xref: /openbmc/linux/kernel/power/main.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/power/main.c - PM subsystem core functionality.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  */
8 
9 #include <linux/export.h>
10 #include <linux/kobject.h>
11 #include <linux/string.h>
12 #include <linux/pm-trace.h>
13 #include <linux/workqueue.h>
14 #include <linux/debugfs.h>
15 #include <linux/seq_file.h>
16 #include <linux/suspend.h>
17 #include <linux/syscalls.h>
18 #include <linux/pm_runtime.h>
19 
20 #include "power.h"
21 
22 #ifdef CONFIG_PM_SLEEP
23 
24 void lock_system_sleep(void)
25 {
26 	current->flags |= PF_FREEZER_SKIP;
27 	mutex_lock(&system_transition_mutex);
28 }
29 EXPORT_SYMBOL_GPL(lock_system_sleep);
30 
31 void unlock_system_sleep(void)
32 {
33 	/*
34 	 * Don't use freezer_count() because we don't want the call to
35 	 * try_to_freeze() here.
36 	 *
37 	 * Reason:
38 	 * Fundamentally, we just don't need it, because freezing condition
39 	 * doesn't come into effect until we release the
40 	 * system_transition_mutex lock, since the freezer always works with
41 	 * system_transition_mutex held.
42 	 *
43 	 * More importantly, in the case of hibernation,
44 	 * unlock_system_sleep() gets called in snapshot_read() and
45 	 * snapshot_write() when the freezing condition is still in effect.
46 	 * Which means, if we use try_to_freeze() here, it would make them
47 	 * enter the refrigerator, thus causing hibernation to lockup.
48 	 */
49 	current->flags &= ~PF_FREEZER_SKIP;
50 	mutex_unlock(&system_transition_mutex);
51 }
52 EXPORT_SYMBOL_GPL(unlock_system_sleep);
53 
54 void ksys_sync_helper(void)
55 {
56 	ktime_t start;
57 	long elapsed_msecs;
58 
59 	start = ktime_get();
60 	ksys_sync();
61 	elapsed_msecs = ktime_to_ms(ktime_sub(ktime_get(), start));
62 	pr_info("Filesystems sync: %ld.%03ld seconds\n",
63 		elapsed_msecs / MSEC_PER_SEC, elapsed_msecs % MSEC_PER_SEC);
64 }
65 EXPORT_SYMBOL_GPL(ksys_sync_helper);
66 
67 /* Routines for PM-transition notifications */
68 
69 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
70 
71 int register_pm_notifier(struct notifier_block *nb)
72 {
73 	return blocking_notifier_chain_register(&pm_chain_head, nb);
74 }
75 EXPORT_SYMBOL_GPL(register_pm_notifier);
76 
77 int unregister_pm_notifier(struct notifier_block *nb)
78 {
79 	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
80 }
81 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
82 
83 int __pm_notifier_call_chain(unsigned long val, int nr_to_call, int *nr_calls)
84 {
85 	int ret;
86 
87 	ret = __blocking_notifier_call_chain(&pm_chain_head, val, NULL,
88 						nr_to_call, nr_calls);
89 
90 	return notifier_to_errno(ret);
91 }
92 int pm_notifier_call_chain(unsigned long val)
93 {
94 	return __pm_notifier_call_chain(val, -1, NULL);
95 }
96 
97 /* If set, devices may be suspended and resumed asynchronously. */
98 int pm_async_enabled = 1;
99 
100 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
101 			     char *buf)
102 {
103 	return sprintf(buf, "%d\n", pm_async_enabled);
104 }
105 
106 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
107 			      const char *buf, size_t n)
108 {
109 	unsigned long val;
110 
111 	if (kstrtoul(buf, 10, &val))
112 		return -EINVAL;
113 
114 	if (val > 1)
115 		return -EINVAL;
116 
117 	pm_async_enabled = val;
118 	return n;
119 }
120 
121 power_attr(pm_async);
122 
123 #ifdef CONFIG_SUSPEND
124 static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
125 			      char *buf)
126 {
127 	char *s = buf;
128 	suspend_state_t i;
129 
130 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
131 		if (mem_sleep_states[i]) {
132 			const char *label = mem_sleep_states[i];
133 
134 			if (mem_sleep_current == i)
135 				s += sprintf(s, "[%s] ", label);
136 			else
137 				s += sprintf(s, "%s ", label);
138 		}
139 
140 	/* Convert the last space to a newline if needed. */
141 	if (s != buf)
142 		*(s-1) = '\n';
143 
144 	return (s - buf);
145 }
146 
147 static suspend_state_t decode_suspend_state(const char *buf, size_t n)
148 {
149 	suspend_state_t state;
150 	char *p;
151 	int len;
152 
153 	p = memchr(buf, '\n', n);
154 	len = p ? p - buf : n;
155 
156 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
157 		const char *label = mem_sleep_states[state];
158 
159 		if (label && len == strlen(label) && !strncmp(buf, label, len))
160 			return state;
161 	}
162 
163 	return PM_SUSPEND_ON;
164 }
165 
166 static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
167 			       const char *buf, size_t n)
168 {
169 	suspend_state_t state;
170 	int error;
171 
172 	error = pm_autosleep_lock();
173 	if (error)
174 		return error;
175 
176 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
177 		error = -EBUSY;
178 		goto out;
179 	}
180 
181 	state = decode_suspend_state(buf, n);
182 	if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
183 		mem_sleep_current = state;
184 	else
185 		error = -EINVAL;
186 
187  out:
188 	pm_autosleep_unlock();
189 	return error ? error : n;
190 }
191 
192 power_attr(mem_sleep);
193 #endif /* CONFIG_SUSPEND */
194 
195 #ifdef CONFIG_PM_SLEEP_DEBUG
196 int pm_test_level = TEST_NONE;
197 
198 static const char * const pm_tests[__TEST_AFTER_LAST] = {
199 	[TEST_NONE] = "none",
200 	[TEST_CORE] = "core",
201 	[TEST_CPUS] = "processors",
202 	[TEST_PLATFORM] = "platform",
203 	[TEST_DEVICES] = "devices",
204 	[TEST_FREEZER] = "freezer",
205 };
206 
207 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
208 				char *buf)
209 {
210 	char *s = buf;
211 	int level;
212 
213 	for (level = TEST_FIRST; level <= TEST_MAX; level++)
214 		if (pm_tests[level]) {
215 			if (level == pm_test_level)
216 				s += sprintf(s, "[%s] ", pm_tests[level]);
217 			else
218 				s += sprintf(s, "%s ", pm_tests[level]);
219 		}
220 
221 	if (s != buf)
222 		/* convert the last space to a newline */
223 		*(s-1) = '\n';
224 
225 	return (s - buf);
226 }
227 
228 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
229 				const char *buf, size_t n)
230 {
231 	const char * const *s;
232 	int level;
233 	char *p;
234 	int len;
235 	int error = -EINVAL;
236 
237 	p = memchr(buf, '\n', n);
238 	len = p ? p - buf : n;
239 
240 	lock_system_sleep();
241 
242 	level = TEST_FIRST;
243 	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
244 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
245 			pm_test_level = level;
246 			error = 0;
247 			break;
248 		}
249 
250 	unlock_system_sleep();
251 
252 	return error ? error : n;
253 }
254 
255 power_attr(pm_test);
256 #endif /* CONFIG_PM_SLEEP_DEBUG */
257 
258 static char *suspend_step_name(enum suspend_stat_step step)
259 {
260 	switch (step) {
261 	case SUSPEND_FREEZE:
262 		return "freeze";
263 	case SUSPEND_PREPARE:
264 		return "prepare";
265 	case SUSPEND_SUSPEND:
266 		return "suspend";
267 	case SUSPEND_SUSPEND_NOIRQ:
268 		return "suspend_noirq";
269 	case SUSPEND_RESUME_NOIRQ:
270 		return "resume_noirq";
271 	case SUSPEND_RESUME:
272 		return "resume";
273 	default:
274 		return "";
275 	}
276 }
277 
278 #define suspend_attr(_name)					\
279 static ssize_t _name##_show(struct kobject *kobj,		\
280 		struct kobj_attribute *attr, char *buf)		\
281 {								\
282 	return sprintf(buf, "%d\n", suspend_stats._name);	\
283 }								\
284 static struct kobj_attribute _name = __ATTR_RO(_name)
285 
286 suspend_attr(success);
287 suspend_attr(fail);
288 suspend_attr(failed_freeze);
289 suspend_attr(failed_prepare);
290 suspend_attr(failed_suspend);
291 suspend_attr(failed_suspend_late);
292 suspend_attr(failed_suspend_noirq);
293 suspend_attr(failed_resume);
294 suspend_attr(failed_resume_early);
295 suspend_attr(failed_resume_noirq);
296 
297 static ssize_t last_failed_dev_show(struct kobject *kobj,
298 		struct kobj_attribute *attr, char *buf)
299 {
300 	int index;
301 	char *last_failed_dev = NULL;
302 
303 	index = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
304 	index %= REC_FAILED_NUM;
305 	last_failed_dev = suspend_stats.failed_devs[index];
306 
307 	return sprintf(buf, "%s\n", last_failed_dev);
308 }
309 static struct kobj_attribute last_failed_dev = __ATTR_RO(last_failed_dev);
310 
311 static ssize_t last_failed_errno_show(struct kobject *kobj,
312 		struct kobj_attribute *attr, char *buf)
313 {
314 	int index;
315 	int last_failed_errno;
316 
317 	index = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
318 	index %= REC_FAILED_NUM;
319 	last_failed_errno = suspend_stats.errno[index];
320 
321 	return sprintf(buf, "%d\n", last_failed_errno);
322 }
323 static struct kobj_attribute last_failed_errno = __ATTR_RO(last_failed_errno);
324 
325 static ssize_t last_failed_step_show(struct kobject *kobj,
326 		struct kobj_attribute *attr, char *buf)
327 {
328 	int index;
329 	enum suspend_stat_step step;
330 	char *last_failed_step = NULL;
331 
332 	index = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
333 	index %= REC_FAILED_NUM;
334 	step = suspend_stats.failed_steps[index];
335 	last_failed_step = suspend_step_name(step);
336 
337 	return sprintf(buf, "%s\n", last_failed_step);
338 }
339 static struct kobj_attribute last_failed_step = __ATTR_RO(last_failed_step);
340 
341 static struct attribute *suspend_attrs[] = {
342 	&success.attr,
343 	&fail.attr,
344 	&failed_freeze.attr,
345 	&failed_prepare.attr,
346 	&failed_suspend.attr,
347 	&failed_suspend_late.attr,
348 	&failed_suspend_noirq.attr,
349 	&failed_resume.attr,
350 	&failed_resume_early.attr,
351 	&failed_resume_noirq.attr,
352 	&last_failed_dev.attr,
353 	&last_failed_errno.attr,
354 	&last_failed_step.attr,
355 	NULL,
356 };
357 
358 static struct attribute_group suspend_attr_group = {
359 	.name = "suspend_stats",
360 	.attrs = suspend_attrs,
361 };
362 
363 #ifdef CONFIG_DEBUG_FS
364 static int suspend_stats_show(struct seq_file *s, void *unused)
365 {
366 	int i, index, last_dev, last_errno, last_step;
367 
368 	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
369 	last_dev %= REC_FAILED_NUM;
370 	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
371 	last_errno %= REC_FAILED_NUM;
372 	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
373 	last_step %= REC_FAILED_NUM;
374 	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
375 			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
376 			"success", suspend_stats.success,
377 			"fail", suspend_stats.fail,
378 			"failed_freeze", suspend_stats.failed_freeze,
379 			"failed_prepare", suspend_stats.failed_prepare,
380 			"failed_suspend", suspend_stats.failed_suspend,
381 			"failed_suspend_late",
382 				suspend_stats.failed_suspend_late,
383 			"failed_suspend_noirq",
384 				suspend_stats.failed_suspend_noirq,
385 			"failed_resume", suspend_stats.failed_resume,
386 			"failed_resume_early",
387 				suspend_stats.failed_resume_early,
388 			"failed_resume_noirq",
389 				suspend_stats.failed_resume_noirq);
390 	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
391 			suspend_stats.failed_devs[last_dev]);
392 	for (i = 1; i < REC_FAILED_NUM; i++) {
393 		index = last_dev + REC_FAILED_NUM - i;
394 		index %= REC_FAILED_NUM;
395 		seq_printf(s, "\t\t\t%-s\n",
396 			suspend_stats.failed_devs[index]);
397 	}
398 	seq_printf(s,	"  last_failed_errno:\t%-d\n",
399 			suspend_stats.errno[last_errno]);
400 	for (i = 1; i < REC_FAILED_NUM; i++) {
401 		index = last_errno + REC_FAILED_NUM - i;
402 		index %= REC_FAILED_NUM;
403 		seq_printf(s, "\t\t\t%-d\n",
404 			suspend_stats.errno[index]);
405 	}
406 	seq_printf(s,	"  last_failed_step:\t%-s\n",
407 			suspend_step_name(
408 				suspend_stats.failed_steps[last_step]));
409 	for (i = 1; i < REC_FAILED_NUM; i++) {
410 		index = last_step + REC_FAILED_NUM - i;
411 		index %= REC_FAILED_NUM;
412 		seq_printf(s, "\t\t\t%-s\n",
413 			suspend_step_name(
414 				suspend_stats.failed_steps[index]));
415 	}
416 
417 	return 0;
418 }
419 DEFINE_SHOW_ATTRIBUTE(suspend_stats);
420 
421 static int __init pm_debugfs_init(void)
422 {
423 	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
424 			NULL, NULL, &suspend_stats_fops);
425 	return 0;
426 }
427 
428 late_initcall(pm_debugfs_init);
429 #endif /* CONFIG_DEBUG_FS */
430 
431 #endif /* CONFIG_PM_SLEEP */
432 
433 #ifdef CONFIG_PM_SLEEP_DEBUG
434 /*
435  * pm_print_times: print time taken by devices to suspend and resume.
436  *
437  * show() returns whether printing of suspend and resume times is enabled.
438  * store() accepts 0 or 1.  0 disables printing and 1 enables it.
439  */
440 bool pm_print_times_enabled;
441 
442 static ssize_t pm_print_times_show(struct kobject *kobj,
443 				   struct kobj_attribute *attr, char *buf)
444 {
445 	return sprintf(buf, "%d\n", pm_print_times_enabled);
446 }
447 
448 static ssize_t pm_print_times_store(struct kobject *kobj,
449 				    struct kobj_attribute *attr,
450 				    const char *buf, size_t n)
451 {
452 	unsigned long val;
453 
454 	if (kstrtoul(buf, 10, &val))
455 		return -EINVAL;
456 
457 	if (val > 1)
458 		return -EINVAL;
459 
460 	pm_print_times_enabled = !!val;
461 	return n;
462 }
463 
464 power_attr(pm_print_times);
465 
466 static inline void pm_print_times_init(void)
467 {
468 	pm_print_times_enabled = !!initcall_debug;
469 }
470 
471 static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
472 					struct kobj_attribute *attr,
473 					char *buf)
474 {
475 	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
476 }
477 
478 power_attr_ro(pm_wakeup_irq);
479 
480 bool pm_debug_messages_on __read_mostly;
481 
482 static ssize_t pm_debug_messages_show(struct kobject *kobj,
483 				      struct kobj_attribute *attr, char *buf)
484 {
485 	return sprintf(buf, "%d\n", pm_debug_messages_on);
486 }
487 
488 static ssize_t pm_debug_messages_store(struct kobject *kobj,
489 				       struct kobj_attribute *attr,
490 				       const char *buf, size_t n)
491 {
492 	unsigned long val;
493 
494 	if (kstrtoul(buf, 10, &val))
495 		return -EINVAL;
496 
497 	if (val > 1)
498 		return -EINVAL;
499 
500 	pm_debug_messages_on = !!val;
501 	return n;
502 }
503 
504 power_attr(pm_debug_messages);
505 
506 /**
507  * __pm_pr_dbg - Print a suspend debug message to the kernel log.
508  * @defer: Whether or not to use printk_deferred() to print the message.
509  * @fmt: Message format.
510  *
511  * The message will be emitted if enabled through the pm_debug_messages
512  * sysfs attribute.
513  */
514 void __pm_pr_dbg(bool defer, const char *fmt, ...)
515 {
516 	struct va_format vaf;
517 	va_list args;
518 
519 	if (!pm_debug_messages_on)
520 		return;
521 
522 	va_start(args, fmt);
523 
524 	vaf.fmt = fmt;
525 	vaf.va = &args;
526 
527 	if (defer)
528 		printk_deferred(KERN_DEBUG "PM: %pV", &vaf);
529 	else
530 		printk(KERN_DEBUG "PM: %pV", &vaf);
531 
532 	va_end(args);
533 }
534 
535 #else /* !CONFIG_PM_SLEEP_DEBUG */
536 static inline void pm_print_times_init(void) {}
537 #endif /* CONFIG_PM_SLEEP_DEBUG */
538 
539 struct kobject *power_kobj;
540 
541 /**
542  * state - control system sleep states.
543  *
544  * show() returns available sleep state labels, which may be "mem", "standby",
545  * "freeze" and "disk" (hibernation).
546  * See Documentation/admin-guide/pm/sleep-states.rst for a description of
547  * what they mean.
548  *
549  * store() accepts one of those strings, translates it into the proper
550  * enumerated value, and initiates a suspend transition.
551  */
552 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
553 			  char *buf)
554 {
555 	char *s = buf;
556 #ifdef CONFIG_SUSPEND
557 	suspend_state_t i;
558 
559 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
560 		if (pm_states[i])
561 			s += sprintf(s,"%s ", pm_states[i]);
562 
563 #endif
564 	if (hibernation_available())
565 		s += sprintf(s, "disk ");
566 	if (s != buf)
567 		/* convert the last space to a newline */
568 		*(s-1) = '\n';
569 	return (s - buf);
570 }
571 
572 static suspend_state_t decode_state(const char *buf, size_t n)
573 {
574 #ifdef CONFIG_SUSPEND
575 	suspend_state_t state;
576 #endif
577 	char *p;
578 	int len;
579 
580 	p = memchr(buf, '\n', n);
581 	len = p ? p - buf : n;
582 
583 	/* Check hibernation first. */
584 	if (len == 4 && str_has_prefix(buf, "disk"))
585 		return PM_SUSPEND_MAX;
586 
587 #ifdef CONFIG_SUSPEND
588 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
589 		const char *label = pm_states[state];
590 
591 		if (label && len == strlen(label) && !strncmp(buf, label, len))
592 			return state;
593 	}
594 #endif
595 
596 	return PM_SUSPEND_ON;
597 }
598 
599 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
600 			   const char *buf, size_t n)
601 {
602 	suspend_state_t state;
603 	int error;
604 
605 	error = pm_autosleep_lock();
606 	if (error)
607 		return error;
608 
609 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
610 		error = -EBUSY;
611 		goto out;
612 	}
613 
614 	state = decode_state(buf, n);
615 	if (state < PM_SUSPEND_MAX) {
616 		if (state == PM_SUSPEND_MEM)
617 			state = mem_sleep_current;
618 
619 		error = pm_suspend(state);
620 	} else if (state == PM_SUSPEND_MAX) {
621 		error = hibernate();
622 	} else {
623 		error = -EINVAL;
624 	}
625 
626  out:
627 	pm_autosleep_unlock();
628 	return error ? error : n;
629 }
630 
631 power_attr(state);
632 
633 #ifdef CONFIG_PM_SLEEP
634 /*
635  * The 'wakeup_count' attribute, along with the functions defined in
636  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
637  * handled in a non-racy way.
638  *
639  * If a wakeup event occurs when the system is in a sleep state, it simply is
640  * woken up.  In turn, if an event that would wake the system up from a sleep
641  * state occurs when it is undergoing a transition to that sleep state, the
642  * transition should be aborted.  Moreover, if such an event occurs when the
643  * system is in the working state, an attempt to start a transition to the
644  * given sleep state should fail during certain period after the detection of
645  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
646  * these requirements, because a wakeup event may occur exactly when 'state'
647  * is being written to and may be delivered to user space right before it is
648  * frozen, so the event will remain only partially processed until the system is
649  * woken up by another event.  In particular, it won't cause the transition to
650  * a sleep state to be aborted.
651  *
652  * This difficulty may be overcome if user space uses 'wakeup_count' before
653  * writing to 'state'.  It first should read from 'wakeup_count' and store
654  * the read value.  Then, after carrying out its own preparations for the system
655  * transition to a sleep state, it should write the stored value to
656  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
657  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
658  * is allowed to write to 'state', but the transition will be aborted if there
659  * are any wakeup events detected after 'wakeup_count' was written to.
660  */
661 
662 static ssize_t wakeup_count_show(struct kobject *kobj,
663 				struct kobj_attribute *attr,
664 				char *buf)
665 {
666 	unsigned int val;
667 
668 	return pm_get_wakeup_count(&val, true) ?
669 		sprintf(buf, "%u\n", val) : -EINTR;
670 }
671 
672 static ssize_t wakeup_count_store(struct kobject *kobj,
673 				struct kobj_attribute *attr,
674 				const char *buf, size_t n)
675 {
676 	unsigned int val;
677 	int error;
678 
679 	error = pm_autosleep_lock();
680 	if (error)
681 		return error;
682 
683 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
684 		error = -EBUSY;
685 		goto out;
686 	}
687 
688 	error = -EINVAL;
689 	if (sscanf(buf, "%u", &val) == 1) {
690 		if (pm_save_wakeup_count(val))
691 			error = n;
692 		else
693 			pm_print_active_wakeup_sources();
694 	}
695 
696  out:
697 	pm_autosleep_unlock();
698 	return error;
699 }
700 
701 power_attr(wakeup_count);
702 
703 #ifdef CONFIG_PM_AUTOSLEEP
704 static ssize_t autosleep_show(struct kobject *kobj,
705 			      struct kobj_attribute *attr,
706 			      char *buf)
707 {
708 	suspend_state_t state = pm_autosleep_state();
709 
710 	if (state == PM_SUSPEND_ON)
711 		return sprintf(buf, "off\n");
712 
713 #ifdef CONFIG_SUSPEND
714 	if (state < PM_SUSPEND_MAX)
715 		return sprintf(buf, "%s\n", pm_states[state] ?
716 					pm_states[state] : "error");
717 #endif
718 #ifdef CONFIG_HIBERNATION
719 	return sprintf(buf, "disk\n");
720 #else
721 	return sprintf(buf, "error");
722 #endif
723 }
724 
725 static ssize_t autosleep_store(struct kobject *kobj,
726 			       struct kobj_attribute *attr,
727 			       const char *buf, size_t n)
728 {
729 	suspend_state_t state = decode_state(buf, n);
730 	int error;
731 
732 	if (state == PM_SUSPEND_ON
733 	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
734 		return -EINVAL;
735 
736 	if (state == PM_SUSPEND_MEM)
737 		state = mem_sleep_current;
738 
739 	error = pm_autosleep_set_state(state);
740 	return error ? error : n;
741 }
742 
743 power_attr(autosleep);
744 #endif /* CONFIG_PM_AUTOSLEEP */
745 
746 #ifdef CONFIG_PM_WAKELOCKS
747 static ssize_t wake_lock_show(struct kobject *kobj,
748 			      struct kobj_attribute *attr,
749 			      char *buf)
750 {
751 	return pm_show_wakelocks(buf, true);
752 }
753 
754 static ssize_t wake_lock_store(struct kobject *kobj,
755 			       struct kobj_attribute *attr,
756 			       const char *buf, size_t n)
757 {
758 	int error = pm_wake_lock(buf);
759 	return error ? error : n;
760 }
761 
762 power_attr(wake_lock);
763 
764 static ssize_t wake_unlock_show(struct kobject *kobj,
765 				struct kobj_attribute *attr,
766 				char *buf)
767 {
768 	return pm_show_wakelocks(buf, false);
769 }
770 
771 static ssize_t wake_unlock_store(struct kobject *kobj,
772 				 struct kobj_attribute *attr,
773 				 const char *buf, size_t n)
774 {
775 	int error = pm_wake_unlock(buf);
776 	return error ? error : n;
777 }
778 
779 power_attr(wake_unlock);
780 
781 #endif /* CONFIG_PM_WAKELOCKS */
782 #endif /* CONFIG_PM_SLEEP */
783 
784 #ifdef CONFIG_PM_TRACE
785 int pm_trace_enabled;
786 
787 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
788 			     char *buf)
789 {
790 	return sprintf(buf, "%d\n", pm_trace_enabled);
791 }
792 
793 static ssize_t
794 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
795 	       const char *buf, size_t n)
796 {
797 	int val;
798 
799 	if (sscanf(buf, "%d", &val) == 1) {
800 		pm_trace_enabled = !!val;
801 		if (pm_trace_enabled) {
802 			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
803 				"PM: Correct system time has to be restored manually after resume.\n");
804 		}
805 		return n;
806 	}
807 	return -EINVAL;
808 }
809 
810 power_attr(pm_trace);
811 
812 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
813 				       struct kobj_attribute *attr,
814 				       char *buf)
815 {
816 	return show_trace_dev_match(buf, PAGE_SIZE);
817 }
818 
819 power_attr_ro(pm_trace_dev_match);
820 
821 #endif /* CONFIG_PM_TRACE */
822 
823 #ifdef CONFIG_FREEZER
824 static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
825 				      struct kobj_attribute *attr, char *buf)
826 {
827 	return sprintf(buf, "%u\n", freeze_timeout_msecs);
828 }
829 
830 static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
831 				       struct kobj_attribute *attr,
832 				       const char *buf, size_t n)
833 {
834 	unsigned long val;
835 
836 	if (kstrtoul(buf, 10, &val))
837 		return -EINVAL;
838 
839 	freeze_timeout_msecs = val;
840 	return n;
841 }
842 
843 power_attr(pm_freeze_timeout);
844 
845 #endif	/* CONFIG_FREEZER*/
846 
847 static struct attribute * g[] = {
848 	&state_attr.attr,
849 #ifdef CONFIG_PM_TRACE
850 	&pm_trace_attr.attr,
851 	&pm_trace_dev_match_attr.attr,
852 #endif
853 #ifdef CONFIG_PM_SLEEP
854 	&pm_async_attr.attr,
855 	&wakeup_count_attr.attr,
856 #ifdef CONFIG_SUSPEND
857 	&mem_sleep_attr.attr,
858 #endif
859 #ifdef CONFIG_PM_AUTOSLEEP
860 	&autosleep_attr.attr,
861 #endif
862 #ifdef CONFIG_PM_WAKELOCKS
863 	&wake_lock_attr.attr,
864 	&wake_unlock_attr.attr,
865 #endif
866 #ifdef CONFIG_PM_SLEEP_DEBUG
867 	&pm_test_attr.attr,
868 	&pm_print_times_attr.attr,
869 	&pm_wakeup_irq_attr.attr,
870 	&pm_debug_messages_attr.attr,
871 #endif
872 #endif
873 #ifdef CONFIG_FREEZER
874 	&pm_freeze_timeout_attr.attr,
875 #endif
876 	NULL,
877 };
878 
879 static const struct attribute_group attr_group = {
880 	.attrs = g,
881 };
882 
883 static const struct attribute_group *attr_groups[] = {
884 	&attr_group,
885 #ifdef CONFIG_PM_SLEEP
886 	&suspend_attr_group,
887 #endif
888 	NULL,
889 };
890 
891 struct workqueue_struct *pm_wq;
892 EXPORT_SYMBOL_GPL(pm_wq);
893 
894 static int __init pm_start_workqueue(void)
895 {
896 	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
897 
898 	return pm_wq ? 0 : -ENOMEM;
899 }
900 
901 static int __init pm_init(void)
902 {
903 	int error = pm_start_workqueue();
904 	if (error)
905 		return error;
906 	hibernate_image_size_init();
907 	hibernate_reserved_size_init();
908 	pm_states_init();
909 	power_kobj = kobject_create_and_add("power", NULL);
910 	if (!power_kobj)
911 		return -ENOMEM;
912 	error = sysfs_create_groups(power_kobj, attr_groups);
913 	if (error)
914 		return error;
915 	pm_print_times_init();
916 	return pm_autosleep_init();
917 }
918 
919 core_initcall(pm_init);
920