xref: /openbmc/linux/kernel/power/snapshot.c (revision 5534b673)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <asm/io.h>
37 
38 #include "power.h"
39 
40 static int swsusp_page_is_free(struct page *);
41 static void swsusp_set_page_forbidden(struct page *);
42 static void swsusp_unset_page_forbidden(struct page *);
43 
44 /*
45  * Number of bytes to reserve for memory allocations made by device drivers
46  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47  * cause image creation to fail (tunable via /sys/power/reserved_size).
48  */
49 unsigned long reserved_size;
50 
51 void __init hibernate_reserved_size_init(void)
52 {
53 	reserved_size = SPARE_PAGES * PAGE_SIZE;
54 }
55 
56 /*
57  * Preferred image size in bytes (tunable via /sys/power/image_size).
58  * When it is set to N, swsusp will do its best to ensure the image
59  * size will not exceed N bytes, but if that is impossible, it will
60  * try to create the smallest image possible.
61  */
62 unsigned long image_size;
63 
64 void __init hibernate_image_size_init(void)
65 {
66 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67 }
68 
69 /* List of PBEs needed for restoring the pages that were allocated before
70  * the suspend and included in the suspend image, but have also been
71  * allocated by the "resume" kernel, so their contents cannot be written
72  * directly to their "original" page frames.
73  */
74 struct pbe *restore_pblist;
75 
76 /* Pointer to an auxiliary buffer (1 page) */
77 static void *buffer;
78 
79 /**
80  *	@safe_needed - on resume, for storing the PBE list and the image,
81  *	we can only use memory pages that do not conflict with the pages
82  *	used before suspend.  The unsafe pages have PageNosaveFree set
83  *	and we count them using unsafe_pages.
84  *
85  *	Each allocated image page is marked as PageNosave and PageNosaveFree
86  *	so that swsusp_free() can release it.
87  */
88 
89 #define PG_ANY		0
90 #define PG_SAFE		1
91 #define PG_UNSAFE_CLEAR	1
92 #define PG_UNSAFE_KEEP	0
93 
94 static unsigned int allocated_unsafe_pages;
95 
96 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 {
98 	void *res;
99 
100 	res = (void *)get_zeroed_page(gfp_mask);
101 	if (safe_needed)
102 		while (res && swsusp_page_is_free(virt_to_page(res))) {
103 			/* The page is unsafe, mark it for swsusp_free() */
104 			swsusp_set_page_forbidden(virt_to_page(res));
105 			allocated_unsafe_pages++;
106 			res = (void *)get_zeroed_page(gfp_mask);
107 		}
108 	if (res) {
109 		swsusp_set_page_forbidden(virt_to_page(res));
110 		swsusp_set_page_free(virt_to_page(res));
111 	}
112 	return res;
113 }
114 
115 unsigned long get_safe_page(gfp_t gfp_mask)
116 {
117 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118 }
119 
120 static struct page *alloc_image_page(gfp_t gfp_mask)
121 {
122 	struct page *page;
123 
124 	page = alloc_page(gfp_mask);
125 	if (page) {
126 		swsusp_set_page_forbidden(page);
127 		swsusp_set_page_free(page);
128 	}
129 	return page;
130 }
131 
132 /**
133  *	free_image_page - free page represented by @addr, allocated with
134  *	get_image_page (page flags set by it must be cleared)
135  */
136 
137 static inline void free_image_page(void *addr, int clear_nosave_free)
138 {
139 	struct page *page;
140 
141 	BUG_ON(!virt_addr_valid(addr));
142 
143 	page = virt_to_page(addr);
144 
145 	swsusp_unset_page_forbidden(page);
146 	if (clear_nosave_free)
147 		swsusp_unset_page_free(page);
148 
149 	__free_page(page);
150 }
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157 	struct linked_page *next;
158 	char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 static inline void
162 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163 {
164 	while (list) {
165 		struct linked_page *lp = list->next;
166 
167 		free_image_page(list, clear_page_nosave);
168 		list = lp;
169 	}
170 }
171 
172 /**
173   *	struct chain_allocator is used for allocating small objects out of
174   *	a linked list of pages called 'the chain'.
175   *
176   *	The chain grows each time when there is no room for a new object in
177   *	the current page.  The allocated objects cannot be freed individually.
178   *	It is only possible to free them all at once, by freeing the entire
179   *	chain.
180   *
181   *	NOTE: The chain allocator may be inefficient if the allocated objects
182   *	are not much smaller than PAGE_SIZE.
183   */
184 
185 struct chain_allocator {
186 	struct linked_page *chain;	/* the chain */
187 	unsigned int used_space;	/* total size of objects allocated out
188 					 * of the current page
189 					 */
190 	gfp_t gfp_mask;		/* mask for allocating pages */
191 	int safe_needed;	/* if set, only "safe" pages are allocated */
192 };
193 
194 static void
195 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196 {
197 	ca->chain = NULL;
198 	ca->used_space = LINKED_PAGE_DATA_SIZE;
199 	ca->gfp_mask = gfp_mask;
200 	ca->safe_needed = safe_needed;
201 }
202 
203 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204 {
205 	void *ret;
206 
207 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 		struct linked_page *lp;
209 
210 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 		if (!lp)
212 			return NULL;
213 
214 		lp->next = ca->chain;
215 		ca->chain = lp;
216 		ca->used_space = 0;
217 	}
218 	ret = ca->chain->data + ca->used_space;
219 	ca->used_space += size;
220 	return ret;
221 }
222 
223 /**
224  *	Data types related to memory bitmaps.
225  *
226  *	Memory bitmap is a structure consiting of many linked lists of
227  *	objects.  The main list's elements are of type struct zone_bitmap
228  *	and each of them corresonds to one zone.  For each zone bitmap
229  *	object there is a list of objects of type struct bm_block that
230  *	represent each blocks of bitmap in which information is stored.
231  *
232  *	struct memory_bitmap contains a pointer to the main list of zone
233  *	bitmap objects, a struct bm_position used for browsing the bitmap,
234  *	and a pointer to the list of pages used for allocating all of the
235  *	zone bitmap objects and bitmap block objects.
236  *
237  *	NOTE: It has to be possible to lay out the bitmap in memory
238  *	using only allocations of order 0.  Additionally, the bitmap is
239  *	designed to work with arbitrary number of zones (this is over the
240  *	top for now, but let's avoid making unnecessary assumptions ;-).
241  *
242  *	struct zone_bitmap contains a pointer to a list of bitmap block
243  *	objects and a pointer to the bitmap block object that has been
244  *	most recently used for setting bits.  Additionally, it contains the
245  *	pfns that correspond to the start and end of the represented zone.
246  *
247  *	struct bm_block contains a pointer to the memory page in which
248  *	information is stored (in the form of a block of bitmap)
249  *	It also contains the pfns that correspond to the start and end of
250  *	the represented memory area.
251  *
252  *	The memory bitmap is organized as a radix tree to guarantee fast random
253  *	access to the bits. There is one radix tree for each zone (as returned
254  *	from create_mem_extents).
255  *
256  *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
257  *	two linked lists for the nodes of the tree, one for the inner nodes and
258  *	one for the leave nodes. The linked leave nodes are used for fast linear
259  *	access of the memory bitmap.
260  *
261  *	The struct rtree_node represents one node of the radix tree.
262  */
263 
264 #define BM_END_OF_MAP	(~0UL)
265 
266 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
267 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
268 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
269 
270 /*
271  * struct rtree_node is a wrapper struct to link the nodes
272  * of the rtree together for easy linear iteration over
273  * bits and easy freeing
274  */
275 struct rtree_node {
276 	struct list_head list;
277 	unsigned long *data;
278 };
279 
280 /*
281  * struct mem_zone_bm_rtree represents a bitmap used for one
282  * populated memory zone.
283  */
284 struct mem_zone_bm_rtree {
285 	struct list_head list;		/* Link Zones together         */
286 	struct list_head nodes;		/* Radix Tree inner nodes      */
287 	struct list_head leaves;	/* Radix Tree leaves           */
288 	unsigned long start_pfn;	/* Zone start page frame       */
289 	unsigned long end_pfn;		/* Zone end page frame + 1     */
290 	struct rtree_node *rtree;	/* Radix Tree Root             */
291 	int levels;			/* Number of Radix Tree Levels */
292 	unsigned int blocks;		/* Number of Bitmap Blocks     */
293 };
294 
295 /* strcut bm_position is used for browsing memory bitmaps */
296 
297 struct bm_position {
298 	struct mem_zone_bm_rtree *zone;
299 	struct rtree_node *node;
300 	unsigned long node_pfn;
301 	int node_bit;
302 };
303 
304 struct memory_bitmap {
305 	struct list_head zones;
306 	struct linked_page *p_list;	/* list of pages used to store zone
307 					 * bitmap objects and bitmap block
308 					 * objects
309 					 */
310 	struct bm_position cur;	/* most recently used bit position */
311 };
312 
313 /* Functions that operate on memory bitmaps */
314 
315 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
316 #if BITS_PER_LONG == 32
317 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
318 #else
319 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
320 #endif
321 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
322 
323 /*
324  *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
325  *
326  *	This function is used to allocate inner nodes as well as the
327  *	leave nodes of the radix tree. It also adds the node to the
328  *	corresponding linked list passed in by the *list parameter.
329  */
330 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
331 					   struct chain_allocator *ca,
332 					   struct list_head *list)
333 {
334 	struct rtree_node *node;
335 
336 	node = chain_alloc(ca, sizeof(struct rtree_node));
337 	if (!node)
338 		return NULL;
339 
340 	node->data = get_image_page(gfp_mask, safe_needed);
341 	if (!node->data)
342 		return NULL;
343 
344 	list_add_tail(&node->list, list);
345 
346 	return node;
347 }
348 
349 /*
350  *	add_rtree_block - Add a new leave node to the radix tree
351  *
352  *	The leave nodes need to be allocated in order to keep the leaves
353  *	linked list in order. This is guaranteed by the zone->blocks
354  *	counter.
355  */
356 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
357 			   int safe_needed, struct chain_allocator *ca)
358 {
359 	struct rtree_node *node, *block, **dst;
360 	unsigned int levels_needed, block_nr;
361 	int i;
362 
363 	block_nr = zone->blocks;
364 	levels_needed = 0;
365 
366 	/* How many levels do we need for this block nr? */
367 	while (block_nr) {
368 		levels_needed += 1;
369 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
370 	}
371 
372 	/* Make sure the rtree has enough levels */
373 	for (i = zone->levels; i < levels_needed; i++) {
374 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
375 					&zone->nodes);
376 		if (!node)
377 			return -ENOMEM;
378 
379 		node->data[0] = (unsigned long)zone->rtree;
380 		zone->rtree = node;
381 		zone->levels += 1;
382 	}
383 
384 	/* Allocate new block */
385 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
386 	if (!block)
387 		return -ENOMEM;
388 
389 	/* Now walk the rtree to insert the block */
390 	node = zone->rtree;
391 	dst = &zone->rtree;
392 	block_nr = zone->blocks;
393 	for (i = zone->levels; i > 0; i--) {
394 		int index;
395 
396 		if (!node) {
397 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
398 						&zone->nodes);
399 			if (!node)
400 				return -ENOMEM;
401 			*dst = node;
402 		}
403 
404 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
405 		index &= BM_RTREE_LEVEL_MASK;
406 		dst = (struct rtree_node **)&((*dst)->data[index]);
407 		node = *dst;
408 	}
409 
410 	zone->blocks += 1;
411 	*dst = block;
412 
413 	return 0;
414 }
415 
416 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
417 			       int clear_nosave_free);
418 
419 /*
420  *	create_zone_bm_rtree - create a radix tree for one zone
421  *
422  *	Allocated the mem_zone_bm_rtree structure and initializes it.
423  *	This function also allocated and builds the radix tree for the
424  *	zone.
425  */
426 static struct mem_zone_bm_rtree *
427 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
428 		     struct chain_allocator *ca,
429 		     unsigned long start, unsigned long end)
430 {
431 	struct mem_zone_bm_rtree *zone;
432 	unsigned int i, nr_blocks;
433 	unsigned long pages;
434 
435 	pages = end - start;
436 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
437 	if (!zone)
438 		return NULL;
439 
440 	INIT_LIST_HEAD(&zone->nodes);
441 	INIT_LIST_HEAD(&zone->leaves);
442 	zone->start_pfn = start;
443 	zone->end_pfn = end;
444 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
445 
446 	for (i = 0; i < nr_blocks; i++) {
447 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
448 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
449 			return NULL;
450 		}
451 	}
452 
453 	return zone;
454 }
455 
456 /*
457  *	free_zone_bm_rtree - Free the memory of the radix tree
458  *
459  *	Free all node pages of the radix tree. The mem_zone_bm_rtree
460  *	structure itself is not freed here nor are the rtree_node
461  *	structs.
462  */
463 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
464 			       int clear_nosave_free)
465 {
466 	struct rtree_node *node;
467 
468 	list_for_each_entry(node, &zone->nodes, list)
469 		free_image_page(node->data, clear_nosave_free);
470 
471 	list_for_each_entry(node, &zone->leaves, list)
472 		free_image_page(node->data, clear_nosave_free);
473 }
474 
475 static void memory_bm_position_reset(struct memory_bitmap *bm)
476 {
477 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
478 				  list);
479 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
480 				  struct rtree_node, list);
481 	bm->cur.node_pfn = 0;
482 	bm->cur.node_bit = 0;
483 }
484 
485 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
486 
487 struct mem_extent {
488 	struct list_head hook;
489 	unsigned long start;
490 	unsigned long end;
491 };
492 
493 /**
494  *	free_mem_extents - free a list of memory extents
495  *	@list - list of extents to empty
496  */
497 static void free_mem_extents(struct list_head *list)
498 {
499 	struct mem_extent *ext, *aux;
500 
501 	list_for_each_entry_safe(ext, aux, list, hook) {
502 		list_del(&ext->hook);
503 		kfree(ext);
504 	}
505 }
506 
507 /**
508  *	create_mem_extents - create a list of memory extents representing
509  *	                     contiguous ranges of PFNs
510  *	@list - list to put the extents into
511  *	@gfp_mask - mask to use for memory allocations
512  */
513 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
514 {
515 	struct zone *zone;
516 
517 	INIT_LIST_HEAD(list);
518 
519 	for_each_populated_zone(zone) {
520 		unsigned long zone_start, zone_end;
521 		struct mem_extent *ext, *cur, *aux;
522 
523 		zone_start = zone->zone_start_pfn;
524 		zone_end = zone_end_pfn(zone);
525 
526 		list_for_each_entry(ext, list, hook)
527 			if (zone_start <= ext->end)
528 				break;
529 
530 		if (&ext->hook == list || zone_end < ext->start) {
531 			/* New extent is necessary */
532 			struct mem_extent *new_ext;
533 
534 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
535 			if (!new_ext) {
536 				free_mem_extents(list);
537 				return -ENOMEM;
538 			}
539 			new_ext->start = zone_start;
540 			new_ext->end = zone_end;
541 			list_add_tail(&new_ext->hook, &ext->hook);
542 			continue;
543 		}
544 
545 		/* Merge this zone's range of PFNs with the existing one */
546 		if (zone_start < ext->start)
547 			ext->start = zone_start;
548 		if (zone_end > ext->end)
549 			ext->end = zone_end;
550 
551 		/* More merging may be possible */
552 		cur = ext;
553 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
554 			if (zone_end < cur->start)
555 				break;
556 			if (zone_end < cur->end)
557 				ext->end = cur->end;
558 			list_del(&cur->hook);
559 			kfree(cur);
560 		}
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567   *	memory_bm_create - allocate memory for a memory bitmap
568   */
569 static int
570 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
571 {
572 	struct chain_allocator ca;
573 	struct list_head mem_extents;
574 	struct mem_extent *ext;
575 	int error;
576 
577 	chain_init(&ca, gfp_mask, safe_needed);
578 	INIT_LIST_HEAD(&bm->zones);
579 
580 	error = create_mem_extents(&mem_extents, gfp_mask);
581 	if (error)
582 		return error;
583 
584 	list_for_each_entry(ext, &mem_extents, hook) {
585 		struct mem_zone_bm_rtree *zone;
586 
587 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
588 					    ext->start, ext->end);
589 		if (!zone) {
590 			error = -ENOMEM;
591 			goto Error;
592 		}
593 		list_add_tail(&zone->list, &bm->zones);
594 	}
595 
596 	bm->p_list = ca.chain;
597 	memory_bm_position_reset(bm);
598  Exit:
599 	free_mem_extents(&mem_extents);
600 	return error;
601 
602  Error:
603 	bm->p_list = ca.chain;
604 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
605 	goto Exit;
606 }
607 
608 /**
609   *	memory_bm_free - free memory occupied by the memory bitmap @bm
610   */
611 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
612 {
613 	struct mem_zone_bm_rtree *zone;
614 
615 	list_for_each_entry(zone, &bm->zones, list)
616 		free_zone_bm_rtree(zone, clear_nosave_free);
617 
618 	free_list_of_pages(bm->p_list, clear_nosave_free);
619 
620 	INIT_LIST_HEAD(&bm->zones);
621 }
622 
623 /**
624  *	memory_bm_find_bit - Find the bit for pfn in the memory
625  *			     bitmap
626  *
627  *	Find the bit in the bitmap @bm that corresponds to given pfn.
628  *	The cur.zone, cur.block and cur.node_pfn member of @bm are
629  *	updated.
630  *	It walks the radix tree to find the page which contains the bit for
631  *	pfn and returns the bit position in **addr and *bit_nr.
632  */
633 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
634 			      void **addr, unsigned int *bit_nr)
635 {
636 	struct mem_zone_bm_rtree *curr, *zone;
637 	struct rtree_node *node;
638 	int i, block_nr;
639 
640 	zone = bm->cur.zone;
641 
642 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
643 		goto zone_found;
644 
645 	zone = NULL;
646 
647 	/* Find the right zone */
648 	list_for_each_entry(curr, &bm->zones, list) {
649 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
650 			zone = curr;
651 			break;
652 		}
653 	}
654 
655 	if (!zone)
656 		return -EFAULT;
657 
658 zone_found:
659 	/*
660 	 * We have a zone. Now walk the radix tree to find the leave
661 	 * node for our pfn.
662 	 */
663 
664 	node = bm->cur.node;
665 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
666 		goto node_found;
667 
668 	node      = zone->rtree;
669 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
670 
671 	for (i = zone->levels; i > 0; i--) {
672 		int index;
673 
674 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
675 		index &= BM_RTREE_LEVEL_MASK;
676 		BUG_ON(node->data[index] == 0);
677 		node = (struct rtree_node *)node->data[index];
678 	}
679 
680 node_found:
681 	/* Update last position */
682 	bm->cur.zone = zone;
683 	bm->cur.node = node;
684 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
685 
686 	/* Set return values */
687 	*addr = node->data;
688 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
689 
690 	return 0;
691 }
692 
693 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
694 {
695 	void *addr;
696 	unsigned int bit;
697 	int error;
698 
699 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
700 	BUG_ON(error);
701 	set_bit(bit, addr);
702 }
703 
704 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
705 {
706 	void *addr;
707 	unsigned int bit;
708 	int error;
709 
710 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
711 	if (!error)
712 		set_bit(bit, addr);
713 
714 	return error;
715 }
716 
717 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
718 {
719 	void *addr;
720 	unsigned int bit;
721 	int error;
722 
723 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
724 	BUG_ON(error);
725 	clear_bit(bit, addr);
726 }
727 
728 static void memory_bm_clear_current(struct memory_bitmap *bm)
729 {
730 	int bit;
731 
732 	bit = max(bm->cur.node_bit - 1, 0);
733 	clear_bit(bit, bm->cur.node->data);
734 }
735 
736 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
737 {
738 	void *addr;
739 	unsigned int bit;
740 	int error;
741 
742 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
743 	BUG_ON(error);
744 	return test_bit(bit, addr);
745 }
746 
747 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
748 {
749 	void *addr;
750 	unsigned int bit;
751 
752 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
753 }
754 
755 /*
756  *	rtree_next_node - Jumps to the next leave node
757  *
758  *	Sets the position to the beginning of the next node in the
759  *	memory bitmap. This is either the next node in the current
760  *	zone's radix tree or the first node in the radix tree of the
761  *	next zone.
762  *
763  *	Returns true if there is a next node, false otherwise.
764  */
765 static bool rtree_next_node(struct memory_bitmap *bm)
766 {
767 	bm->cur.node = list_entry(bm->cur.node->list.next,
768 				  struct rtree_node, list);
769 	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
770 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
771 		bm->cur.node_bit  = 0;
772 		touch_softlockup_watchdog();
773 		return true;
774 	}
775 
776 	/* No more nodes, goto next zone */
777 	bm->cur.zone = list_entry(bm->cur.zone->list.next,
778 				  struct mem_zone_bm_rtree, list);
779 	if (&bm->cur.zone->list != &bm->zones) {
780 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
781 					  struct rtree_node, list);
782 		bm->cur.node_pfn = 0;
783 		bm->cur.node_bit = 0;
784 		return true;
785 	}
786 
787 	/* No more zones */
788 	return false;
789 }
790 
791 /**
792  *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
793  *
794  *	Starting from the last returned position this function searches
795  *	for the next set bit in the memory bitmap and returns its
796  *	number. If no more bit is set BM_END_OF_MAP is returned.
797  *
798  *	It is required to run memory_bm_position_reset() before the
799  *	first call to this function.
800  */
801 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
802 {
803 	unsigned long bits, pfn, pages;
804 	int bit;
805 
806 	do {
807 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
808 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
809 		bit	  = find_next_bit(bm->cur.node->data, bits,
810 					  bm->cur.node_bit);
811 		if (bit < bits) {
812 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
813 			bm->cur.node_bit = bit + 1;
814 			return pfn;
815 		}
816 	} while (rtree_next_node(bm));
817 
818 	return BM_END_OF_MAP;
819 }
820 
821 /**
822  *	This structure represents a range of page frames the contents of which
823  *	should not be saved during the suspend.
824  */
825 
826 struct nosave_region {
827 	struct list_head list;
828 	unsigned long start_pfn;
829 	unsigned long end_pfn;
830 };
831 
832 static LIST_HEAD(nosave_regions);
833 
834 /**
835  *	register_nosave_region - register a range of page frames the contents
836  *	of which should not be saved during the suspend (to be used in the early
837  *	initialization code)
838  */
839 
840 void __init
841 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
842 			 int use_kmalloc)
843 {
844 	struct nosave_region *region;
845 
846 	if (start_pfn >= end_pfn)
847 		return;
848 
849 	if (!list_empty(&nosave_regions)) {
850 		/* Try to extend the previous region (they should be sorted) */
851 		region = list_entry(nosave_regions.prev,
852 					struct nosave_region, list);
853 		if (region->end_pfn == start_pfn) {
854 			region->end_pfn = end_pfn;
855 			goto Report;
856 		}
857 	}
858 	if (use_kmalloc) {
859 		/* during init, this shouldn't fail */
860 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
861 		BUG_ON(!region);
862 	} else
863 		/* This allocation cannot fail */
864 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
865 	region->start_pfn = start_pfn;
866 	region->end_pfn = end_pfn;
867 	list_add_tail(&region->list, &nosave_regions);
868  Report:
869 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
870 		(unsigned long long) start_pfn << PAGE_SHIFT,
871 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
872 }
873 
874 /*
875  * Set bits in this map correspond to the page frames the contents of which
876  * should not be saved during the suspend.
877  */
878 static struct memory_bitmap *forbidden_pages_map;
879 
880 /* Set bits in this map correspond to free page frames. */
881 static struct memory_bitmap *free_pages_map;
882 
883 /*
884  * Each page frame allocated for creating the image is marked by setting the
885  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
886  */
887 
888 void swsusp_set_page_free(struct page *page)
889 {
890 	if (free_pages_map)
891 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
892 }
893 
894 static int swsusp_page_is_free(struct page *page)
895 {
896 	return free_pages_map ?
897 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
898 }
899 
900 void swsusp_unset_page_free(struct page *page)
901 {
902 	if (free_pages_map)
903 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
904 }
905 
906 static void swsusp_set_page_forbidden(struct page *page)
907 {
908 	if (forbidden_pages_map)
909 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
910 }
911 
912 int swsusp_page_is_forbidden(struct page *page)
913 {
914 	return forbidden_pages_map ?
915 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
916 }
917 
918 static void swsusp_unset_page_forbidden(struct page *page)
919 {
920 	if (forbidden_pages_map)
921 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
922 }
923 
924 /**
925  *	mark_nosave_pages - set bits corresponding to the page frames the
926  *	contents of which should not be saved in a given bitmap.
927  */
928 
929 static void mark_nosave_pages(struct memory_bitmap *bm)
930 {
931 	struct nosave_region *region;
932 
933 	if (list_empty(&nosave_regions))
934 		return;
935 
936 	list_for_each_entry(region, &nosave_regions, list) {
937 		unsigned long pfn;
938 
939 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
940 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
941 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
942 				- 1);
943 
944 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
945 			if (pfn_valid(pfn)) {
946 				/*
947 				 * It is safe to ignore the result of
948 				 * mem_bm_set_bit_check() here, since we won't
949 				 * touch the PFNs for which the error is
950 				 * returned anyway.
951 				 */
952 				mem_bm_set_bit_check(bm, pfn);
953 			}
954 	}
955 }
956 
957 static bool is_nosave_page(unsigned long pfn)
958 {
959 	struct nosave_region *region;
960 
961 	list_for_each_entry(region, &nosave_regions, list) {
962 		if (pfn >= region->start_pfn && pfn < region->end_pfn) {
963 			pr_err("PM: %#010llx in e820 nosave region: "
964 			       "[mem %#010llx-%#010llx]\n",
965 			       (unsigned long long) pfn << PAGE_SHIFT,
966 			       (unsigned long long) region->start_pfn << PAGE_SHIFT,
967 			       ((unsigned long long) region->end_pfn << PAGE_SHIFT)
968 					- 1);
969 			return true;
970 		}
971 	}
972 
973 	return false;
974 }
975 
976 /**
977  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
978  *	frames that should not be saved and free page frames.  The pointers
979  *	forbidden_pages_map and free_pages_map are only modified if everything
980  *	goes well, because we don't want the bits to be used before both bitmaps
981  *	are set up.
982  */
983 
984 int create_basic_memory_bitmaps(void)
985 {
986 	struct memory_bitmap *bm1, *bm2;
987 	int error = 0;
988 
989 	if (forbidden_pages_map && free_pages_map)
990 		return 0;
991 	else
992 		BUG_ON(forbidden_pages_map || free_pages_map);
993 
994 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
995 	if (!bm1)
996 		return -ENOMEM;
997 
998 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
999 	if (error)
1000 		goto Free_first_object;
1001 
1002 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1003 	if (!bm2)
1004 		goto Free_first_bitmap;
1005 
1006 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1007 	if (error)
1008 		goto Free_second_object;
1009 
1010 	forbidden_pages_map = bm1;
1011 	free_pages_map = bm2;
1012 	mark_nosave_pages(forbidden_pages_map);
1013 
1014 	pr_debug("PM: Basic memory bitmaps created\n");
1015 
1016 	return 0;
1017 
1018  Free_second_object:
1019 	kfree(bm2);
1020  Free_first_bitmap:
1021  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1022  Free_first_object:
1023 	kfree(bm1);
1024 	return -ENOMEM;
1025 }
1026 
1027 /**
1028  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1029  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1030  *	so that the bitmaps themselves are not referred to while they are being
1031  *	freed.
1032  */
1033 
1034 void free_basic_memory_bitmaps(void)
1035 {
1036 	struct memory_bitmap *bm1, *bm2;
1037 
1038 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1039 		return;
1040 
1041 	bm1 = forbidden_pages_map;
1042 	bm2 = free_pages_map;
1043 	forbidden_pages_map = NULL;
1044 	free_pages_map = NULL;
1045 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1046 	kfree(bm1);
1047 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1048 	kfree(bm2);
1049 
1050 	pr_debug("PM: Basic memory bitmaps freed\n");
1051 }
1052 
1053 /**
1054  *	snapshot_additional_pages - estimate the number of additional pages
1055  *	be needed for setting up the suspend image data structures for given
1056  *	zone (usually the returned value is greater than the exact number)
1057  */
1058 
1059 unsigned int snapshot_additional_pages(struct zone *zone)
1060 {
1061 	unsigned int rtree, nodes;
1062 
1063 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1064 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1065 			      LINKED_PAGE_DATA_SIZE);
1066 	while (nodes > 1) {
1067 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1068 		rtree += nodes;
1069 	}
1070 
1071 	return 2 * rtree;
1072 }
1073 
1074 #ifdef CONFIG_HIGHMEM
1075 /**
1076  *	count_free_highmem_pages - compute the total number of free highmem
1077  *	pages, system-wide.
1078  */
1079 
1080 static unsigned int count_free_highmem_pages(void)
1081 {
1082 	struct zone *zone;
1083 	unsigned int cnt = 0;
1084 
1085 	for_each_populated_zone(zone)
1086 		if (is_highmem(zone))
1087 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1088 
1089 	return cnt;
1090 }
1091 
1092 /**
1093  *	saveable_highmem_page - Determine whether a highmem page should be
1094  *	included in the suspend image.
1095  *
1096  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1097  *	and it isn't a part of a free chunk of pages.
1098  */
1099 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1100 {
1101 	struct page *page;
1102 
1103 	if (!pfn_valid(pfn))
1104 		return NULL;
1105 
1106 	page = pfn_to_page(pfn);
1107 	if (page_zone(page) != zone)
1108 		return NULL;
1109 
1110 	BUG_ON(!PageHighMem(page));
1111 
1112 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1113 	    PageReserved(page))
1114 		return NULL;
1115 
1116 	if (page_is_guard(page))
1117 		return NULL;
1118 
1119 	return page;
1120 }
1121 
1122 /**
1123  *	count_highmem_pages - compute the total number of saveable highmem
1124  *	pages.
1125  */
1126 
1127 static unsigned int count_highmem_pages(void)
1128 {
1129 	struct zone *zone;
1130 	unsigned int n = 0;
1131 
1132 	for_each_populated_zone(zone) {
1133 		unsigned long pfn, max_zone_pfn;
1134 
1135 		if (!is_highmem(zone))
1136 			continue;
1137 
1138 		mark_free_pages(zone);
1139 		max_zone_pfn = zone_end_pfn(zone);
1140 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1141 			if (saveable_highmem_page(zone, pfn))
1142 				n++;
1143 	}
1144 	return n;
1145 }
1146 #else
1147 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1148 {
1149 	return NULL;
1150 }
1151 #endif /* CONFIG_HIGHMEM */
1152 
1153 /**
1154  *	saveable_page - Determine whether a non-highmem page should be included
1155  *	in the suspend image.
1156  *
1157  *	We should save the page if it isn't Nosave, and is not in the range
1158  *	of pages statically defined as 'unsaveable', and it isn't a part of
1159  *	a free chunk of pages.
1160  */
1161 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1162 {
1163 	struct page *page;
1164 
1165 	if (!pfn_valid(pfn))
1166 		return NULL;
1167 
1168 	page = pfn_to_page(pfn);
1169 	if (page_zone(page) != zone)
1170 		return NULL;
1171 
1172 	BUG_ON(PageHighMem(page));
1173 
1174 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1175 		return NULL;
1176 
1177 	if (PageReserved(page)
1178 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1179 		return NULL;
1180 
1181 	if (page_is_guard(page))
1182 		return NULL;
1183 
1184 	return page;
1185 }
1186 
1187 /**
1188  *	count_data_pages - compute the total number of saveable non-highmem
1189  *	pages.
1190  */
1191 
1192 static unsigned int count_data_pages(void)
1193 {
1194 	struct zone *zone;
1195 	unsigned long pfn, max_zone_pfn;
1196 	unsigned int n = 0;
1197 
1198 	for_each_populated_zone(zone) {
1199 		if (is_highmem(zone))
1200 			continue;
1201 
1202 		mark_free_pages(zone);
1203 		max_zone_pfn = zone_end_pfn(zone);
1204 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1205 			if (saveable_page(zone, pfn))
1206 				n++;
1207 	}
1208 	return n;
1209 }
1210 
1211 /* This is needed, because copy_page and memcpy are not usable for copying
1212  * task structs.
1213  */
1214 static inline void do_copy_page(long *dst, long *src)
1215 {
1216 	int n;
1217 
1218 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1219 		*dst++ = *src++;
1220 }
1221 
1222 
1223 /**
1224  *	safe_copy_page - check if the page we are going to copy is marked as
1225  *		present in the kernel page tables (this always is the case if
1226  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1227  *		kernel_page_present() always returns 'true').
1228  */
1229 static void safe_copy_page(void *dst, struct page *s_page)
1230 {
1231 	if (kernel_page_present(s_page)) {
1232 		do_copy_page(dst, page_address(s_page));
1233 	} else {
1234 		kernel_map_pages(s_page, 1, 1);
1235 		do_copy_page(dst, page_address(s_page));
1236 		kernel_map_pages(s_page, 1, 0);
1237 	}
1238 }
1239 
1240 
1241 #ifdef CONFIG_HIGHMEM
1242 static inline struct page *
1243 page_is_saveable(struct zone *zone, unsigned long pfn)
1244 {
1245 	return is_highmem(zone) ?
1246 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1247 }
1248 
1249 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1250 {
1251 	struct page *s_page, *d_page;
1252 	void *src, *dst;
1253 
1254 	s_page = pfn_to_page(src_pfn);
1255 	d_page = pfn_to_page(dst_pfn);
1256 	if (PageHighMem(s_page)) {
1257 		src = kmap_atomic(s_page);
1258 		dst = kmap_atomic(d_page);
1259 		do_copy_page(dst, src);
1260 		kunmap_atomic(dst);
1261 		kunmap_atomic(src);
1262 	} else {
1263 		if (PageHighMem(d_page)) {
1264 			/* Page pointed to by src may contain some kernel
1265 			 * data modified by kmap_atomic()
1266 			 */
1267 			safe_copy_page(buffer, s_page);
1268 			dst = kmap_atomic(d_page);
1269 			copy_page(dst, buffer);
1270 			kunmap_atomic(dst);
1271 		} else {
1272 			safe_copy_page(page_address(d_page), s_page);
1273 		}
1274 	}
1275 }
1276 #else
1277 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1278 
1279 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1280 {
1281 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1282 				pfn_to_page(src_pfn));
1283 }
1284 #endif /* CONFIG_HIGHMEM */
1285 
1286 static void
1287 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1288 {
1289 	struct zone *zone;
1290 	unsigned long pfn;
1291 
1292 	for_each_populated_zone(zone) {
1293 		unsigned long max_zone_pfn;
1294 
1295 		mark_free_pages(zone);
1296 		max_zone_pfn = zone_end_pfn(zone);
1297 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1298 			if (page_is_saveable(zone, pfn))
1299 				memory_bm_set_bit(orig_bm, pfn);
1300 	}
1301 	memory_bm_position_reset(orig_bm);
1302 	memory_bm_position_reset(copy_bm);
1303 	for(;;) {
1304 		pfn = memory_bm_next_pfn(orig_bm);
1305 		if (unlikely(pfn == BM_END_OF_MAP))
1306 			break;
1307 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1308 	}
1309 }
1310 
1311 /* Total number of image pages */
1312 static unsigned int nr_copy_pages;
1313 /* Number of pages needed for saving the original pfns of the image pages */
1314 static unsigned int nr_meta_pages;
1315 /*
1316  * Numbers of normal and highmem page frames allocated for hibernation image
1317  * before suspending devices.
1318  */
1319 unsigned int alloc_normal, alloc_highmem;
1320 /*
1321  * Memory bitmap used for marking saveable pages (during hibernation) or
1322  * hibernation image pages (during restore)
1323  */
1324 static struct memory_bitmap orig_bm;
1325 /*
1326  * Memory bitmap used during hibernation for marking allocated page frames that
1327  * will contain copies of saveable pages.  During restore it is initially used
1328  * for marking hibernation image pages, but then the set bits from it are
1329  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1330  * used for marking "safe" highmem pages, but it has to be reinitialized for
1331  * this purpose.
1332  */
1333 static struct memory_bitmap copy_bm;
1334 
1335 /**
1336  *	swsusp_free - free pages allocated for the suspend.
1337  *
1338  *	Suspend pages are alocated before the atomic copy is made, so we
1339  *	need to release them after the resume.
1340  */
1341 
1342 void swsusp_free(void)
1343 {
1344 	unsigned long fb_pfn, fr_pfn;
1345 
1346 	memory_bm_position_reset(forbidden_pages_map);
1347 	memory_bm_position_reset(free_pages_map);
1348 
1349 loop:
1350 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1351 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1352 
1353 	/*
1354 	 * Find the next bit set in both bitmaps. This is guaranteed to
1355 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1356 	 */
1357 	do {
1358 		if (fb_pfn < fr_pfn)
1359 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1360 		if (fr_pfn < fb_pfn)
1361 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1362 	} while (fb_pfn != fr_pfn);
1363 
1364 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1365 		struct page *page = pfn_to_page(fr_pfn);
1366 
1367 		memory_bm_clear_current(forbidden_pages_map);
1368 		memory_bm_clear_current(free_pages_map);
1369 		__free_page(page);
1370 		goto loop;
1371 	}
1372 
1373 	nr_copy_pages = 0;
1374 	nr_meta_pages = 0;
1375 	restore_pblist = NULL;
1376 	buffer = NULL;
1377 	alloc_normal = 0;
1378 	alloc_highmem = 0;
1379 }
1380 
1381 /* Helper functions used for the shrinking of memory. */
1382 
1383 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1384 
1385 /**
1386  * preallocate_image_pages - Allocate a number of pages for hibernation image
1387  * @nr_pages: Number of page frames to allocate.
1388  * @mask: GFP flags to use for the allocation.
1389  *
1390  * Return value: Number of page frames actually allocated
1391  */
1392 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1393 {
1394 	unsigned long nr_alloc = 0;
1395 
1396 	while (nr_pages > 0) {
1397 		struct page *page;
1398 
1399 		page = alloc_image_page(mask);
1400 		if (!page)
1401 			break;
1402 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1403 		if (PageHighMem(page))
1404 			alloc_highmem++;
1405 		else
1406 			alloc_normal++;
1407 		nr_pages--;
1408 		nr_alloc++;
1409 	}
1410 
1411 	return nr_alloc;
1412 }
1413 
1414 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1415 					      unsigned long avail_normal)
1416 {
1417 	unsigned long alloc;
1418 
1419 	if (avail_normal <= alloc_normal)
1420 		return 0;
1421 
1422 	alloc = avail_normal - alloc_normal;
1423 	if (nr_pages < alloc)
1424 		alloc = nr_pages;
1425 
1426 	return preallocate_image_pages(alloc, GFP_IMAGE);
1427 }
1428 
1429 #ifdef CONFIG_HIGHMEM
1430 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1431 {
1432 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1433 }
1434 
1435 /**
1436  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1437  */
1438 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1439 {
1440 	x *= multiplier;
1441 	do_div(x, base);
1442 	return (unsigned long)x;
1443 }
1444 
1445 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1446 						unsigned long highmem,
1447 						unsigned long total)
1448 {
1449 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1450 
1451 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1452 }
1453 #else /* CONFIG_HIGHMEM */
1454 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1455 {
1456 	return 0;
1457 }
1458 
1459 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1460 						unsigned long highmem,
1461 						unsigned long total)
1462 {
1463 	return 0;
1464 }
1465 #endif /* CONFIG_HIGHMEM */
1466 
1467 /**
1468  * free_unnecessary_pages - Release preallocated pages not needed for the image
1469  */
1470 static void free_unnecessary_pages(void)
1471 {
1472 	unsigned long save, to_free_normal, to_free_highmem;
1473 
1474 	save = count_data_pages();
1475 	if (alloc_normal >= save) {
1476 		to_free_normal = alloc_normal - save;
1477 		save = 0;
1478 	} else {
1479 		to_free_normal = 0;
1480 		save -= alloc_normal;
1481 	}
1482 	save += count_highmem_pages();
1483 	if (alloc_highmem >= save) {
1484 		to_free_highmem = alloc_highmem - save;
1485 	} else {
1486 		to_free_highmem = 0;
1487 		save -= alloc_highmem;
1488 		if (to_free_normal > save)
1489 			to_free_normal -= save;
1490 		else
1491 			to_free_normal = 0;
1492 	}
1493 
1494 	memory_bm_position_reset(&copy_bm);
1495 
1496 	while (to_free_normal > 0 || to_free_highmem > 0) {
1497 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1498 		struct page *page = pfn_to_page(pfn);
1499 
1500 		if (PageHighMem(page)) {
1501 			if (!to_free_highmem)
1502 				continue;
1503 			to_free_highmem--;
1504 			alloc_highmem--;
1505 		} else {
1506 			if (!to_free_normal)
1507 				continue;
1508 			to_free_normal--;
1509 			alloc_normal--;
1510 		}
1511 		memory_bm_clear_bit(&copy_bm, pfn);
1512 		swsusp_unset_page_forbidden(page);
1513 		swsusp_unset_page_free(page);
1514 		__free_page(page);
1515 	}
1516 }
1517 
1518 /**
1519  * minimum_image_size - Estimate the minimum acceptable size of an image
1520  * @saveable: Number of saveable pages in the system.
1521  *
1522  * We want to avoid attempting to free too much memory too hard, so estimate the
1523  * minimum acceptable size of a hibernation image to use as the lower limit for
1524  * preallocating memory.
1525  *
1526  * We assume that the minimum image size should be proportional to
1527  *
1528  * [number of saveable pages] - [number of pages that can be freed in theory]
1529  *
1530  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1531  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1532  * minus mapped file pages.
1533  */
1534 static unsigned long minimum_image_size(unsigned long saveable)
1535 {
1536 	unsigned long size;
1537 
1538 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1539 		+ global_page_state(NR_ACTIVE_ANON)
1540 		+ global_page_state(NR_INACTIVE_ANON)
1541 		+ global_page_state(NR_ACTIVE_FILE)
1542 		+ global_page_state(NR_INACTIVE_FILE)
1543 		- global_page_state(NR_FILE_MAPPED);
1544 
1545 	return saveable <= size ? 0 : saveable - size;
1546 }
1547 
1548 /**
1549  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1550  *
1551  * To create a hibernation image it is necessary to make a copy of every page
1552  * frame in use.  We also need a number of page frames to be free during
1553  * hibernation for allocations made while saving the image and for device
1554  * drivers, in case they need to allocate memory from their hibernation
1555  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1556  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1557  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1558  * total number of available page frames and allocate at least
1559  *
1560  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1561  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1562  *
1563  * of them, which corresponds to the maximum size of a hibernation image.
1564  *
1565  * If image_size is set below the number following from the above formula,
1566  * the preallocation of memory is continued until the total number of saveable
1567  * pages in the system is below the requested image size or the minimum
1568  * acceptable image size returned by minimum_image_size(), whichever is greater.
1569  */
1570 int hibernate_preallocate_memory(void)
1571 {
1572 	struct zone *zone;
1573 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1574 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1575 	struct timeval start, stop;
1576 	int error;
1577 
1578 	printk(KERN_INFO "PM: Preallocating image memory... ");
1579 	do_gettimeofday(&start);
1580 
1581 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1582 	if (error)
1583 		goto err_out;
1584 
1585 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1586 	if (error)
1587 		goto err_out;
1588 
1589 	alloc_normal = 0;
1590 	alloc_highmem = 0;
1591 
1592 	/* Count the number of saveable data pages. */
1593 	save_highmem = count_highmem_pages();
1594 	saveable = count_data_pages();
1595 
1596 	/*
1597 	 * Compute the total number of page frames we can use (count) and the
1598 	 * number of pages needed for image metadata (size).
1599 	 */
1600 	count = saveable;
1601 	saveable += save_highmem;
1602 	highmem = save_highmem;
1603 	size = 0;
1604 	for_each_populated_zone(zone) {
1605 		size += snapshot_additional_pages(zone);
1606 		if (is_highmem(zone))
1607 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1608 		else
1609 			count += zone_page_state(zone, NR_FREE_PAGES);
1610 	}
1611 	avail_normal = count;
1612 	count += highmem;
1613 	count -= totalreserve_pages;
1614 
1615 	/* Add number of pages required for page keys (s390 only). */
1616 	size += page_key_additional_pages(saveable);
1617 
1618 	/* Compute the maximum number of saveable pages to leave in memory. */
1619 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1620 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1621 	/* Compute the desired number of image pages specified by image_size. */
1622 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1623 	if (size > max_size)
1624 		size = max_size;
1625 	/*
1626 	 * If the desired number of image pages is at least as large as the
1627 	 * current number of saveable pages in memory, allocate page frames for
1628 	 * the image and we're done.
1629 	 */
1630 	if (size >= saveable) {
1631 		pages = preallocate_image_highmem(save_highmem);
1632 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1633 		goto out;
1634 	}
1635 
1636 	/* Estimate the minimum size of the image. */
1637 	pages = minimum_image_size(saveable);
1638 	/*
1639 	 * To avoid excessive pressure on the normal zone, leave room in it to
1640 	 * accommodate an image of the minimum size (unless it's already too
1641 	 * small, in which case don't preallocate pages from it at all).
1642 	 */
1643 	if (avail_normal > pages)
1644 		avail_normal -= pages;
1645 	else
1646 		avail_normal = 0;
1647 	if (size < pages)
1648 		size = min_t(unsigned long, pages, max_size);
1649 
1650 	/*
1651 	 * Let the memory management subsystem know that we're going to need a
1652 	 * large number of page frames to allocate and make it free some memory.
1653 	 * NOTE: If this is not done, performance will be hurt badly in some
1654 	 * test cases.
1655 	 */
1656 	shrink_all_memory(saveable - size);
1657 
1658 	/*
1659 	 * The number of saveable pages in memory was too high, so apply some
1660 	 * pressure to decrease it.  First, make room for the largest possible
1661 	 * image and fail if that doesn't work.  Next, try to decrease the size
1662 	 * of the image as much as indicated by 'size' using allocations from
1663 	 * highmem and non-highmem zones separately.
1664 	 */
1665 	pages_highmem = preallocate_image_highmem(highmem / 2);
1666 	alloc = count - max_size;
1667 	if (alloc > pages_highmem)
1668 		alloc -= pages_highmem;
1669 	else
1670 		alloc = 0;
1671 	pages = preallocate_image_memory(alloc, avail_normal);
1672 	if (pages < alloc) {
1673 		/* We have exhausted non-highmem pages, try highmem. */
1674 		alloc -= pages;
1675 		pages += pages_highmem;
1676 		pages_highmem = preallocate_image_highmem(alloc);
1677 		if (pages_highmem < alloc)
1678 			goto err_out;
1679 		pages += pages_highmem;
1680 		/*
1681 		 * size is the desired number of saveable pages to leave in
1682 		 * memory, so try to preallocate (all memory - size) pages.
1683 		 */
1684 		alloc = (count - pages) - size;
1685 		pages += preallocate_image_highmem(alloc);
1686 	} else {
1687 		/*
1688 		 * There are approximately max_size saveable pages at this point
1689 		 * and we want to reduce this number down to size.
1690 		 */
1691 		alloc = max_size - size;
1692 		size = preallocate_highmem_fraction(alloc, highmem, count);
1693 		pages_highmem += size;
1694 		alloc -= size;
1695 		size = preallocate_image_memory(alloc, avail_normal);
1696 		pages_highmem += preallocate_image_highmem(alloc - size);
1697 		pages += pages_highmem + size;
1698 	}
1699 
1700 	/*
1701 	 * We only need as many page frames for the image as there are saveable
1702 	 * pages in memory, but we have allocated more.  Release the excessive
1703 	 * ones now.
1704 	 */
1705 	free_unnecessary_pages();
1706 
1707  out:
1708 	do_gettimeofday(&stop);
1709 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1710 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1711 
1712 	return 0;
1713 
1714  err_out:
1715 	printk(KERN_CONT "\n");
1716 	swsusp_free();
1717 	return -ENOMEM;
1718 }
1719 
1720 #ifdef CONFIG_HIGHMEM
1721 /**
1722   *	count_pages_for_highmem - compute the number of non-highmem pages
1723   *	that will be necessary for creating copies of highmem pages.
1724   */
1725 
1726 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1727 {
1728 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1729 
1730 	if (free_highmem >= nr_highmem)
1731 		nr_highmem = 0;
1732 	else
1733 		nr_highmem -= free_highmem;
1734 
1735 	return nr_highmem;
1736 }
1737 #else
1738 static unsigned int
1739 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1740 #endif /* CONFIG_HIGHMEM */
1741 
1742 /**
1743  *	enough_free_mem - Make sure we have enough free memory for the
1744  *	snapshot image.
1745  */
1746 
1747 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1748 {
1749 	struct zone *zone;
1750 	unsigned int free = alloc_normal;
1751 
1752 	for_each_populated_zone(zone)
1753 		if (!is_highmem(zone))
1754 			free += zone_page_state(zone, NR_FREE_PAGES);
1755 
1756 	nr_pages += count_pages_for_highmem(nr_highmem);
1757 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1758 		nr_pages, PAGES_FOR_IO, free);
1759 
1760 	return free > nr_pages + PAGES_FOR_IO;
1761 }
1762 
1763 #ifdef CONFIG_HIGHMEM
1764 /**
1765  *	get_highmem_buffer - if there are some highmem pages in the suspend
1766  *	image, we may need the buffer to copy them and/or load their data.
1767  */
1768 
1769 static inline int get_highmem_buffer(int safe_needed)
1770 {
1771 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1772 	return buffer ? 0 : -ENOMEM;
1773 }
1774 
1775 /**
1776  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1777  *	Try to allocate as many pages as needed, but if the number of free
1778  *	highmem pages is lesser than that, allocate them all.
1779  */
1780 
1781 static inline unsigned int
1782 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1783 {
1784 	unsigned int to_alloc = count_free_highmem_pages();
1785 
1786 	if (to_alloc > nr_highmem)
1787 		to_alloc = nr_highmem;
1788 
1789 	nr_highmem -= to_alloc;
1790 	while (to_alloc-- > 0) {
1791 		struct page *page;
1792 
1793 		page = alloc_image_page(__GFP_HIGHMEM);
1794 		memory_bm_set_bit(bm, page_to_pfn(page));
1795 	}
1796 	return nr_highmem;
1797 }
1798 #else
1799 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1800 
1801 static inline unsigned int
1802 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1803 #endif /* CONFIG_HIGHMEM */
1804 
1805 /**
1806  *	swsusp_alloc - allocate memory for the suspend image
1807  *
1808  *	We first try to allocate as many highmem pages as there are
1809  *	saveable highmem pages in the system.  If that fails, we allocate
1810  *	non-highmem pages for the copies of the remaining highmem ones.
1811  *
1812  *	In this approach it is likely that the copies of highmem pages will
1813  *	also be located in the high memory, because of the way in which
1814  *	copy_data_pages() works.
1815  */
1816 
1817 static int
1818 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1819 		unsigned int nr_pages, unsigned int nr_highmem)
1820 {
1821 	if (nr_highmem > 0) {
1822 		if (get_highmem_buffer(PG_ANY))
1823 			goto err_out;
1824 		if (nr_highmem > alloc_highmem) {
1825 			nr_highmem -= alloc_highmem;
1826 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1827 		}
1828 	}
1829 	if (nr_pages > alloc_normal) {
1830 		nr_pages -= alloc_normal;
1831 		while (nr_pages-- > 0) {
1832 			struct page *page;
1833 
1834 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1835 			if (!page)
1836 				goto err_out;
1837 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1838 		}
1839 	}
1840 
1841 	return 0;
1842 
1843  err_out:
1844 	swsusp_free();
1845 	return -ENOMEM;
1846 }
1847 
1848 asmlinkage __visible int swsusp_save(void)
1849 {
1850 	unsigned int nr_pages, nr_highmem;
1851 
1852 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1853 
1854 	drain_local_pages(NULL);
1855 	nr_pages = count_data_pages();
1856 	nr_highmem = count_highmem_pages();
1857 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1858 
1859 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1860 		printk(KERN_ERR "PM: Not enough free memory\n");
1861 		return -ENOMEM;
1862 	}
1863 
1864 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1865 		printk(KERN_ERR "PM: Memory allocation failed\n");
1866 		return -ENOMEM;
1867 	}
1868 
1869 	/* During allocating of suspend pagedir, new cold pages may appear.
1870 	 * Kill them.
1871 	 */
1872 	drain_local_pages(NULL);
1873 	copy_data_pages(&copy_bm, &orig_bm);
1874 
1875 	/*
1876 	 * End of critical section. From now on, we can write to memory,
1877 	 * but we should not touch disk. This specially means we must _not_
1878 	 * touch swap space! Except we must write out our image of course.
1879 	 */
1880 
1881 	nr_pages += nr_highmem;
1882 	nr_copy_pages = nr_pages;
1883 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1884 
1885 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1886 		nr_pages);
1887 
1888 	return 0;
1889 }
1890 
1891 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1892 static int init_header_complete(struct swsusp_info *info)
1893 {
1894 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1895 	info->version_code = LINUX_VERSION_CODE;
1896 	return 0;
1897 }
1898 
1899 static char *check_image_kernel(struct swsusp_info *info)
1900 {
1901 	if (info->version_code != LINUX_VERSION_CODE)
1902 		return "kernel version";
1903 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1904 		return "system type";
1905 	if (strcmp(info->uts.release,init_utsname()->release))
1906 		return "kernel release";
1907 	if (strcmp(info->uts.version,init_utsname()->version))
1908 		return "version";
1909 	if (strcmp(info->uts.machine,init_utsname()->machine))
1910 		return "machine";
1911 	return NULL;
1912 }
1913 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1914 
1915 unsigned long snapshot_get_image_size(void)
1916 {
1917 	return nr_copy_pages + nr_meta_pages + 1;
1918 }
1919 
1920 static int init_header(struct swsusp_info *info)
1921 {
1922 	memset(info, 0, sizeof(struct swsusp_info));
1923 	info->num_physpages = get_num_physpages();
1924 	info->image_pages = nr_copy_pages;
1925 	info->pages = snapshot_get_image_size();
1926 	info->size = info->pages;
1927 	info->size <<= PAGE_SHIFT;
1928 	return init_header_complete(info);
1929 }
1930 
1931 /**
1932  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1933  *	are stored in the array @buf[] (1 page at a time)
1934  */
1935 
1936 static inline void
1937 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1938 {
1939 	int j;
1940 
1941 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1942 		buf[j] = memory_bm_next_pfn(bm);
1943 		if (unlikely(buf[j] == BM_END_OF_MAP))
1944 			break;
1945 		/* Save page key for data page (s390 only). */
1946 		page_key_read(buf + j);
1947 	}
1948 }
1949 
1950 /**
1951  *	snapshot_read_next - used for reading the system memory snapshot.
1952  *
1953  *	On the first call to it @handle should point to a zeroed
1954  *	snapshot_handle structure.  The structure gets updated and a pointer
1955  *	to it should be passed to this function every next time.
1956  *
1957  *	On success the function returns a positive number.  Then, the caller
1958  *	is allowed to read up to the returned number of bytes from the memory
1959  *	location computed by the data_of() macro.
1960  *
1961  *	The function returns 0 to indicate the end of data stream condition,
1962  *	and a negative number is returned on error.  In such cases the
1963  *	structure pointed to by @handle is not updated and should not be used
1964  *	any more.
1965  */
1966 
1967 int snapshot_read_next(struct snapshot_handle *handle)
1968 {
1969 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1970 		return 0;
1971 
1972 	if (!buffer) {
1973 		/* This makes the buffer be freed by swsusp_free() */
1974 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1975 		if (!buffer)
1976 			return -ENOMEM;
1977 	}
1978 	if (!handle->cur) {
1979 		int error;
1980 
1981 		error = init_header((struct swsusp_info *)buffer);
1982 		if (error)
1983 			return error;
1984 		handle->buffer = buffer;
1985 		memory_bm_position_reset(&orig_bm);
1986 		memory_bm_position_reset(&copy_bm);
1987 	} else if (handle->cur <= nr_meta_pages) {
1988 		clear_page(buffer);
1989 		pack_pfns(buffer, &orig_bm);
1990 	} else {
1991 		struct page *page;
1992 
1993 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1994 		if (PageHighMem(page)) {
1995 			/* Highmem pages are copied to the buffer,
1996 			 * because we can't return with a kmapped
1997 			 * highmem page (we may not be called again).
1998 			 */
1999 			void *kaddr;
2000 
2001 			kaddr = kmap_atomic(page);
2002 			copy_page(buffer, kaddr);
2003 			kunmap_atomic(kaddr);
2004 			handle->buffer = buffer;
2005 		} else {
2006 			handle->buffer = page_address(page);
2007 		}
2008 	}
2009 	handle->cur++;
2010 	return PAGE_SIZE;
2011 }
2012 
2013 /**
2014  *	mark_unsafe_pages - mark the pages that cannot be used for storing
2015  *	the image during resume, because they conflict with the pages that
2016  *	had been used before suspend
2017  */
2018 
2019 static int mark_unsafe_pages(struct memory_bitmap *bm)
2020 {
2021 	struct zone *zone;
2022 	unsigned long pfn, max_zone_pfn;
2023 
2024 	/* Clear page flags */
2025 	for_each_populated_zone(zone) {
2026 		max_zone_pfn = zone_end_pfn(zone);
2027 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2028 			if (pfn_valid(pfn))
2029 				swsusp_unset_page_free(pfn_to_page(pfn));
2030 	}
2031 
2032 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2033 	memory_bm_position_reset(bm);
2034 	do {
2035 		pfn = memory_bm_next_pfn(bm);
2036 		if (likely(pfn != BM_END_OF_MAP)) {
2037 			if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
2038 				swsusp_set_page_free(pfn_to_page(pfn));
2039 			else
2040 				return -EFAULT;
2041 		}
2042 	} while (pfn != BM_END_OF_MAP);
2043 
2044 	allocated_unsafe_pages = 0;
2045 
2046 	return 0;
2047 }
2048 
2049 static void
2050 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2051 {
2052 	unsigned long pfn;
2053 
2054 	memory_bm_position_reset(src);
2055 	pfn = memory_bm_next_pfn(src);
2056 	while (pfn != BM_END_OF_MAP) {
2057 		memory_bm_set_bit(dst, pfn);
2058 		pfn = memory_bm_next_pfn(src);
2059 	}
2060 }
2061 
2062 static int check_header(struct swsusp_info *info)
2063 {
2064 	char *reason;
2065 
2066 	reason = check_image_kernel(info);
2067 	if (!reason && info->num_physpages != get_num_physpages())
2068 		reason = "memory size";
2069 	if (reason) {
2070 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2071 		return -EPERM;
2072 	}
2073 	return 0;
2074 }
2075 
2076 /**
2077  *	load header - check the image header and copy data from it
2078  */
2079 
2080 static int
2081 load_header(struct swsusp_info *info)
2082 {
2083 	int error;
2084 
2085 	restore_pblist = NULL;
2086 	error = check_header(info);
2087 	if (!error) {
2088 		nr_copy_pages = info->image_pages;
2089 		nr_meta_pages = info->pages - info->image_pages - 1;
2090 	}
2091 	return error;
2092 }
2093 
2094 /**
2095  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2096  *	the corresponding bit in the memory bitmap @bm
2097  */
2098 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2099 {
2100 	int j;
2101 
2102 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2103 		if (unlikely(buf[j] == BM_END_OF_MAP))
2104 			break;
2105 
2106 		/* Extract and buffer page key for data page (s390 only). */
2107 		page_key_memorize(buf + j);
2108 
2109 		if (memory_bm_pfn_present(bm, buf[j]))
2110 			memory_bm_set_bit(bm, buf[j]);
2111 		else
2112 			return -EFAULT;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 /* List of "safe" pages that may be used to store data loaded from the suspend
2119  * image
2120  */
2121 static struct linked_page *safe_pages_list;
2122 
2123 #ifdef CONFIG_HIGHMEM
2124 /* struct highmem_pbe is used for creating the list of highmem pages that
2125  * should be restored atomically during the resume from disk, because the page
2126  * frames they have occupied before the suspend are in use.
2127  */
2128 struct highmem_pbe {
2129 	struct page *copy_page;	/* data is here now */
2130 	struct page *orig_page;	/* data was here before the suspend */
2131 	struct highmem_pbe *next;
2132 };
2133 
2134 /* List of highmem PBEs needed for restoring the highmem pages that were
2135  * allocated before the suspend and included in the suspend image, but have
2136  * also been allocated by the "resume" kernel, so their contents cannot be
2137  * written directly to their "original" page frames.
2138  */
2139 static struct highmem_pbe *highmem_pblist;
2140 
2141 /**
2142  *	count_highmem_image_pages - compute the number of highmem pages in the
2143  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2144  *	image pages are assumed to be set.
2145  */
2146 
2147 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2148 {
2149 	unsigned long pfn;
2150 	unsigned int cnt = 0;
2151 
2152 	memory_bm_position_reset(bm);
2153 	pfn = memory_bm_next_pfn(bm);
2154 	while (pfn != BM_END_OF_MAP) {
2155 		if (PageHighMem(pfn_to_page(pfn)))
2156 			cnt++;
2157 
2158 		pfn = memory_bm_next_pfn(bm);
2159 	}
2160 	return cnt;
2161 }
2162 
2163 /**
2164  *	prepare_highmem_image - try to allocate as many highmem pages as
2165  *	there are highmem image pages (@nr_highmem_p points to the variable
2166  *	containing the number of highmem image pages).  The pages that are
2167  *	"safe" (ie. will not be overwritten when the suspend image is
2168  *	restored) have the corresponding bits set in @bm (it must be
2169  *	unitialized).
2170  *
2171  *	NOTE: This function should not be called if there are no highmem
2172  *	image pages.
2173  */
2174 
2175 static unsigned int safe_highmem_pages;
2176 
2177 static struct memory_bitmap *safe_highmem_bm;
2178 
2179 static int
2180 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2181 {
2182 	unsigned int to_alloc;
2183 
2184 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2185 		return -ENOMEM;
2186 
2187 	if (get_highmem_buffer(PG_SAFE))
2188 		return -ENOMEM;
2189 
2190 	to_alloc = count_free_highmem_pages();
2191 	if (to_alloc > *nr_highmem_p)
2192 		to_alloc = *nr_highmem_p;
2193 	else
2194 		*nr_highmem_p = to_alloc;
2195 
2196 	safe_highmem_pages = 0;
2197 	while (to_alloc-- > 0) {
2198 		struct page *page;
2199 
2200 		page = alloc_page(__GFP_HIGHMEM);
2201 		if (!swsusp_page_is_free(page)) {
2202 			/* The page is "safe", set its bit the bitmap */
2203 			memory_bm_set_bit(bm, page_to_pfn(page));
2204 			safe_highmem_pages++;
2205 		}
2206 		/* Mark the page as allocated */
2207 		swsusp_set_page_forbidden(page);
2208 		swsusp_set_page_free(page);
2209 	}
2210 	memory_bm_position_reset(bm);
2211 	safe_highmem_bm = bm;
2212 	return 0;
2213 }
2214 
2215 /**
2216  *	get_highmem_page_buffer - for given highmem image page find the buffer
2217  *	that suspend_write_next() should set for its caller to write to.
2218  *
2219  *	If the page is to be saved to its "original" page frame or a copy of
2220  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2221  *	the copy of the page is to be made in normal memory, so the address of
2222  *	the copy is returned.
2223  *
2224  *	If @buffer is returned, the caller of suspend_write_next() will write
2225  *	the page's contents to @buffer, so they will have to be copied to the
2226  *	right location on the next call to suspend_write_next() and it is done
2227  *	with the help of copy_last_highmem_page().  For this purpose, if
2228  *	@buffer is returned, @last_highmem page is set to the page to which
2229  *	the data will have to be copied from @buffer.
2230  */
2231 
2232 static struct page *last_highmem_page;
2233 
2234 static void *
2235 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2236 {
2237 	struct highmem_pbe *pbe;
2238 	void *kaddr;
2239 
2240 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2241 		/* We have allocated the "original" page frame and we can
2242 		 * use it directly to store the loaded page.
2243 		 */
2244 		last_highmem_page = page;
2245 		return buffer;
2246 	}
2247 	/* The "original" page frame has not been allocated and we have to
2248 	 * use a "safe" page frame to store the loaded page.
2249 	 */
2250 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2251 	if (!pbe) {
2252 		swsusp_free();
2253 		return ERR_PTR(-ENOMEM);
2254 	}
2255 	pbe->orig_page = page;
2256 	if (safe_highmem_pages > 0) {
2257 		struct page *tmp;
2258 
2259 		/* Copy of the page will be stored in high memory */
2260 		kaddr = buffer;
2261 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2262 		safe_highmem_pages--;
2263 		last_highmem_page = tmp;
2264 		pbe->copy_page = tmp;
2265 	} else {
2266 		/* Copy of the page will be stored in normal memory */
2267 		kaddr = safe_pages_list;
2268 		safe_pages_list = safe_pages_list->next;
2269 		pbe->copy_page = virt_to_page(kaddr);
2270 	}
2271 	pbe->next = highmem_pblist;
2272 	highmem_pblist = pbe;
2273 	return kaddr;
2274 }
2275 
2276 /**
2277  *	copy_last_highmem_page - copy the contents of a highmem image from
2278  *	@buffer, where the caller of snapshot_write_next() has place them,
2279  *	to the right location represented by @last_highmem_page .
2280  */
2281 
2282 static void copy_last_highmem_page(void)
2283 {
2284 	if (last_highmem_page) {
2285 		void *dst;
2286 
2287 		dst = kmap_atomic(last_highmem_page);
2288 		copy_page(dst, buffer);
2289 		kunmap_atomic(dst);
2290 		last_highmem_page = NULL;
2291 	}
2292 }
2293 
2294 static inline int last_highmem_page_copied(void)
2295 {
2296 	return !last_highmem_page;
2297 }
2298 
2299 static inline void free_highmem_data(void)
2300 {
2301 	if (safe_highmem_bm)
2302 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2303 
2304 	if (buffer)
2305 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2306 }
2307 #else
2308 static inline int get_safe_write_buffer(void) { return 0; }
2309 
2310 static unsigned int
2311 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2312 
2313 static inline int
2314 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2315 {
2316 	return 0;
2317 }
2318 
2319 static inline void *
2320 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2321 {
2322 	return ERR_PTR(-EINVAL);
2323 }
2324 
2325 static inline void copy_last_highmem_page(void) {}
2326 static inline int last_highmem_page_copied(void) { return 1; }
2327 static inline void free_highmem_data(void) {}
2328 #endif /* CONFIG_HIGHMEM */
2329 
2330 /**
2331  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2332  *	be overwritten in the process of restoring the system memory state
2333  *	from the suspend image ("unsafe" pages) and allocate memory for the
2334  *	image.
2335  *
2336  *	The idea is to allocate a new memory bitmap first and then allocate
2337  *	as many pages as needed for the image data, but not to assign these
2338  *	pages to specific tasks initially.  Instead, we just mark them as
2339  *	allocated and create a lists of "safe" pages that will be used
2340  *	later.  On systems with high memory a list of "safe" highmem pages is
2341  *	also created.
2342  */
2343 
2344 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2345 
2346 static int
2347 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2348 {
2349 	unsigned int nr_pages, nr_highmem;
2350 	struct linked_page *sp_list, *lp;
2351 	int error;
2352 
2353 	/* If there is no highmem, the buffer will not be necessary */
2354 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2355 	buffer = NULL;
2356 
2357 	nr_highmem = count_highmem_image_pages(bm);
2358 	error = mark_unsafe_pages(bm);
2359 	if (error)
2360 		goto Free;
2361 
2362 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2363 	if (error)
2364 		goto Free;
2365 
2366 	duplicate_memory_bitmap(new_bm, bm);
2367 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2368 	if (nr_highmem > 0) {
2369 		error = prepare_highmem_image(bm, &nr_highmem);
2370 		if (error)
2371 			goto Free;
2372 	}
2373 	/* Reserve some safe pages for potential later use.
2374 	 *
2375 	 * NOTE: This way we make sure there will be enough safe pages for the
2376 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2377 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2378 	 */
2379 	sp_list = NULL;
2380 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2381 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2382 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2383 	while (nr_pages > 0) {
2384 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2385 		if (!lp) {
2386 			error = -ENOMEM;
2387 			goto Free;
2388 		}
2389 		lp->next = sp_list;
2390 		sp_list = lp;
2391 		nr_pages--;
2392 	}
2393 	/* Preallocate memory for the image */
2394 	safe_pages_list = NULL;
2395 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2396 	while (nr_pages > 0) {
2397 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2398 		if (!lp) {
2399 			error = -ENOMEM;
2400 			goto Free;
2401 		}
2402 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2403 			/* The page is "safe", add it to the list */
2404 			lp->next = safe_pages_list;
2405 			safe_pages_list = lp;
2406 		}
2407 		/* Mark the page as allocated */
2408 		swsusp_set_page_forbidden(virt_to_page(lp));
2409 		swsusp_set_page_free(virt_to_page(lp));
2410 		nr_pages--;
2411 	}
2412 	/* Free the reserved safe pages so that chain_alloc() can use them */
2413 	while (sp_list) {
2414 		lp = sp_list->next;
2415 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2416 		sp_list = lp;
2417 	}
2418 	return 0;
2419 
2420  Free:
2421 	swsusp_free();
2422 	return error;
2423 }
2424 
2425 /**
2426  *	get_buffer - compute the address that snapshot_write_next() should
2427  *	set for its caller to write to.
2428  */
2429 
2430 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2431 {
2432 	struct pbe *pbe;
2433 	struct page *page;
2434 	unsigned long pfn = memory_bm_next_pfn(bm);
2435 
2436 	if (pfn == BM_END_OF_MAP)
2437 		return ERR_PTR(-EFAULT);
2438 
2439 	page = pfn_to_page(pfn);
2440 	if (PageHighMem(page))
2441 		return get_highmem_page_buffer(page, ca);
2442 
2443 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2444 		/* We have allocated the "original" page frame and we can
2445 		 * use it directly to store the loaded page.
2446 		 */
2447 		return page_address(page);
2448 
2449 	/* The "original" page frame has not been allocated and we have to
2450 	 * use a "safe" page frame to store the loaded page.
2451 	 */
2452 	pbe = chain_alloc(ca, sizeof(struct pbe));
2453 	if (!pbe) {
2454 		swsusp_free();
2455 		return ERR_PTR(-ENOMEM);
2456 	}
2457 	pbe->orig_address = page_address(page);
2458 	pbe->address = safe_pages_list;
2459 	safe_pages_list = safe_pages_list->next;
2460 	pbe->next = restore_pblist;
2461 	restore_pblist = pbe;
2462 	return pbe->address;
2463 }
2464 
2465 /**
2466  *	snapshot_write_next - used for writing the system memory snapshot.
2467  *
2468  *	On the first call to it @handle should point to a zeroed
2469  *	snapshot_handle structure.  The structure gets updated and a pointer
2470  *	to it should be passed to this function every next time.
2471  *
2472  *	On success the function returns a positive number.  Then, the caller
2473  *	is allowed to write up to the returned number of bytes to the memory
2474  *	location computed by the data_of() macro.
2475  *
2476  *	The function returns 0 to indicate the "end of file" condition,
2477  *	and a negative number is returned on error.  In such cases the
2478  *	structure pointed to by @handle is not updated and should not be used
2479  *	any more.
2480  */
2481 
2482 int snapshot_write_next(struct snapshot_handle *handle)
2483 {
2484 	static struct chain_allocator ca;
2485 	int error = 0;
2486 
2487 	/* Check if we have already loaded the entire image */
2488 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2489 		return 0;
2490 
2491 	handle->sync_read = 1;
2492 
2493 	if (!handle->cur) {
2494 		if (!buffer)
2495 			/* This makes the buffer be freed by swsusp_free() */
2496 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2497 
2498 		if (!buffer)
2499 			return -ENOMEM;
2500 
2501 		handle->buffer = buffer;
2502 	} else if (handle->cur == 1) {
2503 		error = load_header(buffer);
2504 		if (error)
2505 			return error;
2506 
2507 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2508 		if (error)
2509 			return error;
2510 
2511 		/* Allocate buffer for page keys. */
2512 		error = page_key_alloc(nr_copy_pages);
2513 		if (error)
2514 			return error;
2515 
2516 	} else if (handle->cur <= nr_meta_pages + 1) {
2517 		error = unpack_orig_pfns(buffer, &copy_bm);
2518 		if (error)
2519 			return error;
2520 
2521 		if (handle->cur == nr_meta_pages + 1) {
2522 			error = prepare_image(&orig_bm, &copy_bm);
2523 			if (error)
2524 				return error;
2525 
2526 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2527 			memory_bm_position_reset(&orig_bm);
2528 			restore_pblist = NULL;
2529 			handle->buffer = get_buffer(&orig_bm, &ca);
2530 			handle->sync_read = 0;
2531 			if (IS_ERR(handle->buffer))
2532 				return PTR_ERR(handle->buffer);
2533 		}
2534 	} else {
2535 		copy_last_highmem_page();
2536 		/* Restore page key for data page (s390 only). */
2537 		page_key_write(handle->buffer);
2538 		handle->buffer = get_buffer(&orig_bm, &ca);
2539 		if (IS_ERR(handle->buffer))
2540 			return PTR_ERR(handle->buffer);
2541 		if (handle->buffer != buffer)
2542 			handle->sync_read = 0;
2543 	}
2544 	handle->cur++;
2545 	return PAGE_SIZE;
2546 }
2547 
2548 /**
2549  *	snapshot_write_finalize - must be called after the last call to
2550  *	snapshot_write_next() in case the last page in the image happens
2551  *	to be a highmem page and its contents should be stored in the
2552  *	highmem.  Additionally, it releases the memory that will not be
2553  *	used any more.
2554  */
2555 
2556 void snapshot_write_finalize(struct snapshot_handle *handle)
2557 {
2558 	copy_last_highmem_page();
2559 	/* Restore page key for data page (s390 only). */
2560 	page_key_write(handle->buffer);
2561 	page_key_free();
2562 	/* Free only if we have loaded the image entirely */
2563 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2564 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2565 		free_highmem_data();
2566 	}
2567 }
2568 
2569 int snapshot_image_loaded(struct snapshot_handle *handle)
2570 {
2571 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2572 			handle->cur <= nr_meta_pages + nr_copy_pages);
2573 }
2574 
2575 #ifdef CONFIG_HIGHMEM
2576 /* Assumes that @buf is ready and points to a "safe" page */
2577 static inline void
2578 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2579 {
2580 	void *kaddr1, *kaddr2;
2581 
2582 	kaddr1 = kmap_atomic(p1);
2583 	kaddr2 = kmap_atomic(p2);
2584 	copy_page(buf, kaddr1);
2585 	copy_page(kaddr1, kaddr2);
2586 	copy_page(kaddr2, buf);
2587 	kunmap_atomic(kaddr2);
2588 	kunmap_atomic(kaddr1);
2589 }
2590 
2591 /**
2592  *	restore_highmem - for each highmem page that was allocated before
2593  *	the suspend and included in the suspend image, and also has been
2594  *	allocated by the "resume" kernel swap its current (ie. "before
2595  *	resume") contents with the previous (ie. "before suspend") one.
2596  *
2597  *	If the resume eventually fails, we can call this function once
2598  *	again and restore the "before resume" highmem state.
2599  */
2600 
2601 int restore_highmem(void)
2602 {
2603 	struct highmem_pbe *pbe = highmem_pblist;
2604 	void *buf;
2605 
2606 	if (!pbe)
2607 		return 0;
2608 
2609 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2610 	if (!buf)
2611 		return -ENOMEM;
2612 
2613 	while (pbe) {
2614 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2615 		pbe = pbe->next;
2616 	}
2617 	free_image_page(buf, PG_UNSAFE_CLEAR);
2618 	return 0;
2619 }
2620 #endif /* CONFIG_HIGHMEM */
2621