1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/version.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/suspend.h> 19 #include <linux/delay.h> 20 #include <linux/bitops.h> 21 #include <linux/spinlock.h> 22 #include <linux/kernel.h> 23 #include <linux/pm.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/memblock.h> 27 #include <linux/nmi.h> 28 #include <linux/syscalls.h> 29 #include <linux/console.h> 30 #include <linux/highmem.h> 31 #include <linux/list.h> 32 #include <linux/slab.h> 33 #include <linux/compiler.h> 34 #include <linux/ktime.h> 35 #include <linux/set_memory.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/io.h> 42 43 #include "power.h" 44 45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY) 46 static bool hibernate_restore_protection; 47 static bool hibernate_restore_protection_active; 48 49 void enable_restore_image_protection(void) 50 { 51 hibernate_restore_protection = true; 52 } 53 54 static inline void hibernate_restore_protection_begin(void) 55 { 56 hibernate_restore_protection_active = hibernate_restore_protection; 57 } 58 59 static inline void hibernate_restore_protection_end(void) 60 { 61 hibernate_restore_protection_active = false; 62 } 63 64 static inline void hibernate_restore_protect_page(void *page_address) 65 { 66 if (hibernate_restore_protection_active) 67 set_memory_ro((unsigned long)page_address, 1); 68 } 69 70 static inline void hibernate_restore_unprotect_page(void *page_address) 71 { 72 if (hibernate_restore_protection_active) 73 set_memory_rw((unsigned long)page_address, 1); 74 } 75 #else 76 static inline void hibernate_restore_protection_begin(void) {} 77 static inline void hibernate_restore_protection_end(void) {} 78 static inline void hibernate_restore_protect_page(void *page_address) {} 79 static inline void hibernate_restore_unprotect_page(void *page_address) {} 80 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */ 81 82 static int swsusp_page_is_free(struct page *); 83 static void swsusp_set_page_forbidden(struct page *); 84 static void swsusp_unset_page_forbidden(struct page *); 85 86 /* 87 * Number of bytes to reserve for memory allocations made by device drivers 88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't 89 * cause image creation to fail (tunable via /sys/power/reserved_size). 90 */ 91 unsigned long reserved_size; 92 93 void __init hibernate_reserved_size_init(void) 94 { 95 reserved_size = SPARE_PAGES * PAGE_SIZE; 96 } 97 98 /* 99 * Preferred image size in bytes (tunable via /sys/power/image_size). 100 * When it is set to N, swsusp will do its best to ensure the image 101 * size will not exceed N bytes, but if that is impossible, it will 102 * try to create the smallest image possible. 103 */ 104 unsigned long image_size; 105 106 void __init hibernate_image_size_init(void) 107 { 108 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE; 109 } 110 111 /* 112 * List of PBEs needed for restoring the pages that were allocated before 113 * the suspend and included in the suspend image, but have also been 114 * allocated by the "resume" kernel, so their contents cannot be written 115 * directly to their "original" page frames. 116 */ 117 struct pbe *restore_pblist; 118 119 /* struct linked_page is used to build chains of pages */ 120 121 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 122 123 struct linked_page { 124 struct linked_page *next; 125 char data[LINKED_PAGE_DATA_SIZE]; 126 } __packed; 127 128 /* 129 * List of "safe" pages (ie. pages that were not used by the image kernel 130 * before hibernation) that may be used as temporary storage for image kernel 131 * memory contents. 132 */ 133 static struct linked_page *safe_pages_list; 134 135 /* Pointer to an auxiliary buffer (1 page) */ 136 static void *buffer; 137 138 #define PG_ANY 0 139 #define PG_SAFE 1 140 #define PG_UNSAFE_CLEAR 1 141 #define PG_UNSAFE_KEEP 0 142 143 static unsigned int allocated_unsafe_pages; 144 145 /** 146 * get_image_page - Allocate a page for a hibernation image. 147 * @gfp_mask: GFP mask for the allocation. 148 * @safe_needed: Get pages that were not used before hibernation (restore only) 149 * 150 * During image restoration, for storing the PBE list and the image data, we can 151 * only use memory pages that do not conflict with the pages used before 152 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them 153 * using allocated_unsafe_pages. 154 * 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that 156 * swsusp_free() can release it. 157 */ 158 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 159 { 160 void *res; 161 162 res = (void *)get_zeroed_page(gfp_mask); 163 if (safe_needed) 164 while (res && swsusp_page_is_free(virt_to_page(res))) { 165 /* The page is unsafe, mark it for swsusp_free() */ 166 swsusp_set_page_forbidden(virt_to_page(res)); 167 allocated_unsafe_pages++; 168 res = (void *)get_zeroed_page(gfp_mask); 169 } 170 if (res) { 171 swsusp_set_page_forbidden(virt_to_page(res)); 172 swsusp_set_page_free(virt_to_page(res)); 173 } 174 return res; 175 } 176 177 static void *__get_safe_page(gfp_t gfp_mask) 178 { 179 if (safe_pages_list) { 180 void *ret = safe_pages_list; 181 182 safe_pages_list = safe_pages_list->next; 183 memset(ret, 0, PAGE_SIZE); 184 return ret; 185 } 186 return get_image_page(gfp_mask, PG_SAFE); 187 } 188 189 unsigned long get_safe_page(gfp_t gfp_mask) 190 { 191 return (unsigned long)__get_safe_page(gfp_mask); 192 } 193 194 static struct page *alloc_image_page(gfp_t gfp_mask) 195 { 196 struct page *page; 197 198 page = alloc_page(gfp_mask); 199 if (page) { 200 swsusp_set_page_forbidden(page); 201 swsusp_set_page_free(page); 202 } 203 return page; 204 } 205 206 static void recycle_safe_page(void *page_address) 207 { 208 struct linked_page *lp = page_address; 209 210 lp->next = safe_pages_list; 211 safe_pages_list = lp; 212 } 213 214 /** 215 * free_image_page - Free a page allocated for hibernation image. 216 * @addr: Address of the page to free. 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page. 218 * 219 * The page to free should have been allocated by get_image_page() (page flags 220 * set by it are affected). 221 */ 222 static inline void free_image_page(void *addr, int clear_nosave_free) 223 { 224 struct page *page; 225 226 BUG_ON(!virt_addr_valid(addr)); 227 228 page = virt_to_page(addr); 229 230 swsusp_unset_page_forbidden(page); 231 if (clear_nosave_free) 232 swsusp_unset_page_free(page); 233 234 __free_page(page); 235 } 236 237 static inline void free_list_of_pages(struct linked_page *list, 238 int clear_page_nosave) 239 { 240 while (list) { 241 struct linked_page *lp = list->next; 242 243 free_image_page(list, clear_page_nosave); 244 list = lp; 245 } 246 } 247 248 /* 249 * struct chain_allocator is used for allocating small objects out of 250 * a linked list of pages called 'the chain'. 251 * 252 * The chain grows each time when there is no room for a new object in 253 * the current page. The allocated objects cannot be freed individually. 254 * It is only possible to free them all at once, by freeing the entire 255 * chain. 256 * 257 * NOTE: The chain allocator may be inefficient if the allocated objects 258 * are not much smaller than PAGE_SIZE. 259 */ 260 struct chain_allocator { 261 struct linked_page *chain; /* the chain */ 262 unsigned int used_space; /* total size of objects allocated out 263 of the current page */ 264 gfp_t gfp_mask; /* mask for allocating pages */ 265 int safe_needed; /* if set, only "safe" pages are allocated */ 266 }; 267 268 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, 269 int safe_needed) 270 { 271 ca->chain = NULL; 272 ca->used_space = LINKED_PAGE_DATA_SIZE; 273 ca->gfp_mask = gfp_mask; 274 ca->safe_needed = safe_needed; 275 } 276 277 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 278 { 279 void *ret; 280 281 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 282 struct linked_page *lp; 283 284 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) : 285 get_image_page(ca->gfp_mask, PG_ANY); 286 if (!lp) 287 return NULL; 288 289 lp->next = ca->chain; 290 ca->chain = lp; 291 ca->used_space = 0; 292 } 293 ret = ca->chain->data + ca->used_space; 294 ca->used_space += size; 295 return ret; 296 } 297 298 /** 299 * Data types related to memory bitmaps. 300 * 301 * Memory bitmap is a structure consiting of many linked lists of 302 * objects. The main list's elements are of type struct zone_bitmap 303 * and each of them corresonds to one zone. For each zone bitmap 304 * object there is a list of objects of type struct bm_block that 305 * represent each blocks of bitmap in which information is stored. 306 * 307 * struct memory_bitmap contains a pointer to the main list of zone 308 * bitmap objects, a struct bm_position used for browsing the bitmap, 309 * and a pointer to the list of pages used for allocating all of the 310 * zone bitmap objects and bitmap block objects. 311 * 312 * NOTE: It has to be possible to lay out the bitmap in memory 313 * using only allocations of order 0. Additionally, the bitmap is 314 * designed to work with arbitrary number of zones (this is over the 315 * top for now, but let's avoid making unnecessary assumptions ;-). 316 * 317 * struct zone_bitmap contains a pointer to a list of bitmap block 318 * objects and a pointer to the bitmap block object that has been 319 * most recently used for setting bits. Additionally, it contains the 320 * PFNs that correspond to the start and end of the represented zone. 321 * 322 * struct bm_block contains a pointer to the memory page in which 323 * information is stored (in the form of a block of bitmap) 324 * It also contains the pfns that correspond to the start and end of 325 * the represented memory area. 326 * 327 * The memory bitmap is organized as a radix tree to guarantee fast random 328 * access to the bits. There is one radix tree for each zone (as returned 329 * from create_mem_extents). 330 * 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are 332 * two linked lists for the nodes of the tree, one for the inner nodes and 333 * one for the leave nodes. The linked leave nodes are used for fast linear 334 * access of the memory bitmap. 335 * 336 * The struct rtree_node represents one node of the radix tree. 337 */ 338 339 #define BM_END_OF_MAP (~0UL) 340 341 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 342 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3) 343 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1) 344 345 /* 346 * struct rtree_node is a wrapper struct to link the nodes 347 * of the rtree together for easy linear iteration over 348 * bits and easy freeing 349 */ 350 struct rtree_node { 351 struct list_head list; 352 unsigned long *data; 353 }; 354 355 /* 356 * struct mem_zone_bm_rtree represents a bitmap used for one 357 * populated memory zone. 358 */ 359 struct mem_zone_bm_rtree { 360 struct list_head list; /* Link Zones together */ 361 struct list_head nodes; /* Radix Tree inner nodes */ 362 struct list_head leaves; /* Radix Tree leaves */ 363 unsigned long start_pfn; /* Zone start page frame */ 364 unsigned long end_pfn; /* Zone end page frame + 1 */ 365 struct rtree_node *rtree; /* Radix Tree Root */ 366 int levels; /* Number of Radix Tree Levels */ 367 unsigned int blocks; /* Number of Bitmap Blocks */ 368 }; 369 370 /* strcut bm_position is used for browsing memory bitmaps */ 371 372 struct bm_position { 373 struct mem_zone_bm_rtree *zone; 374 struct rtree_node *node; 375 unsigned long node_pfn; 376 int node_bit; 377 }; 378 379 struct memory_bitmap { 380 struct list_head zones; 381 struct linked_page *p_list; /* list of pages used to store zone 382 bitmap objects and bitmap block 383 objects */ 384 struct bm_position cur; /* most recently used bit position */ 385 }; 386 387 /* Functions that operate on memory bitmaps */ 388 389 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long)) 390 #if BITS_PER_LONG == 32 391 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2) 392 #else 393 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3) 394 #endif 395 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1) 396 397 /** 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree. 399 * 400 * This function is used to allocate inner nodes as well as the 401 * leave nodes of the radix tree. It also adds the node to the 402 * corresponding linked list passed in by the *list parameter. 403 */ 404 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, 405 struct chain_allocator *ca, 406 struct list_head *list) 407 { 408 struct rtree_node *node; 409 410 node = chain_alloc(ca, sizeof(struct rtree_node)); 411 if (!node) 412 return NULL; 413 414 node->data = get_image_page(gfp_mask, safe_needed); 415 if (!node->data) 416 return NULL; 417 418 list_add_tail(&node->list, list); 419 420 return node; 421 } 422 423 /** 424 * add_rtree_block - Add a new leave node to the radix tree. 425 * 426 * The leave nodes need to be allocated in order to keep the leaves 427 * linked list in order. This is guaranteed by the zone->blocks 428 * counter. 429 */ 430 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, 431 int safe_needed, struct chain_allocator *ca) 432 { 433 struct rtree_node *node, *block, **dst; 434 unsigned int levels_needed, block_nr; 435 int i; 436 437 block_nr = zone->blocks; 438 levels_needed = 0; 439 440 /* How many levels do we need for this block nr? */ 441 while (block_nr) { 442 levels_needed += 1; 443 block_nr >>= BM_RTREE_LEVEL_SHIFT; 444 } 445 446 /* Make sure the rtree has enough levels */ 447 for (i = zone->levels; i < levels_needed; i++) { 448 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 449 &zone->nodes); 450 if (!node) 451 return -ENOMEM; 452 453 node->data[0] = (unsigned long)zone->rtree; 454 zone->rtree = node; 455 zone->levels += 1; 456 } 457 458 /* Allocate new block */ 459 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves); 460 if (!block) 461 return -ENOMEM; 462 463 /* Now walk the rtree to insert the block */ 464 node = zone->rtree; 465 dst = &zone->rtree; 466 block_nr = zone->blocks; 467 for (i = zone->levels; i > 0; i--) { 468 int index; 469 470 if (!node) { 471 node = alloc_rtree_node(gfp_mask, safe_needed, ca, 472 &zone->nodes); 473 if (!node) 474 return -ENOMEM; 475 *dst = node; 476 } 477 478 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 479 index &= BM_RTREE_LEVEL_MASK; 480 dst = (struct rtree_node **)&((*dst)->data[index]); 481 node = *dst; 482 } 483 484 zone->blocks += 1; 485 *dst = block; 486 487 return 0; 488 } 489 490 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 491 int clear_nosave_free); 492 493 /** 494 * create_zone_bm_rtree - Create a radix tree for one zone. 495 * 496 * Allocated the mem_zone_bm_rtree structure and initializes it. 497 * This function also allocated and builds the radix tree for the 498 * zone. 499 */ 500 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, 501 int safe_needed, 502 struct chain_allocator *ca, 503 unsigned long start, 504 unsigned long end) 505 { 506 struct mem_zone_bm_rtree *zone; 507 unsigned int i, nr_blocks; 508 unsigned long pages; 509 510 pages = end - start; 511 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree)); 512 if (!zone) 513 return NULL; 514 515 INIT_LIST_HEAD(&zone->nodes); 516 INIT_LIST_HEAD(&zone->leaves); 517 zone->start_pfn = start; 518 zone->end_pfn = end; 519 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 520 521 for (i = 0; i < nr_blocks; i++) { 522 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) { 523 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR); 524 return NULL; 525 } 526 } 527 528 return zone; 529 } 530 531 /** 532 * free_zone_bm_rtree - Free the memory of the radix tree. 533 * 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree 535 * structure itself is not freed here nor are the rtree_node 536 * structs. 537 */ 538 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, 539 int clear_nosave_free) 540 { 541 struct rtree_node *node; 542 543 list_for_each_entry(node, &zone->nodes, list) 544 free_image_page(node->data, clear_nosave_free); 545 546 list_for_each_entry(node, &zone->leaves, list) 547 free_image_page(node->data, clear_nosave_free); 548 } 549 550 static void memory_bm_position_reset(struct memory_bitmap *bm) 551 { 552 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, 553 list); 554 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 555 struct rtree_node, list); 556 bm->cur.node_pfn = 0; 557 bm->cur.node_bit = 0; 558 } 559 560 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 561 562 struct mem_extent { 563 struct list_head hook; 564 unsigned long start; 565 unsigned long end; 566 }; 567 568 /** 569 * free_mem_extents - Free a list of memory extents. 570 * @list: List of extents to free. 571 */ 572 static void free_mem_extents(struct list_head *list) 573 { 574 struct mem_extent *ext, *aux; 575 576 list_for_each_entry_safe(ext, aux, list, hook) { 577 list_del(&ext->hook); 578 kfree(ext); 579 } 580 } 581 582 /** 583 * create_mem_extents - Create a list of memory extents. 584 * @list: List to put the extents into. 585 * @gfp_mask: Mask to use for memory allocations. 586 * 587 * The extents represent contiguous ranges of PFNs. 588 */ 589 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 590 { 591 struct zone *zone; 592 593 INIT_LIST_HEAD(list); 594 595 for_each_populated_zone(zone) { 596 unsigned long zone_start, zone_end; 597 struct mem_extent *ext, *cur, *aux; 598 599 zone_start = zone->zone_start_pfn; 600 zone_end = zone_end_pfn(zone); 601 602 list_for_each_entry(ext, list, hook) 603 if (zone_start <= ext->end) 604 break; 605 606 if (&ext->hook == list || zone_end < ext->start) { 607 /* New extent is necessary */ 608 struct mem_extent *new_ext; 609 610 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 611 if (!new_ext) { 612 free_mem_extents(list); 613 return -ENOMEM; 614 } 615 new_ext->start = zone_start; 616 new_ext->end = zone_end; 617 list_add_tail(&new_ext->hook, &ext->hook); 618 continue; 619 } 620 621 /* Merge this zone's range of PFNs with the existing one */ 622 if (zone_start < ext->start) 623 ext->start = zone_start; 624 if (zone_end > ext->end) 625 ext->end = zone_end; 626 627 /* More merging may be possible */ 628 cur = ext; 629 list_for_each_entry_safe_continue(cur, aux, list, hook) { 630 if (zone_end < cur->start) 631 break; 632 if (zone_end < cur->end) 633 ext->end = cur->end; 634 list_del(&cur->hook); 635 kfree(cur); 636 } 637 } 638 639 return 0; 640 } 641 642 /** 643 * memory_bm_create - Allocate memory for a memory bitmap. 644 */ 645 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, 646 int safe_needed) 647 { 648 struct chain_allocator ca; 649 struct list_head mem_extents; 650 struct mem_extent *ext; 651 int error; 652 653 chain_init(&ca, gfp_mask, safe_needed); 654 INIT_LIST_HEAD(&bm->zones); 655 656 error = create_mem_extents(&mem_extents, gfp_mask); 657 if (error) 658 return error; 659 660 list_for_each_entry(ext, &mem_extents, hook) { 661 struct mem_zone_bm_rtree *zone; 662 663 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, 664 ext->start, ext->end); 665 if (!zone) { 666 error = -ENOMEM; 667 goto Error; 668 } 669 list_add_tail(&zone->list, &bm->zones); 670 } 671 672 bm->p_list = ca.chain; 673 memory_bm_position_reset(bm); 674 Exit: 675 free_mem_extents(&mem_extents); 676 return error; 677 678 Error: 679 bm->p_list = ca.chain; 680 memory_bm_free(bm, PG_UNSAFE_CLEAR); 681 goto Exit; 682 } 683 684 /** 685 * memory_bm_free - Free memory occupied by the memory bitmap. 686 * @bm: Memory bitmap. 687 */ 688 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 689 { 690 struct mem_zone_bm_rtree *zone; 691 692 list_for_each_entry(zone, &bm->zones, list) 693 free_zone_bm_rtree(zone, clear_nosave_free); 694 695 free_list_of_pages(bm->p_list, clear_nosave_free); 696 697 INIT_LIST_HEAD(&bm->zones); 698 } 699 700 /** 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap. 702 * 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN. 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated. 705 * 706 * Walk the radix tree to find the page containing the bit that represents @pfn 707 * and return the position of the bit in @addr and @bit_nr. 708 */ 709 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 710 void **addr, unsigned int *bit_nr) 711 { 712 struct mem_zone_bm_rtree *curr, *zone; 713 struct rtree_node *node; 714 int i, block_nr; 715 716 zone = bm->cur.zone; 717 718 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) 719 goto zone_found; 720 721 zone = NULL; 722 723 /* Find the right zone */ 724 list_for_each_entry(curr, &bm->zones, list) { 725 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) { 726 zone = curr; 727 break; 728 } 729 } 730 731 if (!zone) 732 return -EFAULT; 733 734 zone_found: 735 /* 736 * We have found the zone. Now walk the radix tree to find the leaf node 737 * for our PFN. 738 */ 739 node = bm->cur.node; 740 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) 741 goto node_found; 742 743 node = zone->rtree; 744 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT; 745 746 for (i = zone->levels; i > 0; i--) { 747 int index; 748 749 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT); 750 index &= BM_RTREE_LEVEL_MASK; 751 BUG_ON(node->data[index] == 0); 752 node = (struct rtree_node *)node->data[index]; 753 } 754 755 node_found: 756 /* Update last position */ 757 bm->cur.zone = zone; 758 bm->cur.node = node; 759 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK; 760 761 /* Set return values */ 762 *addr = node->data; 763 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK; 764 765 return 0; 766 } 767 768 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 769 { 770 void *addr; 771 unsigned int bit; 772 int error; 773 774 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 775 BUG_ON(error); 776 set_bit(bit, addr); 777 } 778 779 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 780 { 781 void *addr; 782 unsigned int bit; 783 int error; 784 785 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 786 if (!error) 787 set_bit(bit, addr); 788 789 return error; 790 } 791 792 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 793 { 794 void *addr; 795 unsigned int bit; 796 int error; 797 798 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 799 BUG_ON(error); 800 clear_bit(bit, addr); 801 } 802 803 static void memory_bm_clear_current(struct memory_bitmap *bm) 804 { 805 int bit; 806 807 bit = max(bm->cur.node_bit - 1, 0); 808 clear_bit(bit, bm->cur.node->data); 809 } 810 811 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 812 { 813 void *addr; 814 unsigned int bit; 815 int error; 816 817 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 818 BUG_ON(error); 819 return test_bit(bit, addr); 820 } 821 822 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 823 { 824 void *addr; 825 unsigned int bit; 826 827 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 828 } 829 830 /* 831 * rtree_next_node - Jump to the next leaf node. 832 * 833 * Set the position to the beginning of the next node in the 834 * memory bitmap. This is either the next node in the current 835 * zone's radix tree or the first node in the radix tree of the 836 * next zone. 837 * 838 * Return true if there is a next node, false otherwise. 839 */ 840 static bool rtree_next_node(struct memory_bitmap *bm) 841 { 842 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) { 843 bm->cur.node = list_entry(bm->cur.node->list.next, 844 struct rtree_node, list); 845 bm->cur.node_pfn += BM_BITS_PER_BLOCK; 846 bm->cur.node_bit = 0; 847 touch_softlockup_watchdog(); 848 return true; 849 } 850 851 /* No more nodes, goto next zone */ 852 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) { 853 bm->cur.zone = list_entry(bm->cur.zone->list.next, 854 struct mem_zone_bm_rtree, list); 855 bm->cur.node = list_entry(bm->cur.zone->leaves.next, 856 struct rtree_node, list); 857 bm->cur.node_pfn = 0; 858 bm->cur.node_bit = 0; 859 return true; 860 } 861 862 /* No more zones */ 863 return false; 864 } 865 866 /** 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap. 868 * @bm: Memory bitmap. 869 * 870 * Starting from the last returned position this function searches for the next 871 * set bit in @bm and returns the PFN represented by it. If no more bits are 872 * set, BM_END_OF_MAP is returned. 873 * 874 * It is required to run memory_bm_position_reset() before the first call to 875 * this function for the given memory bitmap. 876 */ 877 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 878 { 879 unsigned long bits, pfn, pages; 880 int bit; 881 882 do { 883 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn; 884 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK); 885 bit = find_next_bit(bm->cur.node->data, bits, 886 bm->cur.node_bit); 887 if (bit < bits) { 888 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit; 889 bm->cur.node_bit = bit + 1; 890 return pfn; 891 } 892 } while (rtree_next_node(bm)); 893 894 return BM_END_OF_MAP; 895 } 896 897 /* 898 * This structure represents a range of page frames the contents of which 899 * should not be saved during hibernation. 900 */ 901 struct nosave_region { 902 struct list_head list; 903 unsigned long start_pfn; 904 unsigned long end_pfn; 905 }; 906 907 static LIST_HEAD(nosave_regions); 908 909 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone) 910 { 911 struct rtree_node *node; 912 913 list_for_each_entry(node, &zone->nodes, list) 914 recycle_safe_page(node->data); 915 916 list_for_each_entry(node, &zone->leaves, list) 917 recycle_safe_page(node->data); 918 } 919 920 static void memory_bm_recycle(struct memory_bitmap *bm) 921 { 922 struct mem_zone_bm_rtree *zone; 923 struct linked_page *p_list; 924 925 list_for_each_entry(zone, &bm->zones, list) 926 recycle_zone_bm_rtree(zone); 927 928 p_list = bm->p_list; 929 while (p_list) { 930 struct linked_page *lp = p_list; 931 932 p_list = lp->next; 933 recycle_safe_page(lp); 934 } 935 } 936 937 /** 938 * register_nosave_region - Register a region of unsaveable memory. 939 * 940 * Register a range of page frames the contents of which should not be saved 941 * during hibernation (to be used in the early initialization code). 942 */ 943 void __init __register_nosave_region(unsigned long start_pfn, 944 unsigned long end_pfn, int use_kmalloc) 945 { 946 struct nosave_region *region; 947 948 if (start_pfn >= end_pfn) 949 return; 950 951 if (!list_empty(&nosave_regions)) { 952 /* Try to extend the previous region (they should be sorted) */ 953 region = list_entry(nosave_regions.prev, 954 struct nosave_region, list); 955 if (region->end_pfn == start_pfn) { 956 region->end_pfn = end_pfn; 957 goto Report; 958 } 959 } 960 if (use_kmalloc) { 961 /* During init, this shouldn't fail */ 962 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 963 BUG_ON(!region); 964 } else { 965 /* This allocation cannot fail */ 966 region = memblock_alloc(sizeof(struct nosave_region), 967 SMP_CACHE_BYTES); 968 if (!region) 969 panic("%s: Failed to allocate %zu bytes\n", __func__, 970 sizeof(struct nosave_region)); 971 } 972 region->start_pfn = start_pfn; 973 region->end_pfn = end_pfn; 974 list_add_tail(®ion->list, &nosave_regions); 975 Report: 976 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n", 977 (unsigned long long) start_pfn << PAGE_SHIFT, 978 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1); 979 } 980 981 /* 982 * Set bits in this map correspond to the page frames the contents of which 983 * should not be saved during the suspend. 984 */ 985 static struct memory_bitmap *forbidden_pages_map; 986 987 /* Set bits in this map correspond to free page frames. */ 988 static struct memory_bitmap *free_pages_map; 989 990 /* 991 * Each page frame allocated for creating the image is marked by setting the 992 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 993 */ 994 995 void swsusp_set_page_free(struct page *page) 996 { 997 if (free_pages_map) 998 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 999 } 1000 1001 static int swsusp_page_is_free(struct page *page) 1002 { 1003 return free_pages_map ? 1004 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 1005 } 1006 1007 void swsusp_unset_page_free(struct page *page) 1008 { 1009 if (free_pages_map) 1010 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 1011 } 1012 1013 static void swsusp_set_page_forbidden(struct page *page) 1014 { 1015 if (forbidden_pages_map) 1016 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 1017 } 1018 1019 int swsusp_page_is_forbidden(struct page *page) 1020 { 1021 return forbidden_pages_map ? 1022 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 1023 } 1024 1025 static void swsusp_unset_page_forbidden(struct page *page) 1026 { 1027 if (forbidden_pages_map) 1028 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 1029 } 1030 1031 /** 1032 * mark_nosave_pages - Mark pages that should not be saved. 1033 * @bm: Memory bitmap. 1034 * 1035 * Set the bits in @bm that correspond to the page frames the contents of which 1036 * should not be saved. 1037 */ 1038 static void mark_nosave_pages(struct memory_bitmap *bm) 1039 { 1040 struct nosave_region *region; 1041 1042 if (list_empty(&nosave_regions)) 1043 return; 1044 1045 list_for_each_entry(region, &nosave_regions, list) { 1046 unsigned long pfn; 1047 1048 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", 1049 (unsigned long long) region->start_pfn << PAGE_SHIFT, 1050 ((unsigned long long) region->end_pfn << PAGE_SHIFT) 1051 - 1); 1052 1053 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 1054 if (pfn_valid(pfn)) { 1055 /* 1056 * It is safe to ignore the result of 1057 * mem_bm_set_bit_check() here, since we won't 1058 * touch the PFNs for which the error is 1059 * returned anyway. 1060 */ 1061 mem_bm_set_bit_check(bm, pfn); 1062 } 1063 } 1064 } 1065 1066 /** 1067 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information. 1068 * 1069 * Create bitmaps needed for marking page frames that should not be saved and 1070 * free page frames. The forbidden_pages_map and free_pages_map pointers are 1071 * only modified if everything goes well, because we don't want the bits to be 1072 * touched before both bitmaps are set up. 1073 */ 1074 int create_basic_memory_bitmaps(void) 1075 { 1076 struct memory_bitmap *bm1, *bm2; 1077 int error = 0; 1078 1079 if (forbidden_pages_map && free_pages_map) 1080 return 0; 1081 else 1082 BUG_ON(forbidden_pages_map || free_pages_map); 1083 1084 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1085 if (!bm1) 1086 return -ENOMEM; 1087 1088 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 1089 if (error) 1090 goto Free_first_object; 1091 1092 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 1093 if (!bm2) 1094 goto Free_first_bitmap; 1095 1096 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 1097 if (error) 1098 goto Free_second_object; 1099 1100 forbidden_pages_map = bm1; 1101 free_pages_map = bm2; 1102 mark_nosave_pages(forbidden_pages_map); 1103 1104 pr_debug("Basic memory bitmaps created\n"); 1105 1106 return 0; 1107 1108 Free_second_object: 1109 kfree(bm2); 1110 Free_first_bitmap: 1111 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1112 Free_first_object: 1113 kfree(bm1); 1114 return -ENOMEM; 1115 } 1116 1117 /** 1118 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information. 1119 * 1120 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The 1121 * auxiliary pointers are necessary so that the bitmaps themselves are not 1122 * referred to while they are being freed. 1123 */ 1124 void free_basic_memory_bitmaps(void) 1125 { 1126 struct memory_bitmap *bm1, *bm2; 1127 1128 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) 1129 return; 1130 1131 bm1 = forbidden_pages_map; 1132 bm2 = free_pages_map; 1133 forbidden_pages_map = NULL; 1134 free_pages_map = NULL; 1135 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 1136 kfree(bm1); 1137 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 1138 kfree(bm2); 1139 1140 pr_debug("Basic memory bitmaps freed\n"); 1141 } 1142 1143 void clear_free_pages(void) 1144 { 1145 #ifdef CONFIG_PAGE_POISONING_ZERO 1146 struct memory_bitmap *bm = free_pages_map; 1147 unsigned long pfn; 1148 1149 if (WARN_ON(!(free_pages_map))) 1150 return; 1151 1152 memory_bm_position_reset(bm); 1153 pfn = memory_bm_next_pfn(bm); 1154 while (pfn != BM_END_OF_MAP) { 1155 if (pfn_valid(pfn)) 1156 clear_highpage(pfn_to_page(pfn)); 1157 1158 pfn = memory_bm_next_pfn(bm); 1159 } 1160 memory_bm_position_reset(bm); 1161 pr_info("free pages cleared after restore\n"); 1162 #endif /* PAGE_POISONING_ZERO */ 1163 } 1164 1165 /** 1166 * snapshot_additional_pages - Estimate the number of extra pages needed. 1167 * @zone: Memory zone to carry out the computation for. 1168 * 1169 * Estimate the number of additional pages needed for setting up a hibernation 1170 * image data structures for @zone (usually, the returned value is greater than 1171 * the exact number). 1172 */ 1173 unsigned int snapshot_additional_pages(struct zone *zone) 1174 { 1175 unsigned int rtree, nodes; 1176 1177 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 1178 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), 1179 LINKED_PAGE_DATA_SIZE); 1180 while (nodes > 1) { 1181 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL); 1182 rtree += nodes; 1183 } 1184 1185 return 2 * rtree; 1186 } 1187 1188 #ifdef CONFIG_HIGHMEM 1189 /** 1190 * count_free_highmem_pages - Compute the total number of free highmem pages. 1191 * 1192 * The returned number is system-wide. 1193 */ 1194 static unsigned int count_free_highmem_pages(void) 1195 { 1196 struct zone *zone; 1197 unsigned int cnt = 0; 1198 1199 for_each_populated_zone(zone) 1200 if (is_highmem(zone)) 1201 cnt += zone_page_state(zone, NR_FREE_PAGES); 1202 1203 return cnt; 1204 } 1205 1206 /** 1207 * saveable_highmem_page - Check if a highmem page is saveable. 1208 * 1209 * Determine whether a highmem page should be included in a hibernation image. 1210 * 1211 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 1212 * and it isn't part of a free chunk of pages. 1213 */ 1214 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 1215 { 1216 struct page *page; 1217 1218 if (!pfn_valid(pfn)) 1219 return NULL; 1220 1221 page = pfn_to_online_page(pfn); 1222 if (!page || page_zone(page) != zone) 1223 return NULL; 1224 1225 BUG_ON(!PageHighMem(page)); 1226 1227 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1228 return NULL; 1229 1230 if (PageReserved(page) || PageOffline(page)) 1231 return NULL; 1232 1233 if (page_is_guard(page)) 1234 return NULL; 1235 1236 return page; 1237 } 1238 1239 /** 1240 * count_highmem_pages - Compute the total number of saveable highmem pages. 1241 */ 1242 static unsigned int count_highmem_pages(void) 1243 { 1244 struct zone *zone; 1245 unsigned int n = 0; 1246 1247 for_each_populated_zone(zone) { 1248 unsigned long pfn, max_zone_pfn; 1249 1250 if (!is_highmem(zone)) 1251 continue; 1252 1253 mark_free_pages(zone); 1254 max_zone_pfn = zone_end_pfn(zone); 1255 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1256 if (saveable_highmem_page(zone, pfn)) 1257 n++; 1258 } 1259 return n; 1260 } 1261 #else 1262 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 1263 { 1264 return NULL; 1265 } 1266 #endif /* CONFIG_HIGHMEM */ 1267 1268 /** 1269 * saveable_page - Check if the given page is saveable. 1270 * 1271 * Determine whether a non-highmem page should be included in a hibernation 1272 * image. 1273 * 1274 * We should save the page if it isn't Nosave, and is not in the range 1275 * of pages statically defined as 'unsaveable', and it isn't part of 1276 * a free chunk of pages. 1277 */ 1278 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 1279 { 1280 struct page *page; 1281 1282 if (!pfn_valid(pfn)) 1283 return NULL; 1284 1285 page = pfn_to_online_page(pfn); 1286 if (!page || page_zone(page) != zone) 1287 return NULL; 1288 1289 BUG_ON(PageHighMem(page)); 1290 1291 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 1292 return NULL; 1293 1294 if (PageOffline(page)) 1295 return NULL; 1296 1297 if (PageReserved(page) 1298 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 1299 return NULL; 1300 1301 if (page_is_guard(page)) 1302 return NULL; 1303 1304 return page; 1305 } 1306 1307 /** 1308 * count_data_pages - Compute the total number of saveable non-highmem pages. 1309 */ 1310 static unsigned int count_data_pages(void) 1311 { 1312 struct zone *zone; 1313 unsigned long pfn, max_zone_pfn; 1314 unsigned int n = 0; 1315 1316 for_each_populated_zone(zone) { 1317 if (is_highmem(zone)) 1318 continue; 1319 1320 mark_free_pages(zone); 1321 max_zone_pfn = zone_end_pfn(zone); 1322 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1323 if (saveable_page(zone, pfn)) 1324 n++; 1325 } 1326 return n; 1327 } 1328 1329 /* 1330 * This is needed, because copy_page and memcpy are not usable for copying 1331 * task structs. 1332 */ 1333 static inline void do_copy_page(long *dst, long *src) 1334 { 1335 int n; 1336 1337 for (n = PAGE_SIZE / sizeof(long); n; n--) 1338 *dst++ = *src++; 1339 } 1340 1341 /** 1342 * safe_copy_page - Copy a page in a safe way. 1343 * 1344 * Check if the page we are going to copy is marked as present in the kernel 1345 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set 1346 * and in that case kernel_page_present() always returns 'true'). 1347 */ 1348 static void safe_copy_page(void *dst, struct page *s_page) 1349 { 1350 if (kernel_page_present(s_page)) { 1351 do_copy_page(dst, page_address(s_page)); 1352 } else { 1353 kernel_map_pages(s_page, 1, 1); 1354 do_copy_page(dst, page_address(s_page)); 1355 kernel_map_pages(s_page, 1, 0); 1356 } 1357 } 1358 1359 #ifdef CONFIG_HIGHMEM 1360 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn) 1361 { 1362 return is_highmem(zone) ? 1363 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 1364 } 1365 1366 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1367 { 1368 struct page *s_page, *d_page; 1369 void *src, *dst; 1370 1371 s_page = pfn_to_page(src_pfn); 1372 d_page = pfn_to_page(dst_pfn); 1373 if (PageHighMem(s_page)) { 1374 src = kmap_atomic(s_page); 1375 dst = kmap_atomic(d_page); 1376 do_copy_page(dst, src); 1377 kunmap_atomic(dst); 1378 kunmap_atomic(src); 1379 } else { 1380 if (PageHighMem(d_page)) { 1381 /* 1382 * The page pointed to by src may contain some kernel 1383 * data modified by kmap_atomic() 1384 */ 1385 safe_copy_page(buffer, s_page); 1386 dst = kmap_atomic(d_page); 1387 copy_page(dst, buffer); 1388 kunmap_atomic(dst); 1389 } else { 1390 safe_copy_page(page_address(d_page), s_page); 1391 } 1392 } 1393 } 1394 #else 1395 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1396 1397 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1398 { 1399 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1400 pfn_to_page(src_pfn)); 1401 } 1402 #endif /* CONFIG_HIGHMEM */ 1403 1404 static void copy_data_pages(struct memory_bitmap *copy_bm, 1405 struct memory_bitmap *orig_bm) 1406 { 1407 struct zone *zone; 1408 unsigned long pfn; 1409 1410 for_each_populated_zone(zone) { 1411 unsigned long max_zone_pfn; 1412 1413 mark_free_pages(zone); 1414 max_zone_pfn = zone_end_pfn(zone); 1415 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1416 if (page_is_saveable(zone, pfn)) 1417 memory_bm_set_bit(orig_bm, pfn); 1418 } 1419 memory_bm_position_reset(orig_bm); 1420 memory_bm_position_reset(copy_bm); 1421 for(;;) { 1422 pfn = memory_bm_next_pfn(orig_bm); 1423 if (unlikely(pfn == BM_END_OF_MAP)) 1424 break; 1425 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1426 } 1427 } 1428 1429 /* Total number of image pages */ 1430 static unsigned int nr_copy_pages; 1431 /* Number of pages needed for saving the original pfns of the image pages */ 1432 static unsigned int nr_meta_pages; 1433 /* 1434 * Numbers of normal and highmem page frames allocated for hibernation image 1435 * before suspending devices. 1436 */ 1437 static unsigned int alloc_normal, alloc_highmem; 1438 /* 1439 * Memory bitmap used for marking saveable pages (during hibernation) or 1440 * hibernation image pages (during restore) 1441 */ 1442 static struct memory_bitmap orig_bm; 1443 /* 1444 * Memory bitmap used during hibernation for marking allocated page frames that 1445 * will contain copies of saveable pages. During restore it is initially used 1446 * for marking hibernation image pages, but then the set bits from it are 1447 * duplicated in @orig_bm and it is released. On highmem systems it is next 1448 * used for marking "safe" highmem pages, but it has to be reinitialized for 1449 * this purpose. 1450 */ 1451 static struct memory_bitmap copy_bm; 1452 1453 /** 1454 * swsusp_free - Free pages allocated for hibernation image. 1455 * 1456 * Image pages are alocated before snapshot creation, so they need to be 1457 * released after resume. 1458 */ 1459 void swsusp_free(void) 1460 { 1461 unsigned long fb_pfn, fr_pfn; 1462 1463 if (!forbidden_pages_map || !free_pages_map) 1464 goto out; 1465 1466 memory_bm_position_reset(forbidden_pages_map); 1467 memory_bm_position_reset(free_pages_map); 1468 1469 loop: 1470 fr_pfn = memory_bm_next_pfn(free_pages_map); 1471 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1472 1473 /* 1474 * Find the next bit set in both bitmaps. This is guaranteed to 1475 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP. 1476 */ 1477 do { 1478 if (fb_pfn < fr_pfn) 1479 fb_pfn = memory_bm_next_pfn(forbidden_pages_map); 1480 if (fr_pfn < fb_pfn) 1481 fr_pfn = memory_bm_next_pfn(free_pages_map); 1482 } while (fb_pfn != fr_pfn); 1483 1484 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) { 1485 struct page *page = pfn_to_page(fr_pfn); 1486 1487 memory_bm_clear_current(forbidden_pages_map); 1488 memory_bm_clear_current(free_pages_map); 1489 hibernate_restore_unprotect_page(page_address(page)); 1490 __free_page(page); 1491 goto loop; 1492 } 1493 1494 out: 1495 nr_copy_pages = 0; 1496 nr_meta_pages = 0; 1497 restore_pblist = NULL; 1498 buffer = NULL; 1499 alloc_normal = 0; 1500 alloc_highmem = 0; 1501 hibernate_restore_protection_end(); 1502 } 1503 1504 /* Helper functions used for the shrinking of memory. */ 1505 1506 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1507 1508 /** 1509 * preallocate_image_pages - Allocate a number of pages for hibernation image. 1510 * @nr_pages: Number of page frames to allocate. 1511 * @mask: GFP flags to use for the allocation. 1512 * 1513 * Return value: Number of page frames actually allocated 1514 */ 1515 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1516 { 1517 unsigned long nr_alloc = 0; 1518 1519 while (nr_pages > 0) { 1520 struct page *page; 1521 1522 page = alloc_image_page(mask); 1523 if (!page) 1524 break; 1525 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1526 if (PageHighMem(page)) 1527 alloc_highmem++; 1528 else 1529 alloc_normal++; 1530 nr_pages--; 1531 nr_alloc++; 1532 } 1533 1534 return nr_alloc; 1535 } 1536 1537 static unsigned long preallocate_image_memory(unsigned long nr_pages, 1538 unsigned long avail_normal) 1539 { 1540 unsigned long alloc; 1541 1542 if (avail_normal <= alloc_normal) 1543 return 0; 1544 1545 alloc = avail_normal - alloc_normal; 1546 if (nr_pages < alloc) 1547 alloc = nr_pages; 1548 1549 return preallocate_image_pages(alloc, GFP_IMAGE); 1550 } 1551 1552 #ifdef CONFIG_HIGHMEM 1553 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1554 { 1555 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1556 } 1557 1558 /** 1559 * __fraction - Compute (an approximation of) x * (multiplier / base). 1560 */ 1561 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1562 { 1563 x *= multiplier; 1564 do_div(x, base); 1565 return (unsigned long)x; 1566 } 1567 1568 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1569 unsigned long highmem, 1570 unsigned long total) 1571 { 1572 unsigned long alloc = __fraction(nr_pages, highmem, total); 1573 1574 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1575 } 1576 #else /* CONFIG_HIGHMEM */ 1577 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1578 { 1579 return 0; 1580 } 1581 1582 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1583 unsigned long highmem, 1584 unsigned long total) 1585 { 1586 return 0; 1587 } 1588 #endif /* CONFIG_HIGHMEM */ 1589 1590 /** 1591 * free_unnecessary_pages - Release preallocated pages not needed for the image. 1592 */ 1593 static unsigned long free_unnecessary_pages(void) 1594 { 1595 unsigned long save, to_free_normal, to_free_highmem, free; 1596 1597 save = count_data_pages(); 1598 if (alloc_normal >= save) { 1599 to_free_normal = alloc_normal - save; 1600 save = 0; 1601 } else { 1602 to_free_normal = 0; 1603 save -= alloc_normal; 1604 } 1605 save += count_highmem_pages(); 1606 if (alloc_highmem >= save) { 1607 to_free_highmem = alloc_highmem - save; 1608 } else { 1609 to_free_highmem = 0; 1610 save -= alloc_highmem; 1611 if (to_free_normal > save) 1612 to_free_normal -= save; 1613 else 1614 to_free_normal = 0; 1615 } 1616 free = to_free_normal + to_free_highmem; 1617 1618 memory_bm_position_reset(©_bm); 1619 1620 while (to_free_normal > 0 || to_free_highmem > 0) { 1621 unsigned long pfn = memory_bm_next_pfn(©_bm); 1622 struct page *page = pfn_to_page(pfn); 1623 1624 if (PageHighMem(page)) { 1625 if (!to_free_highmem) 1626 continue; 1627 to_free_highmem--; 1628 alloc_highmem--; 1629 } else { 1630 if (!to_free_normal) 1631 continue; 1632 to_free_normal--; 1633 alloc_normal--; 1634 } 1635 memory_bm_clear_bit(©_bm, pfn); 1636 swsusp_unset_page_forbidden(page); 1637 swsusp_unset_page_free(page); 1638 __free_page(page); 1639 } 1640 1641 return free; 1642 } 1643 1644 /** 1645 * minimum_image_size - Estimate the minimum acceptable size of an image. 1646 * @saveable: Number of saveable pages in the system. 1647 * 1648 * We want to avoid attempting to free too much memory too hard, so estimate the 1649 * minimum acceptable size of a hibernation image to use as the lower limit for 1650 * preallocating memory. 1651 * 1652 * We assume that the minimum image size should be proportional to 1653 * 1654 * [number of saveable pages] - [number of pages that can be freed in theory] 1655 * 1656 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1657 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages. 1658 */ 1659 static unsigned long minimum_image_size(unsigned long saveable) 1660 { 1661 unsigned long size; 1662 1663 size = global_node_page_state(NR_SLAB_RECLAIMABLE) 1664 + global_node_page_state(NR_ACTIVE_ANON) 1665 + global_node_page_state(NR_INACTIVE_ANON) 1666 + global_node_page_state(NR_ACTIVE_FILE) 1667 + global_node_page_state(NR_INACTIVE_FILE); 1668 1669 return saveable <= size ? 0 : saveable - size; 1670 } 1671 1672 /** 1673 * hibernate_preallocate_memory - Preallocate memory for hibernation image. 1674 * 1675 * To create a hibernation image it is necessary to make a copy of every page 1676 * frame in use. We also need a number of page frames to be free during 1677 * hibernation for allocations made while saving the image and for device 1678 * drivers, in case they need to allocate memory from their hibernation 1679 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough 1680 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through 1681 * /sys/power/reserved_size, respectively). To make this happen, we compute the 1682 * total number of available page frames and allocate at least 1683 * 1684 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 1685 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) 1686 * 1687 * of them, which corresponds to the maximum size of a hibernation image. 1688 * 1689 * If image_size is set below the number following from the above formula, 1690 * the preallocation of memory is continued until the total number of saveable 1691 * pages in the system is below the requested image size or the minimum 1692 * acceptable image size returned by minimum_image_size(), whichever is greater. 1693 */ 1694 int hibernate_preallocate_memory(void) 1695 { 1696 struct zone *zone; 1697 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1698 unsigned long alloc, save_highmem, pages_highmem, avail_normal; 1699 ktime_t start, stop; 1700 int error; 1701 1702 pr_info("Preallocating image memory... "); 1703 start = ktime_get(); 1704 1705 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1706 if (error) 1707 goto err_out; 1708 1709 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1710 if (error) 1711 goto err_out; 1712 1713 alloc_normal = 0; 1714 alloc_highmem = 0; 1715 1716 /* Count the number of saveable data pages. */ 1717 save_highmem = count_highmem_pages(); 1718 saveable = count_data_pages(); 1719 1720 /* 1721 * Compute the total number of page frames we can use (count) and the 1722 * number of pages needed for image metadata (size). 1723 */ 1724 count = saveable; 1725 saveable += save_highmem; 1726 highmem = save_highmem; 1727 size = 0; 1728 for_each_populated_zone(zone) { 1729 size += snapshot_additional_pages(zone); 1730 if (is_highmem(zone)) 1731 highmem += zone_page_state(zone, NR_FREE_PAGES); 1732 else 1733 count += zone_page_state(zone, NR_FREE_PAGES); 1734 } 1735 avail_normal = count; 1736 count += highmem; 1737 count -= totalreserve_pages; 1738 1739 /* Add number of pages required for page keys (s390 only). */ 1740 size += page_key_additional_pages(saveable); 1741 1742 /* Compute the maximum number of saveable pages to leave in memory. */ 1743 max_size = (count - (size + PAGES_FOR_IO)) / 2 1744 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); 1745 /* Compute the desired number of image pages specified by image_size. */ 1746 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1747 if (size > max_size) 1748 size = max_size; 1749 /* 1750 * If the desired number of image pages is at least as large as the 1751 * current number of saveable pages in memory, allocate page frames for 1752 * the image and we're done. 1753 */ 1754 if (size >= saveable) { 1755 pages = preallocate_image_highmem(save_highmem); 1756 pages += preallocate_image_memory(saveable - pages, avail_normal); 1757 goto out; 1758 } 1759 1760 /* Estimate the minimum size of the image. */ 1761 pages = minimum_image_size(saveable); 1762 /* 1763 * To avoid excessive pressure on the normal zone, leave room in it to 1764 * accommodate an image of the minimum size (unless it's already too 1765 * small, in which case don't preallocate pages from it at all). 1766 */ 1767 if (avail_normal > pages) 1768 avail_normal -= pages; 1769 else 1770 avail_normal = 0; 1771 if (size < pages) 1772 size = min_t(unsigned long, pages, max_size); 1773 1774 /* 1775 * Let the memory management subsystem know that we're going to need a 1776 * large number of page frames to allocate and make it free some memory. 1777 * NOTE: If this is not done, performance will be hurt badly in some 1778 * test cases. 1779 */ 1780 shrink_all_memory(saveable - size); 1781 1782 /* 1783 * The number of saveable pages in memory was too high, so apply some 1784 * pressure to decrease it. First, make room for the largest possible 1785 * image and fail if that doesn't work. Next, try to decrease the size 1786 * of the image as much as indicated by 'size' using allocations from 1787 * highmem and non-highmem zones separately. 1788 */ 1789 pages_highmem = preallocate_image_highmem(highmem / 2); 1790 alloc = count - max_size; 1791 if (alloc > pages_highmem) 1792 alloc -= pages_highmem; 1793 else 1794 alloc = 0; 1795 pages = preallocate_image_memory(alloc, avail_normal); 1796 if (pages < alloc) { 1797 /* We have exhausted non-highmem pages, try highmem. */ 1798 alloc -= pages; 1799 pages += pages_highmem; 1800 pages_highmem = preallocate_image_highmem(alloc); 1801 if (pages_highmem < alloc) 1802 goto err_out; 1803 pages += pages_highmem; 1804 /* 1805 * size is the desired number of saveable pages to leave in 1806 * memory, so try to preallocate (all memory - size) pages. 1807 */ 1808 alloc = (count - pages) - size; 1809 pages += preallocate_image_highmem(alloc); 1810 } else { 1811 /* 1812 * There are approximately max_size saveable pages at this point 1813 * and we want to reduce this number down to size. 1814 */ 1815 alloc = max_size - size; 1816 size = preallocate_highmem_fraction(alloc, highmem, count); 1817 pages_highmem += size; 1818 alloc -= size; 1819 size = preallocate_image_memory(alloc, avail_normal); 1820 pages_highmem += preallocate_image_highmem(alloc - size); 1821 pages += pages_highmem + size; 1822 } 1823 1824 /* 1825 * We only need as many page frames for the image as there are saveable 1826 * pages in memory, but we have allocated more. Release the excessive 1827 * ones now. 1828 */ 1829 pages -= free_unnecessary_pages(); 1830 1831 out: 1832 stop = ktime_get(); 1833 pr_cont("done (allocated %lu pages)\n", pages); 1834 swsusp_show_speed(start, stop, pages, "Allocated"); 1835 1836 return 0; 1837 1838 err_out: 1839 pr_cont("\n"); 1840 swsusp_free(); 1841 return -ENOMEM; 1842 } 1843 1844 #ifdef CONFIG_HIGHMEM 1845 /** 1846 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem. 1847 * 1848 * Compute the number of non-highmem pages that will be necessary for creating 1849 * copies of highmem pages. 1850 */ 1851 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1852 { 1853 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1854 1855 if (free_highmem >= nr_highmem) 1856 nr_highmem = 0; 1857 else 1858 nr_highmem -= free_highmem; 1859 1860 return nr_highmem; 1861 } 1862 #else 1863 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1864 #endif /* CONFIG_HIGHMEM */ 1865 1866 /** 1867 * enough_free_mem - Check if there is enough free memory for the image. 1868 */ 1869 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1870 { 1871 struct zone *zone; 1872 unsigned int free = alloc_normal; 1873 1874 for_each_populated_zone(zone) 1875 if (!is_highmem(zone)) 1876 free += zone_page_state(zone, NR_FREE_PAGES); 1877 1878 nr_pages += count_pages_for_highmem(nr_highmem); 1879 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", 1880 nr_pages, PAGES_FOR_IO, free); 1881 1882 return free > nr_pages + PAGES_FOR_IO; 1883 } 1884 1885 #ifdef CONFIG_HIGHMEM 1886 /** 1887 * get_highmem_buffer - Allocate a buffer for highmem pages. 1888 * 1889 * If there are some highmem pages in the hibernation image, we may need a 1890 * buffer to copy them and/or load their data. 1891 */ 1892 static inline int get_highmem_buffer(int safe_needed) 1893 { 1894 buffer = get_image_page(GFP_ATOMIC, safe_needed); 1895 return buffer ? 0 : -ENOMEM; 1896 } 1897 1898 /** 1899 * alloc_highmem_image_pages - Allocate some highmem pages for the image. 1900 * 1901 * Try to allocate as many pages as needed, but if the number of free highmem 1902 * pages is less than that, allocate them all. 1903 */ 1904 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1905 unsigned int nr_highmem) 1906 { 1907 unsigned int to_alloc = count_free_highmem_pages(); 1908 1909 if (to_alloc > nr_highmem) 1910 to_alloc = nr_highmem; 1911 1912 nr_highmem -= to_alloc; 1913 while (to_alloc-- > 0) { 1914 struct page *page; 1915 1916 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM); 1917 memory_bm_set_bit(bm, page_to_pfn(page)); 1918 } 1919 return nr_highmem; 1920 } 1921 #else 1922 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1923 1924 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, 1925 unsigned int n) { return 0; } 1926 #endif /* CONFIG_HIGHMEM */ 1927 1928 /** 1929 * swsusp_alloc - Allocate memory for hibernation image. 1930 * 1931 * We first try to allocate as many highmem pages as there are 1932 * saveable highmem pages in the system. If that fails, we allocate 1933 * non-highmem pages for the copies of the remaining highmem ones. 1934 * 1935 * In this approach it is likely that the copies of highmem pages will 1936 * also be located in the high memory, because of the way in which 1937 * copy_data_pages() works. 1938 */ 1939 static int swsusp_alloc(struct memory_bitmap *copy_bm, 1940 unsigned int nr_pages, unsigned int nr_highmem) 1941 { 1942 if (nr_highmem > 0) { 1943 if (get_highmem_buffer(PG_ANY)) 1944 goto err_out; 1945 if (nr_highmem > alloc_highmem) { 1946 nr_highmem -= alloc_highmem; 1947 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1948 } 1949 } 1950 if (nr_pages > alloc_normal) { 1951 nr_pages -= alloc_normal; 1952 while (nr_pages-- > 0) { 1953 struct page *page; 1954 1955 page = alloc_image_page(GFP_ATOMIC); 1956 if (!page) 1957 goto err_out; 1958 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1959 } 1960 } 1961 1962 return 0; 1963 1964 err_out: 1965 swsusp_free(); 1966 return -ENOMEM; 1967 } 1968 1969 asmlinkage __visible int swsusp_save(void) 1970 { 1971 unsigned int nr_pages, nr_highmem; 1972 1973 pr_info("Creating hibernation image:\n"); 1974 1975 drain_local_pages(NULL); 1976 nr_pages = count_data_pages(); 1977 nr_highmem = count_highmem_pages(); 1978 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem); 1979 1980 if (!enough_free_mem(nr_pages, nr_highmem)) { 1981 pr_err("Not enough free memory\n"); 1982 return -ENOMEM; 1983 } 1984 1985 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) { 1986 pr_err("Memory allocation failed\n"); 1987 return -ENOMEM; 1988 } 1989 1990 /* 1991 * During allocating of suspend pagedir, new cold pages may appear. 1992 * Kill them. 1993 */ 1994 drain_local_pages(NULL); 1995 copy_data_pages(©_bm, &orig_bm); 1996 1997 /* 1998 * End of critical section. From now on, we can write to memory, 1999 * but we should not touch disk. This specially means we must _not_ 2000 * touch swap space! Except we must write out our image of course. 2001 */ 2002 2003 nr_pages += nr_highmem; 2004 nr_copy_pages = nr_pages; 2005 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 2006 2007 pr_info("Hibernation image created (%d pages copied)\n", nr_pages); 2008 2009 return 0; 2010 } 2011 2012 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 2013 static int init_header_complete(struct swsusp_info *info) 2014 { 2015 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 2016 info->version_code = LINUX_VERSION_CODE; 2017 return 0; 2018 } 2019 2020 static char *check_image_kernel(struct swsusp_info *info) 2021 { 2022 if (info->version_code != LINUX_VERSION_CODE) 2023 return "kernel version"; 2024 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 2025 return "system type"; 2026 if (strcmp(info->uts.release,init_utsname()->release)) 2027 return "kernel release"; 2028 if (strcmp(info->uts.version,init_utsname()->version)) 2029 return "version"; 2030 if (strcmp(info->uts.machine,init_utsname()->machine)) 2031 return "machine"; 2032 return NULL; 2033 } 2034 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 2035 2036 unsigned long snapshot_get_image_size(void) 2037 { 2038 return nr_copy_pages + nr_meta_pages + 1; 2039 } 2040 2041 static int init_header(struct swsusp_info *info) 2042 { 2043 memset(info, 0, sizeof(struct swsusp_info)); 2044 info->num_physpages = get_num_physpages(); 2045 info->image_pages = nr_copy_pages; 2046 info->pages = snapshot_get_image_size(); 2047 info->size = info->pages; 2048 info->size <<= PAGE_SHIFT; 2049 return init_header_complete(info); 2050 } 2051 2052 /** 2053 * pack_pfns - Prepare PFNs for saving. 2054 * @bm: Memory bitmap. 2055 * @buf: Memory buffer to store the PFNs in. 2056 * 2057 * PFNs corresponding to set bits in @bm are stored in the area of memory 2058 * pointed to by @buf (1 page at a time). 2059 */ 2060 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 2061 { 2062 int j; 2063 2064 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2065 buf[j] = memory_bm_next_pfn(bm); 2066 if (unlikely(buf[j] == BM_END_OF_MAP)) 2067 break; 2068 /* Save page key for data page (s390 only). */ 2069 page_key_read(buf + j); 2070 } 2071 } 2072 2073 /** 2074 * snapshot_read_next - Get the address to read the next image page from. 2075 * @handle: Snapshot handle to be used for the reading. 2076 * 2077 * On the first call, @handle should point to a zeroed snapshot_handle 2078 * structure. The structure gets populated then and a pointer to it should be 2079 * passed to this function every next time. 2080 * 2081 * On success, the function returns a positive number. Then, the caller 2082 * is allowed to read up to the returned number of bytes from the memory 2083 * location computed by the data_of() macro. 2084 * 2085 * The function returns 0 to indicate the end of the data stream condition, 2086 * and negative numbers are returned on errors. If that happens, the structure 2087 * pointed to by @handle is not updated and should not be used any more. 2088 */ 2089 int snapshot_read_next(struct snapshot_handle *handle) 2090 { 2091 if (handle->cur > nr_meta_pages + nr_copy_pages) 2092 return 0; 2093 2094 if (!buffer) { 2095 /* This makes the buffer be freed by swsusp_free() */ 2096 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2097 if (!buffer) 2098 return -ENOMEM; 2099 } 2100 if (!handle->cur) { 2101 int error; 2102 2103 error = init_header((struct swsusp_info *)buffer); 2104 if (error) 2105 return error; 2106 handle->buffer = buffer; 2107 memory_bm_position_reset(&orig_bm); 2108 memory_bm_position_reset(©_bm); 2109 } else if (handle->cur <= nr_meta_pages) { 2110 clear_page(buffer); 2111 pack_pfns(buffer, &orig_bm); 2112 } else { 2113 struct page *page; 2114 2115 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 2116 if (PageHighMem(page)) { 2117 /* 2118 * Highmem pages are copied to the buffer, 2119 * because we can't return with a kmapped 2120 * highmem page (we may not be called again). 2121 */ 2122 void *kaddr; 2123 2124 kaddr = kmap_atomic(page); 2125 copy_page(buffer, kaddr); 2126 kunmap_atomic(kaddr); 2127 handle->buffer = buffer; 2128 } else { 2129 handle->buffer = page_address(page); 2130 } 2131 } 2132 handle->cur++; 2133 return PAGE_SIZE; 2134 } 2135 2136 static void duplicate_memory_bitmap(struct memory_bitmap *dst, 2137 struct memory_bitmap *src) 2138 { 2139 unsigned long pfn; 2140 2141 memory_bm_position_reset(src); 2142 pfn = memory_bm_next_pfn(src); 2143 while (pfn != BM_END_OF_MAP) { 2144 memory_bm_set_bit(dst, pfn); 2145 pfn = memory_bm_next_pfn(src); 2146 } 2147 } 2148 2149 /** 2150 * mark_unsafe_pages - Mark pages that were used before hibernation. 2151 * 2152 * Mark the pages that cannot be used for storing the image during restoration, 2153 * because they conflict with the pages that had been used before hibernation. 2154 */ 2155 static void mark_unsafe_pages(struct memory_bitmap *bm) 2156 { 2157 unsigned long pfn; 2158 2159 /* Clear the "free"/"unsafe" bit for all PFNs */ 2160 memory_bm_position_reset(free_pages_map); 2161 pfn = memory_bm_next_pfn(free_pages_map); 2162 while (pfn != BM_END_OF_MAP) { 2163 memory_bm_clear_current(free_pages_map); 2164 pfn = memory_bm_next_pfn(free_pages_map); 2165 } 2166 2167 /* Mark pages that correspond to the "original" PFNs as "unsafe" */ 2168 duplicate_memory_bitmap(free_pages_map, bm); 2169 2170 allocated_unsafe_pages = 0; 2171 } 2172 2173 static int check_header(struct swsusp_info *info) 2174 { 2175 char *reason; 2176 2177 reason = check_image_kernel(info); 2178 if (!reason && info->num_physpages != get_num_physpages()) 2179 reason = "memory size"; 2180 if (reason) { 2181 pr_err("Image mismatch: %s\n", reason); 2182 return -EPERM; 2183 } 2184 return 0; 2185 } 2186 2187 /** 2188 * load header - Check the image header and copy the data from it. 2189 */ 2190 static int load_header(struct swsusp_info *info) 2191 { 2192 int error; 2193 2194 restore_pblist = NULL; 2195 error = check_header(info); 2196 if (!error) { 2197 nr_copy_pages = info->image_pages; 2198 nr_meta_pages = info->pages - info->image_pages - 1; 2199 } 2200 return error; 2201 } 2202 2203 /** 2204 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap. 2205 * @bm: Memory bitmap. 2206 * @buf: Area of memory containing the PFNs. 2207 * 2208 * For each element of the array pointed to by @buf (1 page at a time), set the 2209 * corresponding bit in @bm. 2210 */ 2211 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 2212 { 2213 int j; 2214 2215 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 2216 if (unlikely(buf[j] == BM_END_OF_MAP)) 2217 break; 2218 2219 /* Extract and buffer page key for data page (s390 only). */ 2220 page_key_memorize(buf + j); 2221 2222 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) 2223 memory_bm_set_bit(bm, buf[j]); 2224 else 2225 return -EFAULT; 2226 } 2227 2228 return 0; 2229 } 2230 2231 #ifdef CONFIG_HIGHMEM 2232 /* 2233 * struct highmem_pbe is used for creating the list of highmem pages that 2234 * should be restored atomically during the resume from disk, because the page 2235 * frames they have occupied before the suspend are in use. 2236 */ 2237 struct highmem_pbe { 2238 struct page *copy_page; /* data is here now */ 2239 struct page *orig_page; /* data was here before the suspend */ 2240 struct highmem_pbe *next; 2241 }; 2242 2243 /* 2244 * List of highmem PBEs needed for restoring the highmem pages that were 2245 * allocated before the suspend and included in the suspend image, but have 2246 * also been allocated by the "resume" kernel, so their contents cannot be 2247 * written directly to their "original" page frames. 2248 */ 2249 static struct highmem_pbe *highmem_pblist; 2250 2251 /** 2252 * count_highmem_image_pages - Compute the number of highmem pages in the image. 2253 * @bm: Memory bitmap. 2254 * 2255 * The bits in @bm that correspond to image pages are assumed to be set. 2256 */ 2257 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 2258 { 2259 unsigned long pfn; 2260 unsigned int cnt = 0; 2261 2262 memory_bm_position_reset(bm); 2263 pfn = memory_bm_next_pfn(bm); 2264 while (pfn != BM_END_OF_MAP) { 2265 if (PageHighMem(pfn_to_page(pfn))) 2266 cnt++; 2267 2268 pfn = memory_bm_next_pfn(bm); 2269 } 2270 return cnt; 2271 } 2272 2273 static unsigned int safe_highmem_pages; 2274 2275 static struct memory_bitmap *safe_highmem_bm; 2276 2277 /** 2278 * prepare_highmem_image - Allocate memory for loading highmem data from image. 2279 * @bm: Pointer to an uninitialized memory bitmap structure. 2280 * @nr_highmem_p: Pointer to the number of highmem image pages. 2281 * 2282 * Try to allocate as many highmem pages as there are highmem image pages 2283 * (@nr_highmem_p points to the variable containing the number of highmem image 2284 * pages). The pages that are "safe" (ie. will not be overwritten when the 2285 * hibernation image is restored entirely) have the corresponding bits set in 2286 * @bm (it must be unitialized). 2287 * 2288 * NOTE: This function should not be called if there are no highmem image pages. 2289 */ 2290 static int prepare_highmem_image(struct memory_bitmap *bm, 2291 unsigned int *nr_highmem_p) 2292 { 2293 unsigned int to_alloc; 2294 2295 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 2296 return -ENOMEM; 2297 2298 if (get_highmem_buffer(PG_SAFE)) 2299 return -ENOMEM; 2300 2301 to_alloc = count_free_highmem_pages(); 2302 if (to_alloc > *nr_highmem_p) 2303 to_alloc = *nr_highmem_p; 2304 else 2305 *nr_highmem_p = to_alloc; 2306 2307 safe_highmem_pages = 0; 2308 while (to_alloc-- > 0) { 2309 struct page *page; 2310 2311 page = alloc_page(__GFP_HIGHMEM); 2312 if (!swsusp_page_is_free(page)) { 2313 /* The page is "safe", set its bit the bitmap */ 2314 memory_bm_set_bit(bm, page_to_pfn(page)); 2315 safe_highmem_pages++; 2316 } 2317 /* Mark the page as allocated */ 2318 swsusp_set_page_forbidden(page); 2319 swsusp_set_page_free(page); 2320 } 2321 memory_bm_position_reset(bm); 2322 safe_highmem_bm = bm; 2323 return 0; 2324 } 2325 2326 static struct page *last_highmem_page; 2327 2328 /** 2329 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page. 2330 * 2331 * For a given highmem image page get a buffer that suspend_write_next() should 2332 * return to its caller to write to. 2333 * 2334 * If the page is to be saved to its "original" page frame or a copy of 2335 * the page is to be made in the highmem, @buffer is returned. Otherwise, 2336 * the copy of the page is to be made in normal memory, so the address of 2337 * the copy is returned. 2338 * 2339 * If @buffer is returned, the caller of suspend_write_next() will write 2340 * the page's contents to @buffer, so they will have to be copied to the 2341 * right location on the next call to suspend_write_next() and it is done 2342 * with the help of copy_last_highmem_page(). For this purpose, if 2343 * @buffer is returned, @last_highmem_page is set to the page to which 2344 * the data will have to be copied from @buffer. 2345 */ 2346 static void *get_highmem_page_buffer(struct page *page, 2347 struct chain_allocator *ca) 2348 { 2349 struct highmem_pbe *pbe; 2350 void *kaddr; 2351 2352 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 2353 /* 2354 * We have allocated the "original" page frame and we can 2355 * use it directly to store the loaded page. 2356 */ 2357 last_highmem_page = page; 2358 return buffer; 2359 } 2360 /* 2361 * The "original" page frame has not been allocated and we have to 2362 * use a "safe" page frame to store the loaded page. 2363 */ 2364 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 2365 if (!pbe) { 2366 swsusp_free(); 2367 return ERR_PTR(-ENOMEM); 2368 } 2369 pbe->orig_page = page; 2370 if (safe_highmem_pages > 0) { 2371 struct page *tmp; 2372 2373 /* Copy of the page will be stored in high memory */ 2374 kaddr = buffer; 2375 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 2376 safe_highmem_pages--; 2377 last_highmem_page = tmp; 2378 pbe->copy_page = tmp; 2379 } else { 2380 /* Copy of the page will be stored in normal memory */ 2381 kaddr = safe_pages_list; 2382 safe_pages_list = safe_pages_list->next; 2383 pbe->copy_page = virt_to_page(kaddr); 2384 } 2385 pbe->next = highmem_pblist; 2386 highmem_pblist = pbe; 2387 return kaddr; 2388 } 2389 2390 /** 2391 * copy_last_highmem_page - Copy most the most recent highmem image page. 2392 * 2393 * Copy the contents of a highmem image from @buffer, where the caller of 2394 * snapshot_write_next() has stored them, to the right location represented by 2395 * @last_highmem_page . 2396 */ 2397 static void copy_last_highmem_page(void) 2398 { 2399 if (last_highmem_page) { 2400 void *dst; 2401 2402 dst = kmap_atomic(last_highmem_page); 2403 copy_page(dst, buffer); 2404 kunmap_atomic(dst); 2405 last_highmem_page = NULL; 2406 } 2407 } 2408 2409 static inline int last_highmem_page_copied(void) 2410 { 2411 return !last_highmem_page; 2412 } 2413 2414 static inline void free_highmem_data(void) 2415 { 2416 if (safe_highmem_bm) 2417 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 2418 2419 if (buffer) 2420 free_image_page(buffer, PG_UNSAFE_CLEAR); 2421 } 2422 #else 2423 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 2424 2425 static inline int prepare_highmem_image(struct memory_bitmap *bm, 2426 unsigned int *nr_highmem_p) { return 0; } 2427 2428 static inline void *get_highmem_page_buffer(struct page *page, 2429 struct chain_allocator *ca) 2430 { 2431 return ERR_PTR(-EINVAL); 2432 } 2433 2434 static inline void copy_last_highmem_page(void) {} 2435 static inline int last_highmem_page_copied(void) { return 1; } 2436 static inline void free_highmem_data(void) {} 2437 #endif /* CONFIG_HIGHMEM */ 2438 2439 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 2440 2441 /** 2442 * prepare_image - Make room for loading hibernation image. 2443 * @new_bm: Unitialized memory bitmap structure. 2444 * @bm: Memory bitmap with unsafe pages marked. 2445 * 2446 * Use @bm to mark the pages that will be overwritten in the process of 2447 * restoring the system memory state from the suspend image ("unsafe" pages) 2448 * and allocate memory for the image. 2449 * 2450 * The idea is to allocate a new memory bitmap first and then allocate 2451 * as many pages as needed for image data, but without specifying what those 2452 * pages will be used for just yet. Instead, we mark them all as allocated and 2453 * create a lists of "safe" pages to be used later. On systems with high 2454 * memory a list of "safe" highmem pages is created too. 2455 */ 2456 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 2457 { 2458 unsigned int nr_pages, nr_highmem; 2459 struct linked_page *lp; 2460 int error; 2461 2462 /* If there is no highmem, the buffer will not be necessary */ 2463 free_image_page(buffer, PG_UNSAFE_CLEAR); 2464 buffer = NULL; 2465 2466 nr_highmem = count_highmem_image_pages(bm); 2467 mark_unsafe_pages(bm); 2468 2469 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2470 if (error) 2471 goto Free; 2472 2473 duplicate_memory_bitmap(new_bm, bm); 2474 memory_bm_free(bm, PG_UNSAFE_KEEP); 2475 if (nr_highmem > 0) { 2476 error = prepare_highmem_image(bm, &nr_highmem); 2477 if (error) 2478 goto Free; 2479 } 2480 /* 2481 * Reserve some safe pages for potential later use. 2482 * 2483 * NOTE: This way we make sure there will be enough safe pages for the 2484 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2485 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2486 * 2487 * nr_copy_pages cannot be less than allocated_unsafe_pages too. 2488 */ 2489 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2490 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2491 while (nr_pages > 0) { 2492 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2493 if (!lp) { 2494 error = -ENOMEM; 2495 goto Free; 2496 } 2497 lp->next = safe_pages_list; 2498 safe_pages_list = lp; 2499 nr_pages--; 2500 } 2501 /* Preallocate memory for the image */ 2502 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2503 while (nr_pages > 0) { 2504 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2505 if (!lp) { 2506 error = -ENOMEM; 2507 goto Free; 2508 } 2509 if (!swsusp_page_is_free(virt_to_page(lp))) { 2510 /* The page is "safe", add it to the list */ 2511 lp->next = safe_pages_list; 2512 safe_pages_list = lp; 2513 } 2514 /* Mark the page as allocated */ 2515 swsusp_set_page_forbidden(virt_to_page(lp)); 2516 swsusp_set_page_free(virt_to_page(lp)); 2517 nr_pages--; 2518 } 2519 return 0; 2520 2521 Free: 2522 swsusp_free(); 2523 return error; 2524 } 2525 2526 /** 2527 * get_buffer - Get the address to store the next image data page. 2528 * 2529 * Get the address that snapshot_write_next() should return to its caller to 2530 * write to. 2531 */ 2532 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2533 { 2534 struct pbe *pbe; 2535 struct page *page; 2536 unsigned long pfn = memory_bm_next_pfn(bm); 2537 2538 if (pfn == BM_END_OF_MAP) 2539 return ERR_PTR(-EFAULT); 2540 2541 page = pfn_to_page(pfn); 2542 if (PageHighMem(page)) 2543 return get_highmem_page_buffer(page, ca); 2544 2545 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2546 /* 2547 * We have allocated the "original" page frame and we can 2548 * use it directly to store the loaded page. 2549 */ 2550 return page_address(page); 2551 2552 /* 2553 * The "original" page frame has not been allocated and we have to 2554 * use a "safe" page frame to store the loaded page. 2555 */ 2556 pbe = chain_alloc(ca, sizeof(struct pbe)); 2557 if (!pbe) { 2558 swsusp_free(); 2559 return ERR_PTR(-ENOMEM); 2560 } 2561 pbe->orig_address = page_address(page); 2562 pbe->address = safe_pages_list; 2563 safe_pages_list = safe_pages_list->next; 2564 pbe->next = restore_pblist; 2565 restore_pblist = pbe; 2566 return pbe->address; 2567 } 2568 2569 /** 2570 * snapshot_write_next - Get the address to store the next image page. 2571 * @handle: Snapshot handle structure to guide the writing. 2572 * 2573 * On the first call, @handle should point to a zeroed snapshot_handle 2574 * structure. The structure gets populated then and a pointer to it should be 2575 * passed to this function every next time. 2576 * 2577 * On success, the function returns a positive number. Then, the caller 2578 * is allowed to write up to the returned number of bytes to the memory 2579 * location computed by the data_of() macro. 2580 * 2581 * The function returns 0 to indicate the "end of file" condition. Negative 2582 * numbers are returned on errors, in which cases the structure pointed to by 2583 * @handle is not updated and should not be used any more. 2584 */ 2585 int snapshot_write_next(struct snapshot_handle *handle) 2586 { 2587 static struct chain_allocator ca; 2588 int error = 0; 2589 2590 /* Check if we have already loaded the entire image */ 2591 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2592 return 0; 2593 2594 handle->sync_read = 1; 2595 2596 if (!handle->cur) { 2597 if (!buffer) 2598 /* This makes the buffer be freed by swsusp_free() */ 2599 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2600 2601 if (!buffer) 2602 return -ENOMEM; 2603 2604 handle->buffer = buffer; 2605 } else if (handle->cur == 1) { 2606 error = load_header(buffer); 2607 if (error) 2608 return error; 2609 2610 safe_pages_list = NULL; 2611 2612 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2613 if (error) 2614 return error; 2615 2616 /* Allocate buffer for page keys. */ 2617 error = page_key_alloc(nr_copy_pages); 2618 if (error) 2619 return error; 2620 2621 hibernate_restore_protection_begin(); 2622 } else if (handle->cur <= nr_meta_pages + 1) { 2623 error = unpack_orig_pfns(buffer, ©_bm); 2624 if (error) 2625 return error; 2626 2627 if (handle->cur == nr_meta_pages + 1) { 2628 error = prepare_image(&orig_bm, ©_bm); 2629 if (error) 2630 return error; 2631 2632 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2633 memory_bm_position_reset(&orig_bm); 2634 restore_pblist = NULL; 2635 handle->buffer = get_buffer(&orig_bm, &ca); 2636 handle->sync_read = 0; 2637 if (IS_ERR(handle->buffer)) 2638 return PTR_ERR(handle->buffer); 2639 } 2640 } else { 2641 copy_last_highmem_page(); 2642 /* Restore page key for data page (s390 only). */ 2643 page_key_write(handle->buffer); 2644 hibernate_restore_protect_page(handle->buffer); 2645 handle->buffer = get_buffer(&orig_bm, &ca); 2646 if (IS_ERR(handle->buffer)) 2647 return PTR_ERR(handle->buffer); 2648 if (handle->buffer != buffer) 2649 handle->sync_read = 0; 2650 } 2651 handle->cur++; 2652 return PAGE_SIZE; 2653 } 2654 2655 /** 2656 * snapshot_write_finalize - Complete the loading of a hibernation image. 2657 * 2658 * Must be called after the last call to snapshot_write_next() in case the last 2659 * page in the image happens to be a highmem page and its contents should be 2660 * stored in highmem. Additionally, it recycles bitmap memory that's not 2661 * necessary any more. 2662 */ 2663 void snapshot_write_finalize(struct snapshot_handle *handle) 2664 { 2665 copy_last_highmem_page(); 2666 /* Restore page key for data page (s390 only). */ 2667 page_key_write(handle->buffer); 2668 page_key_free(); 2669 hibernate_restore_protect_page(handle->buffer); 2670 /* Do that only if we have loaded the image entirely */ 2671 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2672 memory_bm_recycle(&orig_bm); 2673 free_highmem_data(); 2674 } 2675 } 2676 2677 int snapshot_image_loaded(struct snapshot_handle *handle) 2678 { 2679 return !(!nr_copy_pages || !last_highmem_page_copied() || 2680 handle->cur <= nr_meta_pages + nr_copy_pages); 2681 } 2682 2683 #ifdef CONFIG_HIGHMEM 2684 /* Assumes that @buf is ready and points to a "safe" page */ 2685 static inline void swap_two_pages_data(struct page *p1, struct page *p2, 2686 void *buf) 2687 { 2688 void *kaddr1, *kaddr2; 2689 2690 kaddr1 = kmap_atomic(p1); 2691 kaddr2 = kmap_atomic(p2); 2692 copy_page(buf, kaddr1); 2693 copy_page(kaddr1, kaddr2); 2694 copy_page(kaddr2, buf); 2695 kunmap_atomic(kaddr2); 2696 kunmap_atomic(kaddr1); 2697 } 2698 2699 /** 2700 * restore_highmem - Put highmem image pages into their original locations. 2701 * 2702 * For each highmem page that was in use before hibernation and is included in 2703 * the image, and also has been allocated by the "restore" kernel, swap its 2704 * current contents with the previous (ie. "before hibernation") ones. 2705 * 2706 * If the restore eventually fails, we can call this function once again and 2707 * restore the highmem state as seen by the restore kernel. 2708 */ 2709 int restore_highmem(void) 2710 { 2711 struct highmem_pbe *pbe = highmem_pblist; 2712 void *buf; 2713 2714 if (!pbe) 2715 return 0; 2716 2717 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2718 if (!buf) 2719 return -ENOMEM; 2720 2721 while (pbe) { 2722 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2723 pbe = pbe->next; 2724 } 2725 free_image_page(buf, PG_UNSAFE_CLEAR); 2726 return 0; 2727 } 2728 #endif /* CONFIG_HIGHMEM */ 2729