xref: /openbmc/linux/kernel/power/snapshot.c (revision 63dc02bd)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36 
37 #include "power.h"
38 
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42 
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49 
50 void __init hibernate_reserved_size_init(void)
51 {
52 	reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54 
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62 
63 void __init hibernate_image_size_init(void)
64 {
65 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67 
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74 
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77 
78 /**
79  *	@safe_needed - on resume, for storing the PBE list and the image,
80  *	we can only use memory pages that do not conflict with the pages
81  *	used before suspend.  The unsafe pages have PageNosaveFree set
82  *	and we count them using unsafe_pages.
83  *
84  *	Each allocated image page is marked as PageNosave and PageNosaveFree
85  *	so that swsusp_free() can release it.
86  */
87 
88 #define PG_ANY		0
89 #define PG_SAFE		1
90 #define PG_UNSAFE_CLEAR	1
91 #define PG_UNSAFE_KEEP	0
92 
93 static unsigned int allocated_unsafe_pages;
94 
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 	void *res;
98 
99 	res = (void *)get_zeroed_page(gfp_mask);
100 	if (safe_needed)
101 		while (res && swsusp_page_is_free(virt_to_page(res))) {
102 			/* The page is unsafe, mark it for swsusp_free() */
103 			swsusp_set_page_forbidden(virt_to_page(res));
104 			allocated_unsafe_pages++;
105 			res = (void *)get_zeroed_page(gfp_mask);
106 		}
107 	if (res) {
108 		swsusp_set_page_forbidden(virt_to_page(res));
109 		swsusp_set_page_free(virt_to_page(res));
110 	}
111 	return res;
112 }
113 
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118 
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 	struct page *page;
122 
123 	page = alloc_page(gfp_mask);
124 	if (page) {
125 		swsusp_set_page_forbidden(page);
126 		swsusp_set_page_free(page);
127 	}
128 	return page;
129 }
130 
131 /**
132  *	free_image_page - free page represented by @addr, allocated with
133  *	get_image_page (page flags set by it must be cleared)
134  */
135 
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 	struct page *page;
139 
140 	BUG_ON(!virt_addr_valid(addr));
141 
142 	page = virt_to_page(addr);
143 
144 	swsusp_unset_page_forbidden(page);
145 	if (clear_nosave_free)
146 		swsusp_unset_page_free(page);
147 
148 	__free_page(page);
149 }
150 
151 /* struct linked_page is used to build chains of pages */
152 
153 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
154 
155 struct linked_page {
156 	struct linked_page *next;
157 	char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159 
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 	while (list) {
164 		struct linked_page *lp = list->next;
165 
166 		free_image_page(list, clear_page_nosave);
167 		list = lp;
168 	}
169 }
170 
171 /**
172   *	struct chain_allocator is used for allocating small objects out of
173   *	a linked list of pages called 'the chain'.
174   *
175   *	The chain grows each time when there is no room for a new object in
176   *	the current page.  The allocated objects cannot be freed individually.
177   *	It is only possible to free them all at once, by freeing the entire
178   *	chain.
179   *
180   *	NOTE: The chain allocator may be inefficient if the allocated objects
181   *	are not much smaller than PAGE_SIZE.
182   */
183 
184 struct chain_allocator {
185 	struct linked_page *chain;	/* the chain */
186 	unsigned int used_space;	/* total size of objects allocated out
187 					 * of the current page
188 					 */
189 	gfp_t gfp_mask;		/* mask for allocating pages */
190 	int safe_needed;	/* if set, only "safe" pages are allocated */
191 };
192 
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 	ca->chain = NULL;
197 	ca->used_space = LINKED_PAGE_DATA_SIZE;
198 	ca->gfp_mask = gfp_mask;
199 	ca->safe_needed = safe_needed;
200 }
201 
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 	void *ret;
205 
206 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 		struct linked_page *lp;
208 
209 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 		if (!lp)
211 			return NULL;
212 
213 		lp->next = ca->chain;
214 		ca->chain = lp;
215 		ca->used_space = 0;
216 	}
217 	ret = ca->chain->data + ca->used_space;
218 	ca->used_space += size;
219 	return ret;
220 }
221 
222 /**
223  *	Data types related to memory bitmaps.
224  *
225  *	Memory bitmap is a structure consiting of many linked lists of
226  *	objects.  The main list's elements are of type struct zone_bitmap
227  *	and each of them corresonds to one zone.  For each zone bitmap
228  *	object there is a list of objects of type struct bm_block that
229  *	represent each blocks of bitmap in which information is stored.
230  *
231  *	struct memory_bitmap contains a pointer to the main list of zone
232  *	bitmap objects, a struct bm_position used for browsing the bitmap,
233  *	and a pointer to the list of pages used for allocating all of the
234  *	zone bitmap objects and bitmap block objects.
235  *
236  *	NOTE: It has to be possible to lay out the bitmap in memory
237  *	using only allocations of order 0.  Additionally, the bitmap is
238  *	designed to work with arbitrary number of zones (this is over the
239  *	top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *	struct zone_bitmap contains a pointer to a list of bitmap block
242  *	objects and a pointer to the bitmap block object that has been
243  *	most recently used for setting bits.  Additionally, it contains the
244  *	pfns that correspond to the start and end of the represented zone.
245  *
246  *	struct bm_block contains a pointer to the memory page in which
247  *	information is stored (in the form of a block of bitmap)
248  *	It also contains the pfns that correspond to the start and end of
249  *	the represented memory area.
250  */
251 
252 #define BM_END_OF_MAP	(~0UL)
253 
254 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 
256 struct bm_block {
257 	struct list_head hook;	/* hook into a list of bitmap blocks */
258 	unsigned long start_pfn;	/* pfn represented by the first bit */
259 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260 	unsigned long *data;	/* bitmap representing pages */
261 };
262 
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 	return bb->end_pfn - bb->start_pfn;
266 }
267 
268 /* strcut bm_position is used for browsing memory bitmaps */
269 
270 struct bm_position {
271 	struct bm_block *block;
272 	int bit;
273 };
274 
275 struct memory_bitmap {
276 	struct list_head blocks;	/* list of bitmap blocks */
277 	struct linked_page *p_list;	/* list of pages used to store zone
278 					 * bitmap objects and bitmap block
279 					 * objects
280 					 */
281 	struct bm_position cur;	/* most recently used bit position */
282 };
283 
284 /* Functions that operate on memory bitmaps */
285 
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 	bm->cur.bit = 0;
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  *	@pages - number of pages to track
297  *	@list - list to put the allocated blocks into
298  *	@ca - chain allocator to be used for allocating memory
299  */
300 static int create_bm_block_list(unsigned long pages,
301 				struct list_head *list,
302 				struct chain_allocator *ca)
303 {
304 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 
306 	while (nr_blocks-- > 0) {
307 		struct bm_block *bb;
308 
309 		bb = chain_alloc(ca, sizeof(struct bm_block));
310 		if (!bb)
311 			return -ENOMEM;
312 		list_add(&bb->hook, list);
313 	}
314 
315 	return 0;
316 }
317 
318 struct mem_extent {
319 	struct list_head hook;
320 	unsigned long start;
321 	unsigned long end;
322 };
323 
324 /**
325  *	free_mem_extents - free a list of memory extents
326  *	@list - list of extents to empty
327  */
328 static void free_mem_extents(struct list_head *list)
329 {
330 	struct mem_extent *ext, *aux;
331 
332 	list_for_each_entry_safe(ext, aux, list, hook) {
333 		list_del(&ext->hook);
334 		kfree(ext);
335 	}
336 }
337 
338 /**
339  *	create_mem_extents - create a list of memory extents representing
340  *	                     contiguous ranges of PFNs
341  *	@list - list to put the extents into
342  *	@gfp_mask - mask to use for memory allocations
343  */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 	struct zone *zone;
347 
348 	INIT_LIST_HEAD(list);
349 
350 	for_each_populated_zone(zone) {
351 		unsigned long zone_start, zone_end;
352 		struct mem_extent *ext, *cur, *aux;
353 
354 		zone_start = zone->zone_start_pfn;
355 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
356 
357 		list_for_each_entry(ext, list, hook)
358 			if (zone_start <= ext->end)
359 				break;
360 
361 		if (&ext->hook == list || zone_end < ext->start) {
362 			/* New extent is necessary */
363 			struct mem_extent *new_ext;
364 
365 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 			if (!new_ext) {
367 				free_mem_extents(list);
368 				return -ENOMEM;
369 			}
370 			new_ext->start = zone_start;
371 			new_ext->end = zone_end;
372 			list_add_tail(&new_ext->hook, &ext->hook);
373 			continue;
374 		}
375 
376 		/* Merge this zone's range of PFNs with the existing one */
377 		if (zone_start < ext->start)
378 			ext->start = zone_start;
379 		if (zone_end > ext->end)
380 			ext->end = zone_end;
381 
382 		/* More merging may be possible */
383 		cur = ext;
384 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 			if (zone_end < cur->start)
386 				break;
387 			if (zone_end < cur->end)
388 				ext->end = cur->end;
389 			list_del(&cur->hook);
390 			kfree(cur);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 /**
398   *	memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 	struct chain_allocator ca;
404 	struct list_head mem_extents;
405 	struct mem_extent *ext;
406 	int error;
407 
408 	chain_init(&ca, gfp_mask, safe_needed);
409 	INIT_LIST_HEAD(&bm->blocks);
410 
411 	error = create_mem_extents(&mem_extents, gfp_mask);
412 	if (error)
413 		return error;
414 
415 	list_for_each_entry(ext, &mem_extents, hook) {
416 		struct bm_block *bb;
417 		unsigned long pfn = ext->start;
418 		unsigned long pages = ext->end - ext->start;
419 
420 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421 
422 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 		if (error)
424 			goto Error;
425 
426 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 			bb->data = get_image_page(gfp_mask, safe_needed);
428 			if (!bb->data) {
429 				error = -ENOMEM;
430 				goto Error;
431 			}
432 
433 			bb->start_pfn = pfn;
434 			if (pages >= BM_BITS_PER_BLOCK) {
435 				pfn += BM_BITS_PER_BLOCK;
436 				pages -= BM_BITS_PER_BLOCK;
437 			} else {
438 				/* This is executed only once in the loop */
439 				pfn += pages;
440 			}
441 			bb->end_pfn = pfn;
442 		}
443 	}
444 
445 	bm->p_list = ca.chain;
446 	memory_bm_position_reset(bm);
447  Exit:
448 	free_mem_extents(&mem_extents);
449 	return error;
450 
451  Error:
452 	bm->p_list = ca.chain;
453 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 	goto Exit;
455 }
456 
457 /**
458   *	memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 	struct bm_block *bb;
463 
464 	list_for_each_entry(bb, &bm->blocks, hook)
465 		if (bb->data)
466 			free_image_page(bb->data, clear_nosave_free);
467 
468 	free_list_of_pages(bm->p_list, clear_nosave_free);
469 
470 	INIT_LIST_HEAD(&bm->blocks);
471 }
472 
473 /**
474  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *	of @bm->cur_zone_bm are updated.
477  */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 				void **addr, unsigned int *bit_nr)
480 {
481 	struct bm_block *bb;
482 
483 	/*
484 	 * Check if the pfn corresponds to the current bitmap block and find
485 	 * the block where it fits if this is not the case.
486 	 */
487 	bb = bm->cur.block;
488 	if (pfn < bb->start_pfn)
489 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 			if (pfn >= bb->start_pfn)
491 				break;
492 
493 	if (pfn >= bb->end_pfn)
494 		list_for_each_entry_continue(bb, &bm->blocks, hook)
495 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 				break;
497 
498 	if (&bb->hook == &bm->blocks)
499 		return -EFAULT;
500 
501 	/* The block has been found */
502 	bm->cur.block = bb;
503 	pfn -= bb->start_pfn;
504 	bm->cur.bit = pfn + 1;
505 	*bit_nr = pfn;
506 	*addr = bb->data;
507 	return 0;
508 }
509 
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 	void *addr;
513 	unsigned int bit;
514 	int error;
515 
516 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 	BUG_ON(error);
518 	set_bit(bit, addr);
519 }
520 
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 	void *addr;
524 	unsigned int bit;
525 	int error;
526 
527 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 	if (!error)
529 		set_bit(bit, addr);
530 	return error;
531 }
532 
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 	void *addr;
536 	unsigned int bit;
537 	int error;
538 
539 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 	BUG_ON(error);
541 	clear_bit(bit, addr);
542 }
543 
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 	void *addr;
547 	unsigned int bit;
548 	int error;
549 
550 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 	BUG_ON(error);
552 	return test_bit(bit, addr);
553 }
554 
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 	void *addr;
558 	unsigned int bit;
559 
560 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562 
563 /**
564  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *	returned.
567  *
568  *	It is required to run memory_bm_position_reset() before the first call to
569  *	this function.
570  */
571 
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 	struct bm_block *bb;
575 	int bit;
576 
577 	bb = bm->cur.block;
578 	do {
579 		bit = bm->cur.bit;
580 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 		if (bit < bm_block_bits(bb))
582 			goto Return_pfn;
583 
584 		bb = list_entry(bb->hook.next, struct bm_block, hook);
585 		bm->cur.block = bb;
586 		bm->cur.bit = 0;
587 	} while (&bb->hook != &bm->blocks);
588 
589 	memory_bm_position_reset(bm);
590 	return BM_END_OF_MAP;
591 
592  Return_pfn:
593 	bm->cur.bit = bit + 1;
594 	return bb->start_pfn + bit;
595 }
596 
597 /**
598  *	This structure represents a range of page frames the contents of which
599  *	should not be saved during the suspend.
600  */
601 
602 struct nosave_region {
603 	struct list_head list;
604 	unsigned long start_pfn;
605 	unsigned long end_pfn;
606 };
607 
608 static LIST_HEAD(nosave_regions);
609 
610 /**
611  *	register_nosave_region - register a range of page frames the contents
612  *	of which should not be saved during the suspend (to be used in the early
613  *	initialization code)
614  */
615 
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 			 int use_kmalloc)
619 {
620 	struct nosave_region *region;
621 
622 	if (start_pfn >= end_pfn)
623 		return;
624 
625 	if (!list_empty(&nosave_regions)) {
626 		/* Try to extend the previous region (they should be sorted) */
627 		region = list_entry(nosave_regions.prev,
628 					struct nosave_region, list);
629 		if (region->end_pfn == start_pfn) {
630 			region->end_pfn = end_pfn;
631 			goto Report;
632 		}
633 	}
634 	if (use_kmalloc) {
635 		/* during init, this shouldn't fail */
636 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 		BUG_ON(!region);
638 	} else
639 		/* This allocation cannot fail */
640 		region = alloc_bootmem(sizeof(struct nosave_region));
641 	region->start_pfn = start_pfn;
642 	region->end_pfn = end_pfn;
643 	list_add_tail(&region->list, &nosave_regions);
644  Report:
645 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648 
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654 
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657 
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662 
663 void swsusp_set_page_free(struct page *page)
664 {
665 	if (free_pages_map)
666 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668 
669 static int swsusp_page_is_free(struct page *page)
670 {
671 	return free_pages_map ?
672 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674 
675 void swsusp_unset_page_free(struct page *page)
676 {
677 	if (free_pages_map)
678 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680 
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 	if (forbidden_pages_map)
684 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686 
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 	return forbidden_pages_map ?
690 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692 
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 	if (forbidden_pages_map)
696 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698 
699 /**
700  *	mark_nosave_pages - set bits corresponding to the page frames the
701  *	contents of which should not be saved in a given bitmap.
702  */
703 
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 	struct nosave_region *region;
707 
708 	if (list_empty(&nosave_regions))
709 		return;
710 
711 	list_for_each_entry(region, &nosave_regions, list) {
712 		unsigned long pfn;
713 
714 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
715 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
716 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
717 				- 1);
718 
719 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
720 			if (pfn_valid(pfn)) {
721 				/*
722 				 * It is safe to ignore the result of
723 				 * mem_bm_set_bit_check() here, since we won't
724 				 * touch the PFNs for which the error is
725 				 * returned anyway.
726 				 */
727 				mem_bm_set_bit_check(bm, pfn);
728 			}
729 	}
730 }
731 
732 /**
733  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
734  *	frames that should not be saved and free page frames.  The pointers
735  *	forbidden_pages_map and free_pages_map are only modified if everything
736  *	goes well, because we don't want the bits to be used before both bitmaps
737  *	are set up.
738  */
739 
740 int create_basic_memory_bitmaps(void)
741 {
742 	struct memory_bitmap *bm1, *bm2;
743 	int error = 0;
744 
745 	BUG_ON(forbidden_pages_map || free_pages_map);
746 
747 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
748 	if (!bm1)
749 		return -ENOMEM;
750 
751 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
752 	if (error)
753 		goto Free_first_object;
754 
755 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
756 	if (!bm2)
757 		goto Free_first_bitmap;
758 
759 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
760 	if (error)
761 		goto Free_second_object;
762 
763 	forbidden_pages_map = bm1;
764 	free_pages_map = bm2;
765 	mark_nosave_pages(forbidden_pages_map);
766 
767 	pr_debug("PM: Basic memory bitmaps created\n");
768 
769 	return 0;
770 
771  Free_second_object:
772 	kfree(bm2);
773  Free_first_bitmap:
774  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
775  Free_first_object:
776 	kfree(bm1);
777 	return -ENOMEM;
778 }
779 
780 /**
781  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
782  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
783  *	so that the bitmaps themselves are not referred to while they are being
784  *	freed.
785  */
786 
787 void free_basic_memory_bitmaps(void)
788 {
789 	struct memory_bitmap *bm1, *bm2;
790 
791 	BUG_ON(!(forbidden_pages_map && free_pages_map));
792 
793 	bm1 = forbidden_pages_map;
794 	bm2 = free_pages_map;
795 	forbidden_pages_map = NULL;
796 	free_pages_map = NULL;
797 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
798 	kfree(bm1);
799 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
800 	kfree(bm2);
801 
802 	pr_debug("PM: Basic memory bitmaps freed\n");
803 }
804 
805 /**
806  *	snapshot_additional_pages - estimate the number of additional pages
807  *	be needed for setting up the suspend image data structures for given
808  *	zone (usually the returned value is greater than the exact number)
809  */
810 
811 unsigned int snapshot_additional_pages(struct zone *zone)
812 {
813 	unsigned int res;
814 
815 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
816 	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
817 			    LINKED_PAGE_DATA_SIZE);
818 	return 2 * res;
819 }
820 
821 #ifdef CONFIG_HIGHMEM
822 /**
823  *	count_free_highmem_pages - compute the total number of free highmem
824  *	pages, system-wide.
825  */
826 
827 static unsigned int count_free_highmem_pages(void)
828 {
829 	struct zone *zone;
830 	unsigned int cnt = 0;
831 
832 	for_each_populated_zone(zone)
833 		if (is_highmem(zone))
834 			cnt += zone_page_state(zone, NR_FREE_PAGES);
835 
836 	return cnt;
837 }
838 
839 /**
840  *	saveable_highmem_page - Determine whether a highmem page should be
841  *	included in the suspend image.
842  *
843  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
844  *	and it isn't a part of a free chunk of pages.
845  */
846 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
847 {
848 	struct page *page;
849 
850 	if (!pfn_valid(pfn))
851 		return NULL;
852 
853 	page = pfn_to_page(pfn);
854 	if (page_zone(page) != zone)
855 		return NULL;
856 
857 	BUG_ON(!PageHighMem(page));
858 
859 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
860 	    PageReserved(page))
861 		return NULL;
862 
863 	if (page_is_guard(page))
864 		return NULL;
865 
866 	return page;
867 }
868 
869 /**
870  *	count_highmem_pages - compute the total number of saveable highmem
871  *	pages.
872  */
873 
874 static unsigned int count_highmem_pages(void)
875 {
876 	struct zone *zone;
877 	unsigned int n = 0;
878 
879 	for_each_populated_zone(zone) {
880 		unsigned long pfn, max_zone_pfn;
881 
882 		if (!is_highmem(zone))
883 			continue;
884 
885 		mark_free_pages(zone);
886 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
887 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
888 			if (saveable_highmem_page(zone, pfn))
889 				n++;
890 	}
891 	return n;
892 }
893 #else
894 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
895 {
896 	return NULL;
897 }
898 #endif /* CONFIG_HIGHMEM */
899 
900 /**
901  *	saveable_page - Determine whether a non-highmem page should be included
902  *	in the suspend image.
903  *
904  *	We should save the page if it isn't Nosave, and is not in the range
905  *	of pages statically defined as 'unsaveable', and it isn't a part of
906  *	a free chunk of pages.
907  */
908 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
909 {
910 	struct page *page;
911 
912 	if (!pfn_valid(pfn))
913 		return NULL;
914 
915 	page = pfn_to_page(pfn);
916 	if (page_zone(page) != zone)
917 		return NULL;
918 
919 	BUG_ON(PageHighMem(page));
920 
921 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
922 		return NULL;
923 
924 	if (PageReserved(page)
925 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
926 		return NULL;
927 
928 	if (page_is_guard(page))
929 		return NULL;
930 
931 	return page;
932 }
933 
934 /**
935  *	count_data_pages - compute the total number of saveable non-highmem
936  *	pages.
937  */
938 
939 static unsigned int count_data_pages(void)
940 {
941 	struct zone *zone;
942 	unsigned long pfn, max_zone_pfn;
943 	unsigned int n = 0;
944 
945 	for_each_populated_zone(zone) {
946 		if (is_highmem(zone))
947 			continue;
948 
949 		mark_free_pages(zone);
950 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
951 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
952 			if (saveable_page(zone, pfn))
953 				n++;
954 	}
955 	return n;
956 }
957 
958 /* This is needed, because copy_page and memcpy are not usable for copying
959  * task structs.
960  */
961 static inline void do_copy_page(long *dst, long *src)
962 {
963 	int n;
964 
965 	for (n = PAGE_SIZE / sizeof(long); n; n--)
966 		*dst++ = *src++;
967 }
968 
969 
970 /**
971  *	safe_copy_page - check if the page we are going to copy is marked as
972  *		present in the kernel page tables (this always is the case if
973  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
974  *		kernel_page_present() always returns 'true').
975  */
976 static void safe_copy_page(void *dst, struct page *s_page)
977 {
978 	if (kernel_page_present(s_page)) {
979 		do_copy_page(dst, page_address(s_page));
980 	} else {
981 		kernel_map_pages(s_page, 1, 1);
982 		do_copy_page(dst, page_address(s_page));
983 		kernel_map_pages(s_page, 1, 0);
984 	}
985 }
986 
987 
988 #ifdef CONFIG_HIGHMEM
989 static inline struct page *
990 page_is_saveable(struct zone *zone, unsigned long pfn)
991 {
992 	return is_highmem(zone) ?
993 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
994 }
995 
996 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
997 {
998 	struct page *s_page, *d_page;
999 	void *src, *dst;
1000 
1001 	s_page = pfn_to_page(src_pfn);
1002 	d_page = pfn_to_page(dst_pfn);
1003 	if (PageHighMem(s_page)) {
1004 		src = kmap_atomic(s_page);
1005 		dst = kmap_atomic(d_page);
1006 		do_copy_page(dst, src);
1007 		kunmap_atomic(dst);
1008 		kunmap_atomic(src);
1009 	} else {
1010 		if (PageHighMem(d_page)) {
1011 			/* Page pointed to by src may contain some kernel
1012 			 * data modified by kmap_atomic()
1013 			 */
1014 			safe_copy_page(buffer, s_page);
1015 			dst = kmap_atomic(d_page);
1016 			copy_page(dst, buffer);
1017 			kunmap_atomic(dst);
1018 		} else {
1019 			safe_copy_page(page_address(d_page), s_page);
1020 		}
1021 	}
1022 }
1023 #else
1024 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1025 
1026 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1027 {
1028 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1029 				pfn_to_page(src_pfn));
1030 }
1031 #endif /* CONFIG_HIGHMEM */
1032 
1033 static void
1034 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1035 {
1036 	struct zone *zone;
1037 	unsigned long pfn;
1038 
1039 	for_each_populated_zone(zone) {
1040 		unsigned long max_zone_pfn;
1041 
1042 		mark_free_pages(zone);
1043 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1044 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1045 			if (page_is_saveable(zone, pfn))
1046 				memory_bm_set_bit(orig_bm, pfn);
1047 	}
1048 	memory_bm_position_reset(orig_bm);
1049 	memory_bm_position_reset(copy_bm);
1050 	for(;;) {
1051 		pfn = memory_bm_next_pfn(orig_bm);
1052 		if (unlikely(pfn == BM_END_OF_MAP))
1053 			break;
1054 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1055 	}
1056 }
1057 
1058 /* Total number of image pages */
1059 static unsigned int nr_copy_pages;
1060 /* Number of pages needed for saving the original pfns of the image pages */
1061 static unsigned int nr_meta_pages;
1062 /*
1063  * Numbers of normal and highmem page frames allocated for hibernation image
1064  * before suspending devices.
1065  */
1066 unsigned int alloc_normal, alloc_highmem;
1067 /*
1068  * Memory bitmap used for marking saveable pages (during hibernation) or
1069  * hibernation image pages (during restore)
1070  */
1071 static struct memory_bitmap orig_bm;
1072 /*
1073  * Memory bitmap used during hibernation for marking allocated page frames that
1074  * will contain copies of saveable pages.  During restore it is initially used
1075  * for marking hibernation image pages, but then the set bits from it are
1076  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1077  * used for marking "safe" highmem pages, but it has to be reinitialized for
1078  * this purpose.
1079  */
1080 static struct memory_bitmap copy_bm;
1081 
1082 /**
1083  *	swsusp_free - free pages allocated for the suspend.
1084  *
1085  *	Suspend pages are alocated before the atomic copy is made, so we
1086  *	need to release them after the resume.
1087  */
1088 
1089 void swsusp_free(void)
1090 {
1091 	struct zone *zone;
1092 	unsigned long pfn, max_zone_pfn;
1093 
1094 	for_each_populated_zone(zone) {
1095 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1096 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1097 			if (pfn_valid(pfn)) {
1098 				struct page *page = pfn_to_page(pfn);
1099 
1100 				if (swsusp_page_is_forbidden(page) &&
1101 				    swsusp_page_is_free(page)) {
1102 					swsusp_unset_page_forbidden(page);
1103 					swsusp_unset_page_free(page);
1104 					__free_page(page);
1105 				}
1106 			}
1107 	}
1108 	nr_copy_pages = 0;
1109 	nr_meta_pages = 0;
1110 	restore_pblist = NULL;
1111 	buffer = NULL;
1112 	alloc_normal = 0;
1113 	alloc_highmem = 0;
1114 }
1115 
1116 /* Helper functions used for the shrinking of memory. */
1117 
1118 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1119 
1120 /**
1121  * preallocate_image_pages - Allocate a number of pages for hibernation image
1122  * @nr_pages: Number of page frames to allocate.
1123  * @mask: GFP flags to use for the allocation.
1124  *
1125  * Return value: Number of page frames actually allocated
1126  */
1127 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1128 {
1129 	unsigned long nr_alloc = 0;
1130 
1131 	while (nr_pages > 0) {
1132 		struct page *page;
1133 
1134 		page = alloc_image_page(mask);
1135 		if (!page)
1136 			break;
1137 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1138 		if (PageHighMem(page))
1139 			alloc_highmem++;
1140 		else
1141 			alloc_normal++;
1142 		nr_pages--;
1143 		nr_alloc++;
1144 	}
1145 
1146 	return nr_alloc;
1147 }
1148 
1149 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1150 					      unsigned long avail_normal)
1151 {
1152 	unsigned long alloc;
1153 
1154 	if (avail_normal <= alloc_normal)
1155 		return 0;
1156 
1157 	alloc = avail_normal - alloc_normal;
1158 	if (nr_pages < alloc)
1159 		alloc = nr_pages;
1160 
1161 	return preallocate_image_pages(alloc, GFP_IMAGE);
1162 }
1163 
1164 #ifdef CONFIG_HIGHMEM
1165 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1166 {
1167 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1168 }
1169 
1170 /**
1171  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1172  */
1173 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1174 {
1175 	x *= multiplier;
1176 	do_div(x, base);
1177 	return (unsigned long)x;
1178 }
1179 
1180 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1181 						unsigned long highmem,
1182 						unsigned long total)
1183 {
1184 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1185 
1186 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1187 }
1188 #else /* CONFIG_HIGHMEM */
1189 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1190 {
1191 	return 0;
1192 }
1193 
1194 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1195 						unsigned long highmem,
1196 						unsigned long total)
1197 {
1198 	return 0;
1199 }
1200 #endif /* CONFIG_HIGHMEM */
1201 
1202 /**
1203  * free_unnecessary_pages - Release preallocated pages not needed for the image
1204  */
1205 static void free_unnecessary_pages(void)
1206 {
1207 	unsigned long save, to_free_normal, to_free_highmem;
1208 
1209 	save = count_data_pages();
1210 	if (alloc_normal >= save) {
1211 		to_free_normal = alloc_normal - save;
1212 		save = 0;
1213 	} else {
1214 		to_free_normal = 0;
1215 		save -= alloc_normal;
1216 	}
1217 	save += count_highmem_pages();
1218 	if (alloc_highmem >= save) {
1219 		to_free_highmem = alloc_highmem - save;
1220 	} else {
1221 		to_free_highmem = 0;
1222 		save -= alloc_highmem;
1223 		if (to_free_normal > save)
1224 			to_free_normal -= save;
1225 		else
1226 			to_free_normal = 0;
1227 	}
1228 
1229 	memory_bm_position_reset(&copy_bm);
1230 
1231 	while (to_free_normal > 0 || to_free_highmem > 0) {
1232 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1233 		struct page *page = pfn_to_page(pfn);
1234 
1235 		if (PageHighMem(page)) {
1236 			if (!to_free_highmem)
1237 				continue;
1238 			to_free_highmem--;
1239 			alloc_highmem--;
1240 		} else {
1241 			if (!to_free_normal)
1242 				continue;
1243 			to_free_normal--;
1244 			alloc_normal--;
1245 		}
1246 		memory_bm_clear_bit(&copy_bm, pfn);
1247 		swsusp_unset_page_forbidden(page);
1248 		swsusp_unset_page_free(page);
1249 		__free_page(page);
1250 	}
1251 }
1252 
1253 /**
1254  * minimum_image_size - Estimate the minimum acceptable size of an image
1255  * @saveable: Number of saveable pages in the system.
1256  *
1257  * We want to avoid attempting to free too much memory too hard, so estimate the
1258  * minimum acceptable size of a hibernation image to use as the lower limit for
1259  * preallocating memory.
1260  *
1261  * We assume that the minimum image size should be proportional to
1262  *
1263  * [number of saveable pages] - [number of pages that can be freed in theory]
1264  *
1265  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1266  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1267  * minus mapped file pages.
1268  */
1269 static unsigned long minimum_image_size(unsigned long saveable)
1270 {
1271 	unsigned long size;
1272 
1273 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1274 		+ global_page_state(NR_ACTIVE_ANON)
1275 		+ global_page_state(NR_INACTIVE_ANON)
1276 		+ global_page_state(NR_ACTIVE_FILE)
1277 		+ global_page_state(NR_INACTIVE_FILE)
1278 		- global_page_state(NR_FILE_MAPPED);
1279 
1280 	return saveable <= size ? 0 : saveable - size;
1281 }
1282 
1283 /**
1284  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1285  *
1286  * To create a hibernation image it is necessary to make a copy of every page
1287  * frame in use.  We also need a number of page frames to be free during
1288  * hibernation for allocations made while saving the image and for device
1289  * drivers, in case they need to allocate memory from their hibernation
1290  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1291  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1292  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1293  * total number of available page frames and allocate at least
1294  *
1295  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1296  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1297  *
1298  * of them, which corresponds to the maximum size of a hibernation image.
1299  *
1300  * If image_size is set below the number following from the above formula,
1301  * the preallocation of memory is continued until the total number of saveable
1302  * pages in the system is below the requested image size or the minimum
1303  * acceptable image size returned by minimum_image_size(), whichever is greater.
1304  */
1305 int hibernate_preallocate_memory(void)
1306 {
1307 	struct zone *zone;
1308 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1309 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1310 	struct timeval start, stop;
1311 	int error;
1312 
1313 	printk(KERN_INFO "PM: Preallocating image memory... ");
1314 	do_gettimeofday(&start);
1315 
1316 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1317 	if (error)
1318 		goto err_out;
1319 
1320 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1321 	if (error)
1322 		goto err_out;
1323 
1324 	alloc_normal = 0;
1325 	alloc_highmem = 0;
1326 
1327 	/* Count the number of saveable data pages. */
1328 	save_highmem = count_highmem_pages();
1329 	saveable = count_data_pages();
1330 
1331 	/*
1332 	 * Compute the total number of page frames we can use (count) and the
1333 	 * number of pages needed for image metadata (size).
1334 	 */
1335 	count = saveable;
1336 	saveable += save_highmem;
1337 	highmem = save_highmem;
1338 	size = 0;
1339 	for_each_populated_zone(zone) {
1340 		size += snapshot_additional_pages(zone);
1341 		if (is_highmem(zone))
1342 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1343 		else
1344 			count += zone_page_state(zone, NR_FREE_PAGES);
1345 	}
1346 	avail_normal = count;
1347 	count += highmem;
1348 	count -= totalreserve_pages;
1349 
1350 	/* Add number of pages required for page keys (s390 only). */
1351 	size += page_key_additional_pages(saveable);
1352 
1353 	/* Compute the maximum number of saveable pages to leave in memory. */
1354 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1355 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1356 	/* Compute the desired number of image pages specified by image_size. */
1357 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1358 	if (size > max_size)
1359 		size = max_size;
1360 	/*
1361 	 * If the desired number of image pages is at least as large as the
1362 	 * current number of saveable pages in memory, allocate page frames for
1363 	 * the image and we're done.
1364 	 */
1365 	if (size >= saveable) {
1366 		pages = preallocate_image_highmem(save_highmem);
1367 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1368 		goto out;
1369 	}
1370 
1371 	/* Estimate the minimum size of the image. */
1372 	pages = minimum_image_size(saveable);
1373 	/*
1374 	 * To avoid excessive pressure on the normal zone, leave room in it to
1375 	 * accommodate an image of the minimum size (unless it's already too
1376 	 * small, in which case don't preallocate pages from it at all).
1377 	 */
1378 	if (avail_normal > pages)
1379 		avail_normal -= pages;
1380 	else
1381 		avail_normal = 0;
1382 	if (size < pages)
1383 		size = min_t(unsigned long, pages, max_size);
1384 
1385 	/*
1386 	 * Let the memory management subsystem know that we're going to need a
1387 	 * large number of page frames to allocate and make it free some memory.
1388 	 * NOTE: If this is not done, performance will be hurt badly in some
1389 	 * test cases.
1390 	 */
1391 	shrink_all_memory(saveable - size);
1392 
1393 	/*
1394 	 * The number of saveable pages in memory was too high, so apply some
1395 	 * pressure to decrease it.  First, make room for the largest possible
1396 	 * image and fail if that doesn't work.  Next, try to decrease the size
1397 	 * of the image as much as indicated by 'size' using allocations from
1398 	 * highmem and non-highmem zones separately.
1399 	 */
1400 	pages_highmem = preallocate_image_highmem(highmem / 2);
1401 	alloc = (count - max_size) - pages_highmem;
1402 	pages = preallocate_image_memory(alloc, avail_normal);
1403 	if (pages < alloc) {
1404 		/* We have exhausted non-highmem pages, try highmem. */
1405 		alloc -= pages;
1406 		pages += pages_highmem;
1407 		pages_highmem = preallocate_image_highmem(alloc);
1408 		if (pages_highmem < alloc)
1409 			goto err_out;
1410 		pages += pages_highmem;
1411 		/*
1412 		 * size is the desired number of saveable pages to leave in
1413 		 * memory, so try to preallocate (all memory - size) pages.
1414 		 */
1415 		alloc = (count - pages) - size;
1416 		pages += preallocate_image_highmem(alloc);
1417 	} else {
1418 		/*
1419 		 * There are approximately max_size saveable pages at this point
1420 		 * and we want to reduce this number down to size.
1421 		 */
1422 		alloc = max_size - size;
1423 		size = preallocate_highmem_fraction(alloc, highmem, count);
1424 		pages_highmem += size;
1425 		alloc -= size;
1426 		size = preallocate_image_memory(alloc, avail_normal);
1427 		pages_highmem += preallocate_image_highmem(alloc - size);
1428 		pages += pages_highmem + size;
1429 	}
1430 
1431 	/*
1432 	 * We only need as many page frames for the image as there are saveable
1433 	 * pages in memory, but we have allocated more.  Release the excessive
1434 	 * ones now.
1435 	 */
1436 	free_unnecessary_pages();
1437 
1438  out:
1439 	do_gettimeofday(&stop);
1440 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1441 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1442 
1443 	return 0;
1444 
1445  err_out:
1446 	printk(KERN_CONT "\n");
1447 	swsusp_free();
1448 	return -ENOMEM;
1449 }
1450 
1451 #ifdef CONFIG_HIGHMEM
1452 /**
1453   *	count_pages_for_highmem - compute the number of non-highmem pages
1454   *	that will be necessary for creating copies of highmem pages.
1455   */
1456 
1457 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1458 {
1459 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1460 
1461 	if (free_highmem >= nr_highmem)
1462 		nr_highmem = 0;
1463 	else
1464 		nr_highmem -= free_highmem;
1465 
1466 	return nr_highmem;
1467 }
1468 #else
1469 static unsigned int
1470 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1471 #endif /* CONFIG_HIGHMEM */
1472 
1473 /**
1474  *	enough_free_mem - Make sure we have enough free memory for the
1475  *	snapshot image.
1476  */
1477 
1478 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1479 {
1480 	struct zone *zone;
1481 	unsigned int free = alloc_normal;
1482 
1483 	for_each_populated_zone(zone)
1484 		if (!is_highmem(zone))
1485 			free += zone_page_state(zone, NR_FREE_PAGES);
1486 
1487 	nr_pages += count_pages_for_highmem(nr_highmem);
1488 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1489 		nr_pages, PAGES_FOR_IO, free);
1490 
1491 	return free > nr_pages + PAGES_FOR_IO;
1492 }
1493 
1494 #ifdef CONFIG_HIGHMEM
1495 /**
1496  *	get_highmem_buffer - if there are some highmem pages in the suspend
1497  *	image, we may need the buffer to copy them and/or load their data.
1498  */
1499 
1500 static inline int get_highmem_buffer(int safe_needed)
1501 {
1502 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1503 	return buffer ? 0 : -ENOMEM;
1504 }
1505 
1506 /**
1507  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1508  *	Try to allocate as many pages as needed, but if the number of free
1509  *	highmem pages is lesser than that, allocate them all.
1510  */
1511 
1512 static inline unsigned int
1513 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1514 {
1515 	unsigned int to_alloc = count_free_highmem_pages();
1516 
1517 	if (to_alloc > nr_highmem)
1518 		to_alloc = nr_highmem;
1519 
1520 	nr_highmem -= to_alloc;
1521 	while (to_alloc-- > 0) {
1522 		struct page *page;
1523 
1524 		page = alloc_image_page(__GFP_HIGHMEM);
1525 		memory_bm_set_bit(bm, page_to_pfn(page));
1526 	}
1527 	return nr_highmem;
1528 }
1529 #else
1530 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1531 
1532 static inline unsigned int
1533 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1534 #endif /* CONFIG_HIGHMEM */
1535 
1536 /**
1537  *	swsusp_alloc - allocate memory for the suspend image
1538  *
1539  *	We first try to allocate as many highmem pages as there are
1540  *	saveable highmem pages in the system.  If that fails, we allocate
1541  *	non-highmem pages for the copies of the remaining highmem ones.
1542  *
1543  *	In this approach it is likely that the copies of highmem pages will
1544  *	also be located in the high memory, because of the way in which
1545  *	copy_data_pages() works.
1546  */
1547 
1548 static int
1549 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1550 		unsigned int nr_pages, unsigned int nr_highmem)
1551 {
1552 	if (nr_highmem > 0) {
1553 		if (get_highmem_buffer(PG_ANY))
1554 			goto err_out;
1555 		if (nr_highmem > alloc_highmem) {
1556 			nr_highmem -= alloc_highmem;
1557 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1558 		}
1559 	}
1560 	if (nr_pages > alloc_normal) {
1561 		nr_pages -= alloc_normal;
1562 		while (nr_pages-- > 0) {
1563 			struct page *page;
1564 
1565 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1566 			if (!page)
1567 				goto err_out;
1568 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1569 		}
1570 	}
1571 
1572 	return 0;
1573 
1574  err_out:
1575 	swsusp_free();
1576 	return -ENOMEM;
1577 }
1578 
1579 asmlinkage int swsusp_save(void)
1580 {
1581 	unsigned int nr_pages, nr_highmem;
1582 
1583 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1584 
1585 	drain_local_pages(NULL);
1586 	nr_pages = count_data_pages();
1587 	nr_highmem = count_highmem_pages();
1588 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1589 
1590 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1591 		printk(KERN_ERR "PM: Not enough free memory\n");
1592 		return -ENOMEM;
1593 	}
1594 
1595 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1596 		printk(KERN_ERR "PM: Memory allocation failed\n");
1597 		return -ENOMEM;
1598 	}
1599 
1600 	/* During allocating of suspend pagedir, new cold pages may appear.
1601 	 * Kill them.
1602 	 */
1603 	drain_local_pages(NULL);
1604 	copy_data_pages(&copy_bm, &orig_bm);
1605 
1606 	/*
1607 	 * End of critical section. From now on, we can write to memory,
1608 	 * but we should not touch disk. This specially means we must _not_
1609 	 * touch swap space! Except we must write out our image of course.
1610 	 */
1611 
1612 	nr_pages += nr_highmem;
1613 	nr_copy_pages = nr_pages;
1614 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1615 
1616 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1617 		nr_pages);
1618 
1619 	return 0;
1620 }
1621 
1622 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1623 static int init_header_complete(struct swsusp_info *info)
1624 {
1625 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1626 	info->version_code = LINUX_VERSION_CODE;
1627 	return 0;
1628 }
1629 
1630 static char *check_image_kernel(struct swsusp_info *info)
1631 {
1632 	if (info->version_code != LINUX_VERSION_CODE)
1633 		return "kernel version";
1634 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1635 		return "system type";
1636 	if (strcmp(info->uts.release,init_utsname()->release))
1637 		return "kernel release";
1638 	if (strcmp(info->uts.version,init_utsname()->version))
1639 		return "version";
1640 	if (strcmp(info->uts.machine,init_utsname()->machine))
1641 		return "machine";
1642 	return NULL;
1643 }
1644 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1645 
1646 unsigned long snapshot_get_image_size(void)
1647 {
1648 	return nr_copy_pages + nr_meta_pages + 1;
1649 }
1650 
1651 static int init_header(struct swsusp_info *info)
1652 {
1653 	memset(info, 0, sizeof(struct swsusp_info));
1654 	info->num_physpages = num_physpages;
1655 	info->image_pages = nr_copy_pages;
1656 	info->pages = snapshot_get_image_size();
1657 	info->size = info->pages;
1658 	info->size <<= PAGE_SHIFT;
1659 	return init_header_complete(info);
1660 }
1661 
1662 /**
1663  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1664  *	are stored in the array @buf[] (1 page at a time)
1665  */
1666 
1667 static inline void
1668 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1669 {
1670 	int j;
1671 
1672 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1673 		buf[j] = memory_bm_next_pfn(bm);
1674 		if (unlikely(buf[j] == BM_END_OF_MAP))
1675 			break;
1676 		/* Save page key for data page (s390 only). */
1677 		page_key_read(buf + j);
1678 	}
1679 }
1680 
1681 /**
1682  *	snapshot_read_next - used for reading the system memory snapshot.
1683  *
1684  *	On the first call to it @handle should point to a zeroed
1685  *	snapshot_handle structure.  The structure gets updated and a pointer
1686  *	to it should be passed to this function every next time.
1687  *
1688  *	On success the function returns a positive number.  Then, the caller
1689  *	is allowed to read up to the returned number of bytes from the memory
1690  *	location computed by the data_of() macro.
1691  *
1692  *	The function returns 0 to indicate the end of data stream condition,
1693  *	and a negative number is returned on error.  In such cases the
1694  *	structure pointed to by @handle is not updated and should not be used
1695  *	any more.
1696  */
1697 
1698 int snapshot_read_next(struct snapshot_handle *handle)
1699 {
1700 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1701 		return 0;
1702 
1703 	if (!buffer) {
1704 		/* This makes the buffer be freed by swsusp_free() */
1705 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1706 		if (!buffer)
1707 			return -ENOMEM;
1708 	}
1709 	if (!handle->cur) {
1710 		int error;
1711 
1712 		error = init_header((struct swsusp_info *)buffer);
1713 		if (error)
1714 			return error;
1715 		handle->buffer = buffer;
1716 		memory_bm_position_reset(&orig_bm);
1717 		memory_bm_position_reset(&copy_bm);
1718 	} else if (handle->cur <= nr_meta_pages) {
1719 		clear_page(buffer);
1720 		pack_pfns(buffer, &orig_bm);
1721 	} else {
1722 		struct page *page;
1723 
1724 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1725 		if (PageHighMem(page)) {
1726 			/* Highmem pages are copied to the buffer,
1727 			 * because we can't return with a kmapped
1728 			 * highmem page (we may not be called again).
1729 			 */
1730 			void *kaddr;
1731 
1732 			kaddr = kmap_atomic(page);
1733 			copy_page(buffer, kaddr);
1734 			kunmap_atomic(kaddr);
1735 			handle->buffer = buffer;
1736 		} else {
1737 			handle->buffer = page_address(page);
1738 		}
1739 	}
1740 	handle->cur++;
1741 	return PAGE_SIZE;
1742 }
1743 
1744 /**
1745  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1746  *	the image during resume, because they conflict with the pages that
1747  *	had been used before suspend
1748  */
1749 
1750 static int mark_unsafe_pages(struct memory_bitmap *bm)
1751 {
1752 	struct zone *zone;
1753 	unsigned long pfn, max_zone_pfn;
1754 
1755 	/* Clear page flags */
1756 	for_each_populated_zone(zone) {
1757 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1758 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1759 			if (pfn_valid(pfn))
1760 				swsusp_unset_page_free(pfn_to_page(pfn));
1761 	}
1762 
1763 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1764 	memory_bm_position_reset(bm);
1765 	do {
1766 		pfn = memory_bm_next_pfn(bm);
1767 		if (likely(pfn != BM_END_OF_MAP)) {
1768 			if (likely(pfn_valid(pfn)))
1769 				swsusp_set_page_free(pfn_to_page(pfn));
1770 			else
1771 				return -EFAULT;
1772 		}
1773 	} while (pfn != BM_END_OF_MAP);
1774 
1775 	allocated_unsafe_pages = 0;
1776 
1777 	return 0;
1778 }
1779 
1780 static void
1781 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1782 {
1783 	unsigned long pfn;
1784 
1785 	memory_bm_position_reset(src);
1786 	pfn = memory_bm_next_pfn(src);
1787 	while (pfn != BM_END_OF_MAP) {
1788 		memory_bm_set_bit(dst, pfn);
1789 		pfn = memory_bm_next_pfn(src);
1790 	}
1791 }
1792 
1793 static int check_header(struct swsusp_info *info)
1794 {
1795 	char *reason;
1796 
1797 	reason = check_image_kernel(info);
1798 	if (!reason && info->num_physpages != num_physpages)
1799 		reason = "memory size";
1800 	if (reason) {
1801 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1802 		return -EPERM;
1803 	}
1804 	return 0;
1805 }
1806 
1807 /**
1808  *	load header - check the image header and copy data from it
1809  */
1810 
1811 static int
1812 load_header(struct swsusp_info *info)
1813 {
1814 	int error;
1815 
1816 	restore_pblist = NULL;
1817 	error = check_header(info);
1818 	if (!error) {
1819 		nr_copy_pages = info->image_pages;
1820 		nr_meta_pages = info->pages - info->image_pages - 1;
1821 	}
1822 	return error;
1823 }
1824 
1825 /**
1826  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1827  *	the corresponding bit in the memory bitmap @bm
1828  */
1829 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1830 {
1831 	int j;
1832 
1833 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1834 		if (unlikely(buf[j] == BM_END_OF_MAP))
1835 			break;
1836 
1837 		/* Extract and buffer page key for data page (s390 only). */
1838 		page_key_memorize(buf + j);
1839 
1840 		if (memory_bm_pfn_present(bm, buf[j]))
1841 			memory_bm_set_bit(bm, buf[j]);
1842 		else
1843 			return -EFAULT;
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 /* List of "safe" pages that may be used to store data loaded from the suspend
1850  * image
1851  */
1852 static struct linked_page *safe_pages_list;
1853 
1854 #ifdef CONFIG_HIGHMEM
1855 /* struct highmem_pbe is used for creating the list of highmem pages that
1856  * should be restored atomically during the resume from disk, because the page
1857  * frames they have occupied before the suspend are in use.
1858  */
1859 struct highmem_pbe {
1860 	struct page *copy_page;	/* data is here now */
1861 	struct page *orig_page;	/* data was here before the suspend */
1862 	struct highmem_pbe *next;
1863 };
1864 
1865 /* List of highmem PBEs needed for restoring the highmem pages that were
1866  * allocated before the suspend and included in the suspend image, but have
1867  * also been allocated by the "resume" kernel, so their contents cannot be
1868  * written directly to their "original" page frames.
1869  */
1870 static struct highmem_pbe *highmem_pblist;
1871 
1872 /**
1873  *	count_highmem_image_pages - compute the number of highmem pages in the
1874  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1875  *	image pages are assumed to be set.
1876  */
1877 
1878 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1879 {
1880 	unsigned long pfn;
1881 	unsigned int cnt = 0;
1882 
1883 	memory_bm_position_reset(bm);
1884 	pfn = memory_bm_next_pfn(bm);
1885 	while (pfn != BM_END_OF_MAP) {
1886 		if (PageHighMem(pfn_to_page(pfn)))
1887 			cnt++;
1888 
1889 		pfn = memory_bm_next_pfn(bm);
1890 	}
1891 	return cnt;
1892 }
1893 
1894 /**
1895  *	prepare_highmem_image - try to allocate as many highmem pages as
1896  *	there are highmem image pages (@nr_highmem_p points to the variable
1897  *	containing the number of highmem image pages).  The pages that are
1898  *	"safe" (ie. will not be overwritten when the suspend image is
1899  *	restored) have the corresponding bits set in @bm (it must be
1900  *	unitialized).
1901  *
1902  *	NOTE: This function should not be called if there are no highmem
1903  *	image pages.
1904  */
1905 
1906 static unsigned int safe_highmem_pages;
1907 
1908 static struct memory_bitmap *safe_highmem_bm;
1909 
1910 static int
1911 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1912 {
1913 	unsigned int to_alloc;
1914 
1915 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1916 		return -ENOMEM;
1917 
1918 	if (get_highmem_buffer(PG_SAFE))
1919 		return -ENOMEM;
1920 
1921 	to_alloc = count_free_highmem_pages();
1922 	if (to_alloc > *nr_highmem_p)
1923 		to_alloc = *nr_highmem_p;
1924 	else
1925 		*nr_highmem_p = to_alloc;
1926 
1927 	safe_highmem_pages = 0;
1928 	while (to_alloc-- > 0) {
1929 		struct page *page;
1930 
1931 		page = alloc_page(__GFP_HIGHMEM);
1932 		if (!swsusp_page_is_free(page)) {
1933 			/* The page is "safe", set its bit the bitmap */
1934 			memory_bm_set_bit(bm, page_to_pfn(page));
1935 			safe_highmem_pages++;
1936 		}
1937 		/* Mark the page as allocated */
1938 		swsusp_set_page_forbidden(page);
1939 		swsusp_set_page_free(page);
1940 	}
1941 	memory_bm_position_reset(bm);
1942 	safe_highmem_bm = bm;
1943 	return 0;
1944 }
1945 
1946 /**
1947  *	get_highmem_page_buffer - for given highmem image page find the buffer
1948  *	that suspend_write_next() should set for its caller to write to.
1949  *
1950  *	If the page is to be saved to its "original" page frame or a copy of
1951  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1952  *	the copy of the page is to be made in normal memory, so the address of
1953  *	the copy is returned.
1954  *
1955  *	If @buffer is returned, the caller of suspend_write_next() will write
1956  *	the page's contents to @buffer, so they will have to be copied to the
1957  *	right location on the next call to suspend_write_next() and it is done
1958  *	with the help of copy_last_highmem_page().  For this purpose, if
1959  *	@buffer is returned, @last_highmem page is set to the page to which
1960  *	the data will have to be copied from @buffer.
1961  */
1962 
1963 static struct page *last_highmem_page;
1964 
1965 static void *
1966 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1967 {
1968 	struct highmem_pbe *pbe;
1969 	void *kaddr;
1970 
1971 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1972 		/* We have allocated the "original" page frame and we can
1973 		 * use it directly to store the loaded page.
1974 		 */
1975 		last_highmem_page = page;
1976 		return buffer;
1977 	}
1978 	/* The "original" page frame has not been allocated and we have to
1979 	 * use a "safe" page frame to store the loaded page.
1980 	 */
1981 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1982 	if (!pbe) {
1983 		swsusp_free();
1984 		return ERR_PTR(-ENOMEM);
1985 	}
1986 	pbe->orig_page = page;
1987 	if (safe_highmem_pages > 0) {
1988 		struct page *tmp;
1989 
1990 		/* Copy of the page will be stored in high memory */
1991 		kaddr = buffer;
1992 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1993 		safe_highmem_pages--;
1994 		last_highmem_page = tmp;
1995 		pbe->copy_page = tmp;
1996 	} else {
1997 		/* Copy of the page will be stored in normal memory */
1998 		kaddr = safe_pages_list;
1999 		safe_pages_list = safe_pages_list->next;
2000 		pbe->copy_page = virt_to_page(kaddr);
2001 	}
2002 	pbe->next = highmem_pblist;
2003 	highmem_pblist = pbe;
2004 	return kaddr;
2005 }
2006 
2007 /**
2008  *	copy_last_highmem_page - copy the contents of a highmem image from
2009  *	@buffer, where the caller of snapshot_write_next() has place them,
2010  *	to the right location represented by @last_highmem_page .
2011  */
2012 
2013 static void copy_last_highmem_page(void)
2014 {
2015 	if (last_highmem_page) {
2016 		void *dst;
2017 
2018 		dst = kmap_atomic(last_highmem_page);
2019 		copy_page(dst, buffer);
2020 		kunmap_atomic(dst);
2021 		last_highmem_page = NULL;
2022 	}
2023 }
2024 
2025 static inline int last_highmem_page_copied(void)
2026 {
2027 	return !last_highmem_page;
2028 }
2029 
2030 static inline void free_highmem_data(void)
2031 {
2032 	if (safe_highmem_bm)
2033 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2034 
2035 	if (buffer)
2036 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2037 }
2038 #else
2039 static inline int get_safe_write_buffer(void) { return 0; }
2040 
2041 static unsigned int
2042 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2043 
2044 static inline int
2045 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2046 {
2047 	return 0;
2048 }
2049 
2050 static inline void *
2051 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2052 {
2053 	return ERR_PTR(-EINVAL);
2054 }
2055 
2056 static inline void copy_last_highmem_page(void) {}
2057 static inline int last_highmem_page_copied(void) { return 1; }
2058 static inline void free_highmem_data(void) {}
2059 #endif /* CONFIG_HIGHMEM */
2060 
2061 /**
2062  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2063  *	be overwritten in the process of restoring the system memory state
2064  *	from the suspend image ("unsafe" pages) and allocate memory for the
2065  *	image.
2066  *
2067  *	The idea is to allocate a new memory bitmap first and then allocate
2068  *	as many pages as needed for the image data, but not to assign these
2069  *	pages to specific tasks initially.  Instead, we just mark them as
2070  *	allocated and create a lists of "safe" pages that will be used
2071  *	later.  On systems with high memory a list of "safe" highmem pages is
2072  *	also created.
2073  */
2074 
2075 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2076 
2077 static int
2078 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2079 {
2080 	unsigned int nr_pages, nr_highmem;
2081 	struct linked_page *sp_list, *lp;
2082 	int error;
2083 
2084 	/* If there is no highmem, the buffer will not be necessary */
2085 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2086 	buffer = NULL;
2087 
2088 	nr_highmem = count_highmem_image_pages(bm);
2089 	error = mark_unsafe_pages(bm);
2090 	if (error)
2091 		goto Free;
2092 
2093 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2094 	if (error)
2095 		goto Free;
2096 
2097 	duplicate_memory_bitmap(new_bm, bm);
2098 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2099 	if (nr_highmem > 0) {
2100 		error = prepare_highmem_image(bm, &nr_highmem);
2101 		if (error)
2102 			goto Free;
2103 	}
2104 	/* Reserve some safe pages for potential later use.
2105 	 *
2106 	 * NOTE: This way we make sure there will be enough safe pages for the
2107 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2108 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2109 	 */
2110 	sp_list = NULL;
2111 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2112 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2113 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2114 	while (nr_pages > 0) {
2115 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2116 		if (!lp) {
2117 			error = -ENOMEM;
2118 			goto Free;
2119 		}
2120 		lp->next = sp_list;
2121 		sp_list = lp;
2122 		nr_pages--;
2123 	}
2124 	/* Preallocate memory for the image */
2125 	safe_pages_list = NULL;
2126 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2127 	while (nr_pages > 0) {
2128 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2129 		if (!lp) {
2130 			error = -ENOMEM;
2131 			goto Free;
2132 		}
2133 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2134 			/* The page is "safe", add it to the list */
2135 			lp->next = safe_pages_list;
2136 			safe_pages_list = lp;
2137 		}
2138 		/* Mark the page as allocated */
2139 		swsusp_set_page_forbidden(virt_to_page(lp));
2140 		swsusp_set_page_free(virt_to_page(lp));
2141 		nr_pages--;
2142 	}
2143 	/* Free the reserved safe pages so that chain_alloc() can use them */
2144 	while (sp_list) {
2145 		lp = sp_list->next;
2146 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2147 		sp_list = lp;
2148 	}
2149 	return 0;
2150 
2151  Free:
2152 	swsusp_free();
2153 	return error;
2154 }
2155 
2156 /**
2157  *	get_buffer - compute the address that snapshot_write_next() should
2158  *	set for its caller to write to.
2159  */
2160 
2161 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2162 {
2163 	struct pbe *pbe;
2164 	struct page *page;
2165 	unsigned long pfn = memory_bm_next_pfn(bm);
2166 
2167 	if (pfn == BM_END_OF_MAP)
2168 		return ERR_PTR(-EFAULT);
2169 
2170 	page = pfn_to_page(pfn);
2171 	if (PageHighMem(page))
2172 		return get_highmem_page_buffer(page, ca);
2173 
2174 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2175 		/* We have allocated the "original" page frame and we can
2176 		 * use it directly to store the loaded page.
2177 		 */
2178 		return page_address(page);
2179 
2180 	/* The "original" page frame has not been allocated and we have to
2181 	 * use a "safe" page frame to store the loaded page.
2182 	 */
2183 	pbe = chain_alloc(ca, sizeof(struct pbe));
2184 	if (!pbe) {
2185 		swsusp_free();
2186 		return ERR_PTR(-ENOMEM);
2187 	}
2188 	pbe->orig_address = page_address(page);
2189 	pbe->address = safe_pages_list;
2190 	safe_pages_list = safe_pages_list->next;
2191 	pbe->next = restore_pblist;
2192 	restore_pblist = pbe;
2193 	return pbe->address;
2194 }
2195 
2196 /**
2197  *	snapshot_write_next - used for writing the system memory snapshot.
2198  *
2199  *	On the first call to it @handle should point to a zeroed
2200  *	snapshot_handle structure.  The structure gets updated and a pointer
2201  *	to it should be passed to this function every next time.
2202  *
2203  *	On success the function returns a positive number.  Then, the caller
2204  *	is allowed to write up to the returned number of bytes to the memory
2205  *	location computed by the data_of() macro.
2206  *
2207  *	The function returns 0 to indicate the "end of file" condition,
2208  *	and a negative number is returned on error.  In such cases the
2209  *	structure pointed to by @handle is not updated and should not be used
2210  *	any more.
2211  */
2212 
2213 int snapshot_write_next(struct snapshot_handle *handle)
2214 {
2215 	static struct chain_allocator ca;
2216 	int error = 0;
2217 
2218 	/* Check if we have already loaded the entire image */
2219 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2220 		return 0;
2221 
2222 	handle->sync_read = 1;
2223 
2224 	if (!handle->cur) {
2225 		if (!buffer)
2226 			/* This makes the buffer be freed by swsusp_free() */
2227 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2228 
2229 		if (!buffer)
2230 			return -ENOMEM;
2231 
2232 		handle->buffer = buffer;
2233 	} else if (handle->cur == 1) {
2234 		error = load_header(buffer);
2235 		if (error)
2236 			return error;
2237 
2238 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2239 		if (error)
2240 			return error;
2241 
2242 		/* Allocate buffer for page keys. */
2243 		error = page_key_alloc(nr_copy_pages);
2244 		if (error)
2245 			return error;
2246 
2247 	} else if (handle->cur <= nr_meta_pages + 1) {
2248 		error = unpack_orig_pfns(buffer, &copy_bm);
2249 		if (error)
2250 			return error;
2251 
2252 		if (handle->cur == nr_meta_pages + 1) {
2253 			error = prepare_image(&orig_bm, &copy_bm);
2254 			if (error)
2255 				return error;
2256 
2257 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2258 			memory_bm_position_reset(&orig_bm);
2259 			restore_pblist = NULL;
2260 			handle->buffer = get_buffer(&orig_bm, &ca);
2261 			handle->sync_read = 0;
2262 			if (IS_ERR(handle->buffer))
2263 				return PTR_ERR(handle->buffer);
2264 		}
2265 	} else {
2266 		copy_last_highmem_page();
2267 		/* Restore page key for data page (s390 only). */
2268 		page_key_write(handle->buffer);
2269 		handle->buffer = get_buffer(&orig_bm, &ca);
2270 		if (IS_ERR(handle->buffer))
2271 			return PTR_ERR(handle->buffer);
2272 		if (handle->buffer != buffer)
2273 			handle->sync_read = 0;
2274 	}
2275 	handle->cur++;
2276 	return PAGE_SIZE;
2277 }
2278 
2279 /**
2280  *	snapshot_write_finalize - must be called after the last call to
2281  *	snapshot_write_next() in case the last page in the image happens
2282  *	to be a highmem page and its contents should be stored in the
2283  *	highmem.  Additionally, it releases the memory that will not be
2284  *	used any more.
2285  */
2286 
2287 void snapshot_write_finalize(struct snapshot_handle *handle)
2288 {
2289 	copy_last_highmem_page();
2290 	/* Restore page key for data page (s390 only). */
2291 	page_key_write(handle->buffer);
2292 	page_key_free();
2293 	/* Free only if we have loaded the image entirely */
2294 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2295 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2296 		free_highmem_data();
2297 	}
2298 }
2299 
2300 int snapshot_image_loaded(struct snapshot_handle *handle)
2301 {
2302 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2303 			handle->cur <= nr_meta_pages + nr_copy_pages);
2304 }
2305 
2306 #ifdef CONFIG_HIGHMEM
2307 /* Assumes that @buf is ready and points to a "safe" page */
2308 static inline void
2309 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2310 {
2311 	void *kaddr1, *kaddr2;
2312 
2313 	kaddr1 = kmap_atomic(p1);
2314 	kaddr2 = kmap_atomic(p2);
2315 	copy_page(buf, kaddr1);
2316 	copy_page(kaddr1, kaddr2);
2317 	copy_page(kaddr2, buf);
2318 	kunmap_atomic(kaddr2);
2319 	kunmap_atomic(kaddr1);
2320 }
2321 
2322 /**
2323  *	restore_highmem - for each highmem page that was allocated before
2324  *	the suspend and included in the suspend image, and also has been
2325  *	allocated by the "resume" kernel swap its current (ie. "before
2326  *	resume") contents with the previous (ie. "before suspend") one.
2327  *
2328  *	If the resume eventually fails, we can call this function once
2329  *	again and restore the "before resume" highmem state.
2330  */
2331 
2332 int restore_highmem(void)
2333 {
2334 	struct highmem_pbe *pbe = highmem_pblist;
2335 	void *buf;
2336 
2337 	if (!pbe)
2338 		return 0;
2339 
2340 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2341 	if (!buf)
2342 		return -ENOMEM;
2343 
2344 	while (pbe) {
2345 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2346 		pbe = pbe->next;
2347 	}
2348 	free_image_page(buf, PG_UNSAFE_CLEAR);
2349 	return 0;
2350 }
2351 #endif /* CONFIG_HIGHMEM */
2352