1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/snapshot.c 4 * 5 * This file provides system snapshot/restore functionality for swsusp. 6 * 7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 */ 10 11 #define pr_fmt(fmt) "PM: hibernation: " fmt 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/memblock.h> 25 #include <linux/nmi.h> 26 #include <linux/syscalls.h> 27 #include <linux/console.h> 28 #include <linux/highmem.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 #include <linux/compiler.h> 32 #include <linux/ktime.h> 33 #include <linux/set_memory.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/mmu_context.h> 37 #include <asm/tlbflush.h> 38 #include <asm/io.h> 39 40 #include "power.h" 41 42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 43 static bool hibernate_restore_protection; 44 static bool hibernate_restore_protection_active; 45 46 void enable_restore_image_protection(void) 47 { 48 hibernate_restore_protection = true; 49 } 50 51 static inline void hibernate_restore_protection_begin(void) 52 { 53 hibernate_restore_protection_active = hibernate_restore_protection; 54 } 55 56 static inline void hibernate_restore_protection_end(void) 57 { 58 hibernate_restore_protection_active = false; 59 } 60 61 static inline void hibernate_restore_protect_page(void *page_address) 62 { 63 if (hibernate_restore_protection_active) 64 set_memory_ro((unsigned long)page_address, 1); 65 } 66 67 static inline void hibernate_restore_unprotect_page(void *page_address) 68 { 69 if (hibernate_restore_protection_active) 70 set_memory_rw((unsigned long)page_address, 1); 71 } 72 #else 73 static inline void hibernate_restore_protection_begin(void) {} 74 static inline void hibernate_restore_protection_end(void) {} 75 static inline void hibernate_restore_protect_page(void *page_address) {} 76 static inline void hibernate_restore_unprotect_page(void *page_address) {} 77 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 78 79 80 /* 81 * The calls to set_direct_map_*() should not fail because remapping a page 82 * here means that we only update protection bits in an existing PTE. 83 * It is still worth to have a warning here if something changes and this 84 * will no longer be the case. 85 */ 86 static inline void hibernate_map_page(struct page *page) 87 { 88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 89 int ret = set_direct_map_default_noflush(page); 90 91 if (ret) 92 pr_warn_once("Failed to remap page\n"); 93 } else { 94 debug_pagealloc_map_pages(page, 1); 95 } 96 } 97 98 static inline void hibernate_unmap_page(struct page *page) 99 { 100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 101 unsigned long addr = (unsigned long)page_address(page); 102 int ret = set_direct_map_invalid_noflush(page); 103 104 if (ret) 105 pr_warn_once("Failed to remap page\n"); 106 107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE); 108 } else { 109 debug_pagealloc_unmap_pages(page, 1); 110 } 111 } 112 113 static int swsusp_page_is_free(struct page *); 114 static void swsusp_set_page_forbidden(struct page *); 115 static void swsusp_unset_page_forbidden(struct page *); 116 117 /* 118 * Number of bytes to reserve for memory allocations made by device drivers 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 120 * cause image creation to fail (tunable via /sys/power/reserved_size). 121 */ 122 unsigned long reserved_size; 123 124 void __init hibernate_reserved_size_init(void) 125 { 126 reserved_size = SPARE_PAGES * PAGE_SIZE; 127 } 128 129 /* 130 * Preferred image size in bytes (tunable via /sys/power/image_size). 131 * When it is set to N, swsusp will do its best to ensure the image 132 * size will not exceed N bytes, but if that is impossible, it will 133 * try to create the smallest image possible. 134 */ 135 unsigned long image_size; 136 137 void __init hibernate_image_size_init(void) 138 { 139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 140 } 141 142 /* 143 * List of PBEs needed for restoring the pages that were allocated before 144 * the suspend and included in the suspend image, but have also been 145 * allocated by the "resume" kernel, so their contents cannot be written 146 * directly to their "original" page frames. 147 */ 148 struct pbe *restore_pblist; 149 150 /* struct linked_page is used to build chains of pages */ 151 152 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 153 154 struct linked_page { 155 struct linked_page *next; 156 char data[LINKED_PAGE_DATA_SIZE]; 157 } __packed; 158 159 /* 160 * List of "safe" pages (ie. pages that were not used by the image kernel 161 * before hibernation) that may be used as temporary storage for image kernel 162 * memory contents. 163 */ 164 static struct linked_page *safe_pages_list; 165 166 /* Pointer to an auxiliary buffer (1 page) */ 167 static void *buffer; 168 169 #define PG_ANY 0 170 #define PG_SAFE 1 171 #define PG_UNSAFE_CLEAR 1 172 #define PG_UNSAFE_KEEP 0 173 174 static unsigned int allocated_unsafe_pages; 175 176 /** 177 * get_image_page - Allocate a page for a hibernation image. 178 * @gfp_mask: GFP mask for the allocation. 179 * @safe_needed: Get pages that were not used before hibernation (restore only) 180 * 181 * During image restoration, for storing the PBE list and the image data, we can 182 * only use memory pages that do not conflict with the pages used before 183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 184 * using allocated_unsafe_pages. 185 * 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 187 * swsusp_free() can release it. 188 */ 189 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 190 { 191 void *res; 192 193 res = (void *)get_zeroed_page(gfp_mask); 194 if (safe_needed) 195 while (res && swsusp_page_is_free(virt_to_page(res))) { 196 /* The page is unsafe, mark it for swsusp_free() */ 197 swsusp_set_page_forbidden(virt_to_page(res)); 198 allocated_unsafe_pages++; 199 res = (void *)get_zeroed_page(gfp_mask); 200 } 201 if (res) { 202 swsusp_set_page_forbidden(virt_to_page(res)); 203 swsusp_set_page_free(virt_to_page(res)); 204 } 205 return res; 206 } 207 208 static void *__get_safe_page(gfp_t gfp_mask) 209 { 210 if (safe_pages_list) { 211 void *ret = safe_pages_list; 212 213 safe_pages_list = safe_pages_list->next; 214 memset(ret, 0, PAGE_SIZE); 215 return ret; 216 } 217 return get_image_page(gfp_mask, PG_SAFE); 218 } 219 220 unsigned long get_safe_page(gfp_t gfp_mask) 221 { 222 return (unsigned long)__get_safe_page(gfp_mask); 223 } 224 225 static struct page *alloc_image_page(gfp_t gfp_mask) 226 { 227 struct page *page; 228 229 page = alloc_page(gfp_mask); 230 if (page) { 231 swsusp_set_page_forbidden(page); 232 swsusp_set_page_free(page); 233 } 234 return page; 235 } 236 237 static void recycle_safe_page(void *page_address) 238 { 239 struct linked_page *lp = page_address; 240 241 lp->next = safe_pages_list; 242 safe_pages_list = lp; 243 } 244 245 /** 246 * free_image_page - Free a page allocated for hibernation image. 247 * @addr: Address of the page to free. 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 249 * 250 * The page to free should have been allocated by get_image_page() (page flags 251 * set by it are affected). 252 */ 253 static inline void free_image_page(void *addr, int clear_nosave_free) 254 { 255 struct page *page; 256 257 BUG_ON(!virt_addr_valid(addr)); 258 259 page = virt_to_page(addr); 260 261 swsusp_unset_page_forbidden(page); 262 if (clear_nosave_free) 263 swsusp_unset_page_free(page); 264 265 __free_page(page); 266 } 267 268 static inline void free_list_of_pages(struct linked_page *list, 269 int clear_page_nosave) 270 { 271 while (list) { 272 struct linked_page *lp = list->next; 273 274 free_image_page(list, clear_page_nosave); 275 list = lp; 276 } 277 } 278 279 /* 280 * struct chain_allocator is used for allocating small objects out of 281 * a linked list of pages called 'the chain'. 282 * 283 * The chain grows each time when there is no room for a new object in 284 * the current page. The allocated objects cannot be freed individually. 285 * It is only possible to free them all at once, by freeing the entire 286 * chain. 287 * 288 * NOTE: The chain allocator may be inefficient if the allocated objects 289 * are not much smaller than PAGE_SIZE. 290 */ 291 struct chain_allocator { 292 struct linked_page *chain; /* the chain */ 293 unsigned int used_space; /* total size of objects allocated out 294 of the current page */ 295 gfp_t gfp_mask; /* mask for allocating pages */ 296 int safe_needed; /* if set, only "safe" pages are allocated */ 297 }; 298 299 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 300 int safe_needed) 301 { 302 ca->chain = NULL; 303 ca->used_space = LINKED_PAGE_DATA_SIZE; 304 ca->gfp_mask = gfp_mask; 305 ca->safe_needed = safe_needed; 306 } 307 308 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 309 { 310 void *ret; 311 312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 313 struct linked_page *lp; 314 315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 316 get_image_page(ca->gfp_mask, PG_ANY); 317 if (!lp) 318 return NULL; 319 320 lp->next = ca->chain; 321 ca->chain = lp; 322 ca->used_space = 0; 323 } 324 ret = ca->chain->data + ca->used_space; 325 ca->used_space += size; 326 return ret; 327 } 328 329 /* 330 * Data types related to memory bitmaps. 331 * 332 * Memory bitmap is a structure consisting of many linked lists of 333 * objects. The main list's elements are of type struct zone_bitmap 334 * and each of them corresponds to one zone. For each zone bitmap 335 * object there is a list of objects of type struct bm_block that 336 * represent each blocks of bitmap in which information is stored. 337 * 338 * struct memory_bitmap contains a pointer to the main list of zone 339 * bitmap objects, a struct bm_position used for browsing the bitmap, 340 * and a pointer to the list of pages used for allocating all of the 341 * zone bitmap objects and bitmap block objects. 342 * 343 * NOTE: It has to be possible to lay out the bitmap in memory 344 * using only allocations of order 0. Additionally, the bitmap is 345 * designed to work with arbitrary number of zones (this is over the 346 * top for now, but let's avoid making unnecessary assumptions ;-). 347 * 348 * struct zone_bitmap contains a pointer to a list of bitmap block 349 * objects and a pointer to the bitmap block object that has been 350 * most recently used for setting bits. Additionally, it contains the 351 * PFNs that correspond to the start and end of the represented zone. 352 * 353 * struct bm_block contains a pointer to the memory page in which 354 * information is stored (in the form of a block of bitmap) 355 * It also contains the pfns that correspond to the start and end of 356 * the represented memory area. 357 * 358 * The memory bitmap is organized as a radix tree to guarantee fast random 359 * access to the bits. There is one radix tree for each zone (as returned 360 * from create_mem_extents). 361 * 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 363 * two linked lists for the nodes of the tree, one for the inner nodes and 364 * one for the leave nodes. The linked leave nodes are used for fast linear 365 * access of the memory bitmap. 366 * 367 * The struct rtree_node represents one node of the radix tree. 368 */ 369 370 #define BM_END_OF_MAP (~0UL) 371 372 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 373 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 374 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 375 376 /* 377 * struct rtree_node is a wrapper struct to link the nodes 378 * of the rtree together for easy linear iteration over 379 * bits and easy freeing 380 */ 381 struct rtree_node { 382 struct list_head list; 383 unsigned long *data; 384 }; 385 386 /* 387 * struct mem_zone_bm_rtree represents a bitmap used for one 388 * populated memory zone. 389 */ 390 struct mem_zone_bm_rtree { 391 struct list_head list; /* Link Zones together */ 392 struct list_head nodes; /* Radix Tree inner nodes */ 393 struct list_head leaves; /* Radix Tree leaves */ 394 unsigned long start_pfn; /* Zone start page frame */ 395 unsigned long end_pfn; /* Zone end page frame + 1 */ 396 struct rtree_node *rtree; /* Radix Tree Root */ 397 int levels; /* Number of Radix Tree Levels */ 398 unsigned int blocks; /* Number of Bitmap Blocks */ 399 }; 400 401 /* struct bm_position is used for browsing memory bitmaps */ 402 403 struct bm_position { 404 struct mem_zone_bm_rtree *zone; 405 struct rtree_node *node; 406 unsigned long node_pfn; 407 unsigned long cur_pfn; 408 int node_bit; 409 }; 410 411 struct memory_bitmap { 412 struct list_head zones; 413 struct linked_page *p_list; /* list of pages used to store zone 414 bitmap objects and bitmap block 415 objects */ 416 struct bm_position cur; /* most recently used bit position */ 417 }; 418 419 /* Functions that operate on memory bitmaps */ 420 421 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 422 #if BITS_PER_LONG == 32 423 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 424 #else 425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 426 #endif 427 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 428 429 /** 430 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 431 * @gfp_mask: GFP mask for the allocation. 432 * @safe_needed: Get pages not used before hibernation (restore only) 433 * @ca: Pointer to a linked list of pages ("a chain") to allocate from 434 * @list: Radix Tree node to add. 435 * 436 * This function is used to allocate inner nodes as well as the 437 * leave nodes of the radix tree. It also adds the node to the 438 * corresponding linked list passed in by the *list parameter. 439 */ 440 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 441 struct chain_allocator *ca, 442 struct list_head *list) 443 { 444 struct rtree_node *node; 445 446 node = chain_alloc(ca, sizeof(struct rtree_node)); 447 if (!node) 448 return NULL; 449 450 node->data = get_image_page(gfp_mask, safe_needed); 451 if (!node->data) 452 return NULL; 453 454 list_add_tail(&node->list, list); 455 456 return node; 457 } 458 459 /** 460 * add_rtree_block - Add a new leave node to the radix tree. 461 * 462 * The leave nodes need to be allocated in order to keep the leaves 463 * linked list in order. This is guaranteed by the zone->blocks 464 * counter. 465 */ 466 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 467 int safe_needed, struct chain_allocator *ca) 468 { 469 struct rtree_node *node, *block, **dst; 470 unsigned int levels_needed, block_nr; 471 int i; 472 473 block_nr = zone->blocks; 474 levels_needed = 0; 475 476 /* How many levels do we need for this block nr? */ 477 while (block_nr) { 478 levels_needed += 1; 479 block_nr >>= BM_RTREE_LEVEL_SHIFT; 480 } 481 482 /* Make sure the rtree has enough levels */ 483 for (i = zone->levels; i < levels_needed; i++) { 484 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 485 &zone->nodes); 486 if (!node) 487 return -ENOMEM; 488 489 node->data[0] = (unsigned long)zone->rtree; 490 zone->rtree = node; 491 zone->levels += 1; 492 } 493 494 /* Allocate new block */ 495 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 496 if (!block) 497 return -ENOMEM; 498 499 /* Now walk the rtree to insert the block */ 500 node = zone->rtree; 501 dst = &zone->rtree; 502 block_nr = zone->blocks; 503 for (i = zone->levels; i > 0; i--) { 504 int index; 505 506 if (!node) { 507 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 508 &zone->nodes); 509 if (!node) 510 return -ENOMEM; 511 *dst = node; 512 } 513 514 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 515 index &= BM_RTREE_LEVEL_MASK; 516 dst = (struct rtree_node **)&((*dst)->data[index]); 517 node = *dst; 518 } 519 520 zone->blocks += 1; 521 *dst = block; 522 523 return 0; 524 } 525 526 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 527 int clear_nosave_free); 528 529 /** 530 * create_zone_bm_rtree - Create a radix tree for one zone. 531 * 532 * Allocated the mem_zone_bm_rtree structure and initializes it. 533 * This function also allocated and builds the radix tree for the 534 * zone. 535 */ 536 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 537 int safe_needed, 538 struct chain_allocator *ca, 539 unsigned long start, 540 unsigned long end) 541 { 542 struct mem_zone_bm_rtree *zone; 543 unsigned int i, nr_blocks; 544 unsigned long pages; 545 546 pages = end - start; 547 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 548 if (!zone) 549 return NULL; 550 551 INIT_LIST_HEAD(&zone->nodes); 552 INIT_LIST_HEAD(&zone->leaves); 553 zone->start_pfn = start; 554 zone->end_pfn = end; 555 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 556 557 for (i = 0; i < nr_blocks; i++) { 558 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 559 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 560 return NULL; 561 } 562 } 563 564 return zone; 565 } 566 567 /** 568 * free_zone_bm_rtree - Free the memory of the radix tree. 569 * 570 * Free all node pages of the radix tree. The mem_zone_bm_rtree 571 * structure itself is not freed here nor are the rtree_node 572 * structs. 573 */ 574 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 575 int clear_nosave_free) 576 { 577 struct rtree_node *node; 578 579 list_for_each_entry(node, &zone->nodes, list) 580 free_image_page(node->data, clear_nosave_free); 581 582 list_for_each_entry(node, &zone->leaves, list) 583 free_image_page(node->data, clear_nosave_free); 584 } 585 586 static void memory_bm_position_reset(struct memory_bitmap *bm) 587 { 588 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 589 list); 590 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 591 struct rtree_node, list); 592 bm->cur.node_pfn = 0; 593 bm->cur.cur_pfn = BM_END_OF_MAP; 594 bm->cur.node_bit = 0; 595 } 596 597 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 598 599 struct mem_extent { 600 struct list_head hook; 601 unsigned long start; 602 unsigned long end; 603 }; 604 605 /** 606 * free_mem_extents - Free a list of memory extents. 607 * @list: List of extents to free. 608 */ 609 static void free_mem_extents(struct list_head *list) 610 { 611 struct mem_extent *ext, *aux; 612 613 list_for_each_entry_safe(ext, aux, list, hook) { 614 list_del(&ext->hook); 615 kfree(ext); 616 } 617 } 618 619 /** 620 * create_mem_extents - Create a list of memory extents. 621 * @list: List to put the extents into. 622 * @gfp_mask: Mask to use for memory allocations. 623 * 624 * The extents represent contiguous ranges of PFNs. 625 */ 626 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 627 { 628 struct zone *zone; 629 630 INIT_LIST_HEAD(list); 631 632 for_each_populated_zone(zone) { 633 unsigned long zone_start, zone_end; 634 struct mem_extent *ext, *cur, *aux; 635 636 zone_start = zone->zone_start_pfn; 637 zone_end = zone_end_pfn(zone); 638 639 list_for_each_entry(ext, list, hook) 640 if (zone_start <= ext->end) 641 break; 642 643 if (&ext->hook == list || zone_end < ext->start) { 644 /* New extent is necessary */ 645 struct mem_extent *new_ext; 646 647 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 648 if (!new_ext) { 649 free_mem_extents(list); 650 return -ENOMEM; 651 } 652 new_ext->start = zone_start; 653 new_ext->end = zone_end; 654 list_add_tail(&new_ext->hook, &ext->hook); 655 continue; 656 } 657 658 /* Merge this zone's range of PFNs with the existing one */ 659 if (zone_start < ext->start) 660 ext->start = zone_start; 661 if (zone_end > ext->end) 662 ext->end = zone_end; 663 664 /* More merging may be possible */ 665 cur = ext; 666 list_for_each_entry_safe_continue(cur, aux, list, hook) { 667 if (zone_end < cur->start) 668 break; 669 if (zone_end < cur->end) 670 ext->end = cur->end; 671 list_del(&cur->hook); 672 kfree(cur); 673 } 674 } 675 676 return 0; 677 } 678 679 /** 680 * memory_bm_create - Allocate memory for a memory bitmap. 681 */ 682 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 683 int safe_needed) 684 { 685 struct chain_allocator ca; 686 struct list_head mem_extents; 687 struct mem_extent *ext; 688 int error; 689 690 chain_init(&ca, gfp_mask, safe_needed); 691 INIT_LIST_HEAD(&bm->zones); 692 693 error = create_mem_extents(&mem_extents, gfp_mask); 694 if (error) 695 return error; 696 697 list_for_each_entry(ext, &mem_extents, hook) { 698 struct mem_zone_bm_rtree *zone; 699 700 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 701 ext->start, ext->end); 702 if (!zone) { 703 error = -ENOMEM; 704 goto Error; 705 } 706 list_add_tail(&zone->list, &bm->zones); 707 } 708 709 bm->p_list = ca.chain; 710 memory_bm_position_reset(bm); 711 Exit: 712 free_mem_extents(&mem_extents); 713 return error; 714 715 Error: 716 bm->p_list = ca.chain; 717 memory_bm_free(bm, PG_UNSAFE_CLEAR); 718 goto Exit; 719 } 720 721 /** 722 * memory_bm_free - Free memory occupied by the memory bitmap. 723 * @bm: Memory bitmap. 724 */ 725 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 726 { 727 struct mem_zone_bm_rtree *zone; 728 729 list_for_each_entry(zone, &bm->zones, list) 730 free_zone_bm_rtree(zone, clear_nosave_free); 731 732 free_list_of_pages(bm->p_list, clear_nosave_free); 733 734 INIT_LIST_HEAD(&bm->zones); 735 } 736 737 /** 738 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 739 * 740 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 741 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 742 * 743 * Walk the radix tree to find the page containing the bit that represents @pfn 744 * and return the position of the bit in @addr and @bit_nr. 745 */ 746 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 747 void **addr, unsigned int *bit_nr) 748 { 749 struct mem_zone_bm_rtree *curr, *zone; 750 struct rtree_node *node; 751 int i, block_nr; 752 753 zone = bm->cur.zone; 754 755 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 756 goto zone_found; 757 758 zone = NULL; 759 760 /* Find the right zone */ 761 list_for_each_entry(curr, &bm->zones, list) { 762 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 763 zone = curr; 764 break; 765 } 766 } 767 768 if (!zone) 769 return -EFAULT; 770 771 zone_found: 772 /* 773 * We have found the zone. Now walk the radix tree to find the leaf node 774 * for our PFN. 775 */ 776 777 /* 778 * If the zone we wish to scan is the current zone and the 779 * pfn falls into the current node then we do not need to walk 780 * the tree. 781 */ 782 node = bm->cur.node; 783 if (zone == bm->cur.zone && 784 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 785 goto node_found; 786 787 node = zone->rtree; 788 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 789 790 for (i = zone->levels; i > 0; i--) { 791 int index; 792 793 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 794 index &= BM_RTREE_LEVEL_MASK; 795 BUG_ON(node->data[index] == 0); 796 node = (struct rtree_node *)node->data[index]; 797 } 798 799 node_found: 800 /* Update last position */ 801 bm->cur.zone = zone; 802 bm->cur.node = node; 803 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 804 bm->cur.cur_pfn = pfn; 805 806 /* Set return values */ 807 *addr = node->data; 808 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 809 810 return 0; 811 } 812 813 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 814 { 815 void *addr; 816 unsigned int bit; 817 int error; 818 819 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 820 BUG_ON(error); 821 set_bit(bit, addr); 822 } 823 824 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 825 { 826 void *addr; 827 unsigned int bit; 828 int error; 829 830 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 831 if (!error) 832 set_bit(bit, addr); 833 834 return error; 835 } 836 837 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 838 { 839 void *addr; 840 unsigned int bit; 841 int error; 842 843 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 844 BUG_ON(error); 845 clear_bit(bit, addr); 846 } 847 848 static void memory_bm_clear_current(struct memory_bitmap *bm) 849 { 850 int bit; 851 852 bit = max(bm->cur.node_bit - 1, 0); 853 clear_bit(bit, bm->cur.node->data); 854 } 855 856 static unsigned long memory_bm_get_current(struct memory_bitmap *bm) 857 { 858 return bm->cur.cur_pfn; 859 } 860 861 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 862 { 863 void *addr; 864 unsigned int bit; 865 int error; 866 867 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 868 BUG_ON(error); 869 return test_bit(bit, addr); 870 } 871 872 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 873 { 874 void *addr; 875 unsigned int bit; 876 877 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 878 } 879 880 /* 881 * rtree_next_node - Jump to the next leaf node. 882 * 883 * Set the position to the beginning of the next node in the 884 * memory bitmap. This is either the next node in the current 885 * zone's radix tree or the first node in the radix tree of the 886 * next zone. 887 * 888 * Return true if there is a next node, false otherwise. 889 */ 890 static bool rtree_next_node(struct memory_bitmap *bm) 891 { 892 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 893 bm->cur.node = list_entry(bm->cur.node->list.next, 894 struct rtree_node, list); 895 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 896 bm->cur.node_bit = 0; 897 touch_softlockup_watchdog(); 898 return true; 899 } 900 901 /* No more nodes, goto next zone */ 902 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 903 bm->cur.zone = list_entry(bm->cur.zone->list.next, 904 struct mem_zone_bm_rtree, list); 905 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 906 struct rtree_node, list); 907 bm->cur.node_pfn = 0; 908 bm->cur.node_bit = 0; 909 return true; 910 } 911 912 /* No more zones */ 913 return false; 914 } 915 916 /** 917 * memory_bm_next_pfn - Find the next set bit in a memory bitmap. 918 * @bm: Memory bitmap. 919 * 920 * Starting from the last returned position this function searches for the next 921 * set bit in @bm and returns the PFN represented by it. If no more bits are 922 * set, BM_END_OF_MAP is returned. 923 * 924 * It is required to run memory_bm_position_reset() before the first call to 925 * this function for the given memory bitmap. 926 */ 927 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 928 { 929 unsigned long bits, pfn, pages; 930 int bit; 931 932 do { 933 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 934 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 935 bit = find_next_bit(bm->cur.node->data, bits, 936 bm->cur.node_bit); 937 if (bit < bits) { 938 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 939 bm->cur.node_bit = bit + 1; 940 bm->cur.cur_pfn = pfn; 941 return pfn; 942 } 943 } while (rtree_next_node(bm)); 944 945 bm->cur.cur_pfn = BM_END_OF_MAP; 946 return BM_END_OF_MAP; 947 } 948 949 /* 950 * This structure represents a range of page frames the contents of which 951 * should not be saved during hibernation. 952 */ 953 struct nosave_region { 954 struct list_head list; 955 unsigned long start_pfn; 956 unsigned long end_pfn; 957 }; 958 959 static LIST_HEAD(nosave_regions); 960 961 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 962 { 963 struct rtree_node *node; 964 965 list_for_each_entry(node, &zone->nodes, list) 966 recycle_safe_page(node->data); 967 968 list_for_each_entry(node, &zone->leaves, list) 969 recycle_safe_page(node->data); 970 } 971 972 static void memory_bm_recycle(struct memory_bitmap *bm) 973 { 974 struct mem_zone_bm_rtree *zone; 975 struct linked_page *p_list; 976 977 list_for_each_entry(zone, &bm->zones, list) 978 recycle_zone_bm_rtree(zone); 979 980 p_list = bm->p_list; 981 while (p_list) { 982 struct linked_page *lp = p_list; 983 984 p_list = lp->next; 985 recycle_safe_page(lp); 986 } 987 } 988 989 /** 990 * register_nosave_region - Register a region of unsaveable memory. 991 * 992 * Register a range of page frames the contents of which should not be saved 993 * during hibernation (to be used in the early initialization code). 994 */ 995 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn) 996 { 997 struct nosave_region *region; 998 999 if (start_pfn >= end_pfn) 1000 return; 1001 1002 if (!list_empty(&nosave_regions)) { 1003 /* Try to extend the previous region (they should be sorted) */ 1004 region = list_entry(nosave_regions.prev, 1005 struct nosave_region, list); 1006 if (region->end_pfn == start_pfn) { 1007 region->end_pfn = end_pfn; 1008 goto Report; 1009 } 1010 } 1011 /* This allocation cannot fail */ 1012 region = memblock_alloc(sizeof(struct nosave_region), 1013 SMP_CACHE_BYTES); 1014 if (!region) 1015 panic("%s: Failed to allocate %zu bytes\n", __func__, 1016 sizeof(struct nosave_region)); 1017 region->start_pfn = start_pfn; 1018 region->end_pfn = end_pfn; 1019 list_add_tail(®ion->list, &nosave_regions); 1020 Report: 1021 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 1022 (unsigned long long) start_pfn << PAGE_SHIFT, 1023 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 1024 } 1025 1026 /* 1027 * Set bits in this map correspond to the page frames the contents of which 1028 * should not be saved during the suspend. 1029 */ 1030 static struct memory_bitmap *forbidden_pages_map; 1031 1032 /* Set bits in this map correspond to free page frames. */ 1033 static struct memory_bitmap *free_pages_map; 1034 1035 /* 1036 * Each page frame allocated for creating the image is marked by setting the 1037 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 1038 */ 1039 1040 void swsusp_set_page_free(struct page *page) 1041 { 1042 if (free_pages_map) 1043 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 1044 } 1045 1046 static int swsusp_page_is_free(struct page *page) 1047 { 1048 return free_pages_map ? 1049 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1050 } 1051 1052 void swsusp_unset_page_free(struct page *page) 1053 { 1054 if (free_pages_map) 1055 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1056 } 1057 1058 static void swsusp_set_page_forbidden(struct page *page) 1059 { 1060 if (forbidden_pages_map) 1061 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1062 } 1063 1064 int swsusp_page_is_forbidden(struct page *page) 1065 { 1066 return forbidden_pages_map ? 1067 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1068 } 1069 1070 static void swsusp_unset_page_forbidden(struct page *page) 1071 { 1072 if (forbidden_pages_map) 1073 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1074 } 1075 1076 /** 1077 * mark_nosave_pages - Mark pages that should not be saved. 1078 * @bm: Memory bitmap. 1079 * 1080 * Set the bits in @bm that correspond to the page frames the contents of which 1081 * should not be saved. 1082 */ 1083 static void mark_nosave_pages(struct memory_bitmap *bm) 1084 { 1085 struct nosave_region *region; 1086 1087 if (list_empty(&nosave_regions)) 1088 return; 1089 1090 list_for_each_entry(region, &nosave_regions, list) { 1091 unsigned long pfn; 1092 1093 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1094 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1095 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1096 - 1); 1097 1098 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1099 if (pfn_valid(pfn)) { 1100 /* 1101 * It is safe to ignore the result of 1102 * mem_bm_set_bit_check() here, since we won't 1103 * touch the PFNs for which the error is 1104 * returned anyway. 1105 */ 1106 mem_bm_set_bit_check(bm, pfn); 1107 } 1108 } 1109 } 1110 1111 /** 1112 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1113 * 1114 * Create bitmaps needed for marking page frames that should not be saved and 1115 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1116 * only modified if everything goes well, because we don't want the bits to be 1117 * touched before both bitmaps are set up. 1118 */ 1119 int create_basic_memory_bitmaps(void) 1120 { 1121 struct memory_bitmap *bm1, *bm2; 1122 int error = 0; 1123 1124 if (forbidden_pages_map && free_pages_map) 1125 return 0; 1126 else 1127 BUG_ON(forbidden_pages_map || free_pages_map); 1128 1129 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1130 if (!bm1) 1131 return -ENOMEM; 1132 1133 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1134 if (error) 1135 goto Free_first_object; 1136 1137 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1138 if (!bm2) 1139 goto Free_first_bitmap; 1140 1141 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1142 if (error) 1143 goto Free_second_object; 1144 1145 forbidden_pages_map = bm1; 1146 free_pages_map = bm2; 1147 mark_nosave_pages(forbidden_pages_map); 1148 1149 pr_debug("Basic memory bitmaps created\n"); 1150 1151 return 0; 1152 1153 Free_second_object: 1154 kfree(bm2); 1155 Free_first_bitmap: 1156 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1157 Free_first_object: 1158 kfree(bm1); 1159 return -ENOMEM; 1160 } 1161 1162 /** 1163 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1164 * 1165 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1166 * auxiliary pointers are necessary so that the bitmaps themselves are not 1167 * referred to while they are being freed. 1168 */ 1169 void free_basic_memory_bitmaps(void) 1170 { 1171 struct memory_bitmap *bm1, *bm2; 1172 1173 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1174 return; 1175 1176 bm1 = forbidden_pages_map; 1177 bm2 = free_pages_map; 1178 forbidden_pages_map = NULL; 1179 free_pages_map = NULL; 1180 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1181 kfree(bm1); 1182 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1183 kfree(bm2); 1184 1185 pr_debug("Basic memory bitmaps freed\n"); 1186 } 1187 1188 static void clear_or_poison_free_page(struct page *page) 1189 { 1190 if (page_poisoning_enabled_static()) 1191 __kernel_poison_pages(page, 1); 1192 else if (want_init_on_free()) 1193 clear_highpage(page); 1194 } 1195 1196 void clear_or_poison_free_pages(void) 1197 { 1198 struct memory_bitmap *bm = free_pages_map; 1199 unsigned long pfn; 1200 1201 if (WARN_ON(!(free_pages_map))) 1202 return; 1203 1204 if (page_poisoning_enabled() || want_init_on_free()) { 1205 memory_bm_position_reset(bm); 1206 pfn = memory_bm_next_pfn(bm); 1207 while (pfn != BM_END_OF_MAP) { 1208 if (pfn_valid(pfn)) 1209 clear_or_poison_free_page(pfn_to_page(pfn)); 1210 1211 pfn = memory_bm_next_pfn(bm); 1212 } 1213 memory_bm_position_reset(bm); 1214 pr_info("free pages cleared after restore\n"); 1215 } 1216 } 1217 1218 /** 1219 * snapshot_additional_pages - Estimate the number of extra pages needed. 1220 * @zone: Memory zone to carry out the computation for. 1221 * 1222 * Estimate the number of additional pages needed for setting up a hibernation 1223 * image data structures for @zone (usually, the returned value is greater than 1224 * the exact number). 1225 */ 1226 unsigned int snapshot_additional_pages(struct zone *zone) 1227 { 1228 unsigned int rtree, nodes; 1229 1230 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1231 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1232 LINKED_PAGE_DATA_SIZE); 1233 while (nodes > 1) { 1234 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1235 rtree += nodes; 1236 } 1237 1238 return 2 * rtree; 1239 } 1240 1241 /* 1242 * Touch the watchdog for every WD_PAGE_COUNT pages. 1243 */ 1244 #define WD_PAGE_COUNT (128*1024) 1245 1246 static void mark_free_pages(struct zone *zone) 1247 { 1248 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 1249 unsigned long flags; 1250 unsigned int order, t; 1251 struct page *page; 1252 1253 if (zone_is_empty(zone)) 1254 return; 1255 1256 spin_lock_irqsave(&zone->lock, flags); 1257 1258 max_zone_pfn = zone_end_pfn(zone); 1259 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1260 if (pfn_valid(pfn)) { 1261 page = pfn_to_page(pfn); 1262 1263 if (!--page_count) { 1264 touch_nmi_watchdog(); 1265 page_count = WD_PAGE_COUNT; 1266 } 1267 1268 if (page_zone(page) != zone) 1269 continue; 1270 1271 if (!swsusp_page_is_forbidden(page)) 1272 swsusp_unset_page_free(page); 1273 } 1274 1275 for_each_migratetype_order(order, t) { 1276 list_for_each_entry(page, 1277 &zone->free_area[order].free_list[t], buddy_list) { 1278 unsigned long i; 1279 1280 pfn = page_to_pfn(page); 1281 for (i = 0; i < (1UL << order); i++) { 1282 if (!--page_count) { 1283 touch_nmi_watchdog(); 1284 page_count = WD_PAGE_COUNT; 1285 } 1286 swsusp_set_page_free(pfn_to_page(pfn + i)); 1287 } 1288 } 1289 } 1290 spin_unlock_irqrestore(&zone->lock, flags); 1291 } 1292 1293 #ifdef CONFIG_HIGHMEM 1294 /** 1295 * count_free_highmem_pages - Compute the total number of free highmem pages. 1296 * 1297 * The returned number is system-wide. 1298 */ 1299 static unsigned int count_free_highmem_pages(void) 1300 { 1301 struct zone *zone; 1302 unsigned int cnt = 0; 1303 1304 for_each_populated_zone(zone) 1305 if (is_highmem(zone)) 1306 cnt += zone_page_state(zone, NR_FREE_PAGES); 1307 1308 return cnt; 1309 } 1310 1311 /** 1312 * saveable_highmem_page - Check if a highmem page is saveable. 1313 * 1314 * Determine whether a highmem page should be included in a hibernation image. 1315 * 1316 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1317 * and it isn't part of a free chunk of pages. 1318 */ 1319 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1320 { 1321 struct page *page; 1322 1323 if (!pfn_valid(pfn)) 1324 return NULL; 1325 1326 page = pfn_to_online_page(pfn); 1327 if (!page || page_zone(page) != zone) 1328 return NULL; 1329 1330 BUG_ON(!PageHighMem(page)); 1331 1332 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1333 return NULL; 1334 1335 if (PageReserved(page) || PageOffline(page)) 1336 return NULL; 1337 1338 if (page_is_guard(page)) 1339 return NULL; 1340 1341 return page; 1342 } 1343 1344 /** 1345 * count_highmem_pages - Compute the total number of saveable highmem pages. 1346 */ 1347 static unsigned int count_highmem_pages(void) 1348 { 1349 struct zone *zone; 1350 unsigned int n = 0; 1351 1352 for_each_populated_zone(zone) { 1353 unsigned long pfn, max_zone_pfn; 1354 1355 if (!is_highmem(zone)) 1356 continue; 1357 1358 mark_free_pages(zone); 1359 max_zone_pfn = zone_end_pfn(zone); 1360 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1361 if (saveable_highmem_page(zone, pfn)) 1362 n++; 1363 } 1364 return n; 1365 } 1366 #else 1367 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1368 { 1369 return NULL; 1370 } 1371 #endif /* CONFIG_HIGHMEM */ 1372 1373 /** 1374 * saveable_page - Check if the given page is saveable. 1375 * 1376 * Determine whether a non-highmem page should be included in a hibernation 1377 * image. 1378 * 1379 * We should save the page if it isn't Nosave, and is not in the range 1380 * of pages statically defined as 'unsaveable', and it isn't part of 1381 * a free chunk of pages. 1382 */ 1383 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1384 { 1385 struct page *page; 1386 1387 if (!pfn_valid(pfn)) 1388 return NULL; 1389 1390 page = pfn_to_online_page(pfn); 1391 if (!page || page_zone(page) != zone) 1392 return NULL; 1393 1394 BUG_ON(PageHighMem(page)); 1395 1396 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1397 return NULL; 1398 1399 if (PageOffline(page)) 1400 return NULL; 1401 1402 if (PageReserved(page) 1403 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1404 return NULL; 1405 1406 if (page_is_guard(page)) 1407 return NULL; 1408 1409 return page; 1410 } 1411 1412 /** 1413 * count_data_pages - Compute the total number of saveable non-highmem pages. 1414 */ 1415 static unsigned int count_data_pages(void) 1416 { 1417 struct zone *zone; 1418 unsigned long pfn, max_zone_pfn; 1419 unsigned int n = 0; 1420 1421 for_each_populated_zone(zone) { 1422 if (is_highmem(zone)) 1423 continue; 1424 1425 mark_free_pages(zone); 1426 max_zone_pfn = zone_end_pfn(zone); 1427 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1428 if (saveable_page(zone, pfn)) 1429 n++; 1430 } 1431 return n; 1432 } 1433 1434 /* 1435 * This is needed, because copy_page and memcpy are not usable for copying 1436 * task structs. Returns true if the page was filled with only zeros, 1437 * otherwise false. 1438 */ 1439 static inline bool do_copy_page(long *dst, long *src) 1440 { 1441 long z = 0; 1442 int n; 1443 1444 for (n = PAGE_SIZE / sizeof(long); n; n--) { 1445 z |= *src; 1446 *dst++ = *src++; 1447 } 1448 return !z; 1449 } 1450 1451 /** 1452 * safe_copy_page - Copy a page in a safe way. 1453 * 1454 * Check if the page we are going to copy is marked as present in the kernel 1455 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or 1456 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present() 1457 * always returns 'true'. Returns true if the page was entirely composed of 1458 * zeros, otherwise it will return false. 1459 */ 1460 static bool safe_copy_page(void *dst, struct page *s_page) 1461 { 1462 bool zeros_only; 1463 1464 if (kernel_page_present(s_page)) { 1465 zeros_only = do_copy_page(dst, page_address(s_page)); 1466 } else { 1467 hibernate_map_page(s_page); 1468 zeros_only = do_copy_page(dst, page_address(s_page)); 1469 hibernate_unmap_page(s_page); 1470 } 1471 return zeros_only; 1472 } 1473 1474 #ifdef CONFIG_HIGHMEM 1475 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1476 { 1477 return is_highmem(zone) ? 1478 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1479 } 1480 1481 static bool copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1482 { 1483 struct page *s_page, *d_page; 1484 void *src, *dst; 1485 bool zeros_only; 1486 1487 s_page = pfn_to_page(src_pfn); 1488 d_page = pfn_to_page(dst_pfn); 1489 if (PageHighMem(s_page)) { 1490 src = kmap_atomic(s_page); 1491 dst = kmap_atomic(d_page); 1492 zeros_only = do_copy_page(dst, src); 1493 kunmap_atomic(dst); 1494 kunmap_atomic(src); 1495 } else { 1496 if (PageHighMem(d_page)) { 1497 /* 1498 * The page pointed to by src may contain some kernel 1499 * data modified by kmap_atomic() 1500 */ 1501 zeros_only = safe_copy_page(buffer, s_page); 1502 dst = kmap_atomic(d_page); 1503 copy_page(dst, buffer); 1504 kunmap_atomic(dst); 1505 } else { 1506 zeros_only = safe_copy_page(page_address(d_page), s_page); 1507 } 1508 } 1509 return zeros_only; 1510 } 1511 #else 1512 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1513 1514 static inline int copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1515 { 1516 return safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1517 pfn_to_page(src_pfn)); 1518 } 1519 #endif /* CONFIG_HIGHMEM */ 1520 1521 /* 1522 * Copy data pages will copy all pages into pages pulled from the copy_bm. 1523 * If a page was entirely filled with zeros it will be marked in the zero_bm. 1524 * 1525 * Returns the number of pages copied. 1526 */ 1527 static unsigned long copy_data_pages(struct memory_bitmap *copy_bm, 1528 struct memory_bitmap *orig_bm, 1529 struct memory_bitmap *zero_bm) 1530 { 1531 unsigned long copied_pages = 0; 1532 struct zone *zone; 1533 unsigned long pfn, copy_pfn; 1534 1535 for_each_populated_zone(zone) { 1536 unsigned long max_zone_pfn; 1537 1538 mark_free_pages(zone); 1539 max_zone_pfn = zone_end_pfn(zone); 1540 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1541 if (page_is_saveable(zone, pfn)) 1542 memory_bm_set_bit(orig_bm, pfn); 1543 } 1544 memory_bm_position_reset(orig_bm); 1545 memory_bm_position_reset(copy_bm); 1546 copy_pfn = memory_bm_next_pfn(copy_bm); 1547 for(;;) { 1548 pfn = memory_bm_next_pfn(orig_bm); 1549 if (unlikely(pfn == BM_END_OF_MAP)) 1550 break; 1551 if (copy_data_page(copy_pfn, pfn)) { 1552 memory_bm_set_bit(zero_bm, pfn); 1553 /* Use this copy_pfn for a page that is not full of zeros */ 1554 continue; 1555 } 1556 copied_pages++; 1557 copy_pfn = memory_bm_next_pfn(copy_bm); 1558 } 1559 return copied_pages; 1560 } 1561 1562 /* Total number of image pages */ 1563 static unsigned int nr_copy_pages; 1564 /* Number of pages needed for saving the original pfns of the image pages */ 1565 static unsigned int nr_meta_pages; 1566 /* Number of zero pages */ 1567 static unsigned int nr_zero_pages; 1568 1569 /* 1570 * Numbers of normal and highmem page frames allocated for hibernation image 1571 * before suspending devices. 1572 */ 1573 static unsigned int alloc_normal, alloc_highmem; 1574 /* 1575 * Memory bitmap used for marking saveable pages (during hibernation) or 1576 * hibernation image pages (during restore) 1577 */ 1578 static struct memory_bitmap orig_bm; 1579 /* 1580 * Memory bitmap used during hibernation for marking allocated page frames that 1581 * will contain copies of saveable pages. During restore it is initially used 1582 * for marking hibernation image pages, but then the set bits from it are 1583 * duplicated in @orig_bm and it is released. On highmem systems it is next 1584 * used for marking "safe" highmem pages, but it has to be reinitialized for 1585 * this purpose. 1586 */ 1587 static struct memory_bitmap copy_bm; 1588 1589 /* Memory bitmap which tracks which saveable pages were zero filled. */ 1590 static struct memory_bitmap zero_bm; 1591 1592 /** 1593 * swsusp_free - Free pages allocated for hibernation image. 1594 * 1595 * Image pages are allocated before snapshot creation, so they need to be 1596 * released after resume. 1597 */ 1598 void swsusp_free(void) 1599 { 1600 unsigned long fb_pfn, fr_pfn; 1601 1602 if (!forbidden_pages_map || !free_pages_map) 1603 goto out; 1604 1605 memory_bm_position_reset(forbidden_pages_map); 1606 memory_bm_position_reset(free_pages_map); 1607 1608 loop: 1609 fr_pfn = memory_bm_next_pfn(free_pages_map); 1610 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1611 1612 /* 1613 * Find the next bit set in both bitmaps. This is guaranteed to 1614 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1615 */ 1616 do { 1617 if (fb_pfn < fr_pfn) 1618 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1619 if (fr_pfn < fb_pfn) 1620 fr_pfn = memory_bm_next_pfn(free_pages_map); 1621 } while (fb_pfn != fr_pfn); 1622 1623 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1624 struct page *page = pfn_to_page(fr_pfn); 1625 1626 memory_bm_clear_current(forbidden_pages_map); 1627 memory_bm_clear_current(free_pages_map); 1628 hibernate_restore_unprotect_page(page_address(page)); 1629 __free_page(page); 1630 goto loop; 1631 } 1632 1633 out: 1634 nr_copy_pages = 0; 1635 nr_meta_pages = 0; 1636 nr_zero_pages = 0; 1637 restore_pblist = NULL; 1638 buffer = NULL; 1639 alloc_normal = 0; 1640 alloc_highmem = 0; 1641 hibernate_restore_protection_end(); 1642 } 1643 1644 /* Helper functions used for the shrinking of memory. */ 1645 1646 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1647 1648 /** 1649 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1650 * @nr_pages: Number of page frames to allocate. 1651 * @mask: GFP flags to use for the allocation. 1652 * 1653 * Return value: Number of page frames actually allocated 1654 */ 1655 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1656 { 1657 unsigned long nr_alloc = 0; 1658 1659 while (nr_pages > 0) { 1660 struct page *page; 1661 1662 page = alloc_image_page(mask); 1663 if (!page) 1664 break; 1665 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1666 if (PageHighMem(page)) 1667 alloc_highmem++; 1668 else 1669 alloc_normal++; 1670 nr_pages--; 1671 nr_alloc++; 1672 } 1673 1674 return nr_alloc; 1675 } 1676 1677 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1678 unsigned long avail_normal) 1679 { 1680 unsigned long alloc; 1681 1682 if (avail_normal <= alloc_normal) 1683 return 0; 1684 1685 alloc = avail_normal - alloc_normal; 1686 if (nr_pages < alloc) 1687 alloc = nr_pages; 1688 1689 return preallocate_image_pages(alloc, GFP_IMAGE); 1690 } 1691 1692 #ifdef CONFIG_HIGHMEM 1693 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1694 { 1695 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1696 } 1697 1698 /** 1699 * __fraction - Compute (an approximation of) x * (multiplier / base). 1700 */ 1701 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1702 { 1703 return div64_u64(x * multiplier, base); 1704 } 1705 1706 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1707 unsigned long highmem, 1708 unsigned long total) 1709 { 1710 unsigned long alloc = __fraction(nr_pages, highmem, total); 1711 1712 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1713 } 1714 #else /* CONFIG_HIGHMEM */ 1715 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1716 { 1717 return 0; 1718 } 1719 1720 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1721 unsigned long highmem, 1722 unsigned long total) 1723 { 1724 return 0; 1725 } 1726 #endif /* CONFIG_HIGHMEM */ 1727 1728 /** 1729 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1730 */ 1731 static unsigned long free_unnecessary_pages(void) 1732 { 1733 unsigned long save, to_free_normal, to_free_highmem, free; 1734 1735 save = count_data_pages(); 1736 if (alloc_normal >= save) { 1737 to_free_normal = alloc_normal - save; 1738 save = 0; 1739 } else { 1740 to_free_normal = 0; 1741 save -= alloc_normal; 1742 } 1743 save += count_highmem_pages(); 1744 if (alloc_highmem >= save) { 1745 to_free_highmem = alloc_highmem - save; 1746 } else { 1747 to_free_highmem = 0; 1748 save -= alloc_highmem; 1749 if (to_free_normal > save) 1750 to_free_normal -= save; 1751 else 1752 to_free_normal = 0; 1753 } 1754 free = to_free_normal + to_free_highmem; 1755 1756 memory_bm_position_reset(©_bm); 1757 1758 while (to_free_normal > 0 || to_free_highmem > 0) { 1759 unsigned long pfn = memory_bm_next_pfn(©_bm); 1760 struct page *page = pfn_to_page(pfn); 1761 1762 if (PageHighMem(page)) { 1763 if (!to_free_highmem) 1764 continue; 1765 to_free_highmem--; 1766 alloc_highmem--; 1767 } else { 1768 if (!to_free_normal) 1769 continue; 1770 to_free_normal--; 1771 alloc_normal--; 1772 } 1773 memory_bm_clear_bit(©_bm, pfn); 1774 swsusp_unset_page_forbidden(page); 1775 swsusp_unset_page_free(page); 1776 __free_page(page); 1777 } 1778 1779 return free; 1780 } 1781 1782 /** 1783 * minimum_image_size - Estimate the minimum acceptable size of an image. 1784 * @saveable: Number of saveable pages in the system. 1785 * 1786 * We want to avoid attempting to free too much memory too hard, so estimate the 1787 * minimum acceptable size of a hibernation image to use as the lower limit for 1788 * preallocating memory. 1789 * 1790 * We assume that the minimum image size should be proportional to 1791 * 1792 * [number of saveable pages] - [number of pages that can be freed in theory] 1793 * 1794 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1795 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1796 */ 1797 static unsigned long minimum_image_size(unsigned long saveable) 1798 { 1799 unsigned long size; 1800 1801 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) 1802 + global_node_page_state(NR_ACTIVE_ANON) 1803 + global_node_page_state(NR_INACTIVE_ANON) 1804 + global_node_page_state(NR_ACTIVE_FILE) 1805 + global_node_page_state(NR_INACTIVE_FILE); 1806 1807 return saveable <= size ? 0 : saveable - size; 1808 } 1809 1810 /** 1811 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1812 * 1813 * To create a hibernation image it is necessary to make a copy of every page 1814 * frame in use. We also need a number of page frames to be free during 1815 * hibernation for allocations made while saving the image and for device 1816 * drivers, in case they need to allocate memory from their hibernation 1817 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1818 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through 1819 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1820 * total number of available page frames and allocate at least 1821 * 1822 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2 1823 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1824 * 1825 * of them, which corresponds to the maximum size of a hibernation image. 1826 * 1827 * If image_size is set below the number following from the above formula, 1828 * the preallocation of memory is continued until the total number of saveable 1829 * pages in the system is below the requested image size or the minimum 1830 * acceptable image size returned by minimum_image_size(), whichever is greater. 1831 */ 1832 int hibernate_preallocate_memory(void) 1833 { 1834 struct zone *zone; 1835 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1836 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1837 ktime_t start, stop; 1838 int error; 1839 1840 pr_info("Preallocating image memory\n"); 1841 start = ktime_get(); 1842 1843 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1844 if (error) { 1845 pr_err("Cannot allocate original bitmap\n"); 1846 goto err_out; 1847 } 1848 1849 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1850 if (error) { 1851 pr_err("Cannot allocate copy bitmap\n"); 1852 goto err_out; 1853 } 1854 1855 error = memory_bm_create(&zero_bm, GFP_IMAGE, PG_ANY); 1856 if (error) { 1857 pr_err("Cannot allocate zero bitmap\n"); 1858 goto err_out; 1859 } 1860 1861 alloc_normal = 0; 1862 alloc_highmem = 0; 1863 nr_zero_pages = 0; 1864 1865 /* Count the number of saveable data pages. */ 1866 save_highmem = count_highmem_pages(); 1867 saveable = count_data_pages(); 1868 1869 /* 1870 * Compute the total number of page frames we can use (count) and the 1871 * number of pages needed for image metadata (size). 1872 */ 1873 count = saveable; 1874 saveable += save_highmem; 1875 highmem = save_highmem; 1876 size = 0; 1877 for_each_populated_zone(zone) { 1878 size += snapshot_additional_pages(zone); 1879 if (is_highmem(zone)) 1880 highmem += zone_page_state(zone, NR_FREE_PAGES); 1881 else 1882 count += zone_page_state(zone, NR_FREE_PAGES); 1883 } 1884 avail_normal = count; 1885 count += highmem; 1886 count -= totalreserve_pages; 1887 1888 /* Compute the maximum number of saveable pages to leave in memory. */ 1889 max_size = (count - (size + PAGES_FOR_IO)) / 2 1890 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1891 /* Compute the desired number of image pages specified by image_size. */ 1892 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1893 if (size > max_size) 1894 size = max_size; 1895 /* 1896 * If the desired number of image pages is at least as large as the 1897 * current number of saveable pages in memory, allocate page frames for 1898 * the image and we're done. 1899 */ 1900 if (size >= saveable) { 1901 pages = preallocate_image_highmem(save_highmem); 1902 pages += preallocate_image_memory(saveable - pages, avail_normal); 1903 goto out; 1904 } 1905 1906 /* Estimate the minimum size of the image. */ 1907 pages = minimum_image_size(saveable); 1908 /* 1909 * To avoid excessive pressure on the normal zone, leave room in it to 1910 * accommodate an image of the minimum size (unless it's already too 1911 * small, in which case don't preallocate pages from it at all). 1912 */ 1913 if (avail_normal > pages) 1914 avail_normal -= pages; 1915 else 1916 avail_normal = 0; 1917 if (size < pages) 1918 size = min_t(unsigned long, pages, max_size); 1919 1920 /* 1921 * Let the memory management subsystem know that we're going to need a 1922 * large number of page frames to allocate and make it free some memory. 1923 * NOTE: If this is not done, performance will be hurt badly in some 1924 * test cases. 1925 */ 1926 shrink_all_memory(saveable - size); 1927 1928 /* 1929 * The number of saveable pages in memory was too high, so apply some 1930 * pressure to decrease it. First, make room for the largest possible 1931 * image and fail if that doesn't work. Next, try to decrease the size 1932 * of the image as much as indicated by 'size' using allocations from 1933 * highmem and non-highmem zones separately. 1934 */ 1935 pages_highmem = preallocate_image_highmem(highmem / 2); 1936 alloc = count - max_size; 1937 if (alloc > pages_highmem) 1938 alloc -= pages_highmem; 1939 else 1940 alloc = 0; 1941 pages = preallocate_image_memory(alloc, avail_normal); 1942 if (pages < alloc) { 1943 /* We have exhausted non-highmem pages, try highmem. */ 1944 alloc -= pages; 1945 pages += pages_highmem; 1946 pages_highmem = preallocate_image_highmem(alloc); 1947 if (pages_highmem < alloc) { 1948 pr_err("Image allocation is %lu pages short\n", 1949 alloc - pages_highmem); 1950 goto err_out; 1951 } 1952 pages += pages_highmem; 1953 /* 1954 * size is the desired number of saveable pages to leave in 1955 * memory, so try to preallocate (all memory - size) pages. 1956 */ 1957 alloc = (count - pages) - size; 1958 pages += preallocate_image_highmem(alloc); 1959 } else { 1960 /* 1961 * There are approximately max_size saveable pages at this point 1962 * and we want to reduce this number down to size. 1963 */ 1964 alloc = max_size - size; 1965 size = preallocate_highmem_fraction(alloc, highmem, count); 1966 pages_highmem += size; 1967 alloc -= size; 1968 size = preallocate_image_memory(alloc, avail_normal); 1969 pages_highmem += preallocate_image_highmem(alloc - size); 1970 pages += pages_highmem + size; 1971 } 1972 1973 /* 1974 * We only need as many page frames for the image as there are saveable 1975 * pages in memory, but we have allocated more. Release the excessive 1976 * ones now. 1977 */ 1978 pages -= free_unnecessary_pages(); 1979 1980 out: 1981 stop = ktime_get(); 1982 pr_info("Allocated %lu pages for snapshot\n", pages); 1983 swsusp_show_speed(start, stop, pages, "Allocated"); 1984 1985 return 0; 1986 1987 err_out: 1988 swsusp_free(); 1989 return -ENOMEM; 1990 } 1991 1992 #ifdef CONFIG_HIGHMEM 1993 /** 1994 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1995 * 1996 * Compute the number of non-highmem pages that will be necessary for creating 1997 * copies of highmem pages. 1998 */ 1999 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 2000 { 2001 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 2002 2003 if (free_highmem >= nr_highmem) 2004 nr_highmem = 0; 2005 else 2006 nr_highmem -= free_highmem; 2007 2008 return nr_highmem; 2009 } 2010 #else 2011 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 2012 #endif /* CONFIG_HIGHMEM */ 2013 2014 /** 2015 * enough_free_mem - Check if there is enough free memory for the image. 2016 */ 2017 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 2018 { 2019 struct zone *zone; 2020 unsigned int free = alloc_normal; 2021 2022 for_each_populated_zone(zone) 2023 if (!is_highmem(zone)) 2024 free += zone_page_state(zone, NR_FREE_PAGES); 2025 2026 nr_pages += count_pages_for_highmem(nr_highmem); 2027 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 2028 nr_pages, PAGES_FOR_IO, free); 2029 2030 return free > nr_pages + PAGES_FOR_IO; 2031 } 2032 2033 #ifdef CONFIG_HIGHMEM 2034 /** 2035 * get_highmem_buffer - Allocate a buffer for highmem pages. 2036 * 2037 * If there are some highmem pages in the hibernation image, we may need a 2038 * buffer to copy them and/or load their data. 2039 */ 2040 static inline int get_highmem_buffer(int safe_needed) 2041 { 2042 buffer = get_image_page(GFP_ATOMIC, safe_needed); 2043 return buffer ? 0 : -ENOMEM; 2044 } 2045 2046 /** 2047 * alloc_highmem_pages - Allocate some highmem pages for the image. 2048 * 2049 * Try to allocate as many pages as needed, but if the number of free highmem 2050 * pages is less than that, allocate them all. 2051 */ 2052 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2053 unsigned int nr_highmem) 2054 { 2055 unsigned int to_alloc = count_free_highmem_pages(); 2056 2057 if (to_alloc > nr_highmem) 2058 to_alloc = nr_highmem; 2059 2060 nr_highmem -= to_alloc; 2061 while (to_alloc-- > 0) { 2062 struct page *page; 2063 2064 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 2065 memory_bm_set_bit(bm, page_to_pfn(page)); 2066 } 2067 return nr_highmem; 2068 } 2069 #else 2070 static inline int get_highmem_buffer(int safe_needed) { return 0; } 2071 2072 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 2073 unsigned int n) { return 0; } 2074 #endif /* CONFIG_HIGHMEM */ 2075 2076 /** 2077 * swsusp_alloc - Allocate memory for hibernation image. 2078 * 2079 * We first try to allocate as many highmem pages as there are 2080 * saveable highmem pages in the system. If that fails, we allocate 2081 * non-highmem pages for the copies of the remaining highmem ones. 2082 * 2083 * In this approach it is likely that the copies of highmem pages will 2084 * also be located in the high memory, because of the way in which 2085 * copy_data_pages() works. 2086 */ 2087 static int swsusp_alloc(struct memory_bitmap *copy_bm, 2088 unsigned int nr_pages, unsigned int nr_highmem) 2089 { 2090 if (nr_highmem > 0) { 2091 if (get_highmem_buffer(PG_ANY)) 2092 goto err_out; 2093 if (nr_highmem > alloc_highmem) { 2094 nr_highmem -= alloc_highmem; 2095 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 2096 } 2097 } 2098 if (nr_pages > alloc_normal) { 2099 nr_pages -= alloc_normal; 2100 while (nr_pages-- > 0) { 2101 struct page *page; 2102 2103 page = alloc_image_page(GFP_ATOMIC); 2104 if (!page) 2105 goto err_out; 2106 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 2107 } 2108 } 2109 2110 return 0; 2111 2112 err_out: 2113 swsusp_free(); 2114 return -ENOMEM; 2115 } 2116 2117 asmlinkage __visible int swsusp_save(void) 2118 { 2119 unsigned int nr_pages, nr_highmem; 2120 2121 pr_info("Creating image:\n"); 2122 2123 drain_local_pages(NULL); 2124 nr_pages = count_data_pages(); 2125 nr_highmem = count_highmem_pages(); 2126 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 2127 2128 if (!enough_free_mem(nr_pages, nr_highmem)) { 2129 pr_err("Not enough free memory\n"); 2130 return -ENOMEM; 2131 } 2132 2133 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 2134 pr_err("Memory allocation failed\n"); 2135 return -ENOMEM; 2136 } 2137 2138 /* 2139 * During allocating of suspend pagedir, new cold pages may appear. 2140 * Kill them. 2141 */ 2142 drain_local_pages(NULL); 2143 nr_copy_pages = copy_data_pages(©_bm, &orig_bm, &zero_bm); 2144 2145 /* 2146 * End of critical section. From now on, we can write to memory, 2147 * but we should not touch disk. This specially means we must _not_ 2148 * touch swap space! Except we must write out our image of course. 2149 */ 2150 nr_pages += nr_highmem; 2151 /* We don't actually copy the zero pages */ 2152 nr_zero_pages = nr_pages - nr_copy_pages; 2153 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2154 2155 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages, nr_zero_pages); 2156 2157 return 0; 2158 } 2159 2160 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2161 static int init_header_complete(struct swsusp_info *info) 2162 { 2163 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2164 info->version_code = LINUX_VERSION_CODE; 2165 return 0; 2166 } 2167 2168 static const char *check_image_kernel(struct swsusp_info *info) 2169 { 2170 if (info->version_code != LINUX_VERSION_CODE) 2171 return "kernel version"; 2172 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2173 return "system type"; 2174 if (strcmp(info->uts.release,init_utsname()->release)) 2175 return "kernel release"; 2176 if (strcmp(info->uts.version,init_utsname()->version)) 2177 return "version"; 2178 if (strcmp(info->uts.machine,init_utsname()->machine)) 2179 return "machine"; 2180 return NULL; 2181 } 2182 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2183 2184 unsigned long snapshot_get_image_size(void) 2185 { 2186 return nr_copy_pages + nr_meta_pages + 1; 2187 } 2188 2189 static int init_header(struct swsusp_info *info) 2190 { 2191 memset(info, 0, sizeof(struct swsusp_info)); 2192 info->num_physpages = get_num_physpages(); 2193 info->image_pages = nr_copy_pages; 2194 info->pages = snapshot_get_image_size(); 2195 info->size = info->pages; 2196 info->size <<= PAGE_SHIFT; 2197 return init_header_complete(info); 2198 } 2199 2200 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1)) 2201 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG) 2202 2203 /** 2204 * pack_pfns - Prepare PFNs for saving. 2205 * @bm: Memory bitmap. 2206 * @buf: Memory buffer to store the PFNs in. 2207 * @zero_bm: Memory bitmap containing PFNs of zero pages. 2208 * 2209 * PFNs corresponding to set bits in @bm are stored in the area of memory 2210 * pointed to by @buf (1 page at a time). Pages which were filled with only 2211 * zeros will have the highest bit set in the packed format to distinguish 2212 * them from PFNs which will be contained in the image file. 2213 */ 2214 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm, 2215 struct memory_bitmap *zero_bm) 2216 { 2217 int j; 2218 2219 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2220 buf[j] = memory_bm_next_pfn(bm); 2221 if (unlikely(buf[j] == BM_END_OF_MAP)) 2222 break; 2223 if (memory_bm_test_bit(zero_bm, buf[j])) 2224 buf[j] |= ENCODED_PFN_ZERO_FLAG; 2225 } 2226 } 2227 2228 /** 2229 * snapshot_read_next - Get the address to read the next image page from. 2230 * @handle: Snapshot handle to be used for the reading. 2231 * 2232 * On the first call, @handle should point to a zeroed snapshot_handle 2233 * structure. The structure gets populated then and a pointer to it should be 2234 * passed to this function every next time. 2235 * 2236 * On success, the function returns a positive number. Then, the caller 2237 * is allowed to read up to the returned number of bytes from the memory 2238 * location computed by the data_of() macro. 2239 * 2240 * The function returns 0 to indicate the end of the data stream condition, 2241 * and negative numbers are returned on errors. If that happens, the structure 2242 * pointed to by @handle is not updated and should not be used any more. 2243 */ 2244 int snapshot_read_next(struct snapshot_handle *handle) 2245 { 2246 if (handle->cur > nr_meta_pages + nr_copy_pages) 2247 return 0; 2248 2249 if (!buffer) { 2250 /* This makes the buffer be freed by swsusp_free() */ 2251 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2252 if (!buffer) 2253 return -ENOMEM; 2254 } 2255 if (!handle->cur) { 2256 int error; 2257 2258 error = init_header((struct swsusp_info *)buffer); 2259 if (error) 2260 return error; 2261 handle->buffer = buffer; 2262 memory_bm_position_reset(&orig_bm); 2263 memory_bm_position_reset(©_bm); 2264 } else if (handle->cur <= nr_meta_pages) { 2265 clear_page(buffer); 2266 pack_pfns(buffer, &orig_bm, &zero_bm); 2267 } else { 2268 struct page *page; 2269 2270 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2271 if (PageHighMem(page)) { 2272 /* 2273 * Highmem pages are copied to the buffer, 2274 * because we can't return with a kmapped 2275 * highmem page (we may not be called again). 2276 */ 2277 void *kaddr; 2278 2279 kaddr = kmap_atomic(page); 2280 copy_page(buffer, kaddr); 2281 kunmap_atomic(kaddr); 2282 handle->buffer = buffer; 2283 } else { 2284 handle->buffer = page_address(page); 2285 } 2286 } 2287 handle->cur++; 2288 return PAGE_SIZE; 2289 } 2290 2291 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2292 struct memory_bitmap *src) 2293 { 2294 unsigned long pfn; 2295 2296 memory_bm_position_reset(src); 2297 pfn = memory_bm_next_pfn(src); 2298 while (pfn != BM_END_OF_MAP) { 2299 memory_bm_set_bit(dst, pfn); 2300 pfn = memory_bm_next_pfn(src); 2301 } 2302 } 2303 2304 /** 2305 * mark_unsafe_pages - Mark pages that were used before hibernation. 2306 * 2307 * Mark the pages that cannot be used for storing the image during restoration, 2308 * because they conflict with the pages that had been used before hibernation. 2309 */ 2310 static void mark_unsafe_pages(struct memory_bitmap *bm) 2311 { 2312 unsigned long pfn; 2313 2314 /* Clear the "free"/"unsafe" bit for all PFNs */ 2315 memory_bm_position_reset(free_pages_map); 2316 pfn = memory_bm_next_pfn(free_pages_map); 2317 while (pfn != BM_END_OF_MAP) { 2318 memory_bm_clear_current(free_pages_map); 2319 pfn = memory_bm_next_pfn(free_pages_map); 2320 } 2321 2322 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2323 duplicate_memory_bitmap(free_pages_map, bm); 2324 2325 allocated_unsafe_pages = 0; 2326 } 2327 2328 static int check_header(struct swsusp_info *info) 2329 { 2330 const char *reason; 2331 2332 reason = check_image_kernel(info); 2333 if (!reason && info->num_physpages != get_num_physpages()) 2334 reason = "memory size"; 2335 if (reason) { 2336 pr_err("Image mismatch: %s\n", reason); 2337 return -EPERM; 2338 } 2339 return 0; 2340 } 2341 2342 /** 2343 * load_header - Check the image header and copy the data from it. 2344 */ 2345 static int load_header(struct swsusp_info *info) 2346 { 2347 int error; 2348 2349 restore_pblist = NULL; 2350 error = check_header(info); 2351 if (!error) { 2352 nr_copy_pages = info->image_pages; 2353 nr_meta_pages = info->pages - info->image_pages - 1; 2354 } 2355 return error; 2356 } 2357 2358 /** 2359 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2360 * @bm: Memory bitmap. 2361 * @buf: Area of memory containing the PFNs. 2362 * @zero_bm: Memory bitmap with the zero PFNs marked. 2363 * 2364 * For each element of the array pointed to by @buf (1 page at a time), set the 2365 * corresponding bit in @bm. If the page was originally populated with only 2366 * zeros then a corresponding bit will also be set in @zero_bm. 2367 */ 2368 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm, 2369 struct memory_bitmap *zero_bm) 2370 { 2371 unsigned long decoded_pfn; 2372 bool zero; 2373 int j; 2374 2375 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2376 if (unlikely(buf[j] == BM_END_OF_MAP)) 2377 break; 2378 2379 zero = !!(buf[j] & ENCODED_PFN_ZERO_FLAG); 2380 decoded_pfn = buf[j] & ENCODED_PFN_MASK; 2381 if (pfn_valid(decoded_pfn) && memory_bm_pfn_present(bm, decoded_pfn)) { 2382 memory_bm_set_bit(bm, decoded_pfn); 2383 if (zero) { 2384 memory_bm_set_bit(zero_bm, decoded_pfn); 2385 nr_zero_pages++; 2386 } 2387 } else { 2388 if (!pfn_valid(decoded_pfn)) 2389 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n", 2390 (unsigned long long)PFN_PHYS(decoded_pfn)); 2391 return -EFAULT; 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 #ifdef CONFIG_HIGHMEM 2399 /* 2400 * struct highmem_pbe is used for creating the list of highmem pages that 2401 * should be restored atomically during the resume from disk, because the page 2402 * frames they have occupied before the suspend are in use. 2403 */ 2404 struct highmem_pbe { 2405 struct page *copy_page; /* data is here now */ 2406 struct page *orig_page; /* data was here before the suspend */ 2407 struct highmem_pbe *next; 2408 }; 2409 2410 /* 2411 * List of highmem PBEs needed for restoring the highmem pages that were 2412 * allocated before the suspend and included in the suspend image, but have 2413 * also been allocated by the "resume" kernel, so their contents cannot be 2414 * written directly to their "original" page frames. 2415 */ 2416 static struct highmem_pbe *highmem_pblist; 2417 2418 /** 2419 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2420 * @bm: Memory bitmap. 2421 * 2422 * The bits in @bm that correspond to image pages are assumed to be set. 2423 */ 2424 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2425 { 2426 unsigned long pfn; 2427 unsigned int cnt = 0; 2428 2429 memory_bm_position_reset(bm); 2430 pfn = memory_bm_next_pfn(bm); 2431 while (pfn != BM_END_OF_MAP) { 2432 if (PageHighMem(pfn_to_page(pfn))) 2433 cnt++; 2434 2435 pfn = memory_bm_next_pfn(bm); 2436 } 2437 return cnt; 2438 } 2439 2440 static unsigned int safe_highmem_pages; 2441 2442 static struct memory_bitmap *safe_highmem_bm; 2443 2444 /** 2445 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2446 * @bm: Pointer to an uninitialized memory bitmap structure. 2447 * @nr_highmem_p: Pointer to the number of highmem image pages. 2448 * 2449 * Try to allocate as many highmem pages as there are highmem image pages 2450 * (@nr_highmem_p points to the variable containing the number of highmem image 2451 * pages). The pages that are "safe" (ie. will not be overwritten when the 2452 * hibernation image is restored entirely) have the corresponding bits set in 2453 * @bm (it must be uninitialized). 2454 * 2455 * NOTE: This function should not be called if there are no highmem image pages. 2456 */ 2457 static int prepare_highmem_image(struct memory_bitmap *bm, 2458 unsigned int *nr_highmem_p) 2459 { 2460 unsigned int to_alloc; 2461 2462 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2463 return -ENOMEM; 2464 2465 if (get_highmem_buffer(PG_SAFE)) 2466 return -ENOMEM; 2467 2468 to_alloc = count_free_highmem_pages(); 2469 if (to_alloc > *nr_highmem_p) 2470 to_alloc = *nr_highmem_p; 2471 else 2472 *nr_highmem_p = to_alloc; 2473 2474 safe_highmem_pages = 0; 2475 while (to_alloc-- > 0) { 2476 struct page *page; 2477 2478 page = alloc_page(__GFP_HIGHMEM); 2479 if (!swsusp_page_is_free(page)) { 2480 /* The page is "safe", set its bit the bitmap */ 2481 memory_bm_set_bit(bm, page_to_pfn(page)); 2482 safe_highmem_pages++; 2483 } 2484 /* Mark the page as allocated */ 2485 swsusp_set_page_forbidden(page); 2486 swsusp_set_page_free(page); 2487 } 2488 memory_bm_position_reset(bm); 2489 safe_highmem_bm = bm; 2490 return 0; 2491 } 2492 2493 static struct page *last_highmem_page; 2494 2495 /** 2496 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2497 * 2498 * For a given highmem image page get a buffer that suspend_write_next() should 2499 * return to its caller to write to. 2500 * 2501 * If the page is to be saved to its "original" page frame or a copy of 2502 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2503 * the copy of the page is to be made in normal memory, so the address of 2504 * the copy is returned. 2505 * 2506 * If @buffer is returned, the caller of suspend_write_next() will write 2507 * the page's contents to @buffer, so they will have to be copied to the 2508 * right location on the next call to suspend_write_next() and it is done 2509 * with the help of copy_last_highmem_page(). For this purpose, if 2510 * @buffer is returned, @last_highmem_page is set to the page to which 2511 * the data will have to be copied from @buffer. 2512 */ 2513 static void *get_highmem_page_buffer(struct page *page, 2514 struct chain_allocator *ca) 2515 { 2516 struct highmem_pbe *pbe; 2517 void *kaddr; 2518 2519 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2520 /* 2521 * We have allocated the "original" page frame and we can 2522 * use it directly to store the loaded page. 2523 */ 2524 last_highmem_page = page; 2525 return buffer; 2526 } 2527 /* 2528 * The "original" page frame has not been allocated and we have to 2529 * use a "safe" page frame to store the loaded page. 2530 */ 2531 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2532 if (!pbe) { 2533 swsusp_free(); 2534 return ERR_PTR(-ENOMEM); 2535 } 2536 pbe->orig_page = page; 2537 if (safe_highmem_pages > 0) { 2538 struct page *tmp; 2539 2540 /* Copy of the page will be stored in high memory */ 2541 kaddr = buffer; 2542 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2543 safe_highmem_pages--; 2544 last_highmem_page = tmp; 2545 pbe->copy_page = tmp; 2546 } else { 2547 /* Copy of the page will be stored in normal memory */ 2548 kaddr = safe_pages_list; 2549 safe_pages_list = safe_pages_list->next; 2550 pbe->copy_page = virt_to_page(kaddr); 2551 } 2552 pbe->next = highmem_pblist; 2553 highmem_pblist = pbe; 2554 return kaddr; 2555 } 2556 2557 /** 2558 * copy_last_highmem_page - Copy most the most recent highmem image page. 2559 * 2560 * Copy the contents of a highmem image from @buffer, where the caller of 2561 * snapshot_write_next() has stored them, to the right location represented by 2562 * @last_highmem_page . 2563 */ 2564 static void copy_last_highmem_page(void) 2565 { 2566 if (last_highmem_page) { 2567 void *dst; 2568 2569 dst = kmap_atomic(last_highmem_page); 2570 copy_page(dst, buffer); 2571 kunmap_atomic(dst); 2572 last_highmem_page = NULL; 2573 } 2574 } 2575 2576 static inline int last_highmem_page_copied(void) 2577 { 2578 return !last_highmem_page; 2579 } 2580 2581 static inline void free_highmem_data(void) 2582 { 2583 if (safe_highmem_bm) 2584 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2585 2586 if (buffer) 2587 free_image_page(buffer, PG_UNSAFE_CLEAR); 2588 } 2589 #else 2590 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2591 2592 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2593 unsigned int *nr_highmem_p) { return 0; } 2594 2595 static inline void *get_highmem_page_buffer(struct page *page, 2596 struct chain_allocator *ca) 2597 { 2598 return ERR_PTR(-EINVAL); 2599 } 2600 2601 static inline void copy_last_highmem_page(void) {} 2602 static inline int last_highmem_page_copied(void) { return 1; } 2603 static inline void free_highmem_data(void) {} 2604 #endif /* CONFIG_HIGHMEM */ 2605 2606 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2607 2608 /** 2609 * prepare_image - Make room for loading hibernation image. 2610 * @new_bm: Uninitialized memory bitmap structure. 2611 * @bm: Memory bitmap with unsafe pages marked. 2612 * @zero_bm: Memory bitmap containing the zero pages. 2613 * 2614 * Use @bm to mark the pages that will be overwritten in the process of 2615 * restoring the system memory state from the suspend image ("unsafe" pages) 2616 * and allocate memory for the image. 2617 * 2618 * The idea is to allocate a new memory bitmap first and then allocate 2619 * as many pages as needed for image data, but without specifying what those 2620 * pages will be used for just yet. Instead, we mark them all as allocated and 2621 * create a lists of "safe" pages to be used later. On systems with high 2622 * memory a list of "safe" highmem pages is created too. 2623 * 2624 * Because it was not known which pages were unsafe when @zero_bm was created, 2625 * make a copy of it and recreate it within safe pages. 2626 */ 2627 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm, 2628 struct memory_bitmap *zero_bm) 2629 { 2630 unsigned int nr_pages, nr_highmem; 2631 struct memory_bitmap tmp; 2632 struct linked_page *lp; 2633 int error; 2634 2635 /* If there is no highmem, the buffer will not be necessary */ 2636 free_image_page(buffer, PG_UNSAFE_CLEAR); 2637 buffer = NULL; 2638 2639 nr_highmem = count_highmem_image_pages(bm); 2640 mark_unsafe_pages(bm); 2641 2642 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2643 if (error) 2644 goto Free; 2645 2646 duplicate_memory_bitmap(new_bm, bm); 2647 memory_bm_free(bm, PG_UNSAFE_KEEP); 2648 2649 /* Make a copy of zero_bm so it can be created in safe pages */ 2650 error = memory_bm_create(&tmp, GFP_ATOMIC, PG_SAFE); 2651 if (error) 2652 goto Free; 2653 2654 duplicate_memory_bitmap(&tmp, zero_bm); 2655 memory_bm_free(zero_bm, PG_UNSAFE_KEEP); 2656 2657 /* Recreate zero_bm in safe pages */ 2658 error = memory_bm_create(zero_bm, GFP_ATOMIC, PG_SAFE); 2659 if (error) 2660 goto Free; 2661 2662 duplicate_memory_bitmap(zero_bm, &tmp); 2663 memory_bm_free(&tmp, PG_UNSAFE_CLEAR); 2664 /* At this point zero_bm is in safe pages and it can be used for restoring. */ 2665 2666 if (nr_highmem > 0) { 2667 error = prepare_highmem_image(bm, &nr_highmem); 2668 if (error) 2669 goto Free; 2670 } 2671 /* 2672 * Reserve some safe pages for potential later use. 2673 * 2674 * NOTE: This way we make sure there will be enough safe pages for the 2675 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2676 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2677 * 2678 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2679 */ 2680 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2681 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2682 while (nr_pages > 0) { 2683 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2684 if (!lp) { 2685 error = -ENOMEM; 2686 goto Free; 2687 } 2688 lp->next = safe_pages_list; 2689 safe_pages_list = lp; 2690 nr_pages--; 2691 } 2692 /* Preallocate memory for the image */ 2693 nr_pages = (nr_zero_pages + nr_copy_pages) - nr_highmem - allocated_unsafe_pages; 2694 while (nr_pages > 0) { 2695 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2696 if (!lp) { 2697 error = -ENOMEM; 2698 goto Free; 2699 } 2700 if (!swsusp_page_is_free(virt_to_page(lp))) { 2701 /* The page is "safe", add it to the list */ 2702 lp->next = safe_pages_list; 2703 safe_pages_list = lp; 2704 } 2705 /* Mark the page as allocated */ 2706 swsusp_set_page_forbidden(virt_to_page(lp)); 2707 swsusp_set_page_free(virt_to_page(lp)); 2708 nr_pages--; 2709 } 2710 return 0; 2711 2712 Free: 2713 swsusp_free(); 2714 return error; 2715 } 2716 2717 /** 2718 * get_buffer - Get the address to store the next image data page. 2719 * 2720 * Get the address that snapshot_write_next() should return to its caller to 2721 * write to. 2722 */ 2723 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2724 { 2725 struct pbe *pbe; 2726 struct page *page; 2727 unsigned long pfn = memory_bm_next_pfn(bm); 2728 2729 if (pfn == BM_END_OF_MAP) 2730 return ERR_PTR(-EFAULT); 2731 2732 page = pfn_to_page(pfn); 2733 if (PageHighMem(page)) 2734 return get_highmem_page_buffer(page, ca); 2735 2736 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2737 /* 2738 * We have allocated the "original" page frame and we can 2739 * use it directly to store the loaded page. 2740 */ 2741 return page_address(page); 2742 2743 /* 2744 * The "original" page frame has not been allocated and we have to 2745 * use a "safe" page frame to store the loaded page. 2746 */ 2747 pbe = chain_alloc(ca, sizeof(struct pbe)); 2748 if (!pbe) { 2749 swsusp_free(); 2750 return ERR_PTR(-ENOMEM); 2751 } 2752 pbe->orig_address = page_address(page); 2753 pbe->address = safe_pages_list; 2754 safe_pages_list = safe_pages_list->next; 2755 pbe->next = restore_pblist; 2756 restore_pblist = pbe; 2757 return pbe->address; 2758 } 2759 2760 /** 2761 * snapshot_write_next - Get the address to store the next image page. 2762 * @handle: Snapshot handle structure to guide the writing. 2763 * 2764 * On the first call, @handle should point to a zeroed snapshot_handle 2765 * structure. The structure gets populated then and a pointer to it should be 2766 * passed to this function every next time. 2767 * 2768 * On success, the function returns a positive number. Then, the caller 2769 * is allowed to write up to the returned number of bytes to the memory 2770 * location computed by the data_of() macro. 2771 * 2772 * The function returns 0 to indicate the "end of file" condition. Negative 2773 * numbers are returned on errors, in which cases the structure pointed to by 2774 * @handle is not updated and should not be used any more. 2775 */ 2776 int snapshot_write_next(struct snapshot_handle *handle) 2777 { 2778 static struct chain_allocator ca; 2779 int error = 0; 2780 2781 next: 2782 /* Check if we have already loaded the entire image */ 2783 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) 2784 return 0; 2785 2786 handle->sync_read = 1; 2787 2788 if (!handle->cur) { 2789 if (!buffer) 2790 /* This makes the buffer be freed by swsusp_free() */ 2791 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2792 2793 if (!buffer) 2794 return -ENOMEM; 2795 2796 handle->buffer = buffer; 2797 } else if (handle->cur == 1) { 2798 error = load_header(buffer); 2799 if (error) 2800 return error; 2801 2802 safe_pages_list = NULL; 2803 2804 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2805 if (error) 2806 return error; 2807 2808 error = memory_bm_create(&zero_bm, GFP_ATOMIC, PG_ANY); 2809 if (error) 2810 return error; 2811 2812 nr_zero_pages = 0; 2813 2814 hibernate_restore_protection_begin(); 2815 } else if (handle->cur <= nr_meta_pages + 1) { 2816 error = unpack_orig_pfns(buffer, ©_bm, &zero_bm); 2817 if (error) 2818 return error; 2819 2820 if (handle->cur == nr_meta_pages + 1) { 2821 error = prepare_image(&orig_bm, ©_bm, &zero_bm); 2822 if (error) 2823 return error; 2824 2825 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2826 memory_bm_position_reset(&orig_bm); 2827 memory_bm_position_reset(&zero_bm); 2828 restore_pblist = NULL; 2829 handle->buffer = get_buffer(&orig_bm, &ca); 2830 handle->sync_read = 0; 2831 if (IS_ERR(handle->buffer)) 2832 return PTR_ERR(handle->buffer); 2833 } 2834 } else { 2835 copy_last_highmem_page(); 2836 hibernate_restore_protect_page(handle->buffer); 2837 handle->buffer = get_buffer(&orig_bm, &ca); 2838 if (IS_ERR(handle->buffer)) 2839 return PTR_ERR(handle->buffer); 2840 if (handle->buffer != buffer) 2841 handle->sync_read = 0; 2842 } 2843 handle->cur++; 2844 2845 /* Zero pages were not included in the image, memset it and move on. */ 2846 if (handle->cur > nr_meta_pages + 1 && 2847 memory_bm_test_bit(&zero_bm, memory_bm_get_current(&orig_bm))) { 2848 memset(handle->buffer, 0, PAGE_SIZE); 2849 goto next; 2850 } 2851 2852 return PAGE_SIZE; 2853 } 2854 2855 /** 2856 * snapshot_write_finalize - Complete the loading of a hibernation image. 2857 * 2858 * Must be called after the last call to snapshot_write_next() in case the last 2859 * page in the image happens to be a highmem page and its contents should be 2860 * stored in highmem. Additionally, it recycles bitmap memory that's not 2861 * necessary any more. 2862 */ 2863 void snapshot_write_finalize(struct snapshot_handle *handle) 2864 { 2865 copy_last_highmem_page(); 2866 hibernate_restore_protect_page(handle->buffer); 2867 /* Do that only if we have loaded the image entirely */ 2868 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages + nr_zero_pages) { 2869 memory_bm_recycle(&orig_bm); 2870 free_highmem_data(); 2871 } 2872 } 2873 2874 int snapshot_image_loaded(struct snapshot_handle *handle) 2875 { 2876 return !(!nr_copy_pages || !last_highmem_page_copied() || 2877 handle->cur <= nr_meta_pages + nr_copy_pages + nr_zero_pages); 2878 } 2879 2880 #ifdef CONFIG_HIGHMEM 2881 /* Assumes that @buf is ready and points to a "safe" page */ 2882 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2883 void *buf) 2884 { 2885 void *kaddr1, *kaddr2; 2886 2887 kaddr1 = kmap_atomic(p1); 2888 kaddr2 = kmap_atomic(p2); 2889 copy_page(buf, kaddr1); 2890 copy_page(kaddr1, kaddr2); 2891 copy_page(kaddr2, buf); 2892 kunmap_atomic(kaddr2); 2893 kunmap_atomic(kaddr1); 2894 } 2895 2896 /** 2897 * restore_highmem - Put highmem image pages into their original locations. 2898 * 2899 * For each highmem page that was in use before hibernation and is included in 2900 * the image, and also has been allocated by the "restore" kernel, swap its 2901 * current contents with the previous (ie. "before hibernation") ones. 2902 * 2903 * If the restore eventually fails, we can call this function once again and 2904 * restore the highmem state as seen by the restore kernel. 2905 */ 2906 int restore_highmem(void) 2907 { 2908 struct highmem_pbe *pbe = highmem_pblist; 2909 void *buf; 2910 2911 if (!pbe) 2912 return 0; 2913 2914 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2915 if (!buf) 2916 return -ENOMEM; 2917 2918 while (pbe) { 2919 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2920 pbe = pbe->next; 2921 } 2922 free_image_page(buf, PG_UNSAFE_CLEAR); 2923 return 0; 2924 } 2925 #endif /* CONFIG_HIGHMEM */ 2926