xref: /openbmc/linux/kernel/power/main.c (revision 64c70b1c)
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10 
11 #include <linux/module.h>
12 #include <linux/suspend.h>
13 #include <linux/kobject.h>
14 #include <linux/string.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/console.h>
19 #include <linux/cpu.h>
20 #include <linux/resume-trace.h>
21 #include <linux/freezer.h>
22 #include <linux/vmstat.h>
23 
24 #include "power.h"
25 
26 /*This is just an arbitrary number */
27 #define FREE_PAGE_NUMBER (100)
28 
29 DEFINE_MUTEX(pm_mutex);
30 
31 struct pm_ops *pm_ops;
32 
33 /**
34  *	pm_set_ops - Set the global power method table.
35  *	@ops:	Pointer to ops structure.
36  */
37 
38 void pm_set_ops(struct pm_ops * ops)
39 {
40 	mutex_lock(&pm_mutex);
41 	pm_ops = ops;
42 	mutex_unlock(&pm_mutex);
43 }
44 
45 /**
46  * pm_valid_only_mem - generic memory-only valid callback
47  *
48  * pm_ops drivers that implement mem suspend only and only need
49  * to check for that in their .valid callback can use this instead
50  * of rolling their own .valid callback.
51  */
52 int pm_valid_only_mem(suspend_state_t state)
53 {
54 	return state == PM_SUSPEND_MEM;
55 }
56 
57 
58 static inline void pm_finish(suspend_state_t state)
59 {
60 	if (pm_ops->finish)
61 		pm_ops->finish(state);
62 }
63 
64 /**
65  *	suspend_prepare - Do prep work before entering low-power state.
66  *	@state:		State we're entering.
67  *
68  *	This is common code that is called for each state that we're
69  *	entering. Allocate a console, stop all processes, then make sure
70  *	the platform can enter the requested state.
71  */
72 
73 static int suspend_prepare(suspend_state_t state)
74 {
75 	int error;
76 	unsigned int free_pages;
77 
78 	if (!pm_ops || !pm_ops->enter)
79 		return -EPERM;
80 
81 	pm_prepare_console();
82 
83 	if (freeze_processes()) {
84 		error = -EAGAIN;
85 		goto Thaw;
86 	}
87 
88 	if ((free_pages = global_page_state(NR_FREE_PAGES))
89 			< FREE_PAGE_NUMBER) {
90 		pr_debug("PM: free some memory\n");
91 		shrink_all_memory(FREE_PAGE_NUMBER - free_pages);
92 		if (nr_free_pages() < FREE_PAGE_NUMBER) {
93 			error = -ENOMEM;
94 			printk(KERN_ERR "PM: No enough memory\n");
95 			goto Thaw;
96 		}
97 	}
98 
99 	if (pm_ops->set_target) {
100 		error = pm_ops->set_target(state);
101 		if (error)
102 			goto Thaw;
103 	}
104 	suspend_console();
105 	error = device_suspend(PMSG_SUSPEND);
106 	if (error) {
107 		printk(KERN_ERR "Some devices failed to suspend\n");
108 		goto Resume_console;
109 	}
110 	if (pm_ops->prepare) {
111 		if ((error = pm_ops->prepare(state)))
112 			goto Resume_devices;
113 	}
114 
115 	error = disable_nonboot_cpus();
116 	if (!error)
117 		return 0;
118 
119 	enable_nonboot_cpus();
120 	pm_finish(state);
121  Resume_devices:
122 	device_resume();
123  Resume_console:
124 	resume_console();
125  Thaw:
126 	thaw_processes();
127 	pm_restore_console();
128 	return error;
129 }
130 
131 /* default implementation */
132 void __attribute__ ((weak)) arch_suspend_disable_irqs(void)
133 {
134 	local_irq_disable();
135 }
136 
137 /* default implementation */
138 void __attribute__ ((weak)) arch_suspend_enable_irqs(void)
139 {
140 	local_irq_enable();
141 }
142 
143 int suspend_enter(suspend_state_t state)
144 {
145 	int error = 0;
146 
147 	arch_suspend_disable_irqs();
148 	BUG_ON(!irqs_disabled());
149 
150 	if ((error = device_power_down(PMSG_SUSPEND))) {
151 		printk(KERN_ERR "Some devices failed to power down\n");
152 		goto Done;
153 	}
154 	error = pm_ops->enter(state);
155 	device_power_up();
156  Done:
157 	arch_suspend_enable_irqs();
158 	BUG_ON(irqs_disabled());
159 	return error;
160 }
161 
162 
163 /**
164  *	suspend_finish - Do final work before exiting suspend sequence.
165  *	@state:		State we're coming out of.
166  *
167  *	Call platform code to clean up, restart processes, and free the
168  *	console that we've allocated. This is not called for suspend-to-disk.
169  */
170 
171 static void suspend_finish(suspend_state_t state)
172 {
173 	enable_nonboot_cpus();
174 	pm_finish(state);
175 	device_resume();
176 	resume_console();
177 	thaw_processes();
178 	pm_restore_console();
179 }
180 
181 
182 
183 
184 static const char * const pm_states[PM_SUSPEND_MAX] = {
185 	[PM_SUSPEND_STANDBY]	= "standby",
186 	[PM_SUSPEND_MEM]	= "mem",
187 };
188 
189 static inline int valid_state(suspend_state_t state)
190 {
191 	/* All states need lowlevel support and need to be valid
192 	 * to the lowlevel implementation, no valid callback
193 	 * implies that none are valid. */
194 	if (!pm_ops || !pm_ops->valid || !pm_ops->valid(state))
195 		return 0;
196 	return 1;
197 }
198 
199 
200 /**
201  *	enter_state - Do common work of entering low-power state.
202  *	@state:		pm_state structure for state we're entering.
203  *
204  *	Make sure we're the only ones trying to enter a sleep state. Fail
205  *	if someone has beat us to it, since we don't want anything weird to
206  *	happen when we wake up.
207  *	Then, do the setup for suspend, enter the state, and cleaup (after
208  *	we've woken up).
209  */
210 
211 static int enter_state(suspend_state_t state)
212 {
213 	int error;
214 
215 	if (!valid_state(state))
216 		return -ENODEV;
217 	if (!mutex_trylock(&pm_mutex))
218 		return -EBUSY;
219 
220 	pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]);
221 	if ((error = suspend_prepare(state)))
222 		goto Unlock;
223 
224 	pr_debug("PM: Entering %s sleep\n", pm_states[state]);
225 	error = suspend_enter(state);
226 
227 	pr_debug("PM: Finishing wakeup.\n");
228 	suspend_finish(state);
229  Unlock:
230 	mutex_unlock(&pm_mutex);
231 	return error;
232 }
233 
234 
235 /**
236  *	pm_suspend - Externally visible function for suspending system.
237  *	@state:		Enumerated value of state to enter.
238  *
239  *	Determine whether or not value is within range, get state
240  *	structure, and enter (above).
241  */
242 
243 int pm_suspend(suspend_state_t state)
244 {
245 	if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)
246 		return enter_state(state);
247 	return -EINVAL;
248 }
249 
250 EXPORT_SYMBOL(pm_suspend);
251 
252 decl_subsys(power,NULL,NULL);
253 
254 
255 /**
256  *	state - control system power state.
257  *
258  *	show() returns what states are supported, which is hard-coded to
259  *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and
260  *	'disk' (Suspend-to-Disk).
261  *
262  *	store() accepts one of those strings, translates it into the
263  *	proper enumerated value, and initiates a suspend transition.
264  */
265 
266 static ssize_t state_show(struct kset *kset, char *buf)
267 {
268 	int i;
269 	char * s = buf;
270 
271 	for (i = 0; i < PM_SUSPEND_MAX; i++) {
272 		if (pm_states[i] && valid_state(i))
273 			s += sprintf(s,"%s ", pm_states[i]);
274 	}
275 #ifdef CONFIG_SOFTWARE_SUSPEND
276 	s += sprintf(s, "%s\n", "disk");
277 #else
278 	if (s != buf)
279 		/* convert the last space to a newline */
280 		*(s-1) = '\n';
281 #endif
282 	return (s - buf);
283 }
284 
285 static ssize_t state_store(struct kset *kset, const char *buf, size_t n)
286 {
287 	suspend_state_t state = PM_SUSPEND_STANDBY;
288 	const char * const *s;
289 	char *p;
290 	int error;
291 	int len;
292 
293 	p = memchr(buf, '\n', n);
294 	len = p ? p - buf : n;
295 
296 	/* First, check if we are requested to hibernate */
297 	if (len == 4 && !strncmp(buf, "disk", len)) {
298 		error = hibernate();
299 		return error ? error : n;
300 	}
301 
302 	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
303 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
304 			break;
305 	}
306 	if (state < PM_SUSPEND_MAX && *s)
307 		error = enter_state(state);
308 	else
309 		error = -EINVAL;
310 	return error ? error : n;
311 }
312 
313 power_attr(state);
314 
315 #ifdef CONFIG_PM_TRACE
316 int pm_trace_enabled;
317 
318 static ssize_t pm_trace_show(struct kset *kset, char *buf)
319 {
320 	return sprintf(buf, "%d\n", pm_trace_enabled);
321 }
322 
323 static ssize_t
324 pm_trace_store(struct kset *kset, const char *buf, size_t n)
325 {
326 	int val;
327 
328 	if (sscanf(buf, "%d", &val) == 1) {
329 		pm_trace_enabled = !!val;
330 		return n;
331 	}
332 	return -EINVAL;
333 }
334 
335 power_attr(pm_trace);
336 
337 static struct attribute * g[] = {
338 	&state_attr.attr,
339 	&pm_trace_attr.attr,
340 	NULL,
341 };
342 #else
343 static struct attribute * g[] = {
344 	&state_attr.attr,
345 	NULL,
346 };
347 #endif /* CONFIG_PM_TRACE */
348 
349 static struct attribute_group attr_group = {
350 	.attrs = g,
351 };
352 
353 
354 static int __init pm_init(void)
355 {
356 	int error = subsystem_register(&power_subsys);
357 	if (!error)
358 		error = sysfs_create_group(&power_subsys.kobj,&attr_group);
359 	return error;
360 }
361 
362 core_initcall(pm_init);
363