm; 458 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 459 zone_bm = bm->zone_bm_list; 460 /* We don't assume that the zones are sorted by pfns */ 461 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 462 zone_bm = zone_bm->next; 463 464 BUG_ON(!zone_bm); 465 } 466 bm->cur.zone_bm = zone_bm; 467 } 468 /* Check if the pfn corresponds to the current bitmap block */ 469 bb = zone_bm->cur_block; 470 if (pfn < bb->start_pfn) 471 bb = zone_bm->bm_blocks; 472 473 while (pfn >= bb->end_pfn) { 474 bb = bb->next; 475 476 BUG_ON(!bb); 477 } 478 zone_bm->cur_block = bb; 479 pfn -= bb->start_pfn; 480 *bit_nr = pfn % BM_BITS_PER_CHUNK; 481 *addr = bb->data + pfn / BM_BITS_PER_CHUNK; 482 } 483 484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 485 { 486 void *addr; 487 unsigned int bit; 488 489 memory_bm_find_bit(bm, pfn, &addr, &bit); 490 set_bit(bit, addr); 491 } 492 493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 494 { 495 void *addr; 496 unsigned int bit; 497 498 memory_bm_find_bit(bm, pfn, &addr, &bit); 499 clear_bit(bit, addr); 500 } 501 502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 503 { 504 void *addr; 505 unsigned int bit; 506 507 memory_bm_find_bit(bm, pfn, &addr, &bit); 508 return test_bit(bit, addr); 509 } 510 511 /* Two auxiliary functions for memory_bm_next_pfn */ 512 513 /* Find the first set bit in the given chunk, if there is one */ 514 515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p) 516 { 517 bit++; 518 while (bit < BM_BITS_PER_CHUNK) { 519 if (test_bit(bit, chunk_p)) 520 return bit; 521 522 bit++; 523 } 524 return -1; 525 } 526 527 /* Find a chunk containing some bits set in given block of bits */ 528 529 static inline int next_chunk_in_block(int n, struct bm_block *bb) 530 { 531 n++; 532 while (n < bb->size) { 533 if (bb->data[n]) 534 return n; 535 536 n++; 537 } 538 return -1; 539 } 540 541 /** 542 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 543 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 544 * returned. 545 * 546 * It is required to run memory_bm_position_reset() before the first call to 547 * this function. 548 */ 549 550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 551 { 552 struct zone_bitmap *zone_bm; 553 struct bm_block *bb; 554 int chunk; 555 int bit; 556 557 do { 558 bb = bm->cur.block; 559 do { 560 chunk = bm->cur.chunk; 561 bit = bm->cur.bit; 562 do { 563 bit = next_bit_in_chunk(bit, bb->data + chunk); 564 if (bit >= 0) 565 goto Return_pfn; 566 567 chunk = next_chunk_in_block(chunk, bb); 568 bit = -1; 569 } while (chunk >= 0); 570 bb = bb->next; 571 bm->cur.block = bb; 572 memory_bm_reset_chunk(bm); 573 } while (bb); 574 zone_bm = bm->cur.zone_bm->next; 575 if (zone_bm) { 576 bm->cur.zone_bm = zone_bm; 577 bm->cur.block = zone_bm->bm_blocks; 578 memory_bm_reset_chunk(bm); 579 } 580 } while (zone_bm); 581 memory_bm_position_reset(bm); 582 return BM_END_OF_MAP; 583 584 Return_pfn: 585 bm->cur.chunk = chunk; 586 bm->cur.bit = bit; 587 return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit; 588 } 589 590 /** 591 * This structure represents a range of page frames the contents of which 592 * should not be saved during the suspend. 593 */ 594 595 struct nosave_region { 596 struct list_head list; 597 unsigned long start_pfn; 598 unsigned long end_pfn; 599 }; 600 601 static LIST_HEAD(nosave_regions); 602 603 /** 604 * register_nosave_region - register a range of page frames the contents 605 * of which should not be saved during the suspend (to be used in the early 606 * initialization code) 607 */ 608 609 void __init 610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 611 int use_kmalloc) 612 { 613 struct nosave_region *region; 614 615 if (start_pfn >= end_pfn) 616 return; 617 618 if (!list_empty(&nosave_regions)) { 619 /* Try to extend the previous region (they should be sorted) */ 620 region = list_entry(nosave_regions.prev, 621 struct nosave_region, list); 622 if (region->end_pfn == start_pfn) { 623 region->end_pfn = end_pfn; 624 goto Report; 625 } 626 } 627 if (use_kmalloc) { 628 /* during init, this shouldn't fail */ 629 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 630 BUG_ON(!region); 631 } else 632 /* This allocation cannot fail */ 633 region = alloc_bootmem_low(sizeof(struct nosave_region)); 634 region->start_pfn = start_pfn; 635 region->end_pfn = end_pfn; 636 list_add_tail(®ion->list, &nosave_regions); 637 Report: 638 printk("swsusp: Registered nosave memory region: %016lx - %016lx\n", 639 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 640 } 641 642 /* 643 * Set bits in this map correspond to the page frames the contents of which 644 * should not be saved during the suspend. 645 */ 646 static struct memory_bitmap *forbidden_pages_map; 647 648 /* Set bits in this map correspond to free page frames. */ 649 static struct memory_bitmap *free_pages_map; 650 651 /* 652 * Each page frame allocated for creating the image is marked by setting the 653 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 654 */ 655 656 void swsusp_set_page_free(struct page *page) 657 { 658 if (free_pages_map) 659 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 660 } 661 662 static int swsusp_page_is_free(struct page *page) 663 { 664 return free_pages_map ? 665 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 666 } 667 668 void swsusp_unset_page_free(struct page *page) 669 { 670 if (free_pages_map) 671 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 672 } 673 674 static void swsusp_set_page_forbidden(struct page *page) 675 { 676 if (forbidden_pages_map) 677 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 678 } 679 680 int swsusp_page_is_forbidden(struct page *page) 681 { 682 return forbidden_pages_map ? 683 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 684 } 685 686 static void swsusp_unset_page_forbidden(struct page *page) 687 { 688 if (forbidden_pages_map) 689 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 690 } 691 692 /** 693 * mark_nosave_pages - set bits corresponding to the page frames the 694 * contents of which should not be saved in a given bitmap. 695 */ 696 697 static void mark_nosave_pages(struct memory_bitmap *bm) 698 { 699 struct nosave_region *region; 700 701 if (list_empty(&nosave_regions)) 702 return; 703 704 list_for_each_entry(region, &nosave_regions, list) { 705 unsigned long pfn; 706 707 printk("swsusp: Marking nosave pages: %016lx - %016lx\n", 708 region->start_pfn << PAGE_SHIFT, 709 region->end_pfn << PAGE_SHIFT); 710 711 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 712 memory_bm_set_bit(bm, pfn); 713 } 714 } 715 716 /** 717 * create_basic_memory_bitmaps - create bitmaps needed for marking page 718 * frames that should not be saved and free page frames. The pointers 719 * forbidden_pages_map and free_pages_map are only modified if everything 720 * goes well, because we don't want the bits to be used before both bitmaps 721 * are set up. 722 */ 723 724 int create_basic_memory_bitmaps(void) 725 { 726 struct memory_bitmap *bm1, *bm2; 727 int error = 0; 728 729 BUG_ON(forbidden_pages_map || free_pages_map); 730 731 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 732 if (!bm1) 733 return -ENOMEM; 734 735 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 736 if (error) 737 goto Free_first_object; 738 739 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 740 if (!bm2) 741 goto Free_first_bitmap; 742 743 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 744 if (error) 745 goto Free_second_object; 746 747 forbidden_pages_map = bm1; 748 free_pages_map = bm2; 749 mark_nosave_pages(forbidden_pages_map); 750 751 printk("swsusp: Basic memory bitmaps created\n"); 752 753 return 0; 754 755 Free_second_object: 756 kfree(bm2); 757 Free_first_bitmap: 758 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 759 Free_first_object: 760 kfree(bm1); 761 return -ENOMEM; 762 } 763 764 /** 765 * free_basic_memory_bitmaps - free memory bitmaps allocated by 766 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 767 * so that the bitmaps themselves are not referred to while they are being 768 * freed. 769 */ 770 771 void free_basic_memory_bitmaps(void) 772 { 773 struct memory_bitmap *bm1, *bm2; 774 775 BUG_ON(!(forbidden_pages_map && free_pages_map)); 776 777 bm1 = forbidden_pages_map; 778 bm2 = free_pages_map; 779 forbidden_pages_map = NULL; 780 free_pages_map = NULL; 781 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 782 kfree(bm1); 783 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 784 kfree(bm2); 785 786 printk("swsusp: Basic memory bitmaps freed\n"); 787 } 788 789 /** 790 * snapshot_additional_pages - estimate the number of additional pages 791 * be needed for setting up the suspend image data structures for given 792 * zone (usually the returned value is greater than the exact number) 793 */ 794 795 unsigned int snapshot_additional_pages(struct zone *zone) 796 { 797 unsigned int res; 798 799 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 800 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 801 return 2 * res; 802 } 803 804 #ifdef CONFIG_HIGHMEM 805 /** 806 * count_free_highmem_pages - compute the total number of free highmem 807 * pages, system-wide. 808 */ 809 810 static unsigned int count_free_highmem_pages(void) 811 { 812 struct zone *zone; 813 unsigned int cnt = 0; 814 815 for_each_zone(zone) 816 if (populated_zone(zone) && is_highmem(zone)) 817 cnt += zone_page_state(zone, NR_FREE_PAGES); 818 819 return cnt; 820 } 821 822 /** 823 * saveable_highmem_page - Determine whether a highmem page should be 824 * included in the suspend image. 825 * 826 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 827 * and it isn't a part of a free chunk of pages. 828 */ 829 830 static struct page *saveable_highmem_page(unsigned long pfn) 831 { 832 struct page *page; 833 834 if (!pfn_valid(pfn)) 835 return NULL; 836 837 page = pfn_to_page(pfn); 838 839 BUG_ON(!PageHighMem(page)); 840 841 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 842 PageReserved(page)) 843 return NULL; 844 845 return page; 846 } 847 848 /** 849 * count_highmem_pages - compute the total number of saveable highmem 850 * pages. 851 */ 852 853 unsigned int count_highmem_pages(void) 854 { 855 struct zone *zone; 856 unsigned int n = 0; 857 858 for_each_zone(zone) { 859 unsigned long pfn, max_zone_pfn; 860 861 if (!is_highmem(zone)) 862 continue; 863 864 mark_free_pages(zone); 865 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 866 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 867 if (saveable_highmem_page(pfn)) 868 n++; 869 } 870 return n; 871 } 872 #else 873 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 874 static inline unsigned int count_highmem_pages(void) { return 0; } 875 #endif /* CONFIG_HIGHMEM */ 876 877 /** 878 * saveable - Determine whether a non-highmem page should be included in 879 * the suspend image. 880 * 881 * We should save the page if it isn't Nosave, and is not in the range 882 * of pages statically defined as 'unsaveable', and it isn't a part of 883 * a free chunk of pages. 884 */ 885 886 static struct page *saveable_page(unsigned long pfn) 887 { 888 struct page *page; 889 890 if (!pfn_valid(pfn)) 891 return NULL; 892 893 page = pfn_to_page(pfn); 894 895 BUG_ON(PageHighMem(page)); 896 897 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 898 return NULL; 899 900 if (PageReserved(page) && pfn_is_nosave(pfn)) 901 return NULL; 902 903 return page; 904 } 905 906 /** 907 * count_data_pages - compute the total number of saveable non-highmem 908 * pages. 909 */ 910 911 unsigned int count_data_pages(void) 912 { 913 struct zone *zone; 914 unsigned long pfn, max_zone_pfn; 915 unsigned int n = 0; 916 917 for_each_zone(zone) { 918 if (is_highmem(zone)) 919 continue; 920 921 mark_free_pages(zone); 922 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 923 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 924 if(saveable_page(pfn)) 925 n++; 926 } 927 return n; 928 } 929 930 /* This is needed, because copy_page and memcpy are not usable for copying 931 * task structs. 932 */ 933 static inline void do_copy_page(long *dst, long *src) 934 { 935 int n; 936 937 for (n = PAGE_SIZE / sizeof(long); n; n--) 938 *dst++ = *src++; 939 } 940 941 #ifdef CONFIG_HIGHMEM 942 static inline struct page * 943 page_is_saveable(struct zone *zone, unsigned long pfn) 944 { 945 return is_highmem(zone) ? 946 saveable_highmem_page(pfn) : saveable_page(pfn); 947 } 948 949 static inline void 950 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 951 { 952 struct page *s_page, *d_page; 953 void *src, *dst; 954 955 s_page = pfn_to_page(src_pfn); 956 d_page = pfn_to_page(dst_pfn); 957 if (PageHighMem(s_page)) { 958 src = kmap_atomic(s_page, KM_USER0); 959 dst = kmap_atomic(d_page, KM_USER1); 960 do_copy_page(dst, src); 961 kunmap_atomic(src, KM_USER0); 962 kunmap_atomic(dst, KM_USER1); 963 } else { 964 src = page_address(s_page); 965 if (PageHighMem(d_page)) { 966 /* Page pointed to by src may contain some kernel 967 * data modified by kmap_atomic() 968 */ 969 do_copy_page(buffer, src); 970 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 971 memcpy(dst, buffer, PAGE_SIZE); 972 kunmap_atomic(dst, KM_USER0); 973 } else { 974 dst = page_address(d_page); 975 do_copy_page(dst, src); 976 } 977 } 978 } 979 #else 980 #define page_is_saveable(zone, pfn) saveable_page(pfn) 981 982 static inline void 983 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 984 { 985 do_copy_page(page_address(pfn_to_page(dst_pfn)), 986 page_address(pfn_to_page(src_pfn))); 987 } 988 #endif /* CONFIG_HIGHMEM */ 989 990 static void 991 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 992 { 993 struct zone *zone; 994 unsigned long pfn; 995 996 for_each_zone(zone) { 997 unsigned long max_zone_pfn; 998 999 mark_free_pages(zone); 1000 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1001 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1002 if (page_is_saveable(zone, pfn)) 1003 memory_bm_set_bit(orig_bm, pfn); 1004 } 1005 memory_bm_position_reset(orig_bm); 1006 memory_bm_position_reset(copy_bm); 1007 do { 1008 pfn = memory_bm_next_pfn(orig_bm); 1009 if (likely(pfn != BM_END_OF_MAP)) 1010 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1011 } while (pfn != BM_END_OF_MAP); 1012 } 1013 1014 /* Total number of image pages */ 1015 static unsigned int nr_copy_pages; 1016 /* Number of pages needed for saving the original pfns of the image pages */ 1017 static unsigned int nr_meta_pages; 1018 1019 /** 1020 * swsusp_free - free pages allocated for the suspend. 1021 * 1022 * Suspend pages are alocated before the atomic copy is made, so we 1023 * need to release them after the resume. 1024 */ 1025 1026 void swsusp_free(void) 1027 { 1028 struct zone *zone; 1029 unsigned long pfn, max_zone_pfn; 1030 1031 for_each_zone(zone) { 1032 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1033 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1034 if (pfn_valid(pfn)) { 1035 struct page *page = pfn_to_page(pfn); 1036 1037 if (swsusp_page_is_forbidden(page) && 1038 swsusp_page_is_free(page)) { 1039 swsusp_unset_page_forbidden(page); 1040 swsusp_unset_page_free(page); 1041 __free_page(page); 1042 } 1043 } 1044 } 1045 nr_copy_pages = 0; 1046 nr_meta_pages = 0; 1047 restore_pblist = NULL; 1048 buffer = NULL; 1049 } 1050 1051 #ifdef CONFIG_HIGHMEM 1052 /** 1053 * count_pages_for_highmem - compute the number of non-highmem pages 1054 * that will be necessary for creating copies of highmem pages. 1055 */ 1056 1057 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1058 { 1059 unsigned int free_highmem = count_free_highmem_pages(); 1060 1061 if (free_highmem >= nr_highmem) 1062 nr_highmem = 0; 1063 else 1064 nr_highmem -= free_highmem; 1065 1066 return nr_highmem; 1067 } 1068 #else 1069 static unsigned int 1070 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1071 #endif /* CONFIG_HIGHMEM */ 1072 1073 /** 1074 * enough_free_mem - Make sure we have enough free memory for the 1075 * snapshot image. 1076 */ 1077 1078 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1079 { 1080 struct zone *zone; 1081 unsigned int free = 0, meta = 0; 1082 1083 for_each_zone(zone) { 1084 meta += snapshot_additional_pages(zone); 1085 if (!is_highmem(zone)) 1086 free += zone_page_state(zone, NR_FREE_PAGES); 1087 } 1088 1089 nr_pages += count_pages_for_highmem(nr_highmem); 1090 pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n", 1091 nr_pages, PAGES_FOR_IO, meta, free); 1092 1093 return free > nr_pages + PAGES_FOR_IO + meta; 1094 } 1095 1096 #ifdef CONFIG_HIGHMEM 1097 /** 1098 * get_highmem_buffer - if there are some highmem pages in the suspend 1099 * image, we may need the buffer to copy them and/or load their data. 1100 */ 1101 1102 static inline int get_highmem_buffer(int safe_needed) 1103 { 1104 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1105 return buffer ? 0 : -ENOMEM; 1106 } 1107 1108 /** 1109 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1110 * Try to allocate as many pages as needed, but if the number of free 1111 * highmem pages is lesser than that, allocate them all. 1112 */ 1113 1114 static inline unsigned int 1115 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1116 { 1117 unsigned int to_alloc = count_free_highmem_pages(); 1118 1119 if (to_alloc > nr_highmem) 1120 to_alloc = nr_highmem; 1121 1122 nr_highmem -= to_alloc; 1123 while (to_alloc-- > 0) { 1124 struct page *page; 1125 1126 page = alloc_image_page(__GFP_HIGHMEM); 1127 memory_bm_set_bit(bm, page_to_pfn(page)); 1128 } 1129 return nr_highmem; 1130 } 1131 #else 1132 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1133 1134 static inline unsigned int 1135 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1136 #endif /* CONFIG_HIGHMEM */ 1137 1138 /** 1139 * swsusp_alloc - allocate memory for the suspend image 1140 * 1141 * We first try to allocate as many highmem pages as there are 1142 * saveable highmem pages in the system. If that fails, we allocate 1143 * non-highmem pages for the copies of the remaining highmem ones. 1144 * 1145 * In this approach it is likely that the copies of highmem pages will 1146 * also be located in the high memory, because of the way in which 1147 * copy_data_pages() works. 1148 */ 1149 1150 static int 1151 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1152 unsigned int nr_pages, unsigned int nr_highmem) 1153 { 1154 int error; 1155 1156 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1157 if (error) 1158 goto Free; 1159 1160 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1161 if (error) 1162 goto Free; 1163 1164 if (nr_highmem > 0) { 1165 error = get_highmem_buffer(PG_ANY); 1166 if (error) 1167 goto Free; 1168 1169 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1170 } 1171 while (nr_pages-- > 0) { 1172 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1173 1174 if (!page) 1175 goto Free; 1176 1177 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1178 } 1179 return 0; 1180 1181 Free: 1182 swsusp_free(); 1183 return -ENOMEM; 1184 } 1185 1186 /* Memory bitmap used for marking saveable pages (during suspend) or the 1187 * suspend image pages (during resume) 1188 */ 1189 static struct memory_bitmap orig_bm; 1190 /* Memory bitmap used on suspend for marking allocated pages that will contain 1191 * the copies of saveable pages. During resume it is initially used for 1192 * marking the suspend image pages, but then its set bits are duplicated in 1193 * @orig_bm and it is released. Next, on systems with high memory, it may be 1194 * used for marking "safe" highmem pages, but it has to be reinitialized for 1195 * this purpose. 1196 */ 1197 static struct memory_bitmap copy_bm; 1198 1199 asmlinkage int swsusp_save(void) 1200 { 1201 unsigned int nr_pages, nr_highmem; 1202 1203 printk("swsusp: critical section: \n"); 1204 1205 drain_local_pages(); 1206 nr_pages = count_data_pages(); 1207 nr_highmem = count_highmem_pages(); 1208 printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem); 1209 1210 if (!enough_free_mem(nr_pages, nr_highmem)) { 1211 printk(KERN_ERR "swsusp: Not enough free memory\n"); 1212 return -ENOMEM; 1213 } 1214 1215 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1216 printk(KERN_ERR "swsusp: Memory allocation failed\n"); 1217 return -ENOMEM; 1218 } 1219 1220 /* During allocating of suspend pagedir, new cold pages may appear. 1221 * Kill them. 1222 */ 1223 drain_local_pages(); 1224 copy_data_pages(©_bm, &orig_bm); 1225 1226 /* 1227 * End of critical section. From now on, we can write to memory, 1228 * but we should not touch disk. This specially means we must _not_ 1229 * touch swap space! Except we must write out our image of course. 1230 */ 1231 1232 nr_pages += nr_highmem; 1233 nr_copy_pages = nr_pages; 1234 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1235 1236 printk("swsusp: critical section: done (%d pages copied)\n", nr_pages); 1237 1238 return 0; 1239 } 1240 1241 static void init_header(struct swsusp_info *info) 1242 { 1243 memset(info, 0, sizeof(struct swsusp_info)); 1244 info->version_code = LINUX_VERSION_CODE; 1245 info->num_physpages = num_physpages; 1246 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1247 info->cpus = num_online_cpus(); 1248 info->image_pages = nr_copy_pages; 1249 info->pages = nr_copy_pages + nr_meta_pages + 1; 1250 info->size = info->pages; 1251 info->size <<= PAGE_SHIFT; 1252 } 1253 1254 /** 1255 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1256 * are stored in the array @buf[] (1 page at a time) 1257 */ 1258 1259 static inline void 1260 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1261 { 1262 int j; 1263 1264 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1265 buf[j] = memory_bm_next_pfn(bm); 1266 if (unlikely(buf[j] == BM_END_OF_MAP)) 1267 break; 1268 } 1269 } 1270 1271 /** 1272 * snapshot_read_next - used for reading the system memory snapshot. 1273 * 1274 * On the first call to it @handle should point to a zeroed 1275 * snapshot_handle structure. The structure gets updated and a pointer 1276 * to it should be passed to this function every next time. 1277 * 1278 * The @count parameter should contain the number of bytes the caller 1279 * wants to read from the snapshot. It must not be zero. 1280 * 1281 * On success the function returns a positive number. Then, the caller 1282 * is allowed to read up to the returned number of bytes from the memory 1283 * location computed by the data_of() macro. The number returned 1284 * may be smaller than @count, but this only happens if the read would 1285 * cross a page boundary otherwise. 1286 * 1287 * The function returns 0 to indicate the end of data stream condition, 1288 * and a negative number is returned on error. In such cases the 1289 * structure pointed to by @handle is not updated and should not be used 1290 * any more. 1291 */ 1292 1293 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1294 { 1295 if (handle->cur > nr_meta_pages + nr_copy_pages) 1296 return 0; 1297 1298 if (!buffer) { 1299 /* This makes the buffer be freed by swsusp_free() */ 1300 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1301 if (!buffer) 1302 return -ENOMEM; 1303 } 1304 if (!handle->offset) { 1305 init_header((struct swsusp_info *)buffer); 1306 handle->buffer = buffer; 1307 memory_bm_position_reset(&orig_bm); 1308 memory_bm_position_reset(©_bm); 1309 } 1310 if (handle->prev < handle->cur) { 1311 if (handle->cur <= nr_meta_pages) { 1312 memset(buffer, 0, PAGE_SIZE); 1313 pack_pfns(buffer, &orig_bm); 1314 } else { 1315 struct page *page; 1316 1317 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1318 if (PageHighMem(page)) { 1319 /* Highmem pages are copied to the buffer, 1320 * because we can't return with a kmapped 1321 * highmem page (we may not be called again). 1322 */ 1323 void *kaddr; 1324 1325 kaddr = kmap_atomic(page, KM_USER0); 1326 memcpy(buffer, kaddr, PAGE_SIZE); 1327 kunmap_atomic(kaddr, KM_USER0); 1328 handle->buffer = buffer; 1329 } else { 1330 handle->buffer = page_address(page); 1331 } 1332 } 1333 handle->prev = handle->cur; 1334 } 1335 handle->buf_offset = handle->cur_offset; 1336 if (handle->cur_offset + count >= PAGE_SIZE) { 1337 count = PAGE_SIZE - handle->cur_offset; 1338 handle->cur_offset = 0; 1339 handle->cur++; 1340 } else { 1341 handle->cur_offset += count; 1342 } 1343 handle->offset += count; 1344 return count; 1345 } 1346 1347 /** 1348 * mark_unsafe_pages - mark the pages that cannot be used for storing 1349 * the image during resume, because they conflict with the pages that 1350 * had been used before suspend 1351 */ 1352 1353 static int mark_unsafe_pages(struct memory_bitmap *bm) 1354 { 1355 struct zone *zone; 1356 unsigned long pfn, max_zone_pfn; 1357 1358 /* Clear page flags */ 1359 for_each_zone(zone) { 1360 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1361 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1362 if (pfn_valid(pfn)) 1363 swsusp_unset_page_free(pfn_to_page(pfn)); 1364 } 1365 1366 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1367 memory_bm_position_reset(bm); 1368 do { 1369 pfn = memory_bm_next_pfn(bm); 1370 if (likely(pfn != BM_END_OF_MAP)) { 1371 if (likely(pfn_valid(pfn))) 1372 swsusp_set_page_free(pfn_to_page(pfn)); 1373 else 1374 return -EFAULT; 1375 } 1376 } while (pfn != BM_END_OF_MAP); 1377 1378 allocated_unsafe_pages = 0; 1379 1380 return 0; 1381 } 1382 1383 static void 1384 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1385 { 1386 unsigned long pfn; 1387 1388 memory_bm_position_reset(src); 1389 pfn = memory_bm_next_pfn(src); 1390 while (pfn != BM_END_OF_MAP) { 1391 memory_bm_set_bit(dst, pfn); 1392 pfn = memory_bm_next_pfn(src); 1393 } 1394 } 1395 1396 static inline int check_header(struct swsusp_info *info) 1397 { 1398 char *reason = NULL; 1399 1400 if (info->version_code != LINUX_VERSION_CODE) 1401 reason = "kernel version"; 1402 if (info->num_physpages != num_physpages) 1403 reason = "memory size"; 1404 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1405 reason = "system type"; 1406 if (strcmp(info->uts.release,init_utsname()->release)) 1407 reason = "kernel release"; 1408 if (strcmp(info->uts.version,init_utsname()->version)) 1409 reason = "version"; 1410 if (strcmp(info->uts.machine,init_utsname()->machine)) 1411 reason = "machine"; 1412 if (reason) { 1413 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason); 1414 return -EPERM; 1415 } 1416 return 0; 1417 } 1418 1419 /** 1420 * load header - check the image header and copy data from it 1421 */ 1422 1423 static int 1424 load_header(struct swsusp_info *info) 1425 { 1426 int error; 1427 1428 restore_pblist = NULL; 1429 error = check_header(info); 1430 if (!error) { 1431 nr_copy_pages = info->image_pages; 1432 nr_meta_pages = info->pages - info->image_pages - 1; 1433 } 1434 return error; 1435 } 1436 1437 /** 1438 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1439 * the corresponding bit in the memory bitmap @bm 1440 */ 1441 1442 static inline void 1443 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1444 { 1445 int j; 1446 1447 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1448 if (unlikely(buf[j] == BM_END_OF_MAP)) 1449 break; 1450 1451 memory_bm_set_bit(bm, buf[j]); 1452 } 1453 } 1454 1455 /* List of "safe" pages that may be used to store data loaded from the suspend 1456 * image 1457 */ 1458 static struct linked_page *safe_pages_list; 1459 1460 #ifdef CONFIG_HIGHMEM 1461 /* struct highmem_pbe is used for creating the list of highmem pages that 1462 * should be restored atomically during the resume from disk, because the page 1463 * frames they have occupied before the suspend are in use. 1464 */ 1465 struct highmem_pbe { 1466 struct page *copy_page; /* data is here now */ 1467 struct page *orig_page; /* data was here before the suspend */ 1468 struct highmem_pbe *next; 1469 }; 1470 1471 /* List of highmem PBEs needed for restoring the highmem pages that were 1472 * allocated before the suspend and included in the suspend image, but have 1473 * also been allocated by the "resume" kernel, so their contents cannot be 1474 * written directly to their "original" page frames. 1475 */ 1476 static struct highmem_pbe *highmem_pblist; 1477 1478 /** 1479 * count_highmem_image_pages - compute the number of highmem pages in the 1480 * suspend image. The bits in the memory bitmap @bm that correspond to the 1481 * image pages are assumed to be set. 1482 */ 1483 1484 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1485 { 1486 unsigned long pfn; 1487 unsigned int cnt = 0; 1488 1489 memory_bm_position_reset(bm); 1490 pfn = memory_bm_next_pfn(bm); 1491 while (pfn != BM_END_OF_MAP) { 1492 if (PageHighMem(pfn_to_page(pfn))) 1493 cnt++; 1494 1495 pfn = memory_bm_next_pfn(bm); 1496 } 1497 return cnt; 1498 } 1499 1500 /** 1501 * prepare_highmem_image - try to allocate as many highmem pages as 1502 * there are highmem image pages (@nr_highmem_p points to the variable 1503 * containing the number of highmem image pages). The pages that are 1504 * "safe" (ie. will not be overwritten when the suspend image is 1505 * restored) have the corresponding bits set in @bm (it must be 1506 * unitialized). 1507 * 1508 * NOTE: This function should not be called if there are no highmem 1509 * image pages. 1510 */ 1511 1512 static unsigned int safe_highmem_pages; 1513 1514 static struct memory_bitmap *safe_highmem_bm; 1515 1516 static int 1517 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1518 { 1519 unsigned int to_alloc; 1520 1521 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1522 return -ENOMEM; 1523 1524 if (get_highmem_buffer(PG_SAFE)) 1525 return -ENOMEM; 1526 1527 to_alloc = count_free_highmem_pages(); 1528 if (to_alloc > *nr_highmem_p) 1529 to_alloc = *nr_highmem_p; 1530 else 1531 *nr_highmem_p = to_alloc; 1532 1533 safe_highmem_pages = 0; 1534 while (to_alloc-- > 0) { 1535 struct page *page; 1536 1537 page = alloc_page(__GFP_HIGHMEM); 1538 if (!swsusp_page_is_free(page)) { 1539 /* The page is "safe", set its bit the bitmap */ 1540 memory_bm_set_bit(bm, page_to_pfn(page)); 1541 safe_highmem_pages++; 1542 } 1543 /* Mark the page as allocated */ 1544 swsusp_set_page_forbidden(page); 1545 swsusp_set_page_free(page); 1546 } 1547 memory_bm_position_reset(bm); 1548 safe_highmem_bm = bm; 1549 return 0; 1550 } 1551 1552 /** 1553 * get_highmem_page_buffer - for given highmem image page find the buffer 1554 * that suspend_write_next() should set for its caller to write to. 1555 * 1556 * If the page is to be saved to its "original" page frame or a copy of 1557 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1558 * the copy of the page is to be made in normal memory, so the address of 1559 * the copy is returned. 1560 * 1561 * If @buffer is returned, the caller of suspend_write_next() will write 1562 * the page's contents to @buffer, so they will have to be copied to the 1563 * right location on the next call to suspend_write_next() and it is done 1564 * with the help of copy_last_highmem_page(). For this purpose, if 1565 * @buffer is returned, @last_highmem page is set to the page to which 1566 * the data will have to be copied from @buffer. 1567 */ 1568 1569 static struct page *last_highmem_page; 1570 1571 static void * 1572 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1573 { 1574 struct highmem_pbe *pbe; 1575 void *kaddr; 1576 1577 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1578 /* We have allocated the "original" page frame and we can 1579 * use it directly to store the loaded page. 1580 */ 1581 last_highmem_page = page; 1582 return buffer; 1583 } 1584 /* The "original" page frame has not been allocated and we have to 1585 * use a "safe" page frame to store the loaded page. 1586 */ 1587 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1588 if (!pbe) { 1589 swsusp_free(); 1590 return NULL; 1591 } 1592 pbe->orig_page = page; 1593 if (safe_highmem_pages > 0) { 1594 struct page *tmp; 1595 1596 /* Copy of the page will be stored in high memory */ 1597 kaddr = buffer; 1598 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1599 safe_highmem_pages--; 1600 last_highmem_page = tmp; 1601 pbe->copy_page = tmp; 1602 } else { 1603 /* Copy of the page will be stored in normal memory */ 1604 kaddr = safe_pages_list; 1605 safe_pages_list = safe_pages_list->next; 1606 pbe->copy_page = virt_to_page(kaddr); 1607 } 1608 pbe->next = highmem_pblist; 1609 highmem_pblist = pbe; 1610 return kaddr; 1611 } 1612 1613 /** 1614 * copy_last_highmem_page - copy the contents of a highmem image from 1615 * @buffer, where the caller of snapshot_write_next() has place them, 1616 * to the right location represented by @last_highmem_page . 1617 */ 1618 1619 static void copy_last_highmem_page(void) 1620 { 1621 if (last_highmem_page) { 1622 void *dst; 1623 1624 dst = kmap_atomic(last_highmem_page, KM_USER0); 1625 memcpy(dst, buffer, PAGE_SIZE); 1626 kunmap_atomic(dst, KM_USER0); 1627 last_highmem_page = NULL; 1628 } 1629 } 1630 1631 static inline int last_highmem_page_copied(void) 1632 { 1633 return !last_highmem_page; 1634 } 1635 1636 static inline void free_highmem_data(void) 1637 { 1638 if (safe_highmem_bm) 1639 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1640 1641 if (buffer) 1642 free_image_page(buffer, PG_UNSAFE_CLEAR); 1643 } 1644 #else 1645 static inline int get_safe_write_buffer(void) { return 0; } 1646 1647 static unsigned int 1648 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1649 1650 static inline int 1651 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1652 { 1653 return 0; 1654 } 1655 1656 static inline void * 1657 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1658 { 1659 return NULL; 1660 } 1661 1662 static inline void copy_last_highmem_page(void) {} 1663 static inline int last_highmem_page_copied(void) { return 1; } 1664 static inline void free_highmem_data(void) {} 1665 #endif /* CONFIG_HIGHMEM */ 1666 1667 /** 1668 * prepare_image - use the memory bitmap @bm to mark the pages that will 1669 * be overwritten in the process of restoring the system memory state 1670 * from the suspend image ("unsafe" pages) and allocate memory for the 1671 * image. 1672 * 1673 * The idea is to allocate a new memory bitmap first and then allocate 1674 * as many pages as needed for the image data, but not to assign these 1675 * pages to specific tasks initially. Instead, we just mark them as 1676 * allocated and create a lists of "safe" pages that will be used 1677 * later. On systems with high memory a list of "safe" highmem pages is 1678 * also created. 1679 */ 1680 1681 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1682 1683 static int 1684 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1685 { 1686 unsigned int nr_pages, nr_highmem; 1687 struct linked_page *sp_list, *lp; 1688 int error; 1689 1690 /* If there is no highmem, the buffer will not be necessary */ 1691 free_image_page(buffer, PG_UNSAFE_CLEAR); 1692 buffer = NULL; 1693 1694 nr_highmem = count_highmem_image_pages(bm); 1695 error = mark_unsafe_pages(bm); 1696 if (error) 1697 goto Free; 1698 1699 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1700 if (error) 1701 goto Free; 1702 1703 duplicate_memory_bitmap(new_bm, bm); 1704 memory_bm_free(bm, PG_UNSAFE_KEEP); 1705 if (nr_highmem > 0) { 1706 error = prepare_highmem_image(bm, &nr_highmem); 1707 if (error) 1708 goto Free; 1709 } 1710 /* Reserve some safe pages for potential later use. 1711 * 1712 * NOTE: This way we make sure there will be enough safe pages for the 1713 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1714 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1715 */ 1716 sp_list = NULL; 1717 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1718 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1719 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1720 while (nr_pages > 0) { 1721 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1722 if (!lp) { 1723 error = -ENOMEM; 1724 goto Free; 1725 } 1726 lp->next = sp_list; 1727 sp_list = lp; 1728 nr_pages--; 1729 } 1730 /* Preallocate memory for the image */ 1731 safe_pages_list = NULL; 1732 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1733 while (nr_pages > 0) { 1734 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1735 if (!lp) { 1736 error = -ENOMEM; 1737 goto Free; 1738 } 1739 if (!swsusp_page_is_free(virt_to_page(lp))) { 1740 /* The page is "safe", add it to the list */ 1741 lp->next = safe_pages_list; 1742 safe_pages_list = lp; 1743 } 1744 /* Mark the page as allocated */ 1745 swsusp_set_page_forbidden(virt_to_page(lp)); 1746 swsusp_set_page_free(virt_to_page(lp)); 1747 nr_pages--; 1748 } 1749 /* Free the reserved safe pages so that chain_alloc() can use them */ 1750 while (sp_list) { 1751 lp = sp_list->next; 1752 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1753 sp_list = lp; 1754 } 1755 return 0; 1756 1757 Free: 1758 swsusp_free(); 1759 return error; 1760 } 1761 1762 /** 1763 * get_buffer - compute the address that snapshot_write_next() should 1764 * set for its caller to write to. 1765 */ 1766 1767 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1768 { 1769 struct pbe *pbe; 1770 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1771 1772 if (PageHighMem(page)) 1773 return get_highmem_page_buffer(page, ca); 1774 1775 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1776 /* We have allocated the "original" page frame and we can 1777 * use it directly to store the loaded page. 1778 */ 1779 return page_address(page); 1780 1781 /* The "original" page frame has not been allocated and we have to 1782 * use a "safe" page frame to store the loaded page. 1783 */ 1784 pbe = chain_alloc(ca, sizeof(struct pbe)); 1785 if (!pbe) { 1786 swsusp_free(); 1787 return NULL; 1788 } 1789 pbe->orig_address = page_address(page); 1790 pbe->address = safe_pages_list; 1791 safe_pages_list = safe_pages_list->next; 1792 pbe->next = restore_pblist; 1793 restore_pblist = pbe; 1794 return pbe->address; 1795 } 1796 1797 /** 1798 * snapshot_write_next - used for writing the system memory snapshot. 1799 * 1800 * On the first call to it @handle should point to a zeroed 1801 * snapshot_handle structure. The structure gets updated and a pointer 1802 * to it should be passed to this function every next time. 1803 * 1804 * The @count parameter should contain the number of bytes the caller 1805 * wants to write to the image. It must not be zero. 1806 * 1807 * On success the function returns a positive number. Then, the caller 1808 * is allowed to write up to the returned number of bytes to the memory 1809 * location computed by the data_of() macro. The number returned 1810 * may be smaller than @count, but this only happens if the write would 1811 * cross a page boundary otherwise. 1812 * 1813 * The function returns 0 to indicate the "end of file" condition, 1814 * and a negative number is returned on error. In such cases the 1815 * structure pointed to by @handle is not updated and should not be used 1816 * any more. 1817 */ 1818 1819 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1820 { 1821 static struct chain_allocator ca; 1822 int error = 0; 1823 1824 /* Check if we have already loaded the entire image */ 1825 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1826 return 0; 1827 1828 if (handle->offset == 0) { 1829 if (!buffer) 1830 /* This makes the buffer be freed by swsusp_free() */ 1831 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1832 1833 if (!buffer) 1834 return -ENOMEM; 1835 1836 handle->buffer = buffer; 1837 } 1838 handle->sync_read = 1; 1839 if (handle->prev < handle->cur) { 1840 if (handle->prev == 0) { 1841 error = load_header(buffer); 1842 if (error) 1843 return error; 1844 1845 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1846 if (error) 1847 return error; 1848 1849 } else if (handle->prev <= nr_meta_pages) { 1850 unpack_orig_pfns(buffer, ©_bm); 1851 if (handle->prev == nr_meta_pages) { 1852 error = prepare_image(&orig_bm, ©_bm); 1853 if (error) 1854 return error; 1855 1856 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1857 memory_bm_position_reset(&orig_bm); 1858 restore_pblist = NULL; 1859 handle->buffer = get_buffer(&orig_bm, &ca); 1860 handle->sync_read = 0; 1861 if (!handle->buffer) 1862 return -ENOMEM; 1863 } 1864 } else { 1865 copy_last_highmem_page(); 1866 handle->buffer = get_buffer(&orig_bm, &ca); 1867 if (handle->buffer != buffer) 1868 handle->sync_read = 0; 1869 } 1870 handle->prev = handle->cur; 1871 } 1872 handle->buf_offset = handle->cur_offset; 1873 if (handle->cur_offset + count >= PAGE_SIZE) { 1874 count = PAGE_SIZE - handle->cur_offset; 1875 handle->cur_offset = 0; 1876 handle->cur++; 1877 } else { 1878 handle->cur_offset += count; 1879 } 1880 handle->offset += count; 1881 return count; 1882 } 1883 1884 /** 1885 * snapshot_write_finalize - must be called after the last call to 1886 * snapshot_write_next() in case the last page in the image happens 1887 * to be a highmem page and its contents should be stored in the 1888 * highmem. Additionally, it releases the memory that will not be 1889 * used any more. 1890 */ 1891 1892 void snapshot_write_finalize(struct snapshot_handle *handle) 1893 { 1894 copy_last_highmem_page(); 1895 /* Free only if we have loaded the image entirely */ 1896 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1897 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1898 free_highmem_data(); 1899 } 1900 } 1901 1902 int snapshot_image_loaded(struct snapshot_handle *handle) 1903 { 1904 return !(!nr_copy_pages || !last_highmem_page_copied() || 1905 handle->cur <= nr_meta_pages + nr_copy_pages); 1906 } 1907 1908 #ifdef CONFIG_HIGHMEM 1909 /* Assumes that @buf is ready and points to a "safe" page */ 1910 static inline void 1911 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1912 { 1913 void *kaddr1, *kaddr2; 1914 1915 kaddr1 = kmap_atomic(p1, KM_USER0); 1916 kaddr2 = kmap_atomic(p2, KM_USER1); 1917 memcpy(buf, kaddr1, PAGE_SIZE); 1918 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1919 memcpy(kaddr2, buf, PAGE_SIZE); 1920 kunmap_atomic(kaddr1, KM_USER0); 1921 kunmap_atomic(kaddr2, KM_USER1); 1922 } 1923 1924 /** 1925 * restore_highmem - for each highmem page that was allocated before 1926 * the suspend and included in the suspend image, and also has been 1927 * allocated by the "resume" kernel swap its current (ie. "before 1928 * resume") contents with the previous (ie. "before suspend") one. 1929 * 1930 * If the resume eventually fails, we can call this function once 1931 * again and restore the "before resume" highmem state. 1932 */ 1933 1934 int restore_highmem(void) 1935 { 1936 struct highmem_pbe *pbe = highmem_pblist; 1937 void *buf; 1938 1939 if (!pbe) 1940 return 0; 1941 1942 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1943 if (!buf) 1944 return -ENOMEM; 1945 1946 while (pbe) { 1947 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1948 pbe = pbe->next; 1949 } 1950 free_image_page(buf, PG_UNSAFE_CLEAR); 1951 return 0; 1952 } 1953 #endif /* CONFIG_HIGHMEM */ 1954