xref: /openbmc/linux/kernel/power/snapshot.c (revision 64c70b1c)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40 
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47 
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50 
51 /**
52  *	@safe_needed - on resume, for storing the PBE list and the image,
53  *	we can only use memory pages that do not conflict with the pages
54  *	used before suspend.  The unsafe pages have PageNosaveFree set
55  *	and we count them using unsafe_pages.
56  *
57  *	Each allocated image page is marked as PageNosave and PageNosaveFree
58  *	so that swsusp_free() can release it.
59  */
60 
61 #define PG_ANY		0
62 #define PG_SAFE		1
63 #define PG_UNSAFE_CLEAR	1
64 #define PG_UNSAFE_KEEP	0
65 
66 static unsigned int allocated_unsafe_pages;
67 
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 	void *res;
71 
72 	res = (void *)get_zeroed_page(gfp_mask);
73 	if (safe_needed)
74 		while (res && swsusp_page_is_free(virt_to_page(res))) {
75 			/* The page is unsafe, mark it for swsusp_free() */
76 			swsusp_set_page_forbidden(virt_to_page(res));
77 			allocated_unsafe_pages++;
78 			res = (void *)get_zeroed_page(gfp_mask);
79 		}
80 	if (res) {
81 		swsusp_set_page_forbidden(virt_to_page(res));
82 		swsusp_set_page_free(virt_to_page(res));
83 	}
84 	return res;
85 }
86 
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91 
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 	struct page *page;
95 
96 	page = alloc_page(gfp_mask);
97 	if (page) {
98 		swsusp_set_page_forbidden(page);
99 		swsusp_set_page_free(page);
100 	}
101 	return page;
102 }
103 
104 /**
105  *	free_image_page - free page represented by @addr, allocated with
106  *	get_image_page (page flags set by it must be cleared)
107  */
108 
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 	struct page *page;
112 
113 	BUG_ON(!virt_addr_valid(addr));
114 
115 	page = virt_to_page(addr);
116 
117 	swsusp_unset_page_forbidden(page);
118 	if (clear_nosave_free)
119 		swsusp_unset_page_free(page);
120 
121 	__free_page(page);
122 }
123 
124 /* struct linked_page is used to build chains of pages */
125 
126 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
127 
128 struct linked_page {
129 	struct linked_page *next;
130 	char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132 
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 	while (list) {
137 		struct linked_page *lp = list->next;
138 
139 		free_image_page(list, clear_page_nosave);
140 		list = lp;
141 	}
142 }
143 
144 /**
145   *	struct chain_allocator is used for allocating small objects out of
146   *	a linked list of pages called 'the chain'.
147   *
148   *	The chain grows each time when there is no room for a new object in
149   *	the current page.  The allocated objects cannot be freed individually.
150   *	It is only possible to free them all at once, by freeing the entire
151   *	chain.
152   *
153   *	NOTE: The chain allocator may be inefficient if the allocated objects
154   *	are not much smaller than PAGE_SIZE.
155   */
156 
157 struct chain_allocator {
158 	struct linked_page *chain;	/* the chain */
159 	unsigned int used_space;	/* total size of objects allocated out
160 					 * of the current page
161 					 */
162 	gfp_t gfp_mask;		/* mask for allocating pages */
163 	int safe_needed;	/* if set, only "safe" pages are allocated */
164 };
165 
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 	ca->chain = NULL;
170 	ca->used_space = LINKED_PAGE_DATA_SIZE;
171 	ca->gfp_mask = gfp_mask;
172 	ca->safe_needed = safe_needed;
173 }
174 
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 	void *ret;
178 
179 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 		struct linked_page *lp;
181 
182 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 		if (!lp)
184 			return NULL;
185 
186 		lp->next = ca->chain;
187 		ca->chain = lp;
188 		ca->used_space = 0;
189 	}
190 	ret = ca->chain->data + ca->used_space;
191 	ca->used_space += size;
192 	return ret;
193 }
194 
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 	free_list_of_pages(ca->chain, clear_page_nosave);
198 	memset(ca, 0, sizeof(struct chain_allocator));
199 }
200 
201 /**
202  *	Data types related to memory bitmaps.
203  *
204  *	Memory bitmap is a structure consiting of many linked lists of
205  *	objects.  The main list's elements are of type struct zone_bitmap
206  *	and each of them corresonds to one zone.  For each zone bitmap
207  *	object there is a list of objects of type struct bm_block that
208  *	represent each blocks of bit chunks in which information is
209  *	stored.
210  *
211  *	struct memory_bitmap contains a pointer to the main list of zone
212  *	bitmap objects, a struct bm_position used for browsing the bitmap,
213  *	and a pointer to the list of pages used for allocating all of the
214  *	zone bitmap objects and bitmap block objects.
215  *
216  *	NOTE: It has to be possible to lay out the bitmap in memory
217  *	using only allocations of order 0.  Additionally, the bitmap is
218  *	designed to work with arbitrary number of zones (this is over the
219  *	top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *	struct zone_bitmap contains a pointer to a list of bitmap block
222  *	objects and a pointer to the bitmap block object that has been
223  *	most recently used for setting bits.  Additionally, it contains the
224  *	pfns that correspond to the start and end of the represented zone.
225  *
226  *	struct bm_block contains a pointer to the memory page in which
227  *	information is stored (in the form of a block of bit chunks
228  *	of type unsigned long each).  It also contains the pfns that
229  *	correspond to the start and end of the represented memory area and
230  *	the number of bit chunks in the block.
231  */
232 
233 #define BM_END_OF_MAP	(~0UL)
234 
235 #define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
238 
239 struct bm_block {
240 	struct bm_block *next;		/* next element of the list */
241 	unsigned long start_pfn;	/* pfn represented by the first bit */
242 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
243 	unsigned int size;	/* number of bit chunks */
244 	unsigned long *data;	/* chunks of bits representing pages */
245 };
246 
247 struct zone_bitmap {
248 	struct zone_bitmap *next;	/* next element of the list */
249 	unsigned long start_pfn;	/* minimal pfn in this zone */
250 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
251 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
252 	struct bm_block *cur_block;	/* recently used bitmap block */
253 };
254 
255 /* strcut bm_position is used for browsing memory bitmaps */
256 
257 struct bm_position {
258 	struct zone_bitmap *zone_bm;
259 	struct bm_block *block;
260 	int chunk;
261 	int bit;
262 };
263 
264 struct memory_bitmap {
265 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
266 	struct linked_page *p_list;	/* list of pages used to store zone
267 					 * bitmap objects and bitmap block
268 					 * objects
269 					 */
270 	struct bm_position cur;	/* most recently used bit position */
271 };
272 
273 /* Functions that operate on memory bitmaps */
274 
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277 	bm->cur.chunk = 0;
278 	bm->cur.bit = -1;
279 }
280 
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283 	struct zone_bitmap *zone_bm;
284 
285 	zone_bm = bm->zone_bm_list;
286 	bm->cur.zone_bm = zone_bm;
287 	bm->cur.block = zone_bm->bm_blocks;
288 	memory_bm_reset_chunk(bm);
289 }
290 
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292 
293 /**
294  *	create_bm_block_list - create a list of block bitmap objects
295  */
296 
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300 	struct bm_block *bblist = NULL;
301 
302 	while (nr_blocks-- > 0) {
303 		struct bm_block *bb;
304 
305 		bb = chain_alloc(ca, sizeof(struct bm_block));
306 		if (!bb)
307 			return NULL;
308 
309 		bb->next = bblist;
310 		bblist = bb;
311 	}
312 	return bblist;
313 }
314 
315 /**
316  *	create_zone_bm_list - create a list of zone bitmap objects
317  */
318 
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322 	struct zone_bitmap *zbmlist = NULL;
323 
324 	while (nr_zones-- > 0) {
325 		struct zone_bitmap *zbm;
326 
327 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328 		if (!zbm)
329 			return NULL;
330 
331 		zbm->next = zbmlist;
332 		zbmlist = zbm;
333 	}
334 	return zbmlist;
335 }
336 
337 /**
338   *	memory_bm_create - allocate memory for a memory bitmap
339   */
340 
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344 	struct chain_allocator ca;
345 	struct zone *zone;
346 	struct zone_bitmap *zone_bm;
347 	struct bm_block *bb;
348 	unsigned int nr;
349 
350 	chain_init(&ca, gfp_mask, safe_needed);
351 
352 	/* Compute the number of zones */
353 	nr = 0;
354 	for_each_zone(zone)
355 		if (populated_zone(zone))
356 			nr++;
357 
358 	/* Allocate the list of zones bitmap objects */
359 	zone_bm = create_zone_bm_list(nr, &ca);
360 	bm->zone_bm_list = zone_bm;
361 	if (!zone_bm) {
362 		chain_free(&ca, PG_UNSAFE_CLEAR);
363 		return -ENOMEM;
364 	}
365 
366 	/* Initialize the zone bitmap objects */
367 	for_each_zone(zone) {
368 		unsigned long pfn;
369 
370 		if (!populated_zone(zone))
371 			continue;
372 
373 		zone_bm->start_pfn = zone->zone_start_pfn;
374 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375 		/* Allocate the list of bitmap block objects */
376 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377 		bb = create_bm_block_list(nr, &ca);
378 		zone_bm->bm_blocks = bb;
379 		zone_bm->cur_block = bb;
380 		if (!bb)
381 			goto Free;
382 
383 		nr = zone->spanned_pages;
384 		pfn = zone->zone_start_pfn;
385 		/* Initialize the bitmap block objects */
386 		while (bb) {
387 			unsigned long *ptr;
388 
389 			ptr = get_image_page(gfp_mask, safe_needed);
390 			bb->data = ptr;
391 			if (!ptr)
392 				goto Free;
393 
394 			bb->start_pfn = pfn;
395 			if (nr >= BM_BITS_PER_BLOCK) {
396 				pfn += BM_BITS_PER_BLOCK;
397 				bb->size = BM_CHUNKS_PER_BLOCK;
398 				nr -= BM_BITS_PER_BLOCK;
399 			} else {
400 				/* This is executed only once in the loop */
401 				pfn += nr;
402 				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403 			}
404 			bb->end_pfn = pfn;
405 			bb = bb->next;
406 		}
407 		zone_bm = zone_bm->next;
408 	}
409 	bm->p_list = ca.chain;
410 	memory_bm_position_reset(bm);
411 	return 0;
412 
413  Free:
414 	bm->p_list = ca.chain;
415 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
416 	return -ENOMEM;
417 }
418 
419 /**
420   *	memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422 
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425 	struct zone_bitmap *zone_bm;
426 
427 	/* Free the list of bit blocks for each zone_bitmap object */
428 	zone_bm = bm->zone_bm_list;
429 	while (zone_bm) {
430 		struct bm_block *bb;
431 
432 		bb = zone_bm->bm_blocks;
433 		while (bb) {
434 			if (bb->data)
435 				free_image_page(bb->data, clear_nosave_free);
436 			bb = bb->next;
437 		}
438 		zone_bm = zone_bm->next;
439 	}
440 	free_list_of_pages(bm->p_list, clear_nosave_free);
441 	bm->zone_bm_list = NULL;
442 }
443 
444 /**
445  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *	of @bm->cur_zone_bm are updated.
448  */
449 
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451 				void **addr, unsigned int *bit_nr)
452 {
453 	struct zone_bitmap *zone_bm;
454 	struct bm_block *bb;
455 
456 	/* Check if the pfn is from the current zone */
457 	zone_bm = bm->cur.zone_bm;
458 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459 		zone_bm = bm->zone_bm_list;
460 		/* We don't assume that the zones are sorted by pfns */
461 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462 			zone_bm = zone_bm->next;
463 
464 			BUG_ON(!zone_bm);
465 		}
466 		bm->cur.zone_bm = zone_bm;
467 	}
468 	/* Check if the pfn corresponds to the current bitmap block */
469 	bb = zone_bm->cur_block;
470 	if (pfn < bb->start_pfn)
471 		bb = zone_bm->bm_blocks;
472 
473 	while (pfn >= bb->end_pfn) {
474 		bb = bb->next;
475 
476 		BUG_ON(!bb);
477 	}
478 	zone_bm->cur_block = bb;
479 	pfn -= bb->start_pfn;
480 	*bit_nr = pfn % BM_BITS_PER_CHUNK;
481 	*addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483 
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486 	void *addr;
487 	unsigned int bit;
488 
489 	memory_bm_find_bit(bm, pfn, &addr, &bit);
490 	set_bit(bit, addr);
491 }
492 
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495 	void *addr;
496 	unsigned int bit;
497 
498 	memory_bm_find_bit(bm, pfn, &addr, &bit);
499 	clear_bit(bit, addr);
500 }
501 
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504 	void *addr;
505 	unsigned int bit;
506 
507 	memory_bm_find_bit(bm, pfn, &addr, &bit);
508 	return test_bit(bit, addr);
509 }
510 
511 /* Two auxiliary functions for memory_bm_next_pfn */
512 
513 /* Find the first set bit in the given chunk, if there is one */
514 
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517 	bit++;
518 	while (bit < BM_BITS_PER_CHUNK) {
519 		if (test_bit(bit, chunk_p))
520 			return bit;
521 
522 		bit++;
523 	}
524 	return -1;
525 }
526 
527 /* Find a chunk containing some bits set in given block of bits */
528 
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531 	n++;
532 	while (n < bb->size) {
533 		if (bb->data[n])
534 			return n;
535 
536 		n++;
537 	}
538 	return -1;
539 }
540 
541 /**
542  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
544  *	returned.
545  *
546  *	It is required to run memory_bm_position_reset() before the first call to
547  *	this function.
548  */
549 
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552 	struct zone_bitmap *zone_bm;
553 	struct bm_block *bb;
554 	int chunk;
555 	int bit;
556 
557 	do {
558 		bb = bm->cur.block;
559 		do {
560 			chunk = bm->cur.chunk;
561 			bit = bm->cur.bit;
562 			do {
563 				bit = next_bit_in_chunk(bit, bb->data + chunk);
564 				if (bit >= 0)
565 					goto Return_pfn;
566 
567 				chunk = next_chunk_in_block(chunk, bb);
568 				bit = -1;
569 			} while (chunk >= 0);
570 			bb = bb->next;
571 			bm->cur.block = bb;
572 			memory_bm_reset_chunk(bm);
573 		} while (bb);
574 		zone_bm = bm->cur.zone_bm->next;
575 		if (zone_bm) {
576 			bm->cur.zone_bm = zone_bm;
577 			bm->cur.block = zone_bm->bm_blocks;
578 			memory_bm_reset_chunk(bm);
579 		}
580 	} while (zone_bm);
581 	memory_bm_position_reset(bm);
582 	return BM_END_OF_MAP;
583 
584  Return_pfn:
585 	bm->cur.chunk = chunk;
586 	bm->cur.bit = bit;
587 	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589 
590 /**
591  *	This structure represents a range of page frames the contents of which
592  *	should not be saved during the suspend.
593  */
594 
595 struct nosave_region {
596 	struct list_head list;
597 	unsigned long start_pfn;
598 	unsigned long end_pfn;
599 };
600 
601 static LIST_HEAD(nosave_regions);
602 
603 /**
604  *	register_nosave_region - register a range of page frames the contents
605  *	of which should not be saved during the suspend (to be used in the early
606  *	initialization code)
607  */
608 
609 void __init
610 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
611 			 int use_kmalloc)
612 {
613 	struct nosave_region *region;
614 
615 	if (start_pfn >= end_pfn)
616 		return;
617 
618 	if (!list_empty(&nosave_regions)) {
619 		/* Try to extend the previous region (they should be sorted) */
620 		region = list_entry(nosave_regions.prev,
621 					struct nosave_region, list);
622 		if (region->end_pfn == start_pfn) {
623 			region->end_pfn = end_pfn;
624 			goto Report;
625 		}
626 	}
627 	if (use_kmalloc) {
628 		/* during init, this shouldn't fail */
629 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
630 		BUG_ON(!region);
631 	} else
632 		/* This allocation cannot fail */
633 		region = alloc_bootmem_low(sizeof(struct nosave_region));
634 	region->start_pfn = start_pfn;
635 	region->end_pfn = end_pfn;
636 	list_add_tail(&region->list, &nosave_regions);
637  Report:
638 	printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
639 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
640 }
641 
642 /*
643  * Set bits in this map correspond to the page frames the contents of which
644  * should not be saved during the suspend.
645  */
646 static struct memory_bitmap *forbidden_pages_map;
647 
648 /* Set bits in this map correspond to free page frames. */
649 static struct memory_bitmap *free_pages_map;
650 
651 /*
652  * Each page frame allocated for creating the image is marked by setting the
653  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
654  */
655 
656 void swsusp_set_page_free(struct page *page)
657 {
658 	if (free_pages_map)
659 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
660 }
661 
662 static int swsusp_page_is_free(struct page *page)
663 {
664 	return free_pages_map ?
665 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
666 }
667 
668 void swsusp_unset_page_free(struct page *page)
669 {
670 	if (free_pages_map)
671 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
672 }
673 
674 static void swsusp_set_page_forbidden(struct page *page)
675 {
676 	if (forbidden_pages_map)
677 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
678 }
679 
680 int swsusp_page_is_forbidden(struct page *page)
681 {
682 	return forbidden_pages_map ?
683 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
684 }
685 
686 static void swsusp_unset_page_forbidden(struct page *page)
687 {
688 	if (forbidden_pages_map)
689 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
690 }
691 
692 /**
693  *	mark_nosave_pages - set bits corresponding to the page frames the
694  *	contents of which should not be saved in a given bitmap.
695  */
696 
697 static void mark_nosave_pages(struct memory_bitmap *bm)
698 {
699 	struct nosave_region *region;
700 
701 	if (list_empty(&nosave_regions))
702 		return;
703 
704 	list_for_each_entry(region, &nosave_regions, list) {
705 		unsigned long pfn;
706 
707 		printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
708 				region->start_pfn << PAGE_SHIFT,
709 				region->end_pfn << PAGE_SHIFT);
710 
711 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
712 			memory_bm_set_bit(bm, pfn);
713 	}
714 }
715 
716 /**
717  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
718  *	frames that should not be saved and free page frames.  The pointers
719  *	forbidden_pages_map and free_pages_map are only modified if everything
720  *	goes well, because we don't want the bits to be used before both bitmaps
721  *	are set up.
722  */
723 
724 int create_basic_memory_bitmaps(void)
725 {
726 	struct memory_bitmap *bm1, *bm2;
727 	int error = 0;
728 
729 	BUG_ON(forbidden_pages_map || free_pages_map);
730 
731 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
732 	if (!bm1)
733 		return -ENOMEM;
734 
735 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
736 	if (error)
737 		goto Free_first_object;
738 
739 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
740 	if (!bm2)
741 		goto Free_first_bitmap;
742 
743 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
744 	if (error)
745 		goto Free_second_object;
746 
747 	forbidden_pages_map = bm1;
748 	free_pages_map = bm2;
749 	mark_nosave_pages(forbidden_pages_map);
750 
751 	printk("swsusp: Basic memory bitmaps created\n");
752 
753 	return 0;
754 
755  Free_second_object:
756 	kfree(bm2);
757  Free_first_bitmap:
758  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
759  Free_first_object:
760 	kfree(bm1);
761 	return -ENOMEM;
762 }
763 
764 /**
765  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
766  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
767  *	so that the bitmaps themselves are not referred to while they are being
768  *	freed.
769  */
770 
771 void free_basic_memory_bitmaps(void)
772 {
773 	struct memory_bitmap *bm1, *bm2;
774 
775 	BUG_ON(!(forbidden_pages_map && free_pages_map));
776 
777 	bm1 = forbidden_pages_map;
778 	bm2 = free_pages_map;
779 	forbidden_pages_map = NULL;
780 	free_pages_map = NULL;
781 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
782 	kfree(bm1);
783 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
784 	kfree(bm2);
785 
786 	printk("swsusp: Basic memory bitmaps freed\n");
787 }
788 
789 /**
790  *	snapshot_additional_pages - estimate the number of additional pages
791  *	be needed for setting up the suspend image data structures for given
792  *	zone (usually the returned value is greater than the exact number)
793  */
794 
795 unsigned int snapshot_additional_pages(struct zone *zone)
796 {
797 	unsigned int res;
798 
799 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
800 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
801 	return 2 * res;
802 }
803 
804 #ifdef CONFIG_HIGHMEM
805 /**
806  *	count_free_highmem_pages - compute the total number of free highmem
807  *	pages, system-wide.
808  */
809 
810 static unsigned int count_free_highmem_pages(void)
811 {
812 	struct zone *zone;
813 	unsigned int cnt = 0;
814 
815 	for_each_zone(zone)
816 		if (populated_zone(zone) && is_highmem(zone))
817 			cnt += zone_page_state(zone, NR_FREE_PAGES);
818 
819 	return cnt;
820 }
821 
822 /**
823  *	saveable_highmem_page - Determine whether a highmem page should be
824  *	included in the suspend image.
825  *
826  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
827  *	and it isn't a part of a free chunk of pages.
828  */
829 
830 static struct page *saveable_highmem_page(unsigned long pfn)
831 {
832 	struct page *page;
833 
834 	if (!pfn_valid(pfn))
835 		return NULL;
836 
837 	page = pfn_to_page(pfn);
838 
839 	BUG_ON(!PageHighMem(page));
840 
841 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
842 	    PageReserved(page))
843 		return NULL;
844 
845 	return page;
846 }
847 
848 /**
849  *	count_highmem_pages - compute the total number of saveable highmem
850  *	pages.
851  */
852 
853 unsigned int count_highmem_pages(void)
854 {
855 	struct zone *zone;
856 	unsigned int n = 0;
857 
858 	for_each_zone(zone) {
859 		unsigned long pfn, max_zone_pfn;
860 
861 		if (!is_highmem(zone))
862 			continue;
863 
864 		mark_free_pages(zone);
865 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
866 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
867 			if (saveable_highmem_page(pfn))
868 				n++;
869 	}
870 	return n;
871 }
872 #else
873 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
874 static inline unsigned int count_highmem_pages(void) { return 0; }
875 #endif /* CONFIG_HIGHMEM */
876 
877 /**
878  *	saveable - Determine whether a non-highmem page should be included in
879  *	the suspend image.
880  *
881  *	We should save the page if it isn't Nosave, and is not in the range
882  *	of pages statically defined as 'unsaveable', and it isn't a part of
883  *	a free chunk of pages.
884  */
885 
886 static struct page *saveable_page(unsigned long pfn)
887 {
888 	struct page *page;
889 
890 	if (!pfn_valid(pfn))
891 		return NULL;
892 
893 	page = pfn_to_page(pfn);
894 
895 	BUG_ON(PageHighMem(page));
896 
897 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
898 		return NULL;
899 
900 	if (PageReserved(page) && pfn_is_nosave(pfn))
901 		return NULL;
902 
903 	return page;
904 }
905 
906 /**
907  *	count_data_pages - compute the total number of saveable non-highmem
908  *	pages.
909  */
910 
911 unsigned int count_data_pages(void)
912 {
913 	struct zone *zone;
914 	unsigned long pfn, max_zone_pfn;
915 	unsigned int n = 0;
916 
917 	for_each_zone(zone) {
918 		if (is_highmem(zone))
919 			continue;
920 
921 		mark_free_pages(zone);
922 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
923 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
924 			if(saveable_page(pfn))
925 				n++;
926 	}
927 	return n;
928 }
929 
930 /* This is needed, because copy_page and memcpy are not usable for copying
931  * task structs.
932  */
933 static inline void do_copy_page(long *dst, long *src)
934 {
935 	int n;
936 
937 	for (n = PAGE_SIZE / sizeof(long); n; n--)
938 		*dst++ = *src++;
939 }
940 
941 #ifdef CONFIG_HIGHMEM
942 static inline struct page *
943 page_is_saveable(struct zone *zone, unsigned long pfn)
944 {
945 	return is_highmem(zone) ?
946 			saveable_highmem_page(pfn) : saveable_page(pfn);
947 }
948 
949 static inline void
950 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
951 {
952 	struct page *s_page, *d_page;
953 	void *src, *dst;
954 
955 	s_page = pfn_to_page(src_pfn);
956 	d_page = pfn_to_page(dst_pfn);
957 	if (PageHighMem(s_page)) {
958 		src = kmap_atomic(s_page, KM_USER0);
959 		dst = kmap_atomic(d_page, KM_USER1);
960 		do_copy_page(dst, src);
961 		kunmap_atomic(src, KM_USER0);
962 		kunmap_atomic(dst, KM_USER1);
963 	} else {
964 		src = page_address(s_page);
965 		if (PageHighMem(d_page)) {
966 			/* Page pointed to by src may contain some kernel
967 			 * data modified by kmap_atomic()
968 			 */
969 			do_copy_page(buffer, src);
970 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
971 			memcpy(dst, buffer, PAGE_SIZE);
972 			kunmap_atomic(dst, KM_USER0);
973 		} else {
974 			dst = page_address(d_page);
975 			do_copy_page(dst, src);
976 		}
977 	}
978 }
979 #else
980 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
981 
982 static inline void
983 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
984 {
985 	do_copy_page(page_address(pfn_to_page(dst_pfn)),
986 			page_address(pfn_to_page(src_pfn)));
987 }
988 #endif /* CONFIG_HIGHMEM */
989 
990 static void
991 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
992 {
993 	struct zone *zone;
994 	unsigned long pfn;
995 
996 	for_each_zone(zone) {
997 		unsigned long max_zone_pfn;
998 
999 		mark_free_pages(zone);
1000 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1001 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1002 			if (page_is_saveable(zone, pfn))
1003 				memory_bm_set_bit(orig_bm, pfn);
1004 	}
1005 	memory_bm_position_reset(orig_bm);
1006 	memory_bm_position_reset(copy_bm);
1007 	do {
1008 		pfn = memory_bm_next_pfn(orig_bm);
1009 		if (likely(pfn != BM_END_OF_MAP))
1010 			copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1011 	} while (pfn != BM_END_OF_MAP);
1012 }
1013 
1014 /* Total number of image pages */
1015 static unsigned int nr_copy_pages;
1016 /* Number of pages needed for saving the original pfns of the image pages */
1017 static unsigned int nr_meta_pages;
1018 
1019 /**
1020  *	swsusp_free - free pages allocated for the suspend.
1021  *
1022  *	Suspend pages are alocated before the atomic copy is made, so we
1023  *	need to release them after the resume.
1024  */
1025 
1026 void swsusp_free(void)
1027 {
1028 	struct zone *zone;
1029 	unsigned long pfn, max_zone_pfn;
1030 
1031 	for_each_zone(zone) {
1032 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1033 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1034 			if (pfn_valid(pfn)) {
1035 				struct page *page = pfn_to_page(pfn);
1036 
1037 				if (swsusp_page_is_forbidden(page) &&
1038 				    swsusp_page_is_free(page)) {
1039 					swsusp_unset_page_forbidden(page);
1040 					swsusp_unset_page_free(page);
1041 					__free_page(page);
1042 				}
1043 			}
1044 	}
1045 	nr_copy_pages = 0;
1046 	nr_meta_pages = 0;
1047 	restore_pblist = NULL;
1048 	buffer = NULL;
1049 }
1050 
1051 #ifdef CONFIG_HIGHMEM
1052 /**
1053   *	count_pages_for_highmem - compute the number of non-highmem pages
1054   *	that will be necessary for creating copies of highmem pages.
1055   */
1056 
1057 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1058 {
1059 	unsigned int free_highmem = count_free_highmem_pages();
1060 
1061 	if (free_highmem >= nr_highmem)
1062 		nr_highmem = 0;
1063 	else
1064 		nr_highmem -= free_highmem;
1065 
1066 	return nr_highmem;
1067 }
1068 #else
1069 static unsigned int
1070 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1071 #endif /* CONFIG_HIGHMEM */
1072 
1073 /**
1074  *	enough_free_mem - Make sure we have enough free memory for the
1075  *	snapshot image.
1076  */
1077 
1078 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1079 {
1080 	struct zone *zone;
1081 	unsigned int free = 0, meta = 0;
1082 
1083 	for_each_zone(zone) {
1084 		meta += snapshot_additional_pages(zone);
1085 		if (!is_highmem(zone))
1086 			free += zone_page_state(zone, NR_FREE_PAGES);
1087 	}
1088 
1089 	nr_pages += count_pages_for_highmem(nr_highmem);
1090 	pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1091 		nr_pages, PAGES_FOR_IO, meta, free);
1092 
1093 	return free > nr_pages + PAGES_FOR_IO + meta;
1094 }
1095 
1096 #ifdef CONFIG_HIGHMEM
1097 /**
1098  *	get_highmem_buffer - if there are some highmem pages in the suspend
1099  *	image, we may need the buffer to copy them and/or load their data.
1100  */
1101 
1102 static inline int get_highmem_buffer(int safe_needed)
1103 {
1104 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1105 	return buffer ? 0 : -ENOMEM;
1106 }
1107 
1108 /**
1109  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1110  *	Try to allocate as many pages as needed, but if the number of free
1111  *	highmem pages is lesser than that, allocate them all.
1112  */
1113 
1114 static inline unsigned int
1115 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1116 {
1117 	unsigned int to_alloc = count_free_highmem_pages();
1118 
1119 	if (to_alloc > nr_highmem)
1120 		to_alloc = nr_highmem;
1121 
1122 	nr_highmem -= to_alloc;
1123 	while (to_alloc-- > 0) {
1124 		struct page *page;
1125 
1126 		page = alloc_image_page(__GFP_HIGHMEM);
1127 		memory_bm_set_bit(bm, page_to_pfn(page));
1128 	}
1129 	return nr_highmem;
1130 }
1131 #else
1132 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1133 
1134 static inline unsigned int
1135 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1136 #endif /* CONFIG_HIGHMEM */
1137 
1138 /**
1139  *	swsusp_alloc - allocate memory for the suspend image
1140  *
1141  *	We first try to allocate as many highmem pages as there are
1142  *	saveable highmem pages in the system.  If that fails, we allocate
1143  *	non-highmem pages for the copies of the remaining highmem ones.
1144  *
1145  *	In this approach it is likely that the copies of highmem pages will
1146  *	also be located in the high memory, because of the way in which
1147  *	copy_data_pages() works.
1148  */
1149 
1150 static int
1151 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1152 		unsigned int nr_pages, unsigned int nr_highmem)
1153 {
1154 	int error;
1155 
1156 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1157 	if (error)
1158 		goto Free;
1159 
1160 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1161 	if (error)
1162 		goto Free;
1163 
1164 	if (nr_highmem > 0) {
1165 		error = get_highmem_buffer(PG_ANY);
1166 		if (error)
1167 			goto Free;
1168 
1169 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1170 	}
1171 	while (nr_pages-- > 0) {
1172 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1173 
1174 		if (!page)
1175 			goto Free;
1176 
1177 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1178 	}
1179 	return 0;
1180 
1181  Free:
1182 	swsusp_free();
1183 	return -ENOMEM;
1184 }
1185 
1186 /* Memory bitmap used for marking saveable pages (during suspend) or the
1187  * suspend image pages (during resume)
1188  */
1189 static struct memory_bitmap orig_bm;
1190 /* Memory bitmap used on suspend for marking allocated pages that will contain
1191  * the copies of saveable pages.  During resume it is initially used for
1192  * marking the suspend image pages, but then its set bits are duplicated in
1193  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1194  * used for marking "safe" highmem pages, but it has to be reinitialized for
1195  * this purpose.
1196  */
1197 static struct memory_bitmap copy_bm;
1198 
1199 asmlinkage int swsusp_save(void)
1200 {
1201 	unsigned int nr_pages, nr_highmem;
1202 
1203 	printk("swsusp: critical section: \n");
1204 
1205 	drain_local_pages();
1206 	nr_pages = count_data_pages();
1207 	nr_highmem = count_highmem_pages();
1208 	printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1209 
1210 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1211 		printk(KERN_ERR "swsusp: Not enough free memory\n");
1212 		return -ENOMEM;
1213 	}
1214 
1215 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1216 		printk(KERN_ERR "swsusp: Memory allocation failed\n");
1217 		return -ENOMEM;
1218 	}
1219 
1220 	/* During allocating of suspend pagedir, new cold pages may appear.
1221 	 * Kill them.
1222 	 */
1223 	drain_local_pages();
1224 	copy_data_pages(&copy_bm, &orig_bm);
1225 
1226 	/*
1227 	 * End of critical section. From now on, we can write to memory,
1228 	 * but we should not touch disk. This specially means we must _not_
1229 	 * touch swap space! Except we must write out our image of course.
1230 	 */
1231 
1232 	nr_pages += nr_highmem;
1233 	nr_copy_pages = nr_pages;
1234 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1235 
1236 	printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
1237 
1238 	return 0;
1239 }
1240 
1241 static void init_header(struct swsusp_info *info)
1242 {
1243 	memset(info, 0, sizeof(struct swsusp_info));
1244 	info->version_code = LINUX_VERSION_CODE;
1245 	info->num_physpages = num_physpages;
1246 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1247 	info->cpus = num_online_cpus();
1248 	info->image_pages = nr_copy_pages;
1249 	info->pages = nr_copy_pages + nr_meta_pages + 1;
1250 	info->size = info->pages;
1251 	info->size <<= PAGE_SHIFT;
1252 }
1253 
1254 /**
1255  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1256  *	are stored in the array @buf[] (1 page at a time)
1257  */
1258 
1259 static inline void
1260 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1261 {
1262 	int j;
1263 
1264 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1265 		buf[j] = memory_bm_next_pfn(bm);
1266 		if (unlikely(buf[j] == BM_END_OF_MAP))
1267 			break;
1268 	}
1269 }
1270 
1271 /**
1272  *	snapshot_read_next - used for reading the system memory snapshot.
1273  *
1274  *	On the first call to it @handle should point to a zeroed
1275  *	snapshot_handle structure.  The structure gets updated and a pointer
1276  *	to it should be passed to this function every next time.
1277  *
1278  *	The @count parameter should contain the number of bytes the caller
1279  *	wants to read from the snapshot.  It must not be zero.
1280  *
1281  *	On success the function returns a positive number.  Then, the caller
1282  *	is allowed to read up to the returned number of bytes from the memory
1283  *	location computed by the data_of() macro.  The number returned
1284  *	may be smaller than @count, but this only happens if the read would
1285  *	cross a page boundary otherwise.
1286  *
1287  *	The function returns 0 to indicate the end of data stream condition,
1288  *	and a negative number is returned on error.  In such cases the
1289  *	structure pointed to by @handle is not updated and should not be used
1290  *	any more.
1291  */
1292 
1293 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1294 {
1295 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1296 		return 0;
1297 
1298 	if (!buffer) {
1299 		/* This makes the buffer be freed by swsusp_free() */
1300 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1301 		if (!buffer)
1302 			return -ENOMEM;
1303 	}
1304 	if (!handle->offset) {
1305 		init_header((struct swsusp_info *)buffer);
1306 		handle->buffer = buffer;
1307 		memory_bm_position_reset(&orig_bm);
1308 		memory_bm_position_reset(&copy_bm);
1309 	}
1310 	if (handle->prev < handle->cur) {
1311 		if (handle->cur <= nr_meta_pages) {
1312 			memset(buffer, 0, PAGE_SIZE);
1313 			pack_pfns(buffer, &orig_bm);
1314 		} else {
1315 			struct page *page;
1316 
1317 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1318 			if (PageHighMem(page)) {
1319 				/* Highmem pages are copied to the buffer,
1320 				 * because we can't return with a kmapped
1321 				 * highmem page (we may not be called again).
1322 				 */
1323 				void *kaddr;
1324 
1325 				kaddr = kmap_atomic(page, KM_USER0);
1326 				memcpy(buffer, kaddr, PAGE_SIZE);
1327 				kunmap_atomic(kaddr, KM_USER0);
1328 				handle->buffer = buffer;
1329 			} else {
1330 				handle->buffer = page_address(page);
1331 			}
1332 		}
1333 		handle->prev = handle->cur;
1334 	}
1335 	handle->buf_offset = handle->cur_offset;
1336 	if (handle->cur_offset + count >= PAGE_SIZE) {
1337 		count = PAGE_SIZE - handle->cur_offset;
1338 		handle->cur_offset = 0;
1339 		handle->cur++;
1340 	} else {
1341 		handle->cur_offset += count;
1342 	}
1343 	handle->offset += count;
1344 	return count;
1345 }
1346 
1347 /**
1348  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1349  *	the image during resume, because they conflict with the pages that
1350  *	had been used before suspend
1351  */
1352 
1353 static int mark_unsafe_pages(struct memory_bitmap *bm)
1354 {
1355 	struct zone *zone;
1356 	unsigned long pfn, max_zone_pfn;
1357 
1358 	/* Clear page flags */
1359 	for_each_zone(zone) {
1360 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1361 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1362 			if (pfn_valid(pfn))
1363 				swsusp_unset_page_free(pfn_to_page(pfn));
1364 	}
1365 
1366 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1367 	memory_bm_position_reset(bm);
1368 	do {
1369 		pfn = memory_bm_next_pfn(bm);
1370 		if (likely(pfn != BM_END_OF_MAP)) {
1371 			if (likely(pfn_valid(pfn)))
1372 				swsusp_set_page_free(pfn_to_page(pfn));
1373 			else
1374 				return -EFAULT;
1375 		}
1376 	} while (pfn != BM_END_OF_MAP);
1377 
1378 	allocated_unsafe_pages = 0;
1379 
1380 	return 0;
1381 }
1382 
1383 static void
1384 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1385 {
1386 	unsigned long pfn;
1387 
1388 	memory_bm_position_reset(src);
1389 	pfn = memory_bm_next_pfn(src);
1390 	while (pfn != BM_END_OF_MAP) {
1391 		memory_bm_set_bit(dst, pfn);
1392 		pfn = memory_bm_next_pfn(src);
1393 	}
1394 }
1395 
1396 static inline int check_header(struct swsusp_info *info)
1397 {
1398 	char *reason = NULL;
1399 
1400 	if (info->version_code != LINUX_VERSION_CODE)
1401 		reason = "kernel version";
1402 	if (info->num_physpages != num_physpages)
1403 		reason = "memory size";
1404 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1405 		reason = "system type";
1406 	if (strcmp(info->uts.release,init_utsname()->release))
1407 		reason = "kernel release";
1408 	if (strcmp(info->uts.version,init_utsname()->version))
1409 		reason = "version";
1410 	if (strcmp(info->uts.machine,init_utsname()->machine))
1411 		reason = "machine";
1412 	if (reason) {
1413 		printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1414 		return -EPERM;
1415 	}
1416 	return 0;
1417 }
1418 
1419 /**
1420  *	load header - check the image header and copy data from it
1421  */
1422 
1423 static int
1424 load_header(struct swsusp_info *info)
1425 {
1426 	int error;
1427 
1428 	restore_pblist = NULL;
1429 	error = check_header(info);
1430 	if (!error) {
1431 		nr_copy_pages = info->image_pages;
1432 		nr_meta_pages = info->pages - info->image_pages - 1;
1433 	}
1434 	return error;
1435 }
1436 
1437 /**
1438  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1439  *	the corresponding bit in the memory bitmap @bm
1440  */
1441 
1442 static inline void
1443 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1444 {
1445 	int j;
1446 
1447 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1448 		if (unlikely(buf[j] == BM_END_OF_MAP))
1449 			break;
1450 
1451 		memory_bm_set_bit(bm, buf[j]);
1452 	}
1453 }
1454 
1455 /* List of "safe" pages that may be used to store data loaded from the suspend
1456  * image
1457  */
1458 static struct linked_page *safe_pages_list;
1459 
1460 #ifdef CONFIG_HIGHMEM
1461 /* struct highmem_pbe is used for creating the list of highmem pages that
1462  * should be restored atomically during the resume from disk, because the page
1463  * frames they have occupied before the suspend are in use.
1464  */
1465 struct highmem_pbe {
1466 	struct page *copy_page;	/* data is here now */
1467 	struct page *orig_page;	/* data was here before the suspend */
1468 	struct highmem_pbe *next;
1469 };
1470 
1471 /* List of highmem PBEs needed for restoring the highmem pages that were
1472  * allocated before the suspend and included in the suspend image, but have
1473  * also been allocated by the "resume" kernel, so their contents cannot be
1474  * written directly to their "original" page frames.
1475  */
1476 static struct highmem_pbe *highmem_pblist;
1477 
1478 /**
1479  *	count_highmem_image_pages - compute the number of highmem pages in the
1480  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1481  *	image pages are assumed to be set.
1482  */
1483 
1484 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1485 {
1486 	unsigned long pfn;
1487 	unsigned int cnt = 0;
1488 
1489 	memory_bm_position_reset(bm);
1490 	pfn = memory_bm_next_pfn(bm);
1491 	while (pfn != BM_END_OF_MAP) {
1492 		if (PageHighMem(pfn_to_page(pfn)))
1493 			cnt++;
1494 
1495 		pfn = memory_bm_next_pfn(bm);
1496 	}
1497 	return cnt;
1498 }
1499 
1500 /**
1501  *	prepare_highmem_image - try to allocate as many highmem pages as
1502  *	there are highmem image pages (@nr_highmem_p points to the variable
1503  *	containing the number of highmem image pages).  The pages that are
1504  *	"safe" (ie. will not be overwritten when the suspend image is
1505  *	restored) have the corresponding bits set in @bm (it must be
1506  *	unitialized).
1507  *
1508  *	NOTE: This function should not be called if there are no highmem
1509  *	image pages.
1510  */
1511 
1512 static unsigned int safe_highmem_pages;
1513 
1514 static struct memory_bitmap *safe_highmem_bm;
1515 
1516 static int
1517 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1518 {
1519 	unsigned int to_alloc;
1520 
1521 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1522 		return -ENOMEM;
1523 
1524 	if (get_highmem_buffer(PG_SAFE))
1525 		return -ENOMEM;
1526 
1527 	to_alloc = count_free_highmem_pages();
1528 	if (to_alloc > *nr_highmem_p)
1529 		to_alloc = *nr_highmem_p;
1530 	else
1531 		*nr_highmem_p = to_alloc;
1532 
1533 	safe_highmem_pages = 0;
1534 	while (to_alloc-- > 0) {
1535 		struct page *page;
1536 
1537 		page = alloc_page(__GFP_HIGHMEM);
1538 		if (!swsusp_page_is_free(page)) {
1539 			/* The page is "safe", set its bit the bitmap */
1540 			memory_bm_set_bit(bm, page_to_pfn(page));
1541 			safe_highmem_pages++;
1542 		}
1543 		/* Mark the page as allocated */
1544 		swsusp_set_page_forbidden(page);
1545 		swsusp_set_page_free(page);
1546 	}
1547 	memory_bm_position_reset(bm);
1548 	safe_highmem_bm = bm;
1549 	return 0;
1550 }
1551 
1552 /**
1553  *	get_highmem_page_buffer - for given highmem image page find the buffer
1554  *	that suspend_write_next() should set for its caller to write to.
1555  *
1556  *	If the page is to be saved to its "original" page frame or a copy of
1557  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1558  *	the copy of the page is to be made in normal memory, so the address of
1559  *	the copy is returned.
1560  *
1561  *	If @buffer is returned, the caller of suspend_write_next() will write
1562  *	the page's contents to @buffer, so they will have to be copied to the
1563  *	right location on the next call to suspend_write_next() and it is done
1564  *	with the help of copy_last_highmem_page().  For this purpose, if
1565  *	@buffer is returned, @last_highmem page is set to the page to which
1566  *	the data will have to be copied from @buffer.
1567  */
1568 
1569 static struct page *last_highmem_page;
1570 
1571 static void *
1572 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1573 {
1574 	struct highmem_pbe *pbe;
1575 	void *kaddr;
1576 
1577 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1578 		/* We have allocated the "original" page frame and we can
1579 		 * use it directly to store the loaded page.
1580 		 */
1581 		last_highmem_page = page;
1582 		return buffer;
1583 	}
1584 	/* The "original" page frame has not been allocated and we have to
1585 	 * use a "safe" page frame to store the loaded page.
1586 	 */
1587 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1588 	if (!pbe) {
1589 		swsusp_free();
1590 		return NULL;
1591 	}
1592 	pbe->orig_page = page;
1593 	if (safe_highmem_pages > 0) {
1594 		struct page *tmp;
1595 
1596 		/* Copy of the page will be stored in high memory */
1597 		kaddr = buffer;
1598 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1599 		safe_highmem_pages--;
1600 		last_highmem_page = tmp;
1601 		pbe->copy_page = tmp;
1602 	} else {
1603 		/* Copy of the page will be stored in normal memory */
1604 		kaddr = safe_pages_list;
1605 		safe_pages_list = safe_pages_list->next;
1606 		pbe->copy_page = virt_to_page(kaddr);
1607 	}
1608 	pbe->next = highmem_pblist;
1609 	highmem_pblist = pbe;
1610 	return kaddr;
1611 }
1612 
1613 /**
1614  *	copy_last_highmem_page - copy the contents of a highmem image from
1615  *	@buffer, where the caller of snapshot_write_next() has place them,
1616  *	to the right location represented by @last_highmem_page .
1617  */
1618 
1619 static void copy_last_highmem_page(void)
1620 {
1621 	if (last_highmem_page) {
1622 		void *dst;
1623 
1624 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1625 		memcpy(dst, buffer, PAGE_SIZE);
1626 		kunmap_atomic(dst, KM_USER0);
1627 		last_highmem_page = NULL;
1628 	}
1629 }
1630 
1631 static inline int last_highmem_page_copied(void)
1632 {
1633 	return !last_highmem_page;
1634 }
1635 
1636 static inline void free_highmem_data(void)
1637 {
1638 	if (safe_highmem_bm)
1639 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1640 
1641 	if (buffer)
1642 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1643 }
1644 #else
1645 static inline int get_safe_write_buffer(void) { return 0; }
1646 
1647 static unsigned int
1648 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1649 
1650 static inline int
1651 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1652 {
1653 	return 0;
1654 }
1655 
1656 static inline void *
1657 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1658 {
1659 	return NULL;
1660 }
1661 
1662 static inline void copy_last_highmem_page(void) {}
1663 static inline int last_highmem_page_copied(void) { return 1; }
1664 static inline void free_highmem_data(void) {}
1665 #endif /* CONFIG_HIGHMEM */
1666 
1667 /**
1668  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1669  *	be overwritten in the process of restoring the system memory state
1670  *	from the suspend image ("unsafe" pages) and allocate memory for the
1671  *	image.
1672  *
1673  *	The idea is to allocate a new memory bitmap first and then allocate
1674  *	as many pages as needed for the image data, but not to assign these
1675  *	pages to specific tasks initially.  Instead, we just mark them as
1676  *	allocated and create a lists of "safe" pages that will be used
1677  *	later.  On systems with high memory a list of "safe" highmem pages is
1678  *	also created.
1679  */
1680 
1681 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1682 
1683 static int
1684 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1685 {
1686 	unsigned int nr_pages, nr_highmem;
1687 	struct linked_page *sp_list, *lp;
1688 	int error;
1689 
1690 	/* If there is no highmem, the buffer will not be necessary */
1691 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1692 	buffer = NULL;
1693 
1694 	nr_highmem = count_highmem_image_pages(bm);
1695 	error = mark_unsafe_pages(bm);
1696 	if (error)
1697 		goto Free;
1698 
1699 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1700 	if (error)
1701 		goto Free;
1702 
1703 	duplicate_memory_bitmap(new_bm, bm);
1704 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1705 	if (nr_highmem > 0) {
1706 		error = prepare_highmem_image(bm, &nr_highmem);
1707 		if (error)
1708 			goto Free;
1709 	}
1710 	/* Reserve some safe pages for potential later use.
1711 	 *
1712 	 * NOTE: This way we make sure there will be enough safe pages for the
1713 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1714 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1715 	 */
1716 	sp_list = NULL;
1717 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1718 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1719 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1720 	while (nr_pages > 0) {
1721 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1722 		if (!lp) {
1723 			error = -ENOMEM;
1724 			goto Free;
1725 		}
1726 		lp->next = sp_list;
1727 		sp_list = lp;
1728 		nr_pages--;
1729 	}
1730 	/* Preallocate memory for the image */
1731 	safe_pages_list = NULL;
1732 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1733 	while (nr_pages > 0) {
1734 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1735 		if (!lp) {
1736 			error = -ENOMEM;
1737 			goto Free;
1738 		}
1739 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1740 			/* The page is "safe", add it to the list */
1741 			lp->next = safe_pages_list;
1742 			safe_pages_list = lp;
1743 		}
1744 		/* Mark the page as allocated */
1745 		swsusp_set_page_forbidden(virt_to_page(lp));
1746 		swsusp_set_page_free(virt_to_page(lp));
1747 		nr_pages--;
1748 	}
1749 	/* Free the reserved safe pages so that chain_alloc() can use them */
1750 	while (sp_list) {
1751 		lp = sp_list->next;
1752 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1753 		sp_list = lp;
1754 	}
1755 	return 0;
1756 
1757  Free:
1758 	swsusp_free();
1759 	return error;
1760 }
1761 
1762 /**
1763  *	get_buffer - compute the address that snapshot_write_next() should
1764  *	set for its caller to write to.
1765  */
1766 
1767 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1768 {
1769 	struct pbe *pbe;
1770 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1771 
1772 	if (PageHighMem(page))
1773 		return get_highmem_page_buffer(page, ca);
1774 
1775 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1776 		/* We have allocated the "original" page frame and we can
1777 		 * use it directly to store the loaded page.
1778 		 */
1779 		return page_address(page);
1780 
1781 	/* The "original" page frame has not been allocated and we have to
1782 	 * use a "safe" page frame to store the loaded page.
1783 	 */
1784 	pbe = chain_alloc(ca, sizeof(struct pbe));
1785 	if (!pbe) {
1786 		swsusp_free();
1787 		return NULL;
1788 	}
1789 	pbe->orig_address = page_address(page);
1790 	pbe->address = safe_pages_list;
1791 	safe_pages_list = safe_pages_list->next;
1792 	pbe->next = restore_pblist;
1793 	restore_pblist = pbe;
1794 	return pbe->address;
1795 }
1796 
1797 /**
1798  *	snapshot_write_next - used for writing the system memory snapshot.
1799  *
1800  *	On the first call to it @handle should point to a zeroed
1801  *	snapshot_handle structure.  The structure gets updated and a pointer
1802  *	to it should be passed to this function every next time.
1803  *
1804  *	The @count parameter should contain the number of bytes the caller
1805  *	wants to write to the image.  It must not be zero.
1806  *
1807  *	On success the function returns a positive number.  Then, the caller
1808  *	is allowed to write up to the returned number of bytes to the memory
1809  *	location computed by the data_of() macro.  The number returned
1810  *	may be smaller than @count, but this only happens if the write would
1811  *	cross a page boundary otherwise.
1812  *
1813  *	The function returns 0 to indicate the "end of file" condition,
1814  *	and a negative number is returned on error.  In such cases the
1815  *	structure pointed to by @handle is not updated and should not be used
1816  *	any more.
1817  */
1818 
1819 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1820 {
1821 	static struct chain_allocator ca;
1822 	int error = 0;
1823 
1824 	/* Check if we have already loaded the entire image */
1825 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1826 		return 0;
1827 
1828 	if (handle->offset == 0) {
1829 		if (!buffer)
1830 			/* This makes the buffer be freed by swsusp_free() */
1831 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1832 
1833 		if (!buffer)
1834 			return -ENOMEM;
1835 
1836 		handle->buffer = buffer;
1837 	}
1838 	handle->sync_read = 1;
1839 	if (handle->prev < handle->cur) {
1840 		if (handle->prev == 0) {
1841 			error = load_header(buffer);
1842 			if (error)
1843 				return error;
1844 
1845 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1846 			if (error)
1847 				return error;
1848 
1849 		} else if (handle->prev <= nr_meta_pages) {
1850 			unpack_orig_pfns(buffer, &copy_bm);
1851 			if (handle->prev == nr_meta_pages) {
1852 				error = prepare_image(&orig_bm, &copy_bm);
1853 				if (error)
1854 					return error;
1855 
1856 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1857 				memory_bm_position_reset(&orig_bm);
1858 				restore_pblist = NULL;
1859 				handle->buffer = get_buffer(&orig_bm, &ca);
1860 				handle->sync_read = 0;
1861 				if (!handle->buffer)
1862 					return -ENOMEM;
1863 			}
1864 		} else {
1865 			copy_last_highmem_page();
1866 			handle->buffer = get_buffer(&orig_bm, &ca);
1867 			if (handle->buffer != buffer)
1868 				handle->sync_read = 0;
1869 		}
1870 		handle->prev = handle->cur;
1871 	}
1872 	handle->buf_offset = handle->cur_offset;
1873 	if (handle->cur_offset + count >= PAGE_SIZE) {
1874 		count = PAGE_SIZE - handle->cur_offset;
1875 		handle->cur_offset = 0;
1876 		handle->cur++;
1877 	} else {
1878 		handle->cur_offset += count;
1879 	}
1880 	handle->offset += count;
1881 	return count;
1882 }
1883 
1884 /**
1885  *	snapshot_write_finalize - must be called after the last call to
1886  *	snapshot_write_next() in case the last page in the image happens
1887  *	to be a highmem page and its contents should be stored in the
1888  *	highmem.  Additionally, it releases the memory that will not be
1889  *	used any more.
1890  */
1891 
1892 void snapshot_write_finalize(struct snapshot_handle *handle)
1893 {
1894 	copy_last_highmem_page();
1895 	/* Free only if we have loaded the image entirely */
1896 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1897 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1898 		free_highmem_data();
1899 	}
1900 }
1901 
1902 int snapshot_image_loaded(struct snapshot_handle *handle)
1903 {
1904 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1905 			handle->cur <= nr_meta_pages + nr_copy_pages);
1906 }
1907 
1908 #ifdef CONFIG_HIGHMEM
1909 /* Assumes that @buf is ready and points to a "safe" page */
1910 static inline void
1911 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1912 {
1913 	void *kaddr1, *kaddr2;
1914 
1915 	kaddr1 = kmap_atomic(p1, KM_USER0);
1916 	kaddr2 = kmap_atomic(p2, KM_USER1);
1917 	memcpy(buf, kaddr1, PAGE_SIZE);
1918 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1919 	memcpy(kaddr2, buf, PAGE_SIZE);
1920 	kunmap_atomic(kaddr1, KM_USER0);
1921 	kunmap_atomic(kaddr2, KM_USER1);
1922 }
1923 
1924 /**
1925  *	restore_highmem - for each highmem page that was allocated before
1926  *	the suspend and included in the suspend image, and also has been
1927  *	allocated by the "resume" kernel swap its current (ie. "before
1928  *	resume") contents with the previous (ie. "before suspend") one.
1929  *
1930  *	If the resume eventually fails, we can call this function once
1931  *	again and restore the "before resume" highmem state.
1932  */
1933 
1934 int restore_highmem(void)
1935 {
1936 	struct highmem_pbe *pbe = highmem_pblist;
1937 	void *buf;
1938 
1939 	if (!pbe)
1940 		return 0;
1941 
1942 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1943 	if (!buf)
1944 		return -ENOMEM;
1945 
1946 	while (pbe) {
1947 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1948 		pbe = pbe->next;
1949 	}
1950 	free_image_page(buf, PG_UNSAFE_CLEAR);
1951 	return 0;
1952 }
1953 #endif /* CONFIG_HIGHMEM */
1954