xref: /openbmc/linux/kernel/power/snapshot.c (revision 545e4006)
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34 
35 #include "power.h"
36 
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40 
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47 
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50 
51 /**
52  *	@safe_needed - on resume, for storing the PBE list and the image,
53  *	we can only use memory pages that do not conflict with the pages
54  *	used before suspend.  The unsafe pages have PageNosaveFree set
55  *	and we count them using unsafe_pages.
56  *
57  *	Each allocated image page is marked as PageNosave and PageNosaveFree
58  *	so that swsusp_free() can release it.
59  */
60 
61 #define PG_ANY		0
62 #define PG_SAFE		1
63 #define PG_UNSAFE_CLEAR	1
64 #define PG_UNSAFE_KEEP	0
65 
66 static unsigned int allocated_unsafe_pages;
67 
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70 	void *res;
71 
72 	res = (void *)get_zeroed_page(gfp_mask);
73 	if (safe_needed)
74 		while (res && swsusp_page_is_free(virt_to_page(res))) {
75 			/* The page is unsafe, mark it for swsusp_free() */
76 			swsusp_set_page_forbidden(virt_to_page(res));
77 			allocated_unsafe_pages++;
78 			res = (void *)get_zeroed_page(gfp_mask);
79 		}
80 	if (res) {
81 		swsusp_set_page_forbidden(virt_to_page(res));
82 		swsusp_set_page_free(virt_to_page(res));
83 	}
84 	return res;
85 }
86 
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91 
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94 	struct page *page;
95 
96 	page = alloc_page(gfp_mask);
97 	if (page) {
98 		swsusp_set_page_forbidden(page);
99 		swsusp_set_page_free(page);
100 	}
101 	return page;
102 }
103 
104 /**
105  *	free_image_page - free page represented by @addr, allocated with
106  *	get_image_page (page flags set by it must be cleared)
107  */
108 
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111 	struct page *page;
112 
113 	BUG_ON(!virt_addr_valid(addr));
114 
115 	page = virt_to_page(addr);
116 
117 	swsusp_unset_page_forbidden(page);
118 	if (clear_nosave_free)
119 		swsusp_unset_page_free(page);
120 
121 	__free_page(page);
122 }
123 
124 /* struct linked_page is used to build chains of pages */
125 
126 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
127 
128 struct linked_page {
129 	struct linked_page *next;
130 	char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132 
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136 	while (list) {
137 		struct linked_page *lp = list->next;
138 
139 		free_image_page(list, clear_page_nosave);
140 		list = lp;
141 	}
142 }
143 
144 /**
145   *	struct chain_allocator is used for allocating small objects out of
146   *	a linked list of pages called 'the chain'.
147   *
148   *	The chain grows each time when there is no room for a new object in
149   *	the current page.  The allocated objects cannot be freed individually.
150   *	It is only possible to free them all at once, by freeing the entire
151   *	chain.
152   *
153   *	NOTE: The chain allocator may be inefficient if the allocated objects
154   *	are not much smaller than PAGE_SIZE.
155   */
156 
157 struct chain_allocator {
158 	struct linked_page *chain;	/* the chain */
159 	unsigned int used_space;	/* total size of objects allocated out
160 					 * of the current page
161 					 */
162 	gfp_t gfp_mask;		/* mask for allocating pages */
163 	int safe_needed;	/* if set, only "safe" pages are allocated */
164 };
165 
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169 	ca->chain = NULL;
170 	ca->used_space = LINKED_PAGE_DATA_SIZE;
171 	ca->gfp_mask = gfp_mask;
172 	ca->safe_needed = safe_needed;
173 }
174 
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177 	void *ret;
178 
179 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180 		struct linked_page *lp;
181 
182 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183 		if (!lp)
184 			return NULL;
185 
186 		lp->next = ca->chain;
187 		ca->chain = lp;
188 		ca->used_space = 0;
189 	}
190 	ret = ca->chain->data + ca->used_space;
191 	ca->used_space += size;
192 	return ret;
193 }
194 
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197 	free_list_of_pages(ca->chain, clear_page_nosave);
198 	memset(ca, 0, sizeof(struct chain_allocator));
199 }
200 
201 /**
202  *	Data types related to memory bitmaps.
203  *
204  *	Memory bitmap is a structure consiting of many linked lists of
205  *	objects.  The main list's elements are of type struct zone_bitmap
206  *	and each of them corresonds to one zone.  For each zone bitmap
207  *	object there is a list of objects of type struct bm_block that
208  *	represent each blocks of bitmap in which information is stored.
209  *
210  *	struct memory_bitmap contains a pointer to the main list of zone
211  *	bitmap objects, a struct bm_position used for browsing the bitmap,
212  *	and a pointer to the list of pages used for allocating all of the
213  *	zone bitmap objects and bitmap block objects.
214  *
215  *	NOTE: It has to be possible to lay out the bitmap in memory
216  *	using only allocations of order 0.  Additionally, the bitmap is
217  *	designed to work with arbitrary number of zones (this is over the
218  *	top for now, but let's avoid making unnecessary assumptions ;-).
219  *
220  *	struct zone_bitmap contains a pointer to a list of bitmap block
221  *	objects and a pointer to the bitmap block object that has been
222  *	most recently used for setting bits.  Additionally, it contains the
223  *	pfns that correspond to the start and end of the represented zone.
224  *
225  *	struct bm_block contains a pointer to the memory page in which
226  *	information is stored (in the form of a block of bitmap)
227  *	It also contains the pfns that correspond to the start and end of
228  *	the represented memory area.
229  */
230 
231 #define BM_END_OF_MAP	(~0UL)
232 
233 #define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)
234 
235 struct bm_block {
236 	struct bm_block *next;		/* next element of the list */
237 	unsigned long start_pfn;	/* pfn represented by the first bit */
238 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
239 	unsigned long *data;	/* bitmap representing pages */
240 };
241 
242 static inline unsigned long bm_block_bits(struct bm_block *bb)
243 {
244 	return bb->end_pfn - bb->start_pfn;
245 }
246 
247 struct zone_bitmap {
248 	struct zone_bitmap *next;	/* next element of the list */
249 	unsigned long start_pfn;	/* minimal pfn in this zone */
250 	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
251 	struct bm_block *bm_blocks;	/* list of bitmap blocks */
252 	struct bm_block *cur_block;	/* recently used bitmap block */
253 };
254 
255 /* strcut bm_position is used for browsing memory bitmaps */
256 
257 struct bm_position {
258 	struct zone_bitmap *zone_bm;
259 	struct bm_block *block;
260 	int bit;
261 };
262 
263 struct memory_bitmap {
264 	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
265 	struct linked_page *p_list;	/* list of pages used to store zone
266 					 * bitmap objects and bitmap block
267 					 * objects
268 					 */
269 	struct bm_position cur;	/* most recently used bit position */
270 };
271 
272 /* Functions that operate on memory bitmaps */
273 
274 static void memory_bm_position_reset(struct memory_bitmap *bm)
275 {
276 	struct zone_bitmap *zone_bm;
277 
278 	zone_bm = bm->zone_bm_list;
279 	bm->cur.zone_bm = zone_bm;
280 	bm->cur.block = zone_bm->bm_blocks;
281 	bm->cur.bit = 0;
282 }
283 
284 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
285 
286 /**
287  *	create_bm_block_list - create a list of block bitmap objects
288  */
289 
290 static inline struct bm_block *
291 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
292 {
293 	struct bm_block *bblist = NULL;
294 
295 	while (nr_blocks-- > 0) {
296 		struct bm_block *bb;
297 
298 		bb = chain_alloc(ca, sizeof(struct bm_block));
299 		if (!bb)
300 			return NULL;
301 
302 		bb->next = bblist;
303 		bblist = bb;
304 	}
305 	return bblist;
306 }
307 
308 /**
309  *	create_zone_bm_list - create a list of zone bitmap objects
310  */
311 
312 static inline struct zone_bitmap *
313 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
314 {
315 	struct zone_bitmap *zbmlist = NULL;
316 
317 	while (nr_zones-- > 0) {
318 		struct zone_bitmap *zbm;
319 
320 		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
321 		if (!zbm)
322 			return NULL;
323 
324 		zbm->next = zbmlist;
325 		zbmlist = zbm;
326 	}
327 	return zbmlist;
328 }
329 
330 /**
331   *	memory_bm_create - allocate memory for a memory bitmap
332   */
333 
334 static int
335 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
336 {
337 	struct chain_allocator ca;
338 	struct zone *zone;
339 	struct zone_bitmap *zone_bm;
340 	struct bm_block *bb;
341 	unsigned int nr;
342 
343 	chain_init(&ca, gfp_mask, safe_needed);
344 
345 	/* Compute the number of zones */
346 	nr = 0;
347 	for_each_zone(zone)
348 		if (populated_zone(zone))
349 			nr++;
350 
351 	/* Allocate the list of zones bitmap objects */
352 	zone_bm = create_zone_bm_list(nr, &ca);
353 	bm->zone_bm_list = zone_bm;
354 	if (!zone_bm) {
355 		chain_free(&ca, PG_UNSAFE_CLEAR);
356 		return -ENOMEM;
357 	}
358 
359 	/* Initialize the zone bitmap objects */
360 	for_each_zone(zone) {
361 		unsigned long pfn;
362 
363 		if (!populated_zone(zone))
364 			continue;
365 
366 		zone_bm->start_pfn = zone->zone_start_pfn;
367 		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
368 		/* Allocate the list of bitmap block objects */
369 		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
370 		bb = create_bm_block_list(nr, &ca);
371 		zone_bm->bm_blocks = bb;
372 		zone_bm->cur_block = bb;
373 		if (!bb)
374 			goto Free;
375 
376 		nr = zone->spanned_pages;
377 		pfn = zone->zone_start_pfn;
378 		/* Initialize the bitmap block objects */
379 		while (bb) {
380 			unsigned long *ptr;
381 
382 			ptr = get_image_page(gfp_mask, safe_needed);
383 			bb->data = ptr;
384 			if (!ptr)
385 				goto Free;
386 
387 			bb->start_pfn = pfn;
388 			if (nr >= BM_BITS_PER_BLOCK) {
389 				pfn += BM_BITS_PER_BLOCK;
390 				nr -= BM_BITS_PER_BLOCK;
391 			} else {
392 				/* This is executed only once in the loop */
393 				pfn += nr;
394 			}
395 			bb->end_pfn = pfn;
396 			bb = bb->next;
397 		}
398 		zone_bm = zone_bm->next;
399 	}
400 	bm->p_list = ca.chain;
401 	memory_bm_position_reset(bm);
402 	return 0;
403 
404  Free:
405 	bm->p_list = ca.chain;
406 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
407 	return -ENOMEM;
408 }
409 
410 /**
411   *	memory_bm_free - free memory occupied by the memory bitmap @bm
412   */
413 
414 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
415 {
416 	struct zone_bitmap *zone_bm;
417 
418 	/* Free the list of bit blocks for each zone_bitmap object */
419 	zone_bm = bm->zone_bm_list;
420 	while (zone_bm) {
421 		struct bm_block *bb;
422 
423 		bb = zone_bm->bm_blocks;
424 		while (bb) {
425 			if (bb->data)
426 				free_image_page(bb->data, clear_nosave_free);
427 			bb = bb->next;
428 		}
429 		zone_bm = zone_bm->next;
430 	}
431 	free_list_of_pages(bm->p_list, clear_nosave_free);
432 	bm->zone_bm_list = NULL;
433 }
434 
435 /**
436  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
437  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
438  *	of @bm->cur_zone_bm are updated.
439  */
440 
441 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
442 				void **addr, unsigned int *bit_nr)
443 {
444 	struct zone_bitmap *zone_bm;
445 	struct bm_block *bb;
446 
447 	/* Check if the pfn is from the current zone */
448 	zone_bm = bm->cur.zone_bm;
449 	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
450 		zone_bm = bm->zone_bm_list;
451 		/* We don't assume that the zones are sorted by pfns */
452 		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
453 			zone_bm = zone_bm->next;
454 
455 			if (!zone_bm)
456 				return -EFAULT;
457 		}
458 		bm->cur.zone_bm = zone_bm;
459 	}
460 	/* Check if the pfn corresponds to the current bitmap block */
461 	bb = zone_bm->cur_block;
462 	if (pfn < bb->start_pfn)
463 		bb = zone_bm->bm_blocks;
464 
465 	while (pfn >= bb->end_pfn) {
466 		bb = bb->next;
467 
468 		BUG_ON(!bb);
469 	}
470 	zone_bm->cur_block = bb;
471 	pfn -= bb->start_pfn;
472 	*bit_nr = pfn;
473 	*addr = bb->data;
474 	return 0;
475 }
476 
477 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
478 {
479 	void *addr;
480 	unsigned int bit;
481 	int error;
482 
483 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
484 	BUG_ON(error);
485 	set_bit(bit, addr);
486 }
487 
488 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
489 {
490 	void *addr;
491 	unsigned int bit;
492 	int error;
493 
494 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
495 	if (!error)
496 		set_bit(bit, addr);
497 	return error;
498 }
499 
500 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
501 {
502 	void *addr;
503 	unsigned int bit;
504 	int error;
505 
506 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
507 	BUG_ON(error);
508 	clear_bit(bit, addr);
509 }
510 
511 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
512 {
513 	void *addr;
514 	unsigned int bit;
515 	int error;
516 
517 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 	BUG_ON(error);
519 	return test_bit(bit, addr);
520 }
521 
522 /**
523  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
524  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
525  *	returned.
526  *
527  *	It is required to run memory_bm_position_reset() before the first call to
528  *	this function.
529  */
530 
531 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
532 {
533 	struct zone_bitmap *zone_bm;
534 	struct bm_block *bb;
535 	int bit;
536 
537 	do {
538 		bb = bm->cur.block;
539 		do {
540 			bit = bm->cur.bit;
541 			bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
542 			if (bit < bm_block_bits(bb))
543 				goto Return_pfn;
544 
545 			bb = bb->next;
546 			bm->cur.block = bb;
547 			bm->cur.bit = 0;
548 		} while (bb);
549 		zone_bm = bm->cur.zone_bm->next;
550 		if (zone_bm) {
551 			bm->cur.zone_bm = zone_bm;
552 			bm->cur.block = zone_bm->bm_blocks;
553 			bm->cur.bit = 0;
554 		}
555 	} while (zone_bm);
556 	memory_bm_position_reset(bm);
557 	return BM_END_OF_MAP;
558 
559  Return_pfn:
560 	bm->cur.bit = bit + 1;
561 	return bb->start_pfn + bit;
562 }
563 
564 /**
565  *	This structure represents a range of page frames the contents of which
566  *	should not be saved during the suspend.
567  */
568 
569 struct nosave_region {
570 	struct list_head list;
571 	unsigned long start_pfn;
572 	unsigned long end_pfn;
573 };
574 
575 static LIST_HEAD(nosave_regions);
576 
577 /**
578  *	register_nosave_region - register a range of page frames the contents
579  *	of which should not be saved during the suspend (to be used in the early
580  *	initialization code)
581  */
582 
583 void __init
584 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
585 			 int use_kmalloc)
586 {
587 	struct nosave_region *region;
588 
589 	if (start_pfn >= end_pfn)
590 		return;
591 
592 	if (!list_empty(&nosave_regions)) {
593 		/* Try to extend the previous region (they should be sorted) */
594 		region = list_entry(nosave_regions.prev,
595 					struct nosave_region, list);
596 		if (region->end_pfn == start_pfn) {
597 			region->end_pfn = end_pfn;
598 			goto Report;
599 		}
600 	}
601 	if (use_kmalloc) {
602 		/* during init, this shouldn't fail */
603 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
604 		BUG_ON(!region);
605 	} else
606 		/* This allocation cannot fail */
607 		region = alloc_bootmem_low(sizeof(struct nosave_region));
608 	region->start_pfn = start_pfn;
609 	region->end_pfn = end_pfn;
610 	list_add_tail(&region->list, &nosave_regions);
611  Report:
612 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
613 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
614 }
615 
616 /*
617  * Set bits in this map correspond to the page frames the contents of which
618  * should not be saved during the suspend.
619  */
620 static struct memory_bitmap *forbidden_pages_map;
621 
622 /* Set bits in this map correspond to free page frames. */
623 static struct memory_bitmap *free_pages_map;
624 
625 /*
626  * Each page frame allocated for creating the image is marked by setting the
627  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
628  */
629 
630 void swsusp_set_page_free(struct page *page)
631 {
632 	if (free_pages_map)
633 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
634 }
635 
636 static int swsusp_page_is_free(struct page *page)
637 {
638 	return free_pages_map ?
639 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
640 }
641 
642 void swsusp_unset_page_free(struct page *page)
643 {
644 	if (free_pages_map)
645 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
646 }
647 
648 static void swsusp_set_page_forbidden(struct page *page)
649 {
650 	if (forbidden_pages_map)
651 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
652 }
653 
654 int swsusp_page_is_forbidden(struct page *page)
655 {
656 	return forbidden_pages_map ?
657 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
658 }
659 
660 static void swsusp_unset_page_forbidden(struct page *page)
661 {
662 	if (forbidden_pages_map)
663 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
664 }
665 
666 /**
667  *	mark_nosave_pages - set bits corresponding to the page frames the
668  *	contents of which should not be saved in a given bitmap.
669  */
670 
671 static void mark_nosave_pages(struct memory_bitmap *bm)
672 {
673 	struct nosave_region *region;
674 
675 	if (list_empty(&nosave_regions))
676 		return;
677 
678 	list_for_each_entry(region, &nosave_regions, list) {
679 		unsigned long pfn;
680 
681 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
682 				region->start_pfn << PAGE_SHIFT,
683 				region->end_pfn << PAGE_SHIFT);
684 
685 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
686 			if (pfn_valid(pfn)) {
687 				/*
688 				 * It is safe to ignore the result of
689 				 * mem_bm_set_bit_check() here, since we won't
690 				 * touch the PFNs for which the error is
691 				 * returned anyway.
692 				 */
693 				mem_bm_set_bit_check(bm, pfn);
694 			}
695 	}
696 }
697 
698 /**
699  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
700  *	frames that should not be saved and free page frames.  The pointers
701  *	forbidden_pages_map and free_pages_map are only modified if everything
702  *	goes well, because we don't want the bits to be used before both bitmaps
703  *	are set up.
704  */
705 
706 int create_basic_memory_bitmaps(void)
707 {
708 	struct memory_bitmap *bm1, *bm2;
709 	int error = 0;
710 
711 	BUG_ON(forbidden_pages_map || free_pages_map);
712 
713 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
714 	if (!bm1)
715 		return -ENOMEM;
716 
717 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
718 	if (error)
719 		goto Free_first_object;
720 
721 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
722 	if (!bm2)
723 		goto Free_first_bitmap;
724 
725 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
726 	if (error)
727 		goto Free_second_object;
728 
729 	forbidden_pages_map = bm1;
730 	free_pages_map = bm2;
731 	mark_nosave_pages(forbidden_pages_map);
732 
733 	pr_debug("PM: Basic memory bitmaps created\n");
734 
735 	return 0;
736 
737  Free_second_object:
738 	kfree(bm2);
739  Free_first_bitmap:
740  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
741  Free_first_object:
742 	kfree(bm1);
743 	return -ENOMEM;
744 }
745 
746 /**
747  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
748  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
749  *	so that the bitmaps themselves are not referred to while they are being
750  *	freed.
751  */
752 
753 void free_basic_memory_bitmaps(void)
754 {
755 	struct memory_bitmap *bm1, *bm2;
756 
757 	BUG_ON(!(forbidden_pages_map && free_pages_map));
758 
759 	bm1 = forbidden_pages_map;
760 	bm2 = free_pages_map;
761 	forbidden_pages_map = NULL;
762 	free_pages_map = NULL;
763 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
764 	kfree(bm1);
765 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
766 	kfree(bm2);
767 
768 	pr_debug("PM: Basic memory bitmaps freed\n");
769 }
770 
771 /**
772  *	snapshot_additional_pages - estimate the number of additional pages
773  *	be needed for setting up the suspend image data structures for given
774  *	zone (usually the returned value is greater than the exact number)
775  */
776 
777 unsigned int snapshot_additional_pages(struct zone *zone)
778 {
779 	unsigned int res;
780 
781 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
782 	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
783 	return 2 * res;
784 }
785 
786 #ifdef CONFIG_HIGHMEM
787 /**
788  *	count_free_highmem_pages - compute the total number of free highmem
789  *	pages, system-wide.
790  */
791 
792 static unsigned int count_free_highmem_pages(void)
793 {
794 	struct zone *zone;
795 	unsigned int cnt = 0;
796 
797 	for_each_zone(zone)
798 		if (populated_zone(zone) && is_highmem(zone))
799 			cnt += zone_page_state(zone, NR_FREE_PAGES);
800 
801 	return cnt;
802 }
803 
804 /**
805  *	saveable_highmem_page - Determine whether a highmem page should be
806  *	included in the suspend image.
807  *
808  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
809  *	and it isn't a part of a free chunk of pages.
810  */
811 
812 static struct page *saveable_highmem_page(unsigned long pfn)
813 {
814 	struct page *page;
815 
816 	if (!pfn_valid(pfn))
817 		return NULL;
818 
819 	page = pfn_to_page(pfn);
820 
821 	BUG_ON(!PageHighMem(page));
822 
823 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
824 	    PageReserved(page))
825 		return NULL;
826 
827 	return page;
828 }
829 
830 /**
831  *	count_highmem_pages - compute the total number of saveable highmem
832  *	pages.
833  */
834 
835 unsigned int count_highmem_pages(void)
836 {
837 	struct zone *zone;
838 	unsigned int n = 0;
839 
840 	for_each_zone(zone) {
841 		unsigned long pfn, max_zone_pfn;
842 
843 		if (!is_highmem(zone))
844 			continue;
845 
846 		mark_free_pages(zone);
847 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
848 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
849 			if (saveable_highmem_page(pfn))
850 				n++;
851 	}
852 	return n;
853 }
854 #else
855 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
856 #endif /* CONFIG_HIGHMEM */
857 
858 /**
859  *	saveable_page - Determine whether a non-highmem page should be included
860  *	in the suspend image.
861  *
862  *	We should save the page if it isn't Nosave, and is not in the range
863  *	of pages statically defined as 'unsaveable', and it isn't a part of
864  *	a free chunk of pages.
865  */
866 
867 static struct page *saveable_page(unsigned long pfn)
868 {
869 	struct page *page;
870 
871 	if (!pfn_valid(pfn))
872 		return NULL;
873 
874 	page = pfn_to_page(pfn);
875 
876 	BUG_ON(PageHighMem(page));
877 
878 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
879 		return NULL;
880 
881 	if (PageReserved(page)
882 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
883 		return NULL;
884 
885 	return page;
886 }
887 
888 /**
889  *	count_data_pages - compute the total number of saveable non-highmem
890  *	pages.
891  */
892 
893 unsigned int count_data_pages(void)
894 {
895 	struct zone *zone;
896 	unsigned long pfn, max_zone_pfn;
897 	unsigned int n = 0;
898 
899 	for_each_zone(zone) {
900 		if (is_highmem(zone))
901 			continue;
902 
903 		mark_free_pages(zone);
904 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
905 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
906 			if(saveable_page(pfn))
907 				n++;
908 	}
909 	return n;
910 }
911 
912 /* This is needed, because copy_page and memcpy are not usable for copying
913  * task structs.
914  */
915 static inline void do_copy_page(long *dst, long *src)
916 {
917 	int n;
918 
919 	for (n = PAGE_SIZE / sizeof(long); n; n--)
920 		*dst++ = *src++;
921 }
922 
923 
924 /**
925  *	safe_copy_page - check if the page we are going to copy is marked as
926  *		present in the kernel page tables (this always is the case if
927  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
928  *		kernel_page_present() always returns 'true').
929  */
930 static void safe_copy_page(void *dst, struct page *s_page)
931 {
932 	if (kernel_page_present(s_page)) {
933 		do_copy_page(dst, page_address(s_page));
934 	} else {
935 		kernel_map_pages(s_page, 1, 1);
936 		do_copy_page(dst, page_address(s_page));
937 		kernel_map_pages(s_page, 1, 0);
938 	}
939 }
940 
941 
942 #ifdef CONFIG_HIGHMEM
943 static inline struct page *
944 page_is_saveable(struct zone *zone, unsigned long pfn)
945 {
946 	return is_highmem(zone) ?
947 			saveable_highmem_page(pfn) : saveable_page(pfn);
948 }
949 
950 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
951 {
952 	struct page *s_page, *d_page;
953 	void *src, *dst;
954 
955 	s_page = pfn_to_page(src_pfn);
956 	d_page = pfn_to_page(dst_pfn);
957 	if (PageHighMem(s_page)) {
958 		src = kmap_atomic(s_page, KM_USER0);
959 		dst = kmap_atomic(d_page, KM_USER1);
960 		do_copy_page(dst, src);
961 		kunmap_atomic(src, KM_USER0);
962 		kunmap_atomic(dst, KM_USER1);
963 	} else {
964 		if (PageHighMem(d_page)) {
965 			/* Page pointed to by src may contain some kernel
966 			 * data modified by kmap_atomic()
967 			 */
968 			safe_copy_page(buffer, s_page);
969 			dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
970 			memcpy(dst, buffer, PAGE_SIZE);
971 			kunmap_atomic(dst, KM_USER0);
972 		} else {
973 			safe_copy_page(page_address(d_page), s_page);
974 		}
975 	}
976 }
977 #else
978 #define page_is_saveable(zone, pfn)	saveable_page(pfn)
979 
980 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
981 {
982 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
983 				pfn_to_page(src_pfn));
984 }
985 #endif /* CONFIG_HIGHMEM */
986 
987 static void
988 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
989 {
990 	struct zone *zone;
991 	unsigned long pfn;
992 
993 	for_each_zone(zone) {
994 		unsigned long max_zone_pfn;
995 
996 		mark_free_pages(zone);
997 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
998 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
999 			if (page_is_saveable(zone, pfn))
1000 				memory_bm_set_bit(orig_bm, pfn);
1001 	}
1002 	memory_bm_position_reset(orig_bm);
1003 	memory_bm_position_reset(copy_bm);
1004 	for(;;) {
1005 		pfn = memory_bm_next_pfn(orig_bm);
1006 		if (unlikely(pfn == BM_END_OF_MAP))
1007 			break;
1008 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1009 	}
1010 }
1011 
1012 /* Total number of image pages */
1013 static unsigned int nr_copy_pages;
1014 /* Number of pages needed for saving the original pfns of the image pages */
1015 static unsigned int nr_meta_pages;
1016 
1017 /**
1018  *	swsusp_free - free pages allocated for the suspend.
1019  *
1020  *	Suspend pages are alocated before the atomic copy is made, so we
1021  *	need to release them after the resume.
1022  */
1023 
1024 void swsusp_free(void)
1025 {
1026 	struct zone *zone;
1027 	unsigned long pfn, max_zone_pfn;
1028 
1029 	for_each_zone(zone) {
1030 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1031 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1032 			if (pfn_valid(pfn)) {
1033 				struct page *page = pfn_to_page(pfn);
1034 
1035 				if (swsusp_page_is_forbidden(page) &&
1036 				    swsusp_page_is_free(page)) {
1037 					swsusp_unset_page_forbidden(page);
1038 					swsusp_unset_page_free(page);
1039 					__free_page(page);
1040 				}
1041 			}
1042 	}
1043 	nr_copy_pages = 0;
1044 	nr_meta_pages = 0;
1045 	restore_pblist = NULL;
1046 	buffer = NULL;
1047 }
1048 
1049 #ifdef CONFIG_HIGHMEM
1050 /**
1051   *	count_pages_for_highmem - compute the number of non-highmem pages
1052   *	that will be necessary for creating copies of highmem pages.
1053   */
1054 
1055 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1056 {
1057 	unsigned int free_highmem = count_free_highmem_pages();
1058 
1059 	if (free_highmem >= nr_highmem)
1060 		nr_highmem = 0;
1061 	else
1062 		nr_highmem -= free_highmem;
1063 
1064 	return nr_highmem;
1065 }
1066 #else
1067 static unsigned int
1068 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1069 #endif /* CONFIG_HIGHMEM */
1070 
1071 /**
1072  *	enough_free_mem - Make sure we have enough free memory for the
1073  *	snapshot image.
1074  */
1075 
1076 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1077 {
1078 	struct zone *zone;
1079 	unsigned int free = 0, meta = 0;
1080 
1081 	for_each_zone(zone) {
1082 		meta += snapshot_additional_pages(zone);
1083 		if (!is_highmem(zone))
1084 			free += zone_page_state(zone, NR_FREE_PAGES);
1085 	}
1086 
1087 	nr_pages += count_pages_for_highmem(nr_highmem);
1088 	pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1089 		nr_pages, PAGES_FOR_IO, meta, free);
1090 
1091 	return free > nr_pages + PAGES_FOR_IO + meta;
1092 }
1093 
1094 #ifdef CONFIG_HIGHMEM
1095 /**
1096  *	get_highmem_buffer - if there are some highmem pages in the suspend
1097  *	image, we may need the buffer to copy them and/or load their data.
1098  */
1099 
1100 static inline int get_highmem_buffer(int safe_needed)
1101 {
1102 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1103 	return buffer ? 0 : -ENOMEM;
1104 }
1105 
1106 /**
1107  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1108  *	Try to allocate as many pages as needed, but if the number of free
1109  *	highmem pages is lesser than that, allocate them all.
1110  */
1111 
1112 static inline unsigned int
1113 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1114 {
1115 	unsigned int to_alloc = count_free_highmem_pages();
1116 
1117 	if (to_alloc > nr_highmem)
1118 		to_alloc = nr_highmem;
1119 
1120 	nr_highmem -= to_alloc;
1121 	while (to_alloc-- > 0) {
1122 		struct page *page;
1123 
1124 		page = alloc_image_page(__GFP_HIGHMEM);
1125 		memory_bm_set_bit(bm, page_to_pfn(page));
1126 	}
1127 	return nr_highmem;
1128 }
1129 #else
1130 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1131 
1132 static inline unsigned int
1133 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1134 #endif /* CONFIG_HIGHMEM */
1135 
1136 /**
1137  *	swsusp_alloc - allocate memory for the suspend image
1138  *
1139  *	We first try to allocate as many highmem pages as there are
1140  *	saveable highmem pages in the system.  If that fails, we allocate
1141  *	non-highmem pages for the copies of the remaining highmem ones.
1142  *
1143  *	In this approach it is likely that the copies of highmem pages will
1144  *	also be located in the high memory, because of the way in which
1145  *	copy_data_pages() works.
1146  */
1147 
1148 static int
1149 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1150 		unsigned int nr_pages, unsigned int nr_highmem)
1151 {
1152 	int error;
1153 
1154 	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1155 	if (error)
1156 		goto Free;
1157 
1158 	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1159 	if (error)
1160 		goto Free;
1161 
1162 	if (nr_highmem > 0) {
1163 		error = get_highmem_buffer(PG_ANY);
1164 		if (error)
1165 			goto Free;
1166 
1167 		nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1168 	}
1169 	while (nr_pages-- > 0) {
1170 		struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1171 
1172 		if (!page)
1173 			goto Free;
1174 
1175 		memory_bm_set_bit(copy_bm, page_to_pfn(page));
1176 	}
1177 	return 0;
1178 
1179  Free:
1180 	swsusp_free();
1181 	return -ENOMEM;
1182 }
1183 
1184 /* Memory bitmap used for marking saveable pages (during suspend) or the
1185  * suspend image pages (during resume)
1186  */
1187 static struct memory_bitmap orig_bm;
1188 /* Memory bitmap used on suspend for marking allocated pages that will contain
1189  * the copies of saveable pages.  During resume it is initially used for
1190  * marking the suspend image pages, but then its set bits are duplicated in
1191  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1192  * used for marking "safe" highmem pages, but it has to be reinitialized for
1193  * this purpose.
1194  */
1195 static struct memory_bitmap copy_bm;
1196 
1197 asmlinkage int swsusp_save(void)
1198 {
1199 	unsigned int nr_pages, nr_highmem;
1200 
1201 	printk(KERN_INFO "PM: Creating hibernation image: \n");
1202 
1203 	drain_local_pages(NULL);
1204 	nr_pages = count_data_pages();
1205 	nr_highmem = count_highmem_pages();
1206 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1207 
1208 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1209 		printk(KERN_ERR "PM: Not enough free memory\n");
1210 		return -ENOMEM;
1211 	}
1212 
1213 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1214 		printk(KERN_ERR "PM: Memory allocation failed\n");
1215 		return -ENOMEM;
1216 	}
1217 
1218 	/* During allocating of suspend pagedir, new cold pages may appear.
1219 	 * Kill them.
1220 	 */
1221 	drain_local_pages(NULL);
1222 	copy_data_pages(&copy_bm, &orig_bm);
1223 
1224 	/*
1225 	 * End of critical section. From now on, we can write to memory,
1226 	 * but we should not touch disk. This specially means we must _not_
1227 	 * touch swap space! Except we must write out our image of course.
1228 	 */
1229 
1230 	nr_pages += nr_highmem;
1231 	nr_copy_pages = nr_pages;
1232 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1233 
1234 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1235 		nr_pages);
1236 
1237 	return 0;
1238 }
1239 
1240 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1241 static int init_header_complete(struct swsusp_info *info)
1242 {
1243 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1244 	info->version_code = LINUX_VERSION_CODE;
1245 	return 0;
1246 }
1247 
1248 static char *check_image_kernel(struct swsusp_info *info)
1249 {
1250 	if (info->version_code != LINUX_VERSION_CODE)
1251 		return "kernel version";
1252 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1253 		return "system type";
1254 	if (strcmp(info->uts.release,init_utsname()->release))
1255 		return "kernel release";
1256 	if (strcmp(info->uts.version,init_utsname()->version))
1257 		return "version";
1258 	if (strcmp(info->uts.machine,init_utsname()->machine))
1259 		return "machine";
1260 	return NULL;
1261 }
1262 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1263 
1264 unsigned long snapshot_get_image_size(void)
1265 {
1266 	return nr_copy_pages + nr_meta_pages + 1;
1267 }
1268 
1269 static int init_header(struct swsusp_info *info)
1270 {
1271 	memset(info, 0, sizeof(struct swsusp_info));
1272 	info->num_physpages = num_physpages;
1273 	info->image_pages = nr_copy_pages;
1274 	info->pages = snapshot_get_image_size();
1275 	info->size = info->pages;
1276 	info->size <<= PAGE_SHIFT;
1277 	return init_header_complete(info);
1278 }
1279 
1280 /**
1281  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1282  *	are stored in the array @buf[] (1 page at a time)
1283  */
1284 
1285 static inline void
1286 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1287 {
1288 	int j;
1289 
1290 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1291 		buf[j] = memory_bm_next_pfn(bm);
1292 		if (unlikely(buf[j] == BM_END_OF_MAP))
1293 			break;
1294 	}
1295 }
1296 
1297 /**
1298  *	snapshot_read_next - used for reading the system memory snapshot.
1299  *
1300  *	On the first call to it @handle should point to a zeroed
1301  *	snapshot_handle structure.  The structure gets updated and a pointer
1302  *	to it should be passed to this function every next time.
1303  *
1304  *	The @count parameter should contain the number of bytes the caller
1305  *	wants to read from the snapshot.  It must not be zero.
1306  *
1307  *	On success the function returns a positive number.  Then, the caller
1308  *	is allowed to read up to the returned number of bytes from the memory
1309  *	location computed by the data_of() macro.  The number returned
1310  *	may be smaller than @count, but this only happens if the read would
1311  *	cross a page boundary otherwise.
1312  *
1313  *	The function returns 0 to indicate the end of data stream condition,
1314  *	and a negative number is returned on error.  In such cases the
1315  *	structure pointed to by @handle is not updated and should not be used
1316  *	any more.
1317  */
1318 
1319 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1320 {
1321 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1322 		return 0;
1323 
1324 	if (!buffer) {
1325 		/* This makes the buffer be freed by swsusp_free() */
1326 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1327 		if (!buffer)
1328 			return -ENOMEM;
1329 	}
1330 	if (!handle->offset) {
1331 		int error;
1332 
1333 		error = init_header((struct swsusp_info *)buffer);
1334 		if (error)
1335 			return error;
1336 		handle->buffer = buffer;
1337 		memory_bm_position_reset(&orig_bm);
1338 		memory_bm_position_reset(&copy_bm);
1339 	}
1340 	if (handle->prev < handle->cur) {
1341 		if (handle->cur <= nr_meta_pages) {
1342 			memset(buffer, 0, PAGE_SIZE);
1343 			pack_pfns(buffer, &orig_bm);
1344 		} else {
1345 			struct page *page;
1346 
1347 			page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1348 			if (PageHighMem(page)) {
1349 				/* Highmem pages are copied to the buffer,
1350 				 * because we can't return with a kmapped
1351 				 * highmem page (we may not be called again).
1352 				 */
1353 				void *kaddr;
1354 
1355 				kaddr = kmap_atomic(page, KM_USER0);
1356 				memcpy(buffer, kaddr, PAGE_SIZE);
1357 				kunmap_atomic(kaddr, KM_USER0);
1358 				handle->buffer = buffer;
1359 			} else {
1360 				handle->buffer = page_address(page);
1361 			}
1362 		}
1363 		handle->prev = handle->cur;
1364 	}
1365 	handle->buf_offset = handle->cur_offset;
1366 	if (handle->cur_offset + count >= PAGE_SIZE) {
1367 		count = PAGE_SIZE - handle->cur_offset;
1368 		handle->cur_offset = 0;
1369 		handle->cur++;
1370 	} else {
1371 		handle->cur_offset += count;
1372 	}
1373 	handle->offset += count;
1374 	return count;
1375 }
1376 
1377 /**
1378  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1379  *	the image during resume, because they conflict with the pages that
1380  *	had been used before suspend
1381  */
1382 
1383 static int mark_unsafe_pages(struct memory_bitmap *bm)
1384 {
1385 	struct zone *zone;
1386 	unsigned long pfn, max_zone_pfn;
1387 
1388 	/* Clear page flags */
1389 	for_each_zone(zone) {
1390 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1391 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1392 			if (pfn_valid(pfn))
1393 				swsusp_unset_page_free(pfn_to_page(pfn));
1394 	}
1395 
1396 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1397 	memory_bm_position_reset(bm);
1398 	do {
1399 		pfn = memory_bm_next_pfn(bm);
1400 		if (likely(pfn != BM_END_OF_MAP)) {
1401 			if (likely(pfn_valid(pfn)))
1402 				swsusp_set_page_free(pfn_to_page(pfn));
1403 			else
1404 				return -EFAULT;
1405 		}
1406 	} while (pfn != BM_END_OF_MAP);
1407 
1408 	allocated_unsafe_pages = 0;
1409 
1410 	return 0;
1411 }
1412 
1413 static void
1414 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1415 {
1416 	unsigned long pfn;
1417 
1418 	memory_bm_position_reset(src);
1419 	pfn = memory_bm_next_pfn(src);
1420 	while (pfn != BM_END_OF_MAP) {
1421 		memory_bm_set_bit(dst, pfn);
1422 		pfn = memory_bm_next_pfn(src);
1423 	}
1424 }
1425 
1426 static int check_header(struct swsusp_info *info)
1427 {
1428 	char *reason;
1429 
1430 	reason = check_image_kernel(info);
1431 	if (!reason && info->num_physpages != num_physpages)
1432 		reason = "memory size";
1433 	if (reason) {
1434 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1435 		return -EPERM;
1436 	}
1437 	return 0;
1438 }
1439 
1440 /**
1441  *	load header - check the image header and copy data from it
1442  */
1443 
1444 static int
1445 load_header(struct swsusp_info *info)
1446 {
1447 	int error;
1448 
1449 	restore_pblist = NULL;
1450 	error = check_header(info);
1451 	if (!error) {
1452 		nr_copy_pages = info->image_pages;
1453 		nr_meta_pages = info->pages - info->image_pages - 1;
1454 	}
1455 	return error;
1456 }
1457 
1458 /**
1459  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1460  *	the corresponding bit in the memory bitmap @bm
1461  */
1462 
1463 static inline void
1464 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1465 {
1466 	int j;
1467 
1468 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1469 		if (unlikely(buf[j] == BM_END_OF_MAP))
1470 			break;
1471 
1472 		memory_bm_set_bit(bm, buf[j]);
1473 	}
1474 }
1475 
1476 /* List of "safe" pages that may be used to store data loaded from the suspend
1477  * image
1478  */
1479 static struct linked_page *safe_pages_list;
1480 
1481 #ifdef CONFIG_HIGHMEM
1482 /* struct highmem_pbe is used for creating the list of highmem pages that
1483  * should be restored atomically during the resume from disk, because the page
1484  * frames they have occupied before the suspend are in use.
1485  */
1486 struct highmem_pbe {
1487 	struct page *copy_page;	/* data is here now */
1488 	struct page *orig_page;	/* data was here before the suspend */
1489 	struct highmem_pbe *next;
1490 };
1491 
1492 /* List of highmem PBEs needed for restoring the highmem pages that were
1493  * allocated before the suspend and included in the suspend image, but have
1494  * also been allocated by the "resume" kernel, so their contents cannot be
1495  * written directly to their "original" page frames.
1496  */
1497 static struct highmem_pbe *highmem_pblist;
1498 
1499 /**
1500  *	count_highmem_image_pages - compute the number of highmem pages in the
1501  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1502  *	image pages are assumed to be set.
1503  */
1504 
1505 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1506 {
1507 	unsigned long pfn;
1508 	unsigned int cnt = 0;
1509 
1510 	memory_bm_position_reset(bm);
1511 	pfn = memory_bm_next_pfn(bm);
1512 	while (pfn != BM_END_OF_MAP) {
1513 		if (PageHighMem(pfn_to_page(pfn)))
1514 			cnt++;
1515 
1516 		pfn = memory_bm_next_pfn(bm);
1517 	}
1518 	return cnt;
1519 }
1520 
1521 /**
1522  *	prepare_highmem_image - try to allocate as many highmem pages as
1523  *	there are highmem image pages (@nr_highmem_p points to the variable
1524  *	containing the number of highmem image pages).  The pages that are
1525  *	"safe" (ie. will not be overwritten when the suspend image is
1526  *	restored) have the corresponding bits set in @bm (it must be
1527  *	unitialized).
1528  *
1529  *	NOTE: This function should not be called if there are no highmem
1530  *	image pages.
1531  */
1532 
1533 static unsigned int safe_highmem_pages;
1534 
1535 static struct memory_bitmap *safe_highmem_bm;
1536 
1537 static int
1538 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1539 {
1540 	unsigned int to_alloc;
1541 
1542 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1543 		return -ENOMEM;
1544 
1545 	if (get_highmem_buffer(PG_SAFE))
1546 		return -ENOMEM;
1547 
1548 	to_alloc = count_free_highmem_pages();
1549 	if (to_alloc > *nr_highmem_p)
1550 		to_alloc = *nr_highmem_p;
1551 	else
1552 		*nr_highmem_p = to_alloc;
1553 
1554 	safe_highmem_pages = 0;
1555 	while (to_alloc-- > 0) {
1556 		struct page *page;
1557 
1558 		page = alloc_page(__GFP_HIGHMEM);
1559 		if (!swsusp_page_is_free(page)) {
1560 			/* The page is "safe", set its bit the bitmap */
1561 			memory_bm_set_bit(bm, page_to_pfn(page));
1562 			safe_highmem_pages++;
1563 		}
1564 		/* Mark the page as allocated */
1565 		swsusp_set_page_forbidden(page);
1566 		swsusp_set_page_free(page);
1567 	}
1568 	memory_bm_position_reset(bm);
1569 	safe_highmem_bm = bm;
1570 	return 0;
1571 }
1572 
1573 /**
1574  *	get_highmem_page_buffer - for given highmem image page find the buffer
1575  *	that suspend_write_next() should set for its caller to write to.
1576  *
1577  *	If the page is to be saved to its "original" page frame or a copy of
1578  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1579  *	the copy of the page is to be made in normal memory, so the address of
1580  *	the copy is returned.
1581  *
1582  *	If @buffer is returned, the caller of suspend_write_next() will write
1583  *	the page's contents to @buffer, so they will have to be copied to the
1584  *	right location on the next call to suspend_write_next() and it is done
1585  *	with the help of copy_last_highmem_page().  For this purpose, if
1586  *	@buffer is returned, @last_highmem page is set to the page to which
1587  *	the data will have to be copied from @buffer.
1588  */
1589 
1590 static struct page *last_highmem_page;
1591 
1592 static void *
1593 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1594 {
1595 	struct highmem_pbe *pbe;
1596 	void *kaddr;
1597 
1598 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1599 		/* We have allocated the "original" page frame and we can
1600 		 * use it directly to store the loaded page.
1601 		 */
1602 		last_highmem_page = page;
1603 		return buffer;
1604 	}
1605 	/* The "original" page frame has not been allocated and we have to
1606 	 * use a "safe" page frame to store the loaded page.
1607 	 */
1608 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1609 	if (!pbe) {
1610 		swsusp_free();
1611 		return NULL;
1612 	}
1613 	pbe->orig_page = page;
1614 	if (safe_highmem_pages > 0) {
1615 		struct page *tmp;
1616 
1617 		/* Copy of the page will be stored in high memory */
1618 		kaddr = buffer;
1619 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1620 		safe_highmem_pages--;
1621 		last_highmem_page = tmp;
1622 		pbe->copy_page = tmp;
1623 	} else {
1624 		/* Copy of the page will be stored in normal memory */
1625 		kaddr = safe_pages_list;
1626 		safe_pages_list = safe_pages_list->next;
1627 		pbe->copy_page = virt_to_page(kaddr);
1628 	}
1629 	pbe->next = highmem_pblist;
1630 	highmem_pblist = pbe;
1631 	return kaddr;
1632 }
1633 
1634 /**
1635  *	copy_last_highmem_page - copy the contents of a highmem image from
1636  *	@buffer, where the caller of snapshot_write_next() has place them,
1637  *	to the right location represented by @last_highmem_page .
1638  */
1639 
1640 static void copy_last_highmem_page(void)
1641 {
1642 	if (last_highmem_page) {
1643 		void *dst;
1644 
1645 		dst = kmap_atomic(last_highmem_page, KM_USER0);
1646 		memcpy(dst, buffer, PAGE_SIZE);
1647 		kunmap_atomic(dst, KM_USER0);
1648 		last_highmem_page = NULL;
1649 	}
1650 }
1651 
1652 static inline int last_highmem_page_copied(void)
1653 {
1654 	return !last_highmem_page;
1655 }
1656 
1657 static inline void free_highmem_data(void)
1658 {
1659 	if (safe_highmem_bm)
1660 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1661 
1662 	if (buffer)
1663 		free_image_page(buffer, PG_UNSAFE_CLEAR);
1664 }
1665 #else
1666 static inline int get_safe_write_buffer(void) { return 0; }
1667 
1668 static unsigned int
1669 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1670 
1671 static inline int
1672 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1673 {
1674 	return 0;
1675 }
1676 
1677 static inline void *
1678 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1679 {
1680 	return NULL;
1681 }
1682 
1683 static inline void copy_last_highmem_page(void) {}
1684 static inline int last_highmem_page_copied(void) { return 1; }
1685 static inline void free_highmem_data(void) {}
1686 #endif /* CONFIG_HIGHMEM */
1687 
1688 /**
1689  *	prepare_image - use the memory bitmap @bm to mark the pages that will
1690  *	be overwritten in the process of restoring the system memory state
1691  *	from the suspend image ("unsafe" pages) and allocate memory for the
1692  *	image.
1693  *
1694  *	The idea is to allocate a new memory bitmap first and then allocate
1695  *	as many pages as needed for the image data, but not to assign these
1696  *	pages to specific tasks initially.  Instead, we just mark them as
1697  *	allocated and create a lists of "safe" pages that will be used
1698  *	later.  On systems with high memory a list of "safe" highmem pages is
1699  *	also created.
1700  */
1701 
1702 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1703 
1704 static int
1705 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1706 {
1707 	unsigned int nr_pages, nr_highmem;
1708 	struct linked_page *sp_list, *lp;
1709 	int error;
1710 
1711 	/* If there is no highmem, the buffer will not be necessary */
1712 	free_image_page(buffer, PG_UNSAFE_CLEAR);
1713 	buffer = NULL;
1714 
1715 	nr_highmem = count_highmem_image_pages(bm);
1716 	error = mark_unsafe_pages(bm);
1717 	if (error)
1718 		goto Free;
1719 
1720 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1721 	if (error)
1722 		goto Free;
1723 
1724 	duplicate_memory_bitmap(new_bm, bm);
1725 	memory_bm_free(bm, PG_UNSAFE_KEEP);
1726 	if (nr_highmem > 0) {
1727 		error = prepare_highmem_image(bm, &nr_highmem);
1728 		if (error)
1729 			goto Free;
1730 	}
1731 	/* Reserve some safe pages for potential later use.
1732 	 *
1733 	 * NOTE: This way we make sure there will be enough safe pages for the
1734 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
1735 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1736 	 */
1737 	sp_list = NULL;
1738 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1739 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1740 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1741 	while (nr_pages > 0) {
1742 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1743 		if (!lp) {
1744 			error = -ENOMEM;
1745 			goto Free;
1746 		}
1747 		lp->next = sp_list;
1748 		sp_list = lp;
1749 		nr_pages--;
1750 	}
1751 	/* Preallocate memory for the image */
1752 	safe_pages_list = NULL;
1753 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1754 	while (nr_pages > 0) {
1755 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1756 		if (!lp) {
1757 			error = -ENOMEM;
1758 			goto Free;
1759 		}
1760 		if (!swsusp_page_is_free(virt_to_page(lp))) {
1761 			/* The page is "safe", add it to the list */
1762 			lp->next = safe_pages_list;
1763 			safe_pages_list = lp;
1764 		}
1765 		/* Mark the page as allocated */
1766 		swsusp_set_page_forbidden(virt_to_page(lp));
1767 		swsusp_set_page_free(virt_to_page(lp));
1768 		nr_pages--;
1769 	}
1770 	/* Free the reserved safe pages so that chain_alloc() can use them */
1771 	while (sp_list) {
1772 		lp = sp_list->next;
1773 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
1774 		sp_list = lp;
1775 	}
1776 	return 0;
1777 
1778  Free:
1779 	swsusp_free();
1780 	return error;
1781 }
1782 
1783 /**
1784  *	get_buffer - compute the address that snapshot_write_next() should
1785  *	set for its caller to write to.
1786  */
1787 
1788 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1789 {
1790 	struct pbe *pbe;
1791 	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1792 
1793 	if (PageHighMem(page))
1794 		return get_highmem_page_buffer(page, ca);
1795 
1796 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1797 		/* We have allocated the "original" page frame and we can
1798 		 * use it directly to store the loaded page.
1799 		 */
1800 		return page_address(page);
1801 
1802 	/* The "original" page frame has not been allocated and we have to
1803 	 * use a "safe" page frame to store the loaded page.
1804 	 */
1805 	pbe = chain_alloc(ca, sizeof(struct pbe));
1806 	if (!pbe) {
1807 		swsusp_free();
1808 		return NULL;
1809 	}
1810 	pbe->orig_address = page_address(page);
1811 	pbe->address = safe_pages_list;
1812 	safe_pages_list = safe_pages_list->next;
1813 	pbe->next = restore_pblist;
1814 	restore_pblist = pbe;
1815 	return pbe->address;
1816 }
1817 
1818 /**
1819  *	snapshot_write_next - used for writing the system memory snapshot.
1820  *
1821  *	On the first call to it @handle should point to a zeroed
1822  *	snapshot_handle structure.  The structure gets updated and a pointer
1823  *	to it should be passed to this function every next time.
1824  *
1825  *	The @count parameter should contain the number of bytes the caller
1826  *	wants to write to the image.  It must not be zero.
1827  *
1828  *	On success the function returns a positive number.  Then, the caller
1829  *	is allowed to write up to the returned number of bytes to the memory
1830  *	location computed by the data_of() macro.  The number returned
1831  *	may be smaller than @count, but this only happens if the write would
1832  *	cross a page boundary otherwise.
1833  *
1834  *	The function returns 0 to indicate the "end of file" condition,
1835  *	and a negative number is returned on error.  In such cases the
1836  *	structure pointed to by @handle is not updated and should not be used
1837  *	any more.
1838  */
1839 
1840 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1841 {
1842 	static struct chain_allocator ca;
1843 	int error = 0;
1844 
1845 	/* Check if we have already loaded the entire image */
1846 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1847 		return 0;
1848 
1849 	if (handle->offset == 0) {
1850 		if (!buffer)
1851 			/* This makes the buffer be freed by swsusp_free() */
1852 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1853 
1854 		if (!buffer)
1855 			return -ENOMEM;
1856 
1857 		handle->buffer = buffer;
1858 	}
1859 	handle->sync_read = 1;
1860 	if (handle->prev < handle->cur) {
1861 		if (handle->prev == 0) {
1862 			error = load_header(buffer);
1863 			if (error)
1864 				return error;
1865 
1866 			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1867 			if (error)
1868 				return error;
1869 
1870 		} else if (handle->prev <= nr_meta_pages) {
1871 			unpack_orig_pfns(buffer, &copy_bm);
1872 			if (handle->prev == nr_meta_pages) {
1873 				error = prepare_image(&orig_bm, &copy_bm);
1874 				if (error)
1875 					return error;
1876 
1877 				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1878 				memory_bm_position_reset(&orig_bm);
1879 				restore_pblist = NULL;
1880 				handle->buffer = get_buffer(&orig_bm, &ca);
1881 				handle->sync_read = 0;
1882 				if (!handle->buffer)
1883 					return -ENOMEM;
1884 			}
1885 		} else {
1886 			copy_last_highmem_page();
1887 			handle->buffer = get_buffer(&orig_bm, &ca);
1888 			if (handle->buffer != buffer)
1889 				handle->sync_read = 0;
1890 		}
1891 		handle->prev = handle->cur;
1892 	}
1893 	handle->buf_offset = handle->cur_offset;
1894 	if (handle->cur_offset + count >= PAGE_SIZE) {
1895 		count = PAGE_SIZE - handle->cur_offset;
1896 		handle->cur_offset = 0;
1897 		handle->cur++;
1898 	} else {
1899 		handle->cur_offset += count;
1900 	}
1901 	handle->offset += count;
1902 	return count;
1903 }
1904 
1905 /**
1906  *	snapshot_write_finalize - must be called after the last call to
1907  *	snapshot_write_next() in case the last page in the image happens
1908  *	to be a highmem page and its contents should be stored in the
1909  *	highmem.  Additionally, it releases the memory that will not be
1910  *	used any more.
1911  */
1912 
1913 void snapshot_write_finalize(struct snapshot_handle *handle)
1914 {
1915 	copy_last_highmem_page();
1916 	/* Free only if we have loaded the image entirely */
1917 	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1918 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1919 		free_highmem_data();
1920 	}
1921 }
1922 
1923 int snapshot_image_loaded(struct snapshot_handle *handle)
1924 {
1925 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
1926 			handle->cur <= nr_meta_pages + nr_copy_pages);
1927 }
1928 
1929 #ifdef CONFIG_HIGHMEM
1930 /* Assumes that @buf is ready and points to a "safe" page */
1931 static inline void
1932 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1933 {
1934 	void *kaddr1, *kaddr2;
1935 
1936 	kaddr1 = kmap_atomic(p1, KM_USER0);
1937 	kaddr2 = kmap_atomic(p2, KM_USER1);
1938 	memcpy(buf, kaddr1, PAGE_SIZE);
1939 	memcpy(kaddr1, kaddr2, PAGE_SIZE);
1940 	memcpy(kaddr2, buf, PAGE_SIZE);
1941 	kunmap_atomic(kaddr1, KM_USER0);
1942 	kunmap_atomic(kaddr2, KM_USER1);
1943 }
1944 
1945 /**
1946  *	restore_highmem - for each highmem page that was allocated before
1947  *	the suspend and included in the suspend image, and also has been
1948  *	allocated by the "resume" kernel swap its current (ie. "before
1949  *	resume") contents with the previous (ie. "before suspend") one.
1950  *
1951  *	If the resume eventually fails, we can call this function once
1952  *	again and restore the "before resume" highmem state.
1953  */
1954 
1955 int restore_highmem(void)
1956 {
1957 	struct highmem_pbe *pbe = highmem_pblist;
1958 	void *buf;
1959 
1960 	if (!pbe)
1961 		return 0;
1962 
1963 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1964 	if (!buf)
1965 		return -ENOMEM;
1966 
1967 	while (pbe) {
1968 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1969 		pbe = pbe->next;
1970 	}
1971 	free_image_page(buf, PG_UNSAFE_CLEAR);
1972 	return 0;
1973 }
1974 #endif /* CONFIG_HIGHMEM */
1975