1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 29 #include <asm/uaccess.h> 30 #include <asm/mmu_context.h> 31 #include <asm/pgtable.h> 32 #include <asm/tlbflush.h> 33 #include <asm/io.h> 34 35 #include "power.h" 36 37 static int swsusp_page_is_free(struct page *); 38 static void swsusp_set_page_forbidden(struct page *); 39 static void swsusp_unset_page_forbidden(struct page *); 40 41 /* List of PBEs needed for restoring the pages that were allocated before 42 * the suspend and included in the suspend image, but have also been 43 * allocated by the "resume" kernel, so their contents cannot be written 44 * directly to their "original" page frames. 45 */ 46 struct pbe *restore_pblist; 47 48 /* Pointer to an auxiliary buffer (1 page) */ 49 static void *buffer; 50 51 /** 52 * @safe_needed - on resume, for storing the PBE list and the image, 53 * we can only use memory pages that do not conflict with the pages 54 * used before suspend. The unsafe pages have PageNosaveFree set 55 * and we count them using unsafe_pages. 56 * 57 * Each allocated image page is marked as PageNosave and PageNosaveFree 58 * so that swsusp_free() can release it. 59 */ 60 61 #define PG_ANY 0 62 #define PG_SAFE 1 63 #define PG_UNSAFE_CLEAR 1 64 #define PG_UNSAFE_KEEP 0 65 66 static unsigned int allocated_unsafe_pages; 67 68 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 69 { 70 void *res; 71 72 res = (void *)get_zeroed_page(gfp_mask); 73 if (safe_needed) 74 while (res && swsusp_page_is_free(virt_to_page(res))) { 75 /* The page is unsafe, mark it for swsusp_free() */ 76 swsusp_set_page_forbidden(virt_to_page(res)); 77 allocated_unsafe_pages++; 78 res = (void *)get_zeroed_page(gfp_mask); 79 } 80 if (res) { 81 swsusp_set_page_forbidden(virt_to_page(res)); 82 swsusp_set_page_free(virt_to_page(res)); 83 } 84 return res; 85 } 86 87 unsigned long get_safe_page(gfp_t gfp_mask) 88 { 89 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 90 } 91 92 static struct page *alloc_image_page(gfp_t gfp_mask) 93 { 94 struct page *page; 95 96 page = alloc_page(gfp_mask); 97 if (page) { 98 swsusp_set_page_forbidden(page); 99 swsusp_set_page_free(page); 100 } 101 return page; 102 } 103 104 /** 105 * free_image_page - free page represented by @addr, allocated with 106 * get_image_page (page flags set by it must be cleared) 107 */ 108 109 static inline void free_image_page(void *addr, int clear_nosave_free) 110 { 111 struct page *page; 112 113 BUG_ON(!virt_addr_valid(addr)); 114 115 page = virt_to_page(addr); 116 117 swsusp_unset_page_forbidden(page); 118 if (clear_nosave_free) 119 swsusp_unset_page_free(page); 120 121 __free_page(page); 122 } 123 124 /* struct linked_page is used to build chains of pages */ 125 126 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 127 128 struct linked_page { 129 struct linked_page *next; 130 char data[LINKED_PAGE_DATA_SIZE]; 131 } __attribute__((packed)); 132 133 static inline void 134 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 135 { 136 while (list) { 137 struct linked_page *lp = list->next; 138 139 free_image_page(list, clear_page_nosave); 140 list = lp; 141 } 142 } 143 144 /** 145 * struct chain_allocator is used for allocating small objects out of 146 * a linked list of pages called 'the chain'. 147 * 148 * The chain grows each time when there is no room for a new object in 149 * the current page. The allocated objects cannot be freed individually. 150 * It is only possible to free them all at once, by freeing the entire 151 * chain. 152 * 153 * NOTE: The chain allocator may be inefficient if the allocated objects 154 * are not much smaller than PAGE_SIZE. 155 */ 156 157 struct chain_allocator { 158 struct linked_page *chain; /* the chain */ 159 unsigned int used_space; /* total size of objects allocated out 160 * of the current page 161 */ 162 gfp_t gfp_mask; /* mask for allocating pages */ 163 int safe_needed; /* if set, only "safe" pages are allocated */ 164 }; 165 166 static void 167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 168 { 169 ca->chain = NULL; 170 ca->used_space = LINKED_PAGE_DATA_SIZE; 171 ca->gfp_mask = gfp_mask; 172 ca->safe_needed = safe_needed; 173 } 174 175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 176 { 177 void *ret; 178 179 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 180 struct linked_page *lp; 181 182 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 183 if (!lp) 184 return NULL; 185 186 lp->next = ca->chain; 187 ca->chain = lp; 188 ca->used_space = 0; 189 } 190 ret = ca->chain->data + ca->used_space; 191 ca->used_space += size; 192 return ret; 193 } 194 195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave) 196 { 197 free_list_of_pages(ca->chain, clear_page_nosave); 198 memset(ca, 0, sizeof(struct chain_allocator)); 199 } 200 201 /** 202 * Data types related to memory bitmaps. 203 * 204 * Memory bitmap is a structure consiting of many linked lists of 205 * objects. The main list's elements are of type struct zone_bitmap 206 * and each of them corresonds to one zone. For each zone bitmap 207 * object there is a list of objects of type struct bm_block that 208 * represent each blocks of bitmap in which information is stored. 209 * 210 * struct memory_bitmap contains a pointer to the main list of zone 211 * bitmap objects, a struct bm_position used for browsing the bitmap, 212 * and a pointer to the list of pages used for allocating all of the 213 * zone bitmap objects and bitmap block objects. 214 * 215 * NOTE: It has to be possible to lay out the bitmap in memory 216 * using only allocations of order 0. Additionally, the bitmap is 217 * designed to work with arbitrary number of zones (this is over the 218 * top for now, but let's avoid making unnecessary assumptions ;-). 219 * 220 * struct zone_bitmap contains a pointer to a list of bitmap block 221 * objects and a pointer to the bitmap block object that has been 222 * most recently used for setting bits. Additionally, it contains the 223 * pfns that correspond to the start and end of the represented zone. 224 * 225 * struct bm_block contains a pointer to the memory page in which 226 * information is stored (in the form of a block of bitmap) 227 * It also contains the pfns that correspond to the start and end of 228 * the represented memory area. 229 */ 230 231 #define BM_END_OF_MAP (~0UL) 232 233 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3) 234 235 struct bm_block { 236 struct bm_block *next; /* next element of the list */ 237 unsigned long start_pfn; /* pfn represented by the first bit */ 238 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 239 unsigned long *data; /* bitmap representing pages */ 240 }; 241 242 static inline unsigned long bm_block_bits(struct bm_block *bb) 243 { 244 return bb->end_pfn - bb->start_pfn; 245 } 246 247 struct zone_bitmap { 248 struct zone_bitmap *next; /* next element of the list */ 249 unsigned long start_pfn; /* minimal pfn in this zone */ 250 unsigned long end_pfn; /* maximal pfn in this zone plus 1 */ 251 struct bm_block *bm_blocks; /* list of bitmap blocks */ 252 struct bm_block *cur_block; /* recently used bitmap block */ 253 }; 254 255 /* strcut bm_position is used for browsing memory bitmaps */ 256 257 struct bm_position { 258 struct zone_bitmap *zone_bm; 259 struct bm_block *block; 260 int bit; 261 }; 262 263 struct memory_bitmap { 264 struct zone_bitmap *zone_bm_list; /* list of zone bitmaps */ 265 struct linked_page *p_list; /* list of pages used to store zone 266 * bitmap objects and bitmap block 267 * objects 268 */ 269 struct bm_position cur; /* most recently used bit position */ 270 }; 271 272 /* Functions that operate on memory bitmaps */ 273 274 static void memory_bm_position_reset(struct memory_bitmap *bm) 275 { 276 struct zone_bitmap *zone_bm; 277 278 zone_bm = bm->zone_bm_list; 279 bm->cur.zone_bm = zone_bm; 280 bm->cur.block = zone_bm->bm_blocks; 281 bm->cur.bit = 0; 282 } 283 284 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 285 286 /** 287 * create_bm_block_list - create a list of block bitmap objects 288 */ 289 290 static inline struct bm_block * 291 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca) 292 { 293 struct bm_block *bblist = NULL; 294 295 while (nr_blocks-- > 0) { 296 struct bm_block *bb; 297 298 bb = chain_alloc(ca, sizeof(struct bm_block)); 299 if (!bb) 300 return NULL; 301 302 bb->next = bblist; 303 bblist = bb; 304 } 305 return bblist; 306 } 307 308 /** 309 * create_zone_bm_list - create a list of zone bitmap objects 310 */ 311 312 static inline struct zone_bitmap * 313 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca) 314 { 315 struct zone_bitmap *zbmlist = NULL; 316 317 while (nr_zones-- > 0) { 318 struct zone_bitmap *zbm; 319 320 zbm = chain_alloc(ca, sizeof(struct zone_bitmap)); 321 if (!zbm) 322 return NULL; 323 324 zbm->next = zbmlist; 325 zbmlist = zbm; 326 } 327 return zbmlist; 328 } 329 330 /** 331 * memory_bm_create - allocate memory for a memory bitmap 332 */ 333 334 static int 335 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 336 { 337 struct chain_allocator ca; 338 struct zone *zone; 339 struct zone_bitmap *zone_bm; 340 struct bm_block *bb; 341 unsigned int nr; 342 343 chain_init(&ca, gfp_mask, safe_needed); 344 345 /* Compute the number of zones */ 346 nr = 0; 347 for_each_zone(zone) 348 if (populated_zone(zone)) 349 nr++; 350 351 /* Allocate the list of zones bitmap objects */ 352 zone_bm = create_zone_bm_list(nr, &ca); 353 bm->zone_bm_list = zone_bm; 354 if (!zone_bm) { 355 chain_free(&ca, PG_UNSAFE_CLEAR); 356 return -ENOMEM; 357 } 358 359 /* Initialize the zone bitmap objects */ 360 for_each_zone(zone) { 361 unsigned long pfn; 362 363 if (!populated_zone(zone)) 364 continue; 365 366 zone_bm->start_pfn = zone->zone_start_pfn; 367 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages; 368 /* Allocate the list of bitmap block objects */ 369 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 370 bb = create_bm_block_list(nr, &ca); 371 zone_bm->bm_blocks = bb; 372 zone_bm->cur_block = bb; 373 if (!bb) 374 goto Free; 375 376 nr = zone->spanned_pages; 377 pfn = zone->zone_start_pfn; 378 /* Initialize the bitmap block objects */ 379 while (bb) { 380 unsigned long *ptr; 381 382 ptr = get_image_page(gfp_mask, safe_needed); 383 bb->data = ptr; 384 if (!ptr) 385 goto Free; 386 387 bb->start_pfn = pfn; 388 if (nr >= BM_BITS_PER_BLOCK) { 389 pfn += BM_BITS_PER_BLOCK; 390 nr -= BM_BITS_PER_BLOCK; 391 } else { 392 /* This is executed only once in the loop */ 393 pfn += nr; 394 } 395 bb->end_pfn = pfn; 396 bb = bb->next; 397 } 398 zone_bm = zone_bm->next; 399 } 400 bm->p_list = ca.chain; 401 memory_bm_position_reset(bm); 402 return 0; 403 404 Free: 405 bm->p_list = ca.chain; 406 memory_bm_free(bm, PG_UNSAFE_CLEAR); 407 return -ENOMEM; 408 } 409 410 /** 411 * memory_bm_free - free memory occupied by the memory bitmap @bm 412 */ 413 414 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 415 { 416 struct zone_bitmap *zone_bm; 417 418 /* Free the list of bit blocks for each zone_bitmap object */ 419 zone_bm = bm->zone_bm_list; 420 while (zone_bm) { 421 struct bm_block *bb; 422 423 bb = zone_bm->bm_blocks; 424 while (bb) { 425 if (bb->data) 426 free_image_page(bb->data, clear_nosave_free); 427 bb = bb->next; 428 } 429 zone_bm = zone_bm->next; 430 } 431 free_list_of_pages(bm->p_list, clear_nosave_free); 432 bm->zone_bm_list = NULL; 433 } 434 435 /** 436 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 437 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 438 * of @bm->cur_zone_bm are updated. 439 */ 440 441 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 442 void **addr, unsigned int *bit_nr) 443 { 444 struct zone_bitmap *zone_bm; 445 struct bm_block *bb; 446 447 /* Check if the pfn is from the current zone */ 448 zone_bm = bm->cur.zone_bm; 449 if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 450 zone_bm = bm->zone_bm_list; 451 /* We don't assume that the zones are sorted by pfns */ 452 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) { 453 zone_bm = zone_bm->next; 454 455 if (!zone_bm) 456 return -EFAULT; 457 } 458 bm->cur.zone_bm = zone_bm; 459 } 460 /* Check if the pfn corresponds to the current bitmap block */ 461 bb = zone_bm->cur_block; 462 if (pfn < bb->start_pfn) 463 bb = zone_bm->bm_blocks; 464 465 while (pfn >= bb->end_pfn) { 466 bb = bb->next; 467 468 BUG_ON(!bb); 469 } 470 zone_bm->cur_block = bb; 471 pfn -= bb->start_pfn; 472 *bit_nr = pfn; 473 *addr = bb->data; 474 return 0; 475 } 476 477 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 478 { 479 void *addr; 480 unsigned int bit; 481 int error; 482 483 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 484 BUG_ON(error); 485 set_bit(bit, addr); 486 } 487 488 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 489 { 490 void *addr; 491 unsigned int bit; 492 int error; 493 494 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 495 if (!error) 496 set_bit(bit, addr); 497 return error; 498 } 499 500 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 501 { 502 void *addr; 503 unsigned int bit; 504 int error; 505 506 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 507 BUG_ON(error); 508 clear_bit(bit, addr); 509 } 510 511 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 512 { 513 void *addr; 514 unsigned int bit; 515 int error; 516 517 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 518 BUG_ON(error); 519 return test_bit(bit, addr); 520 } 521 522 /** 523 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 524 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 525 * returned. 526 * 527 * It is required to run memory_bm_position_reset() before the first call to 528 * this function. 529 */ 530 531 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 532 { 533 struct zone_bitmap *zone_bm; 534 struct bm_block *bb; 535 int bit; 536 537 do { 538 bb = bm->cur.block; 539 do { 540 bit = bm->cur.bit; 541 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 542 if (bit < bm_block_bits(bb)) 543 goto Return_pfn; 544 545 bb = bb->next; 546 bm->cur.block = bb; 547 bm->cur.bit = 0; 548 } while (bb); 549 zone_bm = bm->cur.zone_bm->next; 550 if (zone_bm) { 551 bm->cur.zone_bm = zone_bm; 552 bm->cur.block = zone_bm->bm_blocks; 553 bm->cur.bit = 0; 554 } 555 } while (zone_bm); 556 memory_bm_position_reset(bm); 557 return BM_END_OF_MAP; 558 559 Return_pfn: 560 bm->cur.bit = bit + 1; 561 return bb->start_pfn + bit; 562 } 563 564 /** 565 * This structure represents a range of page frames the contents of which 566 * should not be saved during the suspend. 567 */ 568 569 struct nosave_region { 570 struct list_head list; 571 unsigned long start_pfn; 572 unsigned long end_pfn; 573 }; 574 575 static LIST_HEAD(nosave_regions); 576 577 /** 578 * register_nosave_region - register a range of page frames the contents 579 * of which should not be saved during the suspend (to be used in the early 580 * initialization code) 581 */ 582 583 void __init 584 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 585 int use_kmalloc) 586 { 587 struct nosave_region *region; 588 589 if (start_pfn >= end_pfn) 590 return; 591 592 if (!list_empty(&nosave_regions)) { 593 /* Try to extend the previous region (they should be sorted) */ 594 region = list_entry(nosave_regions.prev, 595 struct nosave_region, list); 596 if (region->end_pfn == start_pfn) { 597 region->end_pfn = end_pfn; 598 goto Report; 599 } 600 } 601 if (use_kmalloc) { 602 /* during init, this shouldn't fail */ 603 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 604 BUG_ON(!region); 605 } else 606 /* This allocation cannot fail */ 607 region = alloc_bootmem_low(sizeof(struct nosave_region)); 608 region->start_pfn = start_pfn; 609 region->end_pfn = end_pfn; 610 list_add_tail(®ion->list, &nosave_regions); 611 Report: 612 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 613 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 614 } 615 616 /* 617 * Set bits in this map correspond to the page frames the contents of which 618 * should not be saved during the suspend. 619 */ 620 static struct memory_bitmap *forbidden_pages_map; 621 622 /* Set bits in this map correspond to free page frames. */ 623 static struct memory_bitmap *free_pages_map; 624 625 /* 626 * Each page frame allocated for creating the image is marked by setting the 627 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 628 */ 629 630 void swsusp_set_page_free(struct page *page) 631 { 632 if (free_pages_map) 633 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 634 } 635 636 static int swsusp_page_is_free(struct page *page) 637 { 638 return free_pages_map ? 639 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 640 } 641 642 void swsusp_unset_page_free(struct page *page) 643 { 644 if (free_pages_map) 645 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 646 } 647 648 static void swsusp_set_page_forbidden(struct page *page) 649 { 650 if (forbidden_pages_map) 651 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 652 } 653 654 int swsusp_page_is_forbidden(struct page *page) 655 { 656 return forbidden_pages_map ? 657 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 658 } 659 660 static void swsusp_unset_page_forbidden(struct page *page) 661 { 662 if (forbidden_pages_map) 663 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 664 } 665 666 /** 667 * mark_nosave_pages - set bits corresponding to the page frames the 668 * contents of which should not be saved in a given bitmap. 669 */ 670 671 static void mark_nosave_pages(struct memory_bitmap *bm) 672 { 673 struct nosave_region *region; 674 675 if (list_empty(&nosave_regions)) 676 return; 677 678 list_for_each_entry(region, &nosave_regions, list) { 679 unsigned long pfn; 680 681 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 682 region->start_pfn << PAGE_SHIFT, 683 region->end_pfn << PAGE_SHIFT); 684 685 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 686 if (pfn_valid(pfn)) { 687 /* 688 * It is safe to ignore the result of 689 * mem_bm_set_bit_check() here, since we won't 690 * touch the PFNs for which the error is 691 * returned anyway. 692 */ 693 mem_bm_set_bit_check(bm, pfn); 694 } 695 } 696 } 697 698 /** 699 * create_basic_memory_bitmaps - create bitmaps needed for marking page 700 * frames that should not be saved and free page frames. The pointers 701 * forbidden_pages_map and free_pages_map are only modified if everything 702 * goes well, because we don't want the bits to be used before both bitmaps 703 * are set up. 704 */ 705 706 int create_basic_memory_bitmaps(void) 707 { 708 struct memory_bitmap *bm1, *bm2; 709 int error = 0; 710 711 BUG_ON(forbidden_pages_map || free_pages_map); 712 713 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 714 if (!bm1) 715 return -ENOMEM; 716 717 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 718 if (error) 719 goto Free_first_object; 720 721 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 722 if (!bm2) 723 goto Free_first_bitmap; 724 725 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 726 if (error) 727 goto Free_second_object; 728 729 forbidden_pages_map = bm1; 730 free_pages_map = bm2; 731 mark_nosave_pages(forbidden_pages_map); 732 733 pr_debug("PM: Basic memory bitmaps created\n"); 734 735 return 0; 736 737 Free_second_object: 738 kfree(bm2); 739 Free_first_bitmap: 740 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 741 Free_first_object: 742 kfree(bm1); 743 return -ENOMEM; 744 } 745 746 /** 747 * free_basic_memory_bitmaps - free memory bitmaps allocated by 748 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 749 * so that the bitmaps themselves are not referred to while they are being 750 * freed. 751 */ 752 753 void free_basic_memory_bitmaps(void) 754 { 755 struct memory_bitmap *bm1, *bm2; 756 757 BUG_ON(!(forbidden_pages_map && free_pages_map)); 758 759 bm1 = forbidden_pages_map; 760 bm2 = free_pages_map; 761 forbidden_pages_map = NULL; 762 free_pages_map = NULL; 763 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 764 kfree(bm1); 765 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 766 kfree(bm2); 767 768 pr_debug("PM: Basic memory bitmaps freed\n"); 769 } 770 771 /** 772 * snapshot_additional_pages - estimate the number of additional pages 773 * be needed for setting up the suspend image data structures for given 774 * zone (usually the returned value is greater than the exact number) 775 */ 776 777 unsigned int snapshot_additional_pages(struct zone *zone) 778 { 779 unsigned int res; 780 781 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 782 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 783 return 2 * res; 784 } 785 786 #ifdef CONFIG_HIGHMEM 787 /** 788 * count_free_highmem_pages - compute the total number of free highmem 789 * pages, system-wide. 790 */ 791 792 static unsigned int count_free_highmem_pages(void) 793 { 794 struct zone *zone; 795 unsigned int cnt = 0; 796 797 for_each_zone(zone) 798 if (populated_zone(zone) && is_highmem(zone)) 799 cnt += zone_page_state(zone, NR_FREE_PAGES); 800 801 return cnt; 802 } 803 804 /** 805 * saveable_highmem_page - Determine whether a highmem page should be 806 * included in the suspend image. 807 * 808 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 809 * and it isn't a part of a free chunk of pages. 810 */ 811 812 static struct page *saveable_highmem_page(unsigned long pfn) 813 { 814 struct page *page; 815 816 if (!pfn_valid(pfn)) 817 return NULL; 818 819 page = pfn_to_page(pfn); 820 821 BUG_ON(!PageHighMem(page)); 822 823 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 824 PageReserved(page)) 825 return NULL; 826 827 return page; 828 } 829 830 /** 831 * count_highmem_pages - compute the total number of saveable highmem 832 * pages. 833 */ 834 835 unsigned int count_highmem_pages(void) 836 { 837 struct zone *zone; 838 unsigned int n = 0; 839 840 for_each_zone(zone) { 841 unsigned long pfn, max_zone_pfn; 842 843 if (!is_highmem(zone)) 844 continue; 845 846 mark_free_pages(zone); 847 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 848 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 849 if (saveable_highmem_page(pfn)) 850 n++; 851 } 852 return n; 853 } 854 #else 855 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; } 856 #endif /* CONFIG_HIGHMEM */ 857 858 /** 859 * saveable_page - Determine whether a non-highmem page should be included 860 * in the suspend image. 861 * 862 * We should save the page if it isn't Nosave, and is not in the range 863 * of pages statically defined as 'unsaveable', and it isn't a part of 864 * a free chunk of pages. 865 */ 866 867 static struct page *saveable_page(unsigned long pfn) 868 { 869 struct page *page; 870 871 if (!pfn_valid(pfn)) 872 return NULL; 873 874 page = pfn_to_page(pfn); 875 876 BUG_ON(PageHighMem(page)); 877 878 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 879 return NULL; 880 881 if (PageReserved(page) 882 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 883 return NULL; 884 885 return page; 886 } 887 888 /** 889 * count_data_pages - compute the total number of saveable non-highmem 890 * pages. 891 */ 892 893 unsigned int count_data_pages(void) 894 { 895 struct zone *zone; 896 unsigned long pfn, max_zone_pfn; 897 unsigned int n = 0; 898 899 for_each_zone(zone) { 900 if (is_highmem(zone)) 901 continue; 902 903 mark_free_pages(zone); 904 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 905 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 906 if(saveable_page(pfn)) 907 n++; 908 } 909 return n; 910 } 911 912 /* This is needed, because copy_page and memcpy are not usable for copying 913 * task structs. 914 */ 915 static inline void do_copy_page(long *dst, long *src) 916 { 917 int n; 918 919 for (n = PAGE_SIZE / sizeof(long); n; n--) 920 *dst++ = *src++; 921 } 922 923 924 /** 925 * safe_copy_page - check if the page we are going to copy is marked as 926 * present in the kernel page tables (this always is the case if 927 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 928 * kernel_page_present() always returns 'true'). 929 */ 930 static void safe_copy_page(void *dst, struct page *s_page) 931 { 932 if (kernel_page_present(s_page)) { 933 do_copy_page(dst, page_address(s_page)); 934 } else { 935 kernel_map_pages(s_page, 1, 1); 936 do_copy_page(dst, page_address(s_page)); 937 kernel_map_pages(s_page, 1, 0); 938 } 939 } 940 941 942 #ifdef CONFIG_HIGHMEM 943 static inline struct page * 944 page_is_saveable(struct zone *zone, unsigned long pfn) 945 { 946 return is_highmem(zone) ? 947 saveable_highmem_page(pfn) : saveable_page(pfn); 948 } 949 950 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 951 { 952 struct page *s_page, *d_page; 953 void *src, *dst; 954 955 s_page = pfn_to_page(src_pfn); 956 d_page = pfn_to_page(dst_pfn); 957 if (PageHighMem(s_page)) { 958 src = kmap_atomic(s_page, KM_USER0); 959 dst = kmap_atomic(d_page, KM_USER1); 960 do_copy_page(dst, src); 961 kunmap_atomic(src, KM_USER0); 962 kunmap_atomic(dst, KM_USER1); 963 } else { 964 if (PageHighMem(d_page)) { 965 /* Page pointed to by src may contain some kernel 966 * data modified by kmap_atomic() 967 */ 968 safe_copy_page(buffer, s_page); 969 dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0); 970 memcpy(dst, buffer, PAGE_SIZE); 971 kunmap_atomic(dst, KM_USER0); 972 } else { 973 safe_copy_page(page_address(d_page), s_page); 974 } 975 } 976 } 977 #else 978 #define page_is_saveable(zone, pfn) saveable_page(pfn) 979 980 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 981 { 982 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 983 pfn_to_page(src_pfn)); 984 } 985 #endif /* CONFIG_HIGHMEM */ 986 987 static void 988 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 989 { 990 struct zone *zone; 991 unsigned long pfn; 992 993 for_each_zone(zone) { 994 unsigned long max_zone_pfn; 995 996 mark_free_pages(zone); 997 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 998 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 999 if (page_is_saveable(zone, pfn)) 1000 memory_bm_set_bit(orig_bm, pfn); 1001 } 1002 memory_bm_position_reset(orig_bm); 1003 memory_bm_position_reset(copy_bm); 1004 for(;;) { 1005 pfn = memory_bm_next_pfn(orig_bm); 1006 if (unlikely(pfn == BM_END_OF_MAP)) 1007 break; 1008 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1009 } 1010 } 1011 1012 /* Total number of image pages */ 1013 static unsigned int nr_copy_pages; 1014 /* Number of pages needed for saving the original pfns of the image pages */ 1015 static unsigned int nr_meta_pages; 1016 1017 /** 1018 * swsusp_free - free pages allocated for the suspend. 1019 * 1020 * Suspend pages are alocated before the atomic copy is made, so we 1021 * need to release them after the resume. 1022 */ 1023 1024 void swsusp_free(void) 1025 { 1026 struct zone *zone; 1027 unsigned long pfn, max_zone_pfn; 1028 1029 for_each_zone(zone) { 1030 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1031 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1032 if (pfn_valid(pfn)) { 1033 struct page *page = pfn_to_page(pfn); 1034 1035 if (swsusp_page_is_forbidden(page) && 1036 swsusp_page_is_free(page)) { 1037 swsusp_unset_page_forbidden(page); 1038 swsusp_unset_page_free(page); 1039 __free_page(page); 1040 } 1041 } 1042 } 1043 nr_copy_pages = 0; 1044 nr_meta_pages = 0; 1045 restore_pblist = NULL; 1046 buffer = NULL; 1047 } 1048 1049 #ifdef CONFIG_HIGHMEM 1050 /** 1051 * count_pages_for_highmem - compute the number of non-highmem pages 1052 * that will be necessary for creating copies of highmem pages. 1053 */ 1054 1055 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1056 { 1057 unsigned int free_highmem = count_free_highmem_pages(); 1058 1059 if (free_highmem >= nr_highmem) 1060 nr_highmem = 0; 1061 else 1062 nr_highmem -= free_highmem; 1063 1064 return nr_highmem; 1065 } 1066 #else 1067 static unsigned int 1068 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1069 #endif /* CONFIG_HIGHMEM */ 1070 1071 /** 1072 * enough_free_mem - Make sure we have enough free memory for the 1073 * snapshot image. 1074 */ 1075 1076 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1077 { 1078 struct zone *zone; 1079 unsigned int free = 0, meta = 0; 1080 1081 for_each_zone(zone) { 1082 meta += snapshot_additional_pages(zone); 1083 if (!is_highmem(zone)) 1084 free += zone_page_state(zone, NR_FREE_PAGES); 1085 } 1086 1087 nr_pages += count_pages_for_highmem(nr_highmem); 1088 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n", 1089 nr_pages, PAGES_FOR_IO, meta, free); 1090 1091 return free > nr_pages + PAGES_FOR_IO + meta; 1092 } 1093 1094 #ifdef CONFIG_HIGHMEM 1095 /** 1096 * get_highmem_buffer - if there are some highmem pages in the suspend 1097 * image, we may need the buffer to copy them and/or load their data. 1098 */ 1099 1100 static inline int get_highmem_buffer(int safe_needed) 1101 { 1102 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1103 return buffer ? 0 : -ENOMEM; 1104 } 1105 1106 /** 1107 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1108 * Try to allocate as many pages as needed, but if the number of free 1109 * highmem pages is lesser than that, allocate them all. 1110 */ 1111 1112 static inline unsigned int 1113 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1114 { 1115 unsigned int to_alloc = count_free_highmem_pages(); 1116 1117 if (to_alloc > nr_highmem) 1118 to_alloc = nr_highmem; 1119 1120 nr_highmem -= to_alloc; 1121 while (to_alloc-- > 0) { 1122 struct page *page; 1123 1124 page = alloc_image_page(__GFP_HIGHMEM); 1125 memory_bm_set_bit(bm, page_to_pfn(page)); 1126 } 1127 return nr_highmem; 1128 } 1129 #else 1130 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1131 1132 static inline unsigned int 1133 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1134 #endif /* CONFIG_HIGHMEM */ 1135 1136 /** 1137 * swsusp_alloc - allocate memory for the suspend image 1138 * 1139 * We first try to allocate as many highmem pages as there are 1140 * saveable highmem pages in the system. If that fails, we allocate 1141 * non-highmem pages for the copies of the remaining highmem ones. 1142 * 1143 * In this approach it is likely that the copies of highmem pages will 1144 * also be located in the high memory, because of the way in which 1145 * copy_data_pages() works. 1146 */ 1147 1148 static int 1149 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1150 unsigned int nr_pages, unsigned int nr_highmem) 1151 { 1152 int error; 1153 1154 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1155 if (error) 1156 goto Free; 1157 1158 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY); 1159 if (error) 1160 goto Free; 1161 1162 if (nr_highmem > 0) { 1163 error = get_highmem_buffer(PG_ANY); 1164 if (error) 1165 goto Free; 1166 1167 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem); 1168 } 1169 while (nr_pages-- > 0) { 1170 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1171 1172 if (!page) 1173 goto Free; 1174 1175 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1176 } 1177 return 0; 1178 1179 Free: 1180 swsusp_free(); 1181 return -ENOMEM; 1182 } 1183 1184 /* Memory bitmap used for marking saveable pages (during suspend) or the 1185 * suspend image pages (during resume) 1186 */ 1187 static struct memory_bitmap orig_bm; 1188 /* Memory bitmap used on suspend for marking allocated pages that will contain 1189 * the copies of saveable pages. During resume it is initially used for 1190 * marking the suspend image pages, but then its set bits are duplicated in 1191 * @orig_bm and it is released. Next, on systems with high memory, it may be 1192 * used for marking "safe" highmem pages, but it has to be reinitialized for 1193 * this purpose. 1194 */ 1195 static struct memory_bitmap copy_bm; 1196 1197 asmlinkage int swsusp_save(void) 1198 { 1199 unsigned int nr_pages, nr_highmem; 1200 1201 printk(KERN_INFO "PM: Creating hibernation image: \n"); 1202 1203 drain_local_pages(NULL); 1204 nr_pages = count_data_pages(); 1205 nr_highmem = count_highmem_pages(); 1206 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1207 1208 if (!enough_free_mem(nr_pages, nr_highmem)) { 1209 printk(KERN_ERR "PM: Not enough free memory\n"); 1210 return -ENOMEM; 1211 } 1212 1213 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1214 printk(KERN_ERR "PM: Memory allocation failed\n"); 1215 return -ENOMEM; 1216 } 1217 1218 /* During allocating of suspend pagedir, new cold pages may appear. 1219 * Kill them. 1220 */ 1221 drain_local_pages(NULL); 1222 copy_data_pages(©_bm, &orig_bm); 1223 1224 /* 1225 * End of critical section. From now on, we can write to memory, 1226 * but we should not touch disk. This specially means we must _not_ 1227 * touch swap space! Except we must write out our image of course. 1228 */ 1229 1230 nr_pages += nr_highmem; 1231 nr_copy_pages = nr_pages; 1232 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1233 1234 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1235 nr_pages); 1236 1237 return 0; 1238 } 1239 1240 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1241 static int init_header_complete(struct swsusp_info *info) 1242 { 1243 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1244 info->version_code = LINUX_VERSION_CODE; 1245 return 0; 1246 } 1247 1248 static char *check_image_kernel(struct swsusp_info *info) 1249 { 1250 if (info->version_code != LINUX_VERSION_CODE) 1251 return "kernel version"; 1252 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1253 return "system type"; 1254 if (strcmp(info->uts.release,init_utsname()->release)) 1255 return "kernel release"; 1256 if (strcmp(info->uts.version,init_utsname()->version)) 1257 return "version"; 1258 if (strcmp(info->uts.machine,init_utsname()->machine)) 1259 return "machine"; 1260 return NULL; 1261 } 1262 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1263 1264 unsigned long snapshot_get_image_size(void) 1265 { 1266 return nr_copy_pages + nr_meta_pages + 1; 1267 } 1268 1269 static int init_header(struct swsusp_info *info) 1270 { 1271 memset(info, 0, sizeof(struct swsusp_info)); 1272 info->num_physpages = num_physpages; 1273 info->image_pages = nr_copy_pages; 1274 info->pages = snapshot_get_image_size(); 1275 info->size = info->pages; 1276 info->size <<= PAGE_SHIFT; 1277 return init_header_complete(info); 1278 } 1279 1280 /** 1281 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1282 * are stored in the array @buf[] (1 page at a time) 1283 */ 1284 1285 static inline void 1286 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1287 { 1288 int j; 1289 1290 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1291 buf[j] = memory_bm_next_pfn(bm); 1292 if (unlikely(buf[j] == BM_END_OF_MAP)) 1293 break; 1294 } 1295 } 1296 1297 /** 1298 * snapshot_read_next - used for reading the system memory snapshot. 1299 * 1300 * On the first call to it @handle should point to a zeroed 1301 * snapshot_handle structure. The structure gets updated and a pointer 1302 * to it should be passed to this function every next time. 1303 * 1304 * The @count parameter should contain the number of bytes the caller 1305 * wants to read from the snapshot. It must not be zero. 1306 * 1307 * On success the function returns a positive number. Then, the caller 1308 * is allowed to read up to the returned number of bytes from the memory 1309 * location computed by the data_of() macro. The number returned 1310 * may be smaller than @count, but this only happens if the read would 1311 * cross a page boundary otherwise. 1312 * 1313 * The function returns 0 to indicate the end of data stream condition, 1314 * and a negative number is returned on error. In such cases the 1315 * structure pointed to by @handle is not updated and should not be used 1316 * any more. 1317 */ 1318 1319 int snapshot_read_next(struct snapshot_handle *handle, size_t count) 1320 { 1321 if (handle->cur > nr_meta_pages + nr_copy_pages) 1322 return 0; 1323 1324 if (!buffer) { 1325 /* This makes the buffer be freed by swsusp_free() */ 1326 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1327 if (!buffer) 1328 return -ENOMEM; 1329 } 1330 if (!handle->offset) { 1331 int error; 1332 1333 error = init_header((struct swsusp_info *)buffer); 1334 if (error) 1335 return error; 1336 handle->buffer = buffer; 1337 memory_bm_position_reset(&orig_bm); 1338 memory_bm_position_reset(©_bm); 1339 } 1340 if (handle->prev < handle->cur) { 1341 if (handle->cur <= nr_meta_pages) { 1342 memset(buffer, 0, PAGE_SIZE); 1343 pack_pfns(buffer, &orig_bm); 1344 } else { 1345 struct page *page; 1346 1347 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1348 if (PageHighMem(page)) { 1349 /* Highmem pages are copied to the buffer, 1350 * because we can't return with a kmapped 1351 * highmem page (we may not be called again). 1352 */ 1353 void *kaddr; 1354 1355 kaddr = kmap_atomic(page, KM_USER0); 1356 memcpy(buffer, kaddr, PAGE_SIZE); 1357 kunmap_atomic(kaddr, KM_USER0); 1358 handle->buffer = buffer; 1359 } else { 1360 handle->buffer = page_address(page); 1361 } 1362 } 1363 handle->prev = handle->cur; 1364 } 1365 handle->buf_offset = handle->cur_offset; 1366 if (handle->cur_offset + count >= PAGE_SIZE) { 1367 count = PAGE_SIZE - handle->cur_offset; 1368 handle->cur_offset = 0; 1369 handle->cur++; 1370 } else { 1371 handle->cur_offset += count; 1372 } 1373 handle->offset += count; 1374 return count; 1375 } 1376 1377 /** 1378 * mark_unsafe_pages - mark the pages that cannot be used for storing 1379 * the image during resume, because they conflict with the pages that 1380 * had been used before suspend 1381 */ 1382 1383 static int mark_unsafe_pages(struct memory_bitmap *bm) 1384 { 1385 struct zone *zone; 1386 unsigned long pfn, max_zone_pfn; 1387 1388 /* Clear page flags */ 1389 for_each_zone(zone) { 1390 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1391 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1392 if (pfn_valid(pfn)) 1393 swsusp_unset_page_free(pfn_to_page(pfn)); 1394 } 1395 1396 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1397 memory_bm_position_reset(bm); 1398 do { 1399 pfn = memory_bm_next_pfn(bm); 1400 if (likely(pfn != BM_END_OF_MAP)) { 1401 if (likely(pfn_valid(pfn))) 1402 swsusp_set_page_free(pfn_to_page(pfn)); 1403 else 1404 return -EFAULT; 1405 } 1406 } while (pfn != BM_END_OF_MAP); 1407 1408 allocated_unsafe_pages = 0; 1409 1410 return 0; 1411 } 1412 1413 static void 1414 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1415 { 1416 unsigned long pfn; 1417 1418 memory_bm_position_reset(src); 1419 pfn = memory_bm_next_pfn(src); 1420 while (pfn != BM_END_OF_MAP) { 1421 memory_bm_set_bit(dst, pfn); 1422 pfn = memory_bm_next_pfn(src); 1423 } 1424 } 1425 1426 static int check_header(struct swsusp_info *info) 1427 { 1428 char *reason; 1429 1430 reason = check_image_kernel(info); 1431 if (!reason && info->num_physpages != num_physpages) 1432 reason = "memory size"; 1433 if (reason) { 1434 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1435 return -EPERM; 1436 } 1437 return 0; 1438 } 1439 1440 /** 1441 * load header - check the image header and copy data from it 1442 */ 1443 1444 static int 1445 load_header(struct swsusp_info *info) 1446 { 1447 int error; 1448 1449 restore_pblist = NULL; 1450 error = check_header(info); 1451 if (!error) { 1452 nr_copy_pages = info->image_pages; 1453 nr_meta_pages = info->pages - info->image_pages - 1; 1454 } 1455 return error; 1456 } 1457 1458 /** 1459 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1460 * the corresponding bit in the memory bitmap @bm 1461 */ 1462 1463 static inline void 1464 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1465 { 1466 int j; 1467 1468 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1469 if (unlikely(buf[j] == BM_END_OF_MAP)) 1470 break; 1471 1472 memory_bm_set_bit(bm, buf[j]); 1473 } 1474 } 1475 1476 /* List of "safe" pages that may be used to store data loaded from the suspend 1477 * image 1478 */ 1479 static struct linked_page *safe_pages_list; 1480 1481 #ifdef CONFIG_HIGHMEM 1482 /* struct highmem_pbe is used for creating the list of highmem pages that 1483 * should be restored atomically during the resume from disk, because the page 1484 * frames they have occupied before the suspend are in use. 1485 */ 1486 struct highmem_pbe { 1487 struct page *copy_page; /* data is here now */ 1488 struct page *orig_page; /* data was here before the suspend */ 1489 struct highmem_pbe *next; 1490 }; 1491 1492 /* List of highmem PBEs needed for restoring the highmem pages that were 1493 * allocated before the suspend and included in the suspend image, but have 1494 * also been allocated by the "resume" kernel, so their contents cannot be 1495 * written directly to their "original" page frames. 1496 */ 1497 static struct highmem_pbe *highmem_pblist; 1498 1499 /** 1500 * count_highmem_image_pages - compute the number of highmem pages in the 1501 * suspend image. The bits in the memory bitmap @bm that correspond to the 1502 * image pages are assumed to be set. 1503 */ 1504 1505 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1506 { 1507 unsigned long pfn; 1508 unsigned int cnt = 0; 1509 1510 memory_bm_position_reset(bm); 1511 pfn = memory_bm_next_pfn(bm); 1512 while (pfn != BM_END_OF_MAP) { 1513 if (PageHighMem(pfn_to_page(pfn))) 1514 cnt++; 1515 1516 pfn = memory_bm_next_pfn(bm); 1517 } 1518 return cnt; 1519 } 1520 1521 /** 1522 * prepare_highmem_image - try to allocate as many highmem pages as 1523 * there are highmem image pages (@nr_highmem_p points to the variable 1524 * containing the number of highmem image pages). The pages that are 1525 * "safe" (ie. will not be overwritten when the suspend image is 1526 * restored) have the corresponding bits set in @bm (it must be 1527 * unitialized). 1528 * 1529 * NOTE: This function should not be called if there are no highmem 1530 * image pages. 1531 */ 1532 1533 static unsigned int safe_highmem_pages; 1534 1535 static struct memory_bitmap *safe_highmem_bm; 1536 1537 static int 1538 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1539 { 1540 unsigned int to_alloc; 1541 1542 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1543 return -ENOMEM; 1544 1545 if (get_highmem_buffer(PG_SAFE)) 1546 return -ENOMEM; 1547 1548 to_alloc = count_free_highmem_pages(); 1549 if (to_alloc > *nr_highmem_p) 1550 to_alloc = *nr_highmem_p; 1551 else 1552 *nr_highmem_p = to_alloc; 1553 1554 safe_highmem_pages = 0; 1555 while (to_alloc-- > 0) { 1556 struct page *page; 1557 1558 page = alloc_page(__GFP_HIGHMEM); 1559 if (!swsusp_page_is_free(page)) { 1560 /* The page is "safe", set its bit the bitmap */ 1561 memory_bm_set_bit(bm, page_to_pfn(page)); 1562 safe_highmem_pages++; 1563 } 1564 /* Mark the page as allocated */ 1565 swsusp_set_page_forbidden(page); 1566 swsusp_set_page_free(page); 1567 } 1568 memory_bm_position_reset(bm); 1569 safe_highmem_bm = bm; 1570 return 0; 1571 } 1572 1573 /** 1574 * get_highmem_page_buffer - for given highmem image page find the buffer 1575 * that suspend_write_next() should set for its caller to write to. 1576 * 1577 * If the page is to be saved to its "original" page frame or a copy of 1578 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1579 * the copy of the page is to be made in normal memory, so the address of 1580 * the copy is returned. 1581 * 1582 * If @buffer is returned, the caller of suspend_write_next() will write 1583 * the page's contents to @buffer, so they will have to be copied to the 1584 * right location on the next call to suspend_write_next() and it is done 1585 * with the help of copy_last_highmem_page(). For this purpose, if 1586 * @buffer is returned, @last_highmem page is set to the page to which 1587 * the data will have to be copied from @buffer. 1588 */ 1589 1590 static struct page *last_highmem_page; 1591 1592 static void * 1593 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1594 { 1595 struct highmem_pbe *pbe; 1596 void *kaddr; 1597 1598 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1599 /* We have allocated the "original" page frame and we can 1600 * use it directly to store the loaded page. 1601 */ 1602 last_highmem_page = page; 1603 return buffer; 1604 } 1605 /* The "original" page frame has not been allocated and we have to 1606 * use a "safe" page frame to store the loaded page. 1607 */ 1608 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1609 if (!pbe) { 1610 swsusp_free(); 1611 return NULL; 1612 } 1613 pbe->orig_page = page; 1614 if (safe_highmem_pages > 0) { 1615 struct page *tmp; 1616 1617 /* Copy of the page will be stored in high memory */ 1618 kaddr = buffer; 1619 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1620 safe_highmem_pages--; 1621 last_highmem_page = tmp; 1622 pbe->copy_page = tmp; 1623 } else { 1624 /* Copy of the page will be stored in normal memory */ 1625 kaddr = safe_pages_list; 1626 safe_pages_list = safe_pages_list->next; 1627 pbe->copy_page = virt_to_page(kaddr); 1628 } 1629 pbe->next = highmem_pblist; 1630 highmem_pblist = pbe; 1631 return kaddr; 1632 } 1633 1634 /** 1635 * copy_last_highmem_page - copy the contents of a highmem image from 1636 * @buffer, where the caller of snapshot_write_next() has place them, 1637 * to the right location represented by @last_highmem_page . 1638 */ 1639 1640 static void copy_last_highmem_page(void) 1641 { 1642 if (last_highmem_page) { 1643 void *dst; 1644 1645 dst = kmap_atomic(last_highmem_page, KM_USER0); 1646 memcpy(dst, buffer, PAGE_SIZE); 1647 kunmap_atomic(dst, KM_USER0); 1648 last_highmem_page = NULL; 1649 } 1650 } 1651 1652 static inline int last_highmem_page_copied(void) 1653 { 1654 return !last_highmem_page; 1655 } 1656 1657 static inline void free_highmem_data(void) 1658 { 1659 if (safe_highmem_bm) 1660 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1661 1662 if (buffer) 1663 free_image_page(buffer, PG_UNSAFE_CLEAR); 1664 } 1665 #else 1666 static inline int get_safe_write_buffer(void) { return 0; } 1667 1668 static unsigned int 1669 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1670 1671 static inline int 1672 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1673 { 1674 return 0; 1675 } 1676 1677 static inline void * 1678 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1679 { 1680 return NULL; 1681 } 1682 1683 static inline void copy_last_highmem_page(void) {} 1684 static inline int last_highmem_page_copied(void) { return 1; } 1685 static inline void free_highmem_data(void) {} 1686 #endif /* CONFIG_HIGHMEM */ 1687 1688 /** 1689 * prepare_image - use the memory bitmap @bm to mark the pages that will 1690 * be overwritten in the process of restoring the system memory state 1691 * from the suspend image ("unsafe" pages) and allocate memory for the 1692 * image. 1693 * 1694 * The idea is to allocate a new memory bitmap first and then allocate 1695 * as many pages as needed for the image data, but not to assign these 1696 * pages to specific tasks initially. Instead, we just mark them as 1697 * allocated and create a lists of "safe" pages that will be used 1698 * later. On systems with high memory a list of "safe" highmem pages is 1699 * also created. 1700 */ 1701 1702 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1703 1704 static int 1705 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1706 { 1707 unsigned int nr_pages, nr_highmem; 1708 struct linked_page *sp_list, *lp; 1709 int error; 1710 1711 /* If there is no highmem, the buffer will not be necessary */ 1712 free_image_page(buffer, PG_UNSAFE_CLEAR); 1713 buffer = NULL; 1714 1715 nr_highmem = count_highmem_image_pages(bm); 1716 error = mark_unsafe_pages(bm); 1717 if (error) 1718 goto Free; 1719 1720 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 1721 if (error) 1722 goto Free; 1723 1724 duplicate_memory_bitmap(new_bm, bm); 1725 memory_bm_free(bm, PG_UNSAFE_KEEP); 1726 if (nr_highmem > 0) { 1727 error = prepare_highmem_image(bm, &nr_highmem); 1728 if (error) 1729 goto Free; 1730 } 1731 /* Reserve some safe pages for potential later use. 1732 * 1733 * NOTE: This way we make sure there will be enough safe pages for the 1734 * chain_alloc() in get_buffer(). It is a bit wasteful, but 1735 * nr_copy_pages cannot be greater than 50% of the memory anyway. 1736 */ 1737 sp_list = NULL; 1738 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 1739 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1740 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 1741 while (nr_pages > 0) { 1742 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 1743 if (!lp) { 1744 error = -ENOMEM; 1745 goto Free; 1746 } 1747 lp->next = sp_list; 1748 sp_list = lp; 1749 nr_pages--; 1750 } 1751 /* Preallocate memory for the image */ 1752 safe_pages_list = NULL; 1753 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 1754 while (nr_pages > 0) { 1755 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 1756 if (!lp) { 1757 error = -ENOMEM; 1758 goto Free; 1759 } 1760 if (!swsusp_page_is_free(virt_to_page(lp))) { 1761 /* The page is "safe", add it to the list */ 1762 lp->next = safe_pages_list; 1763 safe_pages_list = lp; 1764 } 1765 /* Mark the page as allocated */ 1766 swsusp_set_page_forbidden(virt_to_page(lp)); 1767 swsusp_set_page_free(virt_to_page(lp)); 1768 nr_pages--; 1769 } 1770 /* Free the reserved safe pages so that chain_alloc() can use them */ 1771 while (sp_list) { 1772 lp = sp_list->next; 1773 free_image_page(sp_list, PG_UNSAFE_CLEAR); 1774 sp_list = lp; 1775 } 1776 return 0; 1777 1778 Free: 1779 swsusp_free(); 1780 return error; 1781 } 1782 1783 /** 1784 * get_buffer - compute the address that snapshot_write_next() should 1785 * set for its caller to write to. 1786 */ 1787 1788 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 1789 { 1790 struct pbe *pbe; 1791 struct page *page = pfn_to_page(memory_bm_next_pfn(bm)); 1792 1793 if (PageHighMem(page)) 1794 return get_highmem_page_buffer(page, ca); 1795 1796 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 1797 /* We have allocated the "original" page frame and we can 1798 * use it directly to store the loaded page. 1799 */ 1800 return page_address(page); 1801 1802 /* The "original" page frame has not been allocated and we have to 1803 * use a "safe" page frame to store the loaded page. 1804 */ 1805 pbe = chain_alloc(ca, sizeof(struct pbe)); 1806 if (!pbe) { 1807 swsusp_free(); 1808 return NULL; 1809 } 1810 pbe->orig_address = page_address(page); 1811 pbe->address = safe_pages_list; 1812 safe_pages_list = safe_pages_list->next; 1813 pbe->next = restore_pblist; 1814 restore_pblist = pbe; 1815 return pbe->address; 1816 } 1817 1818 /** 1819 * snapshot_write_next - used for writing the system memory snapshot. 1820 * 1821 * On the first call to it @handle should point to a zeroed 1822 * snapshot_handle structure. The structure gets updated and a pointer 1823 * to it should be passed to this function every next time. 1824 * 1825 * The @count parameter should contain the number of bytes the caller 1826 * wants to write to the image. It must not be zero. 1827 * 1828 * On success the function returns a positive number. Then, the caller 1829 * is allowed to write up to the returned number of bytes to the memory 1830 * location computed by the data_of() macro. The number returned 1831 * may be smaller than @count, but this only happens if the write would 1832 * cross a page boundary otherwise. 1833 * 1834 * The function returns 0 to indicate the "end of file" condition, 1835 * and a negative number is returned on error. In such cases the 1836 * structure pointed to by @handle is not updated and should not be used 1837 * any more. 1838 */ 1839 1840 int snapshot_write_next(struct snapshot_handle *handle, size_t count) 1841 { 1842 static struct chain_allocator ca; 1843 int error = 0; 1844 1845 /* Check if we have already loaded the entire image */ 1846 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) 1847 return 0; 1848 1849 if (handle->offset == 0) { 1850 if (!buffer) 1851 /* This makes the buffer be freed by swsusp_free() */ 1852 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1853 1854 if (!buffer) 1855 return -ENOMEM; 1856 1857 handle->buffer = buffer; 1858 } 1859 handle->sync_read = 1; 1860 if (handle->prev < handle->cur) { 1861 if (handle->prev == 0) { 1862 error = load_header(buffer); 1863 if (error) 1864 return error; 1865 1866 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 1867 if (error) 1868 return error; 1869 1870 } else if (handle->prev <= nr_meta_pages) { 1871 unpack_orig_pfns(buffer, ©_bm); 1872 if (handle->prev == nr_meta_pages) { 1873 error = prepare_image(&orig_bm, ©_bm); 1874 if (error) 1875 return error; 1876 1877 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 1878 memory_bm_position_reset(&orig_bm); 1879 restore_pblist = NULL; 1880 handle->buffer = get_buffer(&orig_bm, &ca); 1881 handle->sync_read = 0; 1882 if (!handle->buffer) 1883 return -ENOMEM; 1884 } 1885 } else { 1886 copy_last_highmem_page(); 1887 handle->buffer = get_buffer(&orig_bm, &ca); 1888 if (handle->buffer != buffer) 1889 handle->sync_read = 0; 1890 } 1891 handle->prev = handle->cur; 1892 } 1893 handle->buf_offset = handle->cur_offset; 1894 if (handle->cur_offset + count >= PAGE_SIZE) { 1895 count = PAGE_SIZE - handle->cur_offset; 1896 handle->cur_offset = 0; 1897 handle->cur++; 1898 } else { 1899 handle->cur_offset += count; 1900 } 1901 handle->offset += count; 1902 return count; 1903 } 1904 1905 /** 1906 * snapshot_write_finalize - must be called after the last call to 1907 * snapshot_write_next() in case the last page in the image happens 1908 * to be a highmem page and its contents should be stored in the 1909 * highmem. Additionally, it releases the memory that will not be 1910 * used any more. 1911 */ 1912 1913 void snapshot_write_finalize(struct snapshot_handle *handle) 1914 { 1915 copy_last_highmem_page(); 1916 /* Free only if we have loaded the image entirely */ 1917 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) { 1918 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 1919 free_highmem_data(); 1920 } 1921 } 1922 1923 int snapshot_image_loaded(struct snapshot_handle *handle) 1924 { 1925 return !(!nr_copy_pages || !last_highmem_page_copied() || 1926 handle->cur <= nr_meta_pages + nr_copy_pages); 1927 } 1928 1929 #ifdef CONFIG_HIGHMEM 1930 /* Assumes that @buf is ready and points to a "safe" page */ 1931 static inline void 1932 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 1933 { 1934 void *kaddr1, *kaddr2; 1935 1936 kaddr1 = kmap_atomic(p1, KM_USER0); 1937 kaddr2 = kmap_atomic(p2, KM_USER1); 1938 memcpy(buf, kaddr1, PAGE_SIZE); 1939 memcpy(kaddr1, kaddr2, PAGE_SIZE); 1940 memcpy(kaddr2, buf, PAGE_SIZE); 1941 kunmap_atomic(kaddr1, KM_USER0); 1942 kunmap_atomic(kaddr2, KM_USER1); 1943 } 1944 1945 /** 1946 * restore_highmem - for each highmem page that was allocated before 1947 * the suspend and included in the suspend image, and also has been 1948 * allocated by the "resume" kernel swap its current (ie. "before 1949 * resume") contents with the previous (ie. "before suspend") one. 1950 * 1951 * If the resume eventually fails, we can call this function once 1952 * again and restore the "before resume" highmem state. 1953 */ 1954 1955 int restore_highmem(void) 1956 { 1957 struct highmem_pbe *pbe = highmem_pblist; 1958 void *buf; 1959 1960 if (!pbe) 1961 return 0; 1962 1963 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 1964 if (!buf) 1965 return -ENOMEM; 1966 1967 while (pbe) { 1968 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 1969 pbe = pbe->next; 1970 } 1971 free_image_page(buf, PG_UNSAFE_CLEAR); 1972 return 0; 1973 } 1974 #endif /* CONFIG_HIGHMEM */ 1975