1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Number of bytes to reserve for memory allocations made by device drivers 45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 46 * cause image creation to fail (tunable via /sys/power/reserved_size). 47 */ 48 unsigned long reserved_size; 49 50 void __init hibernate_reserved_size_init(void) 51 { 52 reserved_size = SPARE_PAGES * PAGE_SIZE; 53 } 54 55 /* 56 * Preferred image size in bytes (tunable via /sys/power/image_size). 57 * When it is set to N, swsusp will do its best to ensure the image 58 * size will not exceed N bytes, but if that is impossible, it will 59 * try to create the smallest image possible. 60 */ 61 unsigned long image_size; 62 63 void __init hibernate_image_size_init(void) 64 { 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; 66 } 67 68 /* List of PBEs needed for restoring the pages that were allocated before 69 * the suspend and included in the suspend image, but have also been 70 * allocated by the "resume" kernel, so their contents cannot be written 71 * directly to their "original" page frames. 72 */ 73 struct pbe *restore_pblist; 74 75 /* Pointer to an auxiliary buffer (1 page) */ 76 static void *buffer; 77 78 /** 79 * @safe_needed - on resume, for storing the PBE list and the image, 80 * we can only use memory pages that do not conflict with the pages 81 * used before suspend. The unsafe pages have PageNosaveFree set 82 * and we count them using unsafe_pages. 83 * 84 * Each allocated image page is marked as PageNosave and PageNosaveFree 85 * so that swsusp_free() can release it. 86 */ 87 88 #define PG_ANY 0 89 #define PG_SAFE 1 90 #define PG_UNSAFE_CLEAR 1 91 #define PG_UNSAFE_KEEP 0 92 93 static unsigned int allocated_unsafe_pages; 94 95 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 96 { 97 void *res; 98 99 res = (void *)get_zeroed_page(gfp_mask); 100 if (safe_needed) 101 while (res && swsusp_page_is_free(virt_to_page(res))) { 102 /* The page is unsafe, mark it for swsusp_free() */ 103 swsusp_set_page_forbidden(virt_to_page(res)); 104 allocated_unsafe_pages++; 105 res = (void *)get_zeroed_page(gfp_mask); 106 } 107 if (res) { 108 swsusp_set_page_forbidden(virt_to_page(res)); 109 swsusp_set_page_free(virt_to_page(res)); 110 } 111 return res; 112 } 113 114 unsigned long get_safe_page(gfp_t gfp_mask) 115 { 116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 117 } 118 119 static struct page *alloc_image_page(gfp_t gfp_mask) 120 { 121 struct page *page; 122 123 page = alloc_page(gfp_mask); 124 if (page) { 125 swsusp_set_page_forbidden(page); 126 swsusp_set_page_free(page); 127 } 128 return page; 129 } 130 131 /** 132 * free_image_page - free page represented by @addr, allocated with 133 * get_image_page (page flags set by it must be cleared) 134 */ 135 136 static inline void free_image_page(void *addr, int clear_nosave_free) 137 { 138 struct page *page; 139 140 BUG_ON(!virt_addr_valid(addr)); 141 142 page = virt_to_page(addr); 143 144 swsusp_unset_page_forbidden(page); 145 if (clear_nosave_free) 146 swsusp_unset_page_free(page); 147 148 __free_page(page); 149 } 150 151 /* struct linked_page is used to build chains of pages */ 152 153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 154 155 struct linked_page { 156 struct linked_page *next; 157 char data[LINKED_PAGE_DATA_SIZE]; 158 } __attribute__((packed)); 159 160 static inline void 161 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 162 { 163 while (list) { 164 struct linked_page *lp = list->next; 165 166 free_image_page(list, clear_page_nosave); 167 list = lp; 168 } 169 } 170 171 /** 172 * struct chain_allocator is used for allocating small objects out of 173 * a linked list of pages called 'the chain'. 174 * 175 * The chain grows each time when there is no room for a new object in 176 * the current page. The allocated objects cannot be freed individually. 177 * It is only possible to free them all at once, by freeing the entire 178 * chain. 179 * 180 * NOTE: The chain allocator may be inefficient if the allocated objects 181 * are not much smaller than PAGE_SIZE. 182 */ 183 184 struct chain_allocator { 185 struct linked_page *chain; /* the chain */ 186 unsigned int used_space; /* total size of objects allocated out 187 * of the current page 188 */ 189 gfp_t gfp_mask; /* mask for allocating pages */ 190 int safe_needed; /* if set, only "safe" pages are allocated */ 191 }; 192 193 static void 194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 195 { 196 ca->chain = NULL; 197 ca->used_space = LINKED_PAGE_DATA_SIZE; 198 ca->gfp_mask = gfp_mask; 199 ca->safe_needed = safe_needed; 200 } 201 202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 203 { 204 void *ret; 205 206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 207 struct linked_page *lp; 208 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 210 if (!lp) 211 return NULL; 212 213 lp->next = ca->chain; 214 ca->chain = lp; 215 ca->used_space = 0; 216 } 217 ret = ca->chain->data + ca->used_space; 218 ca->used_space += size; 219 return ret; 220 } 221 222 /** 223 * Data types related to memory bitmaps. 224 * 225 * Memory bitmap is a structure consiting of many linked lists of 226 * objects. The main list's elements are of type struct zone_bitmap 227 * and each of them corresonds to one zone. For each zone bitmap 228 * object there is a list of objects of type struct bm_block that 229 * represent each blocks of bitmap in which information is stored. 230 * 231 * struct memory_bitmap contains a pointer to the main list of zone 232 * bitmap objects, a struct bm_position used for browsing the bitmap, 233 * and a pointer to the list of pages used for allocating all of the 234 * zone bitmap objects and bitmap block objects. 235 * 236 * NOTE: It has to be possible to lay out the bitmap in memory 237 * using only allocations of order 0. Additionally, the bitmap is 238 * designed to work with arbitrary number of zones (this is over the 239 * top for now, but let's avoid making unnecessary assumptions ;-). 240 * 241 * struct zone_bitmap contains a pointer to a list of bitmap block 242 * objects and a pointer to the bitmap block object that has been 243 * most recently used for setting bits. Additionally, it contains the 244 * pfns that correspond to the start and end of the represented zone. 245 * 246 * struct bm_block contains a pointer to the memory page in which 247 * information is stored (in the form of a block of bitmap) 248 * It also contains the pfns that correspond to the start and end of 249 * the represented memory area. 250 */ 251 252 #define BM_END_OF_MAP (~0UL) 253 254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 255 256 struct bm_block { 257 struct list_head hook; /* hook into a list of bitmap blocks */ 258 unsigned long start_pfn; /* pfn represented by the first bit */ 259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 260 unsigned long *data; /* bitmap representing pages */ 261 }; 262 263 static inline unsigned long bm_block_bits(struct bm_block *bb) 264 { 265 return bb->end_pfn - bb->start_pfn; 266 } 267 268 /* strcut bm_position is used for browsing memory bitmaps */ 269 270 struct bm_position { 271 struct bm_block *block; 272 int bit; 273 }; 274 275 struct memory_bitmap { 276 struct list_head blocks; /* list of bitmap blocks */ 277 struct linked_page *p_list; /* list of pages used to store zone 278 * bitmap objects and bitmap block 279 * objects 280 */ 281 struct bm_position cur; /* most recently used bit position */ 282 }; 283 284 /* Functions that operate on memory bitmaps */ 285 286 static void memory_bm_position_reset(struct memory_bitmap *bm) 287 { 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 289 bm->cur.bit = 0; 290 } 291 292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 293 294 /** 295 * create_bm_block_list - create a list of block bitmap objects 296 * @pages - number of pages to track 297 * @list - list to put the allocated blocks into 298 * @ca - chain allocator to be used for allocating memory 299 */ 300 static int create_bm_block_list(unsigned long pages, 301 struct list_head *list, 302 struct chain_allocator *ca) 303 { 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 305 306 while (nr_blocks-- > 0) { 307 struct bm_block *bb; 308 309 bb = chain_alloc(ca, sizeof(struct bm_block)); 310 if (!bb) 311 return -ENOMEM; 312 list_add(&bb->hook, list); 313 } 314 315 return 0; 316 } 317 318 struct mem_extent { 319 struct list_head hook; 320 unsigned long start; 321 unsigned long end; 322 }; 323 324 /** 325 * free_mem_extents - free a list of memory extents 326 * @list - list of extents to empty 327 */ 328 static void free_mem_extents(struct list_head *list) 329 { 330 struct mem_extent *ext, *aux; 331 332 list_for_each_entry_safe(ext, aux, list, hook) { 333 list_del(&ext->hook); 334 kfree(ext); 335 } 336 } 337 338 /** 339 * create_mem_extents - create a list of memory extents representing 340 * contiguous ranges of PFNs 341 * @list - list to put the extents into 342 * @gfp_mask - mask to use for memory allocations 343 */ 344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 345 { 346 struct zone *zone; 347 348 INIT_LIST_HEAD(list); 349 350 for_each_populated_zone(zone) { 351 unsigned long zone_start, zone_end; 352 struct mem_extent *ext, *cur, *aux; 353 354 zone_start = zone->zone_start_pfn; 355 zone_end = zone->zone_start_pfn + zone->spanned_pages; 356 357 list_for_each_entry(ext, list, hook) 358 if (zone_start <= ext->end) 359 break; 360 361 if (&ext->hook == list || zone_end < ext->start) { 362 /* New extent is necessary */ 363 struct mem_extent *new_ext; 364 365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 366 if (!new_ext) { 367 free_mem_extents(list); 368 return -ENOMEM; 369 } 370 new_ext->start = zone_start; 371 new_ext->end = zone_end; 372 list_add_tail(&new_ext->hook, &ext->hook); 373 continue; 374 } 375 376 /* Merge this zone's range of PFNs with the existing one */ 377 if (zone_start < ext->start) 378 ext->start = zone_start; 379 if (zone_end > ext->end) 380 ext->end = zone_end; 381 382 /* More merging may be possible */ 383 cur = ext; 384 list_for_each_entry_safe_continue(cur, aux, list, hook) { 385 if (zone_end < cur->start) 386 break; 387 if (zone_end < cur->end) 388 ext->end = cur->end; 389 list_del(&cur->hook); 390 kfree(cur); 391 } 392 } 393 394 return 0; 395 } 396 397 /** 398 * memory_bm_create - allocate memory for a memory bitmap 399 */ 400 static int 401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 402 { 403 struct chain_allocator ca; 404 struct list_head mem_extents; 405 struct mem_extent *ext; 406 int error; 407 408 chain_init(&ca, gfp_mask, safe_needed); 409 INIT_LIST_HEAD(&bm->blocks); 410 411 error = create_mem_extents(&mem_extents, gfp_mask); 412 if (error) 413 return error; 414 415 list_for_each_entry(ext, &mem_extents, hook) { 416 struct bm_block *bb; 417 unsigned long pfn = ext->start; 418 unsigned long pages = ext->end - ext->start; 419 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 421 422 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 423 if (error) 424 goto Error; 425 426 list_for_each_entry_continue(bb, &bm->blocks, hook) { 427 bb->data = get_image_page(gfp_mask, safe_needed); 428 if (!bb->data) { 429 error = -ENOMEM; 430 goto Error; 431 } 432 433 bb->start_pfn = pfn; 434 if (pages >= BM_BITS_PER_BLOCK) { 435 pfn += BM_BITS_PER_BLOCK; 436 pages -= BM_BITS_PER_BLOCK; 437 } else { 438 /* This is executed only once in the loop */ 439 pfn += pages; 440 } 441 bb->end_pfn = pfn; 442 } 443 } 444 445 bm->p_list = ca.chain; 446 memory_bm_position_reset(bm); 447 Exit: 448 free_mem_extents(&mem_extents); 449 return error; 450 451 Error: 452 bm->p_list = ca.chain; 453 memory_bm_free(bm, PG_UNSAFE_CLEAR); 454 goto Exit; 455 } 456 457 /** 458 * memory_bm_free - free memory occupied by the memory bitmap @bm 459 */ 460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 461 { 462 struct bm_block *bb; 463 464 list_for_each_entry(bb, &bm->blocks, hook) 465 if (bb->data) 466 free_image_page(bb->data, clear_nosave_free); 467 468 free_list_of_pages(bm->p_list, clear_nosave_free); 469 470 INIT_LIST_HEAD(&bm->blocks); 471 } 472 473 /** 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 476 * of @bm->cur_zone_bm are updated. 477 */ 478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 479 void **addr, unsigned int *bit_nr) 480 { 481 struct bm_block *bb; 482 483 /* 484 * Check if the pfn corresponds to the current bitmap block and find 485 * the block where it fits if this is not the case. 486 */ 487 bb = bm->cur.block; 488 if (pfn < bb->start_pfn) 489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 490 if (pfn >= bb->start_pfn) 491 break; 492 493 if (pfn >= bb->end_pfn) 494 list_for_each_entry_continue(bb, &bm->blocks, hook) 495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 496 break; 497 498 if (&bb->hook == &bm->blocks) 499 return -EFAULT; 500 501 /* The block has been found */ 502 bm->cur.block = bb; 503 pfn -= bb->start_pfn; 504 bm->cur.bit = pfn + 1; 505 *bit_nr = pfn; 506 *addr = bb->data; 507 return 0; 508 } 509 510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 511 { 512 void *addr; 513 unsigned int bit; 514 int error; 515 516 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 517 BUG_ON(error); 518 set_bit(bit, addr); 519 } 520 521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 522 { 523 void *addr; 524 unsigned int bit; 525 int error; 526 527 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 528 if (!error) 529 set_bit(bit, addr); 530 return error; 531 } 532 533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 534 { 535 void *addr; 536 unsigned int bit; 537 int error; 538 539 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 540 BUG_ON(error); 541 clear_bit(bit, addr); 542 } 543 544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 545 { 546 void *addr; 547 unsigned int bit; 548 int error; 549 550 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 551 BUG_ON(error); 552 return test_bit(bit, addr); 553 } 554 555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 556 { 557 void *addr; 558 unsigned int bit; 559 560 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 561 } 562 563 /** 564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 566 * returned. 567 * 568 * It is required to run memory_bm_position_reset() before the first call to 569 * this function. 570 */ 571 572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 573 { 574 struct bm_block *bb; 575 int bit; 576 577 bb = bm->cur.block; 578 do { 579 bit = bm->cur.bit; 580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 581 if (bit < bm_block_bits(bb)) 582 goto Return_pfn; 583 584 bb = list_entry(bb->hook.next, struct bm_block, hook); 585 bm->cur.block = bb; 586 bm->cur.bit = 0; 587 } while (&bb->hook != &bm->blocks); 588 589 memory_bm_position_reset(bm); 590 return BM_END_OF_MAP; 591 592 Return_pfn: 593 bm->cur.bit = bit + 1; 594 return bb->start_pfn + bit; 595 } 596 597 /** 598 * This structure represents a range of page frames the contents of which 599 * should not be saved during the suspend. 600 */ 601 602 struct nosave_region { 603 struct list_head list; 604 unsigned long start_pfn; 605 unsigned long end_pfn; 606 }; 607 608 static LIST_HEAD(nosave_regions); 609 610 /** 611 * register_nosave_region - register a range of page frames the contents 612 * of which should not be saved during the suspend (to be used in the early 613 * initialization code) 614 */ 615 616 void __init 617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 618 int use_kmalloc) 619 { 620 struct nosave_region *region; 621 622 if (start_pfn >= end_pfn) 623 return; 624 625 if (!list_empty(&nosave_regions)) { 626 /* Try to extend the previous region (they should be sorted) */ 627 region = list_entry(nosave_regions.prev, 628 struct nosave_region, list); 629 if (region->end_pfn == start_pfn) { 630 region->end_pfn = end_pfn; 631 goto Report; 632 } 633 } 634 if (use_kmalloc) { 635 /* during init, this shouldn't fail */ 636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 637 BUG_ON(!region); 638 } else 639 /* This allocation cannot fail */ 640 region = alloc_bootmem(sizeof(struct nosave_region)); 641 region->start_pfn = start_pfn; 642 region->end_pfn = end_pfn; 643 list_add_tail(®ion->list, &nosave_regions); 644 Report: 645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 647 } 648 649 /* 650 * Set bits in this map correspond to the page frames the contents of which 651 * should not be saved during the suspend. 652 */ 653 static struct memory_bitmap *forbidden_pages_map; 654 655 /* Set bits in this map correspond to free page frames. */ 656 static struct memory_bitmap *free_pages_map; 657 658 /* 659 * Each page frame allocated for creating the image is marked by setting the 660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 661 */ 662 663 void swsusp_set_page_free(struct page *page) 664 { 665 if (free_pages_map) 666 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 667 } 668 669 static int swsusp_page_is_free(struct page *page) 670 { 671 return free_pages_map ? 672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 673 } 674 675 void swsusp_unset_page_free(struct page *page) 676 { 677 if (free_pages_map) 678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 679 } 680 681 static void swsusp_set_page_forbidden(struct page *page) 682 { 683 if (forbidden_pages_map) 684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 685 } 686 687 int swsusp_page_is_forbidden(struct page *page) 688 { 689 return forbidden_pages_map ? 690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 691 } 692 693 static void swsusp_unset_page_forbidden(struct page *page) 694 { 695 if (forbidden_pages_map) 696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 697 } 698 699 /** 700 * mark_nosave_pages - set bits corresponding to the page frames the 701 * contents of which should not be saved in a given bitmap. 702 */ 703 704 static void mark_nosave_pages(struct memory_bitmap *bm) 705 { 706 struct nosave_region *region; 707 708 if (list_empty(&nosave_regions)) 709 return; 710 711 list_for_each_entry(region, &nosave_regions, list) { 712 unsigned long pfn; 713 714 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n", 715 (unsigned long long) region->start_pfn << PAGE_SHIFT, 716 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 717 - 1); 718 719 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 720 if (pfn_valid(pfn)) { 721 /* 722 * It is safe to ignore the result of 723 * mem_bm_set_bit_check() here, since we won't 724 * touch the PFNs for which the error is 725 * returned anyway. 726 */ 727 mem_bm_set_bit_check(bm, pfn); 728 } 729 } 730 } 731 732 /** 733 * create_basic_memory_bitmaps - create bitmaps needed for marking page 734 * frames that should not be saved and free page frames. The pointers 735 * forbidden_pages_map and free_pages_map are only modified if everything 736 * goes well, because we don't want the bits to be used before both bitmaps 737 * are set up. 738 */ 739 740 int create_basic_memory_bitmaps(void) 741 { 742 struct memory_bitmap *bm1, *bm2; 743 int error = 0; 744 745 BUG_ON(forbidden_pages_map || free_pages_map); 746 747 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 748 if (!bm1) 749 return -ENOMEM; 750 751 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 752 if (error) 753 goto Free_first_object; 754 755 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 756 if (!bm2) 757 goto Free_first_bitmap; 758 759 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 760 if (error) 761 goto Free_second_object; 762 763 forbidden_pages_map = bm1; 764 free_pages_map = bm2; 765 mark_nosave_pages(forbidden_pages_map); 766 767 pr_debug("PM: Basic memory bitmaps created\n"); 768 769 return 0; 770 771 Free_second_object: 772 kfree(bm2); 773 Free_first_bitmap: 774 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 775 Free_first_object: 776 kfree(bm1); 777 return -ENOMEM; 778 } 779 780 /** 781 * free_basic_memory_bitmaps - free memory bitmaps allocated by 782 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 783 * so that the bitmaps themselves are not referred to while they are being 784 * freed. 785 */ 786 787 void free_basic_memory_bitmaps(void) 788 { 789 struct memory_bitmap *bm1, *bm2; 790 791 BUG_ON(!(forbidden_pages_map && free_pages_map)); 792 793 bm1 = forbidden_pages_map; 794 bm2 = free_pages_map; 795 forbidden_pages_map = NULL; 796 free_pages_map = NULL; 797 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 798 kfree(bm1); 799 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 800 kfree(bm2); 801 802 pr_debug("PM: Basic memory bitmaps freed\n"); 803 } 804 805 /** 806 * snapshot_additional_pages - estimate the number of additional pages 807 * be needed for setting up the suspend image data structures for given 808 * zone (usually the returned value is greater than the exact number) 809 */ 810 811 unsigned int snapshot_additional_pages(struct zone *zone) 812 { 813 unsigned int res; 814 815 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 816 res += DIV_ROUND_UP(res * sizeof(struct bm_block), 817 LINKED_PAGE_DATA_SIZE); 818 return 2 * res; 819 } 820 821 #ifdef CONFIG_HIGHMEM 822 /** 823 * count_free_highmem_pages - compute the total number of free highmem 824 * pages, system-wide. 825 */ 826 827 static unsigned int count_free_highmem_pages(void) 828 { 829 struct zone *zone; 830 unsigned int cnt = 0; 831 832 for_each_populated_zone(zone) 833 if (is_highmem(zone)) 834 cnt += zone_page_state(zone, NR_FREE_PAGES); 835 836 return cnt; 837 } 838 839 /** 840 * saveable_highmem_page - Determine whether a highmem page should be 841 * included in the suspend image. 842 * 843 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 844 * and it isn't a part of a free chunk of pages. 845 */ 846 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 847 { 848 struct page *page; 849 850 if (!pfn_valid(pfn)) 851 return NULL; 852 853 page = pfn_to_page(pfn); 854 if (page_zone(page) != zone) 855 return NULL; 856 857 BUG_ON(!PageHighMem(page)); 858 859 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 860 PageReserved(page)) 861 return NULL; 862 863 if (page_is_guard(page)) 864 return NULL; 865 866 return page; 867 } 868 869 /** 870 * count_highmem_pages - compute the total number of saveable highmem 871 * pages. 872 */ 873 874 static unsigned int count_highmem_pages(void) 875 { 876 struct zone *zone; 877 unsigned int n = 0; 878 879 for_each_populated_zone(zone) { 880 unsigned long pfn, max_zone_pfn; 881 882 if (!is_highmem(zone)) 883 continue; 884 885 mark_free_pages(zone); 886 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 887 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 888 if (saveable_highmem_page(zone, pfn)) 889 n++; 890 } 891 return n; 892 } 893 #else 894 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 895 { 896 return NULL; 897 } 898 #endif /* CONFIG_HIGHMEM */ 899 900 /** 901 * saveable_page - Determine whether a non-highmem page should be included 902 * in the suspend image. 903 * 904 * We should save the page if it isn't Nosave, and is not in the range 905 * of pages statically defined as 'unsaveable', and it isn't a part of 906 * a free chunk of pages. 907 */ 908 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 909 { 910 struct page *page; 911 912 if (!pfn_valid(pfn)) 913 return NULL; 914 915 page = pfn_to_page(pfn); 916 if (page_zone(page) != zone) 917 return NULL; 918 919 BUG_ON(PageHighMem(page)); 920 921 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 922 return NULL; 923 924 if (PageReserved(page) 925 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 926 return NULL; 927 928 if (page_is_guard(page)) 929 return NULL; 930 931 return page; 932 } 933 934 /** 935 * count_data_pages - compute the total number of saveable non-highmem 936 * pages. 937 */ 938 939 static unsigned int count_data_pages(void) 940 { 941 struct zone *zone; 942 unsigned long pfn, max_zone_pfn; 943 unsigned int n = 0; 944 945 for_each_populated_zone(zone) { 946 if (is_highmem(zone)) 947 continue; 948 949 mark_free_pages(zone); 950 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 952 if (saveable_page(zone, pfn)) 953 n++; 954 } 955 return n; 956 } 957 958 /* This is needed, because copy_page and memcpy are not usable for copying 959 * task structs. 960 */ 961 static inline void do_copy_page(long *dst, long *src) 962 { 963 int n; 964 965 for (n = PAGE_SIZE / sizeof(long); n; n--) 966 *dst++ = *src++; 967 } 968 969 970 /** 971 * safe_copy_page - check if the page we are going to copy is marked as 972 * present in the kernel page tables (this always is the case if 973 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 974 * kernel_page_present() always returns 'true'). 975 */ 976 static void safe_copy_page(void *dst, struct page *s_page) 977 { 978 if (kernel_page_present(s_page)) { 979 do_copy_page(dst, page_address(s_page)); 980 } else { 981 kernel_map_pages(s_page, 1, 1); 982 do_copy_page(dst, page_address(s_page)); 983 kernel_map_pages(s_page, 1, 0); 984 } 985 } 986 987 988 #ifdef CONFIG_HIGHMEM 989 static inline struct page * 990 page_is_saveable(struct zone *zone, unsigned long pfn) 991 { 992 return is_highmem(zone) ? 993 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 994 } 995 996 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 997 { 998 struct page *s_page, *d_page; 999 void *src, *dst; 1000 1001 s_page = pfn_to_page(src_pfn); 1002 d_page = pfn_to_page(dst_pfn); 1003 if (PageHighMem(s_page)) { 1004 src = kmap_atomic(s_page); 1005 dst = kmap_atomic(d_page); 1006 do_copy_page(dst, src); 1007 kunmap_atomic(dst); 1008 kunmap_atomic(src); 1009 } else { 1010 if (PageHighMem(d_page)) { 1011 /* Page pointed to by src may contain some kernel 1012 * data modified by kmap_atomic() 1013 */ 1014 safe_copy_page(buffer, s_page); 1015 dst = kmap_atomic(d_page); 1016 copy_page(dst, buffer); 1017 kunmap_atomic(dst); 1018 } else { 1019 safe_copy_page(page_address(d_page), s_page); 1020 } 1021 } 1022 } 1023 #else 1024 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1025 1026 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1027 { 1028 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1029 pfn_to_page(src_pfn)); 1030 } 1031 #endif /* CONFIG_HIGHMEM */ 1032 1033 static void 1034 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1035 { 1036 struct zone *zone; 1037 unsigned long pfn; 1038 1039 for_each_populated_zone(zone) { 1040 unsigned long max_zone_pfn; 1041 1042 mark_free_pages(zone); 1043 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1044 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1045 if (page_is_saveable(zone, pfn)) 1046 memory_bm_set_bit(orig_bm, pfn); 1047 } 1048 memory_bm_position_reset(orig_bm); 1049 memory_bm_position_reset(copy_bm); 1050 for(;;) { 1051 pfn = memory_bm_next_pfn(orig_bm); 1052 if (unlikely(pfn == BM_END_OF_MAP)) 1053 break; 1054 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1055 } 1056 } 1057 1058 /* Total number of image pages */ 1059 static unsigned int nr_copy_pages; 1060 /* Number of pages needed for saving the original pfns of the image pages */ 1061 static unsigned int nr_meta_pages; 1062 /* 1063 * Numbers of normal and highmem page frames allocated for hibernation image 1064 * before suspending devices. 1065 */ 1066 unsigned int alloc_normal, alloc_highmem; 1067 /* 1068 * Memory bitmap used for marking saveable pages (during hibernation) or 1069 * hibernation image pages (during restore) 1070 */ 1071 static struct memory_bitmap orig_bm; 1072 /* 1073 * Memory bitmap used during hibernation for marking allocated page frames that 1074 * will contain copies of saveable pages. During restore it is initially used 1075 * for marking hibernation image pages, but then the set bits from it are 1076 * duplicated in @orig_bm and it is released. On highmem systems it is next 1077 * used for marking "safe" highmem pages, but it has to be reinitialized for 1078 * this purpose. 1079 */ 1080 static struct memory_bitmap copy_bm; 1081 1082 /** 1083 * swsusp_free - free pages allocated for the suspend. 1084 * 1085 * Suspend pages are alocated before the atomic copy is made, so we 1086 * need to release them after the resume. 1087 */ 1088 1089 void swsusp_free(void) 1090 { 1091 struct zone *zone; 1092 unsigned long pfn, max_zone_pfn; 1093 1094 for_each_populated_zone(zone) { 1095 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1096 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1097 if (pfn_valid(pfn)) { 1098 struct page *page = pfn_to_page(pfn); 1099 1100 if (swsusp_page_is_forbidden(page) && 1101 swsusp_page_is_free(page)) { 1102 swsusp_unset_page_forbidden(page); 1103 swsusp_unset_page_free(page); 1104 __free_page(page); 1105 } 1106 } 1107 } 1108 nr_copy_pages = 0; 1109 nr_meta_pages = 0; 1110 restore_pblist = NULL; 1111 buffer = NULL; 1112 alloc_normal = 0; 1113 alloc_highmem = 0; 1114 } 1115 1116 /* Helper functions used for the shrinking of memory. */ 1117 1118 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1119 1120 /** 1121 * preallocate_image_pages - Allocate a number of pages for hibernation image 1122 * @nr_pages: Number of page frames to allocate. 1123 * @mask: GFP flags to use for the allocation. 1124 * 1125 * Return value: Number of page frames actually allocated 1126 */ 1127 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1128 { 1129 unsigned long nr_alloc = 0; 1130 1131 while (nr_pages > 0) { 1132 struct page *page; 1133 1134 page = alloc_image_page(mask); 1135 if (!page) 1136 break; 1137 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1138 if (PageHighMem(page)) 1139 alloc_highmem++; 1140 else 1141 alloc_normal++; 1142 nr_pages--; 1143 nr_alloc++; 1144 } 1145 1146 return nr_alloc; 1147 } 1148 1149 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1150 unsigned long avail_normal) 1151 { 1152 unsigned long alloc; 1153 1154 if (avail_normal <= alloc_normal) 1155 return 0; 1156 1157 alloc = avail_normal - alloc_normal; 1158 if (nr_pages < alloc) 1159 alloc = nr_pages; 1160 1161 return preallocate_image_pages(alloc, GFP_IMAGE); 1162 } 1163 1164 #ifdef CONFIG_HIGHMEM 1165 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1166 { 1167 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1168 } 1169 1170 /** 1171 * __fraction - Compute (an approximation of) x * (multiplier / base) 1172 */ 1173 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1174 { 1175 x *= multiplier; 1176 do_div(x, base); 1177 return (unsigned long)x; 1178 } 1179 1180 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1181 unsigned long highmem, 1182 unsigned long total) 1183 { 1184 unsigned long alloc = __fraction(nr_pages, highmem, total); 1185 1186 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1187 } 1188 #else /* CONFIG_HIGHMEM */ 1189 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1190 { 1191 return 0; 1192 } 1193 1194 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1195 unsigned long highmem, 1196 unsigned long total) 1197 { 1198 return 0; 1199 } 1200 #endif /* CONFIG_HIGHMEM */ 1201 1202 /** 1203 * free_unnecessary_pages - Release preallocated pages not needed for the image 1204 */ 1205 static void free_unnecessary_pages(void) 1206 { 1207 unsigned long save, to_free_normal, to_free_highmem; 1208 1209 save = count_data_pages(); 1210 if (alloc_normal >= save) { 1211 to_free_normal = alloc_normal - save; 1212 save = 0; 1213 } else { 1214 to_free_normal = 0; 1215 save -= alloc_normal; 1216 } 1217 save += count_highmem_pages(); 1218 if (alloc_highmem >= save) { 1219 to_free_highmem = alloc_highmem - save; 1220 } else { 1221 to_free_highmem = 0; 1222 save -= alloc_highmem; 1223 if (to_free_normal > save) 1224 to_free_normal -= save; 1225 else 1226 to_free_normal = 0; 1227 } 1228 1229 memory_bm_position_reset(©_bm); 1230 1231 while (to_free_normal > 0 || to_free_highmem > 0) { 1232 unsigned long pfn = memory_bm_next_pfn(©_bm); 1233 struct page *page = pfn_to_page(pfn); 1234 1235 if (PageHighMem(page)) { 1236 if (!to_free_highmem) 1237 continue; 1238 to_free_highmem--; 1239 alloc_highmem--; 1240 } else { 1241 if (!to_free_normal) 1242 continue; 1243 to_free_normal--; 1244 alloc_normal--; 1245 } 1246 memory_bm_clear_bit(©_bm, pfn); 1247 swsusp_unset_page_forbidden(page); 1248 swsusp_unset_page_free(page); 1249 __free_page(page); 1250 } 1251 } 1252 1253 /** 1254 * minimum_image_size - Estimate the minimum acceptable size of an image 1255 * @saveable: Number of saveable pages in the system. 1256 * 1257 * We want to avoid attempting to free too much memory too hard, so estimate the 1258 * minimum acceptable size of a hibernation image to use as the lower limit for 1259 * preallocating memory. 1260 * 1261 * We assume that the minimum image size should be proportional to 1262 * 1263 * [number of saveable pages] - [number of pages that can be freed in theory] 1264 * 1265 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1266 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1267 * minus mapped file pages. 1268 */ 1269 static unsigned long minimum_image_size(unsigned long saveable) 1270 { 1271 unsigned long size; 1272 1273 size = global_page_state(NR_SLAB_RECLAIMABLE) 1274 + global_page_state(NR_ACTIVE_ANON) 1275 + global_page_state(NR_INACTIVE_ANON) 1276 + global_page_state(NR_ACTIVE_FILE) 1277 + global_page_state(NR_INACTIVE_FILE) 1278 - global_page_state(NR_FILE_MAPPED); 1279 1280 return saveable <= size ? 0 : saveable - size; 1281 } 1282 1283 /** 1284 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1285 * 1286 * To create a hibernation image it is necessary to make a copy of every page 1287 * frame in use. We also need a number of page frames to be free during 1288 * hibernation for allocations made while saving the image and for device 1289 * drivers, in case they need to allocate memory from their hibernation 1290 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1291 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1292 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1293 * total number of available page frames and allocate at least 1294 * 1295 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1296 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1297 * 1298 * of them, which corresponds to the maximum size of a hibernation image. 1299 * 1300 * If image_size is set below the number following from the above formula, 1301 * the preallocation of memory is continued until the total number of saveable 1302 * pages in the system is below the requested image size or the minimum 1303 * acceptable image size returned by minimum_image_size(), whichever is greater. 1304 */ 1305 int hibernate_preallocate_memory(void) 1306 { 1307 struct zone *zone; 1308 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1309 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1310 struct timeval start, stop; 1311 int error; 1312 1313 printk(KERN_INFO "PM: Preallocating image memory... "); 1314 do_gettimeofday(&start); 1315 1316 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1317 if (error) 1318 goto err_out; 1319 1320 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1321 if (error) 1322 goto err_out; 1323 1324 alloc_normal = 0; 1325 alloc_highmem = 0; 1326 1327 /* Count the number of saveable data pages. */ 1328 save_highmem = count_highmem_pages(); 1329 saveable = count_data_pages(); 1330 1331 /* 1332 * Compute the total number of page frames we can use (count) and the 1333 * number of pages needed for image metadata (size). 1334 */ 1335 count = saveable; 1336 saveable += save_highmem; 1337 highmem = save_highmem; 1338 size = 0; 1339 for_each_populated_zone(zone) { 1340 size += snapshot_additional_pages(zone); 1341 if (is_highmem(zone)) 1342 highmem += zone_page_state(zone, NR_FREE_PAGES); 1343 else 1344 count += zone_page_state(zone, NR_FREE_PAGES); 1345 } 1346 avail_normal = count; 1347 count += highmem; 1348 count -= totalreserve_pages; 1349 1350 /* Add number of pages required for page keys (s390 only). */ 1351 size += page_key_additional_pages(saveable); 1352 1353 /* Compute the maximum number of saveable pages to leave in memory. */ 1354 max_size = (count - (size + PAGES_FOR_IO)) / 2 1355 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1356 /* Compute the desired number of image pages specified by image_size. */ 1357 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1358 if (size > max_size) 1359 size = max_size; 1360 /* 1361 * If the desired number of image pages is at least as large as the 1362 * current number of saveable pages in memory, allocate page frames for 1363 * the image and we're done. 1364 */ 1365 if (size >= saveable) { 1366 pages = preallocate_image_highmem(save_highmem); 1367 pages += preallocate_image_memory(saveable - pages, avail_normal); 1368 goto out; 1369 } 1370 1371 /* Estimate the minimum size of the image. */ 1372 pages = minimum_image_size(saveable); 1373 /* 1374 * To avoid excessive pressure on the normal zone, leave room in it to 1375 * accommodate an image of the minimum size (unless it's already too 1376 * small, in which case don't preallocate pages from it at all). 1377 */ 1378 if (avail_normal > pages) 1379 avail_normal -= pages; 1380 else 1381 avail_normal = 0; 1382 if (size < pages) 1383 size = min_t(unsigned long, pages, max_size); 1384 1385 /* 1386 * Let the memory management subsystem know that we're going to need a 1387 * large number of page frames to allocate and make it free some memory. 1388 * NOTE: If this is not done, performance will be hurt badly in some 1389 * test cases. 1390 */ 1391 shrink_all_memory(saveable - size); 1392 1393 /* 1394 * The number of saveable pages in memory was too high, so apply some 1395 * pressure to decrease it. First, make room for the largest possible 1396 * image and fail if that doesn't work. Next, try to decrease the size 1397 * of the image as much as indicated by 'size' using allocations from 1398 * highmem and non-highmem zones separately. 1399 */ 1400 pages_highmem = preallocate_image_highmem(highmem / 2); 1401 alloc = (count - max_size) - pages_highmem; 1402 pages = preallocate_image_memory(alloc, avail_normal); 1403 if (pages < alloc) { 1404 /* We have exhausted non-highmem pages, try highmem. */ 1405 alloc -= pages; 1406 pages += pages_highmem; 1407 pages_highmem = preallocate_image_highmem(alloc); 1408 if (pages_highmem < alloc) 1409 goto err_out; 1410 pages += pages_highmem; 1411 /* 1412 * size is the desired number of saveable pages to leave in 1413 * memory, so try to preallocate (all memory - size) pages. 1414 */ 1415 alloc = (count - pages) - size; 1416 pages += preallocate_image_highmem(alloc); 1417 } else { 1418 /* 1419 * There are approximately max_size saveable pages at this point 1420 * and we want to reduce this number down to size. 1421 */ 1422 alloc = max_size - size; 1423 size = preallocate_highmem_fraction(alloc, highmem, count); 1424 pages_highmem += size; 1425 alloc -= size; 1426 size = preallocate_image_memory(alloc, avail_normal); 1427 pages_highmem += preallocate_image_highmem(alloc - size); 1428 pages += pages_highmem + size; 1429 } 1430 1431 /* 1432 * We only need as many page frames for the image as there are saveable 1433 * pages in memory, but we have allocated more. Release the excessive 1434 * ones now. 1435 */ 1436 free_unnecessary_pages(); 1437 1438 out: 1439 do_gettimeofday(&stop); 1440 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1441 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1442 1443 return 0; 1444 1445 err_out: 1446 printk(KERN_CONT "\n"); 1447 swsusp_free(); 1448 return -ENOMEM; 1449 } 1450 1451 #ifdef CONFIG_HIGHMEM 1452 /** 1453 * count_pages_for_highmem - compute the number of non-highmem pages 1454 * that will be necessary for creating copies of highmem pages. 1455 */ 1456 1457 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1458 { 1459 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1460 1461 if (free_highmem >= nr_highmem) 1462 nr_highmem = 0; 1463 else 1464 nr_highmem -= free_highmem; 1465 1466 return nr_highmem; 1467 } 1468 #else 1469 static unsigned int 1470 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1471 #endif /* CONFIG_HIGHMEM */ 1472 1473 /** 1474 * enough_free_mem - Make sure we have enough free memory for the 1475 * snapshot image. 1476 */ 1477 1478 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1479 { 1480 struct zone *zone; 1481 unsigned int free = alloc_normal; 1482 1483 for_each_populated_zone(zone) 1484 if (!is_highmem(zone)) 1485 free += zone_page_state(zone, NR_FREE_PAGES); 1486 1487 nr_pages += count_pages_for_highmem(nr_highmem); 1488 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1489 nr_pages, PAGES_FOR_IO, free); 1490 1491 return free > nr_pages + PAGES_FOR_IO; 1492 } 1493 1494 #ifdef CONFIG_HIGHMEM 1495 /** 1496 * get_highmem_buffer - if there are some highmem pages in the suspend 1497 * image, we may need the buffer to copy them and/or load their data. 1498 */ 1499 1500 static inline int get_highmem_buffer(int safe_needed) 1501 { 1502 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1503 return buffer ? 0 : -ENOMEM; 1504 } 1505 1506 /** 1507 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1508 * Try to allocate as many pages as needed, but if the number of free 1509 * highmem pages is lesser than that, allocate them all. 1510 */ 1511 1512 static inline unsigned int 1513 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1514 { 1515 unsigned int to_alloc = count_free_highmem_pages(); 1516 1517 if (to_alloc > nr_highmem) 1518 to_alloc = nr_highmem; 1519 1520 nr_highmem -= to_alloc; 1521 while (to_alloc-- > 0) { 1522 struct page *page; 1523 1524 page = alloc_image_page(__GFP_HIGHMEM); 1525 memory_bm_set_bit(bm, page_to_pfn(page)); 1526 } 1527 return nr_highmem; 1528 } 1529 #else 1530 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1531 1532 static inline unsigned int 1533 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1534 #endif /* CONFIG_HIGHMEM */ 1535 1536 /** 1537 * swsusp_alloc - allocate memory for the suspend image 1538 * 1539 * We first try to allocate as many highmem pages as there are 1540 * saveable highmem pages in the system. If that fails, we allocate 1541 * non-highmem pages for the copies of the remaining highmem ones. 1542 * 1543 * In this approach it is likely that the copies of highmem pages will 1544 * also be located in the high memory, because of the way in which 1545 * copy_data_pages() works. 1546 */ 1547 1548 static int 1549 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1550 unsigned int nr_pages, unsigned int nr_highmem) 1551 { 1552 if (nr_highmem > 0) { 1553 if (get_highmem_buffer(PG_ANY)) 1554 goto err_out; 1555 if (nr_highmem > alloc_highmem) { 1556 nr_highmem -= alloc_highmem; 1557 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1558 } 1559 } 1560 if (nr_pages > alloc_normal) { 1561 nr_pages -= alloc_normal; 1562 while (nr_pages-- > 0) { 1563 struct page *page; 1564 1565 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1566 if (!page) 1567 goto err_out; 1568 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1569 } 1570 } 1571 1572 return 0; 1573 1574 err_out: 1575 swsusp_free(); 1576 return -ENOMEM; 1577 } 1578 1579 asmlinkage int swsusp_save(void) 1580 { 1581 unsigned int nr_pages, nr_highmem; 1582 1583 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1584 1585 drain_local_pages(NULL); 1586 nr_pages = count_data_pages(); 1587 nr_highmem = count_highmem_pages(); 1588 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1589 1590 if (!enough_free_mem(nr_pages, nr_highmem)) { 1591 printk(KERN_ERR "PM: Not enough free memory\n"); 1592 return -ENOMEM; 1593 } 1594 1595 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1596 printk(KERN_ERR "PM: Memory allocation failed\n"); 1597 return -ENOMEM; 1598 } 1599 1600 /* During allocating of suspend pagedir, new cold pages may appear. 1601 * Kill them. 1602 */ 1603 drain_local_pages(NULL); 1604 copy_data_pages(©_bm, &orig_bm); 1605 1606 /* 1607 * End of critical section. From now on, we can write to memory, 1608 * but we should not touch disk. This specially means we must _not_ 1609 * touch swap space! Except we must write out our image of course. 1610 */ 1611 1612 nr_pages += nr_highmem; 1613 nr_copy_pages = nr_pages; 1614 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1615 1616 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1617 nr_pages); 1618 1619 return 0; 1620 } 1621 1622 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1623 static int init_header_complete(struct swsusp_info *info) 1624 { 1625 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1626 info->version_code = LINUX_VERSION_CODE; 1627 return 0; 1628 } 1629 1630 static char *check_image_kernel(struct swsusp_info *info) 1631 { 1632 if (info->version_code != LINUX_VERSION_CODE) 1633 return "kernel version"; 1634 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1635 return "system type"; 1636 if (strcmp(info->uts.release,init_utsname()->release)) 1637 return "kernel release"; 1638 if (strcmp(info->uts.version,init_utsname()->version)) 1639 return "version"; 1640 if (strcmp(info->uts.machine,init_utsname()->machine)) 1641 return "machine"; 1642 return NULL; 1643 } 1644 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1645 1646 unsigned long snapshot_get_image_size(void) 1647 { 1648 return nr_copy_pages + nr_meta_pages + 1; 1649 } 1650 1651 static int init_header(struct swsusp_info *info) 1652 { 1653 memset(info, 0, sizeof(struct swsusp_info)); 1654 info->num_physpages = num_physpages; 1655 info->image_pages = nr_copy_pages; 1656 info->pages = snapshot_get_image_size(); 1657 info->size = info->pages; 1658 info->size <<= PAGE_SHIFT; 1659 return init_header_complete(info); 1660 } 1661 1662 /** 1663 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1664 * are stored in the array @buf[] (1 page at a time) 1665 */ 1666 1667 static inline void 1668 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1669 { 1670 int j; 1671 1672 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1673 buf[j] = memory_bm_next_pfn(bm); 1674 if (unlikely(buf[j] == BM_END_OF_MAP)) 1675 break; 1676 /* Save page key for data page (s390 only). */ 1677 page_key_read(buf + j); 1678 } 1679 } 1680 1681 /** 1682 * snapshot_read_next - used for reading the system memory snapshot. 1683 * 1684 * On the first call to it @handle should point to a zeroed 1685 * snapshot_handle structure. The structure gets updated and a pointer 1686 * to it should be passed to this function every next time. 1687 * 1688 * On success the function returns a positive number. Then, the caller 1689 * is allowed to read up to the returned number of bytes from the memory 1690 * location computed by the data_of() macro. 1691 * 1692 * The function returns 0 to indicate the end of data stream condition, 1693 * and a negative number is returned on error. In such cases the 1694 * structure pointed to by @handle is not updated and should not be used 1695 * any more. 1696 */ 1697 1698 int snapshot_read_next(struct snapshot_handle *handle) 1699 { 1700 if (handle->cur > nr_meta_pages + nr_copy_pages) 1701 return 0; 1702 1703 if (!buffer) { 1704 /* This makes the buffer be freed by swsusp_free() */ 1705 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1706 if (!buffer) 1707 return -ENOMEM; 1708 } 1709 if (!handle->cur) { 1710 int error; 1711 1712 error = init_header((struct swsusp_info *)buffer); 1713 if (error) 1714 return error; 1715 handle->buffer = buffer; 1716 memory_bm_position_reset(&orig_bm); 1717 memory_bm_position_reset(©_bm); 1718 } else if (handle->cur <= nr_meta_pages) { 1719 clear_page(buffer); 1720 pack_pfns(buffer, &orig_bm); 1721 } else { 1722 struct page *page; 1723 1724 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1725 if (PageHighMem(page)) { 1726 /* Highmem pages are copied to the buffer, 1727 * because we can't return with a kmapped 1728 * highmem page (we may not be called again). 1729 */ 1730 void *kaddr; 1731 1732 kaddr = kmap_atomic(page); 1733 copy_page(buffer, kaddr); 1734 kunmap_atomic(kaddr); 1735 handle->buffer = buffer; 1736 } else { 1737 handle->buffer = page_address(page); 1738 } 1739 } 1740 handle->cur++; 1741 return PAGE_SIZE; 1742 } 1743 1744 /** 1745 * mark_unsafe_pages - mark the pages that cannot be used for storing 1746 * the image during resume, because they conflict with the pages that 1747 * had been used before suspend 1748 */ 1749 1750 static int mark_unsafe_pages(struct memory_bitmap *bm) 1751 { 1752 struct zone *zone; 1753 unsigned long pfn, max_zone_pfn; 1754 1755 /* Clear page flags */ 1756 for_each_populated_zone(zone) { 1757 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1758 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1759 if (pfn_valid(pfn)) 1760 swsusp_unset_page_free(pfn_to_page(pfn)); 1761 } 1762 1763 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1764 memory_bm_position_reset(bm); 1765 do { 1766 pfn = memory_bm_next_pfn(bm); 1767 if (likely(pfn != BM_END_OF_MAP)) { 1768 if (likely(pfn_valid(pfn))) 1769 swsusp_set_page_free(pfn_to_page(pfn)); 1770 else 1771 return -EFAULT; 1772 } 1773 } while (pfn != BM_END_OF_MAP); 1774 1775 allocated_unsafe_pages = 0; 1776 1777 return 0; 1778 } 1779 1780 static void 1781 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1782 { 1783 unsigned long pfn; 1784 1785 memory_bm_position_reset(src); 1786 pfn = memory_bm_next_pfn(src); 1787 while (pfn != BM_END_OF_MAP) { 1788 memory_bm_set_bit(dst, pfn); 1789 pfn = memory_bm_next_pfn(src); 1790 } 1791 } 1792 1793 static int check_header(struct swsusp_info *info) 1794 { 1795 char *reason; 1796 1797 reason = check_image_kernel(info); 1798 if (!reason && info->num_physpages != num_physpages) 1799 reason = "memory size"; 1800 if (reason) { 1801 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1802 return -EPERM; 1803 } 1804 return 0; 1805 } 1806 1807 /** 1808 * load header - check the image header and copy data from it 1809 */ 1810 1811 static int 1812 load_header(struct swsusp_info *info) 1813 { 1814 int error; 1815 1816 restore_pblist = NULL; 1817 error = check_header(info); 1818 if (!error) { 1819 nr_copy_pages = info->image_pages; 1820 nr_meta_pages = info->pages - info->image_pages - 1; 1821 } 1822 return error; 1823 } 1824 1825 /** 1826 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1827 * the corresponding bit in the memory bitmap @bm 1828 */ 1829 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1830 { 1831 int j; 1832 1833 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1834 if (unlikely(buf[j] == BM_END_OF_MAP)) 1835 break; 1836 1837 /* Extract and buffer page key for data page (s390 only). */ 1838 page_key_memorize(buf + j); 1839 1840 if (memory_bm_pfn_present(bm, buf[j])) 1841 memory_bm_set_bit(bm, buf[j]); 1842 else 1843 return -EFAULT; 1844 } 1845 1846 return 0; 1847 } 1848 1849 /* List of "safe" pages that may be used to store data loaded from the suspend 1850 * image 1851 */ 1852 static struct linked_page *safe_pages_list; 1853 1854 #ifdef CONFIG_HIGHMEM 1855 /* struct highmem_pbe is used for creating the list of highmem pages that 1856 * should be restored atomically during the resume from disk, because the page 1857 * frames they have occupied before the suspend are in use. 1858 */ 1859 struct highmem_pbe { 1860 struct page *copy_page; /* data is here now */ 1861 struct page *orig_page; /* data was here before the suspend */ 1862 struct highmem_pbe *next; 1863 }; 1864 1865 /* List of highmem PBEs needed for restoring the highmem pages that were 1866 * allocated before the suspend and included in the suspend image, but have 1867 * also been allocated by the "resume" kernel, so their contents cannot be 1868 * written directly to their "original" page frames. 1869 */ 1870 static struct highmem_pbe *highmem_pblist; 1871 1872 /** 1873 * count_highmem_image_pages - compute the number of highmem pages in the 1874 * suspend image. The bits in the memory bitmap @bm that correspond to the 1875 * image pages are assumed to be set. 1876 */ 1877 1878 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1879 { 1880 unsigned long pfn; 1881 unsigned int cnt = 0; 1882 1883 memory_bm_position_reset(bm); 1884 pfn = memory_bm_next_pfn(bm); 1885 while (pfn != BM_END_OF_MAP) { 1886 if (PageHighMem(pfn_to_page(pfn))) 1887 cnt++; 1888 1889 pfn = memory_bm_next_pfn(bm); 1890 } 1891 return cnt; 1892 } 1893 1894 /** 1895 * prepare_highmem_image - try to allocate as many highmem pages as 1896 * there are highmem image pages (@nr_highmem_p points to the variable 1897 * containing the number of highmem image pages). The pages that are 1898 * "safe" (ie. will not be overwritten when the suspend image is 1899 * restored) have the corresponding bits set in @bm (it must be 1900 * unitialized). 1901 * 1902 * NOTE: This function should not be called if there are no highmem 1903 * image pages. 1904 */ 1905 1906 static unsigned int safe_highmem_pages; 1907 1908 static struct memory_bitmap *safe_highmem_bm; 1909 1910 static int 1911 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1912 { 1913 unsigned int to_alloc; 1914 1915 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1916 return -ENOMEM; 1917 1918 if (get_highmem_buffer(PG_SAFE)) 1919 return -ENOMEM; 1920 1921 to_alloc = count_free_highmem_pages(); 1922 if (to_alloc > *nr_highmem_p) 1923 to_alloc = *nr_highmem_p; 1924 else 1925 *nr_highmem_p = to_alloc; 1926 1927 safe_highmem_pages = 0; 1928 while (to_alloc-- > 0) { 1929 struct page *page; 1930 1931 page = alloc_page(__GFP_HIGHMEM); 1932 if (!swsusp_page_is_free(page)) { 1933 /* The page is "safe", set its bit the bitmap */ 1934 memory_bm_set_bit(bm, page_to_pfn(page)); 1935 safe_highmem_pages++; 1936 } 1937 /* Mark the page as allocated */ 1938 swsusp_set_page_forbidden(page); 1939 swsusp_set_page_free(page); 1940 } 1941 memory_bm_position_reset(bm); 1942 safe_highmem_bm = bm; 1943 return 0; 1944 } 1945 1946 /** 1947 * get_highmem_page_buffer - for given highmem image page find the buffer 1948 * that suspend_write_next() should set for its caller to write to. 1949 * 1950 * If the page is to be saved to its "original" page frame or a copy of 1951 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1952 * the copy of the page is to be made in normal memory, so the address of 1953 * the copy is returned. 1954 * 1955 * If @buffer is returned, the caller of suspend_write_next() will write 1956 * the page's contents to @buffer, so they will have to be copied to the 1957 * right location on the next call to suspend_write_next() and it is done 1958 * with the help of copy_last_highmem_page(). For this purpose, if 1959 * @buffer is returned, @last_highmem page is set to the page to which 1960 * the data will have to be copied from @buffer. 1961 */ 1962 1963 static struct page *last_highmem_page; 1964 1965 static void * 1966 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1967 { 1968 struct highmem_pbe *pbe; 1969 void *kaddr; 1970 1971 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1972 /* We have allocated the "original" page frame and we can 1973 * use it directly to store the loaded page. 1974 */ 1975 last_highmem_page = page; 1976 return buffer; 1977 } 1978 /* The "original" page frame has not been allocated and we have to 1979 * use a "safe" page frame to store the loaded page. 1980 */ 1981 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1982 if (!pbe) { 1983 swsusp_free(); 1984 return ERR_PTR(-ENOMEM); 1985 } 1986 pbe->orig_page = page; 1987 if (safe_highmem_pages > 0) { 1988 struct page *tmp; 1989 1990 /* Copy of the page will be stored in high memory */ 1991 kaddr = buffer; 1992 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1993 safe_highmem_pages--; 1994 last_highmem_page = tmp; 1995 pbe->copy_page = tmp; 1996 } else { 1997 /* Copy of the page will be stored in normal memory */ 1998 kaddr = safe_pages_list; 1999 safe_pages_list = safe_pages_list->next; 2000 pbe->copy_page = virt_to_page(kaddr); 2001 } 2002 pbe->next = highmem_pblist; 2003 highmem_pblist = pbe; 2004 return kaddr; 2005 } 2006 2007 /** 2008 * copy_last_highmem_page - copy the contents of a highmem image from 2009 * @buffer, where the caller of snapshot_write_next() has place them, 2010 * to the right location represented by @last_highmem_page . 2011 */ 2012 2013 static void copy_last_highmem_page(void) 2014 { 2015 if (last_highmem_page) { 2016 void *dst; 2017 2018 dst = kmap_atomic(last_highmem_page); 2019 copy_page(dst, buffer); 2020 kunmap_atomic(dst); 2021 last_highmem_page = NULL; 2022 } 2023 } 2024 2025 static inline int last_highmem_page_copied(void) 2026 { 2027 return !last_highmem_page; 2028 } 2029 2030 static inline void free_highmem_data(void) 2031 { 2032 if (safe_highmem_bm) 2033 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2034 2035 if (buffer) 2036 free_image_page(buffer, PG_UNSAFE_CLEAR); 2037 } 2038 #else 2039 static inline int get_safe_write_buffer(void) { return 0; } 2040 2041 static unsigned int 2042 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2043 2044 static inline int 2045 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 2046 { 2047 return 0; 2048 } 2049 2050 static inline void * 2051 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 2052 { 2053 return ERR_PTR(-EINVAL); 2054 } 2055 2056 static inline void copy_last_highmem_page(void) {} 2057 static inline int last_highmem_page_copied(void) { return 1; } 2058 static inline void free_highmem_data(void) {} 2059 #endif /* CONFIG_HIGHMEM */ 2060 2061 /** 2062 * prepare_image - use the memory bitmap @bm to mark the pages that will 2063 * be overwritten in the process of restoring the system memory state 2064 * from the suspend image ("unsafe" pages) and allocate memory for the 2065 * image. 2066 * 2067 * The idea is to allocate a new memory bitmap first and then allocate 2068 * as many pages as needed for the image data, but not to assign these 2069 * pages to specific tasks initially. Instead, we just mark them as 2070 * allocated and create a lists of "safe" pages that will be used 2071 * later. On systems with high memory a list of "safe" highmem pages is 2072 * also created. 2073 */ 2074 2075 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2076 2077 static int 2078 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2079 { 2080 unsigned int nr_pages, nr_highmem; 2081 struct linked_page *sp_list, *lp; 2082 int error; 2083 2084 /* If there is no highmem, the buffer will not be necessary */ 2085 free_image_page(buffer, PG_UNSAFE_CLEAR); 2086 buffer = NULL; 2087 2088 nr_highmem = count_highmem_image_pages(bm); 2089 error = mark_unsafe_pages(bm); 2090 if (error) 2091 goto Free; 2092 2093 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2094 if (error) 2095 goto Free; 2096 2097 duplicate_memory_bitmap(new_bm, bm); 2098 memory_bm_free(bm, PG_UNSAFE_KEEP); 2099 if (nr_highmem > 0) { 2100 error = prepare_highmem_image(bm, &nr_highmem); 2101 if (error) 2102 goto Free; 2103 } 2104 /* Reserve some safe pages for potential later use. 2105 * 2106 * NOTE: This way we make sure there will be enough safe pages for the 2107 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2108 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2109 */ 2110 sp_list = NULL; 2111 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2112 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2113 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2114 while (nr_pages > 0) { 2115 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2116 if (!lp) { 2117 error = -ENOMEM; 2118 goto Free; 2119 } 2120 lp->next = sp_list; 2121 sp_list = lp; 2122 nr_pages--; 2123 } 2124 /* Preallocate memory for the image */ 2125 safe_pages_list = NULL; 2126 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2127 while (nr_pages > 0) { 2128 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2129 if (!lp) { 2130 error = -ENOMEM; 2131 goto Free; 2132 } 2133 if (!swsusp_page_is_free(virt_to_page(lp))) { 2134 /* The page is "safe", add it to the list */ 2135 lp->next = safe_pages_list; 2136 safe_pages_list = lp; 2137 } 2138 /* Mark the page as allocated */ 2139 swsusp_set_page_forbidden(virt_to_page(lp)); 2140 swsusp_set_page_free(virt_to_page(lp)); 2141 nr_pages--; 2142 } 2143 /* Free the reserved safe pages so that chain_alloc() can use them */ 2144 while (sp_list) { 2145 lp = sp_list->next; 2146 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2147 sp_list = lp; 2148 } 2149 return 0; 2150 2151 Free: 2152 swsusp_free(); 2153 return error; 2154 } 2155 2156 /** 2157 * get_buffer - compute the address that snapshot_write_next() should 2158 * set for its caller to write to. 2159 */ 2160 2161 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2162 { 2163 struct pbe *pbe; 2164 struct page *page; 2165 unsigned long pfn = memory_bm_next_pfn(bm); 2166 2167 if (pfn == BM_END_OF_MAP) 2168 return ERR_PTR(-EFAULT); 2169 2170 page = pfn_to_page(pfn); 2171 if (PageHighMem(page)) 2172 return get_highmem_page_buffer(page, ca); 2173 2174 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2175 /* We have allocated the "original" page frame and we can 2176 * use it directly to store the loaded page. 2177 */ 2178 return page_address(page); 2179 2180 /* The "original" page frame has not been allocated and we have to 2181 * use a "safe" page frame to store the loaded page. 2182 */ 2183 pbe = chain_alloc(ca, sizeof(struct pbe)); 2184 if (!pbe) { 2185 swsusp_free(); 2186 return ERR_PTR(-ENOMEM); 2187 } 2188 pbe->orig_address = page_address(page); 2189 pbe->address = safe_pages_list; 2190 safe_pages_list = safe_pages_list->next; 2191 pbe->next = restore_pblist; 2192 restore_pblist = pbe; 2193 return pbe->address; 2194 } 2195 2196 /** 2197 * snapshot_write_next - used for writing the system memory snapshot. 2198 * 2199 * On the first call to it @handle should point to a zeroed 2200 * snapshot_handle structure. The structure gets updated and a pointer 2201 * to it should be passed to this function every next time. 2202 * 2203 * On success the function returns a positive number. Then, the caller 2204 * is allowed to write up to the returned number of bytes to the memory 2205 * location computed by the data_of() macro. 2206 * 2207 * The function returns 0 to indicate the "end of file" condition, 2208 * and a negative number is returned on error. In such cases the 2209 * structure pointed to by @handle is not updated and should not be used 2210 * any more. 2211 */ 2212 2213 int snapshot_write_next(struct snapshot_handle *handle) 2214 { 2215 static struct chain_allocator ca; 2216 int error = 0; 2217 2218 /* Check if we have already loaded the entire image */ 2219 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2220 return 0; 2221 2222 handle->sync_read = 1; 2223 2224 if (!handle->cur) { 2225 if (!buffer) 2226 /* This makes the buffer be freed by swsusp_free() */ 2227 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2228 2229 if (!buffer) 2230 return -ENOMEM; 2231 2232 handle->buffer = buffer; 2233 } else if (handle->cur == 1) { 2234 error = load_header(buffer); 2235 if (error) 2236 return error; 2237 2238 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2239 if (error) 2240 return error; 2241 2242 /* Allocate buffer for page keys. */ 2243 error = page_key_alloc(nr_copy_pages); 2244 if (error) 2245 return error; 2246 2247 } else if (handle->cur <= nr_meta_pages + 1) { 2248 error = unpack_orig_pfns(buffer, ©_bm); 2249 if (error) 2250 return error; 2251 2252 if (handle->cur == nr_meta_pages + 1) { 2253 error = prepare_image(&orig_bm, ©_bm); 2254 if (error) 2255 return error; 2256 2257 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2258 memory_bm_position_reset(&orig_bm); 2259 restore_pblist = NULL; 2260 handle->buffer = get_buffer(&orig_bm, &ca); 2261 handle->sync_read = 0; 2262 if (IS_ERR(handle->buffer)) 2263 return PTR_ERR(handle->buffer); 2264 } 2265 } else { 2266 copy_last_highmem_page(); 2267 /* Restore page key for data page (s390 only). */ 2268 page_key_write(handle->buffer); 2269 handle->buffer = get_buffer(&orig_bm, &ca); 2270 if (IS_ERR(handle->buffer)) 2271 return PTR_ERR(handle->buffer); 2272 if (handle->buffer != buffer) 2273 handle->sync_read = 0; 2274 } 2275 handle->cur++; 2276 return PAGE_SIZE; 2277 } 2278 2279 /** 2280 * snapshot_write_finalize - must be called after the last call to 2281 * snapshot_write_next() in case the last page in the image happens 2282 * to be a highmem page and its contents should be stored in the 2283 * highmem. Additionally, it releases the memory that will not be 2284 * used any more. 2285 */ 2286 2287 void snapshot_write_finalize(struct snapshot_handle *handle) 2288 { 2289 copy_last_highmem_page(); 2290 /* Restore page key for data page (s390 only). */ 2291 page_key_write(handle->buffer); 2292 page_key_free(); 2293 /* Free only if we have loaded the image entirely */ 2294 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2295 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2296 free_highmem_data(); 2297 } 2298 } 2299 2300 int snapshot_image_loaded(struct snapshot_handle *handle) 2301 { 2302 return !(!nr_copy_pages || !last_highmem_page_copied() || 2303 handle->cur <= nr_meta_pages + nr_copy_pages); 2304 } 2305 2306 #ifdef CONFIG_HIGHMEM 2307 /* Assumes that @buf is ready and points to a "safe" page */ 2308 static inline void 2309 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2310 { 2311 void *kaddr1, *kaddr2; 2312 2313 kaddr1 = kmap_atomic(p1); 2314 kaddr2 = kmap_atomic(p2); 2315 copy_page(buf, kaddr1); 2316 copy_page(kaddr1, kaddr2); 2317 copy_page(kaddr2, buf); 2318 kunmap_atomic(kaddr2); 2319 kunmap_atomic(kaddr1); 2320 } 2321 2322 /** 2323 * restore_highmem - for each highmem page that was allocated before 2324 * the suspend and included in the suspend image, and also has been 2325 * allocated by the "resume" kernel swap its current (ie. "before 2326 * resume") contents with the previous (ie. "before suspend") one. 2327 * 2328 * If the resume eventually fails, we can call this function once 2329 * again and restore the "before resume" highmem state. 2330 */ 2331 2332 int restore_highmem(void) 2333 { 2334 struct highmem_pbe *pbe = highmem_pblist; 2335 void *buf; 2336 2337 if (!pbe) 2338 return 0; 2339 2340 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2341 if (!buf) 2342 return -ENOMEM; 2343 2344 while (pbe) { 2345 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2346 pbe = pbe->next; 2347 } 2348 free_image_page(buf, PG_UNSAFE_CLEAR); 2349 return 0; 2350 } 2351 #endif /* CONFIG_HIGHMEM */ 2352