xref: /openbmc/linux/kernel/power/main.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * kernel/power/main.c - PM subsystem core functionality.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  */
10 
11 #include <linux/export.h>
12 #include <linux/kobject.h>
13 #include <linux/string.h>
14 #include <linux/pm-trace.h>
15 #include <linux/workqueue.h>
16 #include <linux/debugfs.h>
17 #include <linux/seq_file.h>
18 
19 #include "power.h"
20 
21 DEFINE_MUTEX(pm_mutex);
22 
23 #ifdef CONFIG_PM_SLEEP
24 
25 /* Routines for PM-transition notifications */
26 
27 static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
28 
29 int register_pm_notifier(struct notifier_block *nb)
30 {
31 	return blocking_notifier_chain_register(&pm_chain_head, nb);
32 }
33 EXPORT_SYMBOL_GPL(register_pm_notifier);
34 
35 int unregister_pm_notifier(struct notifier_block *nb)
36 {
37 	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
38 }
39 EXPORT_SYMBOL_GPL(unregister_pm_notifier);
40 
41 int __pm_notifier_call_chain(unsigned long val, int nr_to_call, int *nr_calls)
42 {
43 	int ret;
44 
45 	ret = __blocking_notifier_call_chain(&pm_chain_head, val, NULL,
46 						nr_to_call, nr_calls);
47 
48 	return notifier_to_errno(ret);
49 }
50 int pm_notifier_call_chain(unsigned long val)
51 {
52 	return __pm_notifier_call_chain(val, -1, NULL);
53 }
54 
55 /* If set, devices may be suspended and resumed asynchronously. */
56 int pm_async_enabled = 1;
57 
58 static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
59 			     char *buf)
60 {
61 	return sprintf(buf, "%d\n", pm_async_enabled);
62 }
63 
64 static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
65 			      const char *buf, size_t n)
66 {
67 	unsigned long val;
68 
69 	if (kstrtoul(buf, 10, &val))
70 		return -EINVAL;
71 
72 	if (val > 1)
73 		return -EINVAL;
74 
75 	pm_async_enabled = val;
76 	return n;
77 }
78 
79 power_attr(pm_async);
80 
81 #ifdef CONFIG_SUSPEND
82 static ssize_t mem_sleep_show(struct kobject *kobj, struct kobj_attribute *attr,
83 			      char *buf)
84 {
85 	char *s = buf;
86 	suspend_state_t i;
87 
88 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
89 		if (mem_sleep_states[i]) {
90 			const char *label = mem_sleep_states[i];
91 
92 			if (mem_sleep_current == i)
93 				s += sprintf(s, "[%s] ", label);
94 			else
95 				s += sprintf(s, "%s ", label);
96 		}
97 
98 	/* Convert the last space to a newline if needed. */
99 	if (s != buf)
100 		*(s-1) = '\n';
101 
102 	return (s - buf);
103 }
104 
105 static suspend_state_t decode_suspend_state(const char *buf, size_t n)
106 {
107 	suspend_state_t state;
108 	char *p;
109 	int len;
110 
111 	p = memchr(buf, '\n', n);
112 	len = p ? p - buf : n;
113 
114 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
115 		const char *label = mem_sleep_states[state];
116 
117 		if (label && len == strlen(label) && !strncmp(buf, label, len))
118 			return state;
119 	}
120 
121 	return PM_SUSPEND_ON;
122 }
123 
124 static ssize_t mem_sleep_store(struct kobject *kobj, struct kobj_attribute *attr,
125 			       const char *buf, size_t n)
126 {
127 	suspend_state_t state;
128 	int error;
129 
130 	error = pm_autosleep_lock();
131 	if (error)
132 		return error;
133 
134 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
135 		error = -EBUSY;
136 		goto out;
137 	}
138 
139 	state = decode_suspend_state(buf, n);
140 	if (state < PM_SUSPEND_MAX && state > PM_SUSPEND_ON)
141 		mem_sleep_current = state;
142 	else
143 		error = -EINVAL;
144 
145  out:
146 	pm_autosleep_unlock();
147 	return error ? error : n;
148 }
149 
150 power_attr(mem_sleep);
151 #endif /* CONFIG_SUSPEND */
152 
153 #ifdef CONFIG_PM_DEBUG
154 int pm_test_level = TEST_NONE;
155 
156 static const char * const pm_tests[__TEST_AFTER_LAST] = {
157 	[TEST_NONE] = "none",
158 	[TEST_CORE] = "core",
159 	[TEST_CPUS] = "processors",
160 	[TEST_PLATFORM] = "platform",
161 	[TEST_DEVICES] = "devices",
162 	[TEST_FREEZER] = "freezer",
163 };
164 
165 static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
166 				char *buf)
167 {
168 	char *s = buf;
169 	int level;
170 
171 	for (level = TEST_FIRST; level <= TEST_MAX; level++)
172 		if (pm_tests[level]) {
173 			if (level == pm_test_level)
174 				s += sprintf(s, "[%s] ", pm_tests[level]);
175 			else
176 				s += sprintf(s, "%s ", pm_tests[level]);
177 		}
178 
179 	if (s != buf)
180 		/* convert the last space to a newline */
181 		*(s-1) = '\n';
182 
183 	return (s - buf);
184 }
185 
186 static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
187 				const char *buf, size_t n)
188 {
189 	const char * const *s;
190 	int level;
191 	char *p;
192 	int len;
193 	int error = -EINVAL;
194 
195 	p = memchr(buf, '\n', n);
196 	len = p ? p - buf : n;
197 
198 	lock_system_sleep();
199 
200 	level = TEST_FIRST;
201 	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
202 		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
203 			pm_test_level = level;
204 			error = 0;
205 			break;
206 		}
207 
208 	unlock_system_sleep();
209 
210 	return error ? error : n;
211 }
212 
213 power_attr(pm_test);
214 #endif /* CONFIG_PM_DEBUG */
215 
216 #ifdef CONFIG_DEBUG_FS
217 static char *suspend_step_name(enum suspend_stat_step step)
218 {
219 	switch (step) {
220 	case SUSPEND_FREEZE:
221 		return "freeze";
222 	case SUSPEND_PREPARE:
223 		return "prepare";
224 	case SUSPEND_SUSPEND:
225 		return "suspend";
226 	case SUSPEND_SUSPEND_NOIRQ:
227 		return "suspend_noirq";
228 	case SUSPEND_RESUME_NOIRQ:
229 		return "resume_noirq";
230 	case SUSPEND_RESUME:
231 		return "resume";
232 	default:
233 		return "";
234 	}
235 }
236 
237 static int suspend_stats_show(struct seq_file *s, void *unused)
238 {
239 	int i, index, last_dev, last_errno, last_step;
240 
241 	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
242 	last_dev %= REC_FAILED_NUM;
243 	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
244 	last_errno %= REC_FAILED_NUM;
245 	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
246 	last_step %= REC_FAILED_NUM;
247 	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
248 			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
249 			"success", suspend_stats.success,
250 			"fail", suspend_stats.fail,
251 			"failed_freeze", suspend_stats.failed_freeze,
252 			"failed_prepare", suspend_stats.failed_prepare,
253 			"failed_suspend", suspend_stats.failed_suspend,
254 			"failed_suspend_late",
255 				suspend_stats.failed_suspend_late,
256 			"failed_suspend_noirq",
257 				suspend_stats.failed_suspend_noirq,
258 			"failed_resume", suspend_stats.failed_resume,
259 			"failed_resume_early",
260 				suspend_stats.failed_resume_early,
261 			"failed_resume_noirq",
262 				suspend_stats.failed_resume_noirq);
263 	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
264 			suspend_stats.failed_devs[last_dev]);
265 	for (i = 1; i < REC_FAILED_NUM; i++) {
266 		index = last_dev + REC_FAILED_NUM - i;
267 		index %= REC_FAILED_NUM;
268 		seq_printf(s, "\t\t\t%-s\n",
269 			suspend_stats.failed_devs[index]);
270 	}
271 	seq_printf(s,	"  last_failed_errno:\t%-d\n",
272 			suspend_stats.errno[last_errno]);
273 	for (i = 1; i < REC_FAILED_NUM; i++) {
274 		index = last_errno + REC_FAILED_NUM - i;
275 		index %= REC_FAILED_NUM;
276 		seq_printf(s, "\t\t\t%-d\n",
277 			suspend_stats.errno[index]);
278 	}
279 	seq_printf(s,	"  last_failed_step:\t%-s\n",
280 			suspend_step_name(
281 				suspend_stats.failed_steps[last_step]));
282 	for (i = 1; i < REC_FAILED_NUM; i++) {
283 		index = last_step + REC_FAILED_NUM - i;
284 		index %= REC_FAILED_NUM;
285 		seq_printf(s, "\t\t\t%-s\n",
286 			suspend_step_name(
287 				suspend_stats.failed_steps[index]));
288 	}
289 
290 	return 0;
291 }
292 
293 static int suspend_stats_open(struct inode *inode, struct file *file)
294 {
295 	return single_open(file, suspend_stats_show, NULL);
296 }
297 
298 static const struct file_operations suspend_stats_operations = {
299 	.open           = suspend_stats_open,
300 	.read           = seq_read,
301 	.llseek         = seq_lseek,
302 	.release        = single_release,
303 };
304 
305 static int __init pm_debugfs_init(void)
306 {
307 	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
308 			NULL, NULL, &suspend_stats_operations);
309 	return 0;
310 }
311 
312 late_initcall(pm_debugfs_init);
313 #endif /* CONFIG_DEBUG_FS */
314 
315 #endif /* CONFIG_PM_SLEEP */
316 
317 #ifdef CONFIG_PM_SLEEP_DEBUG
318 /*
319  * pm_print_times: print time taken by devices to suspend and resume.
320  *
321  * show() returns whether printing of suspend and resume times is enabled.
322  * store() accepts 0 or 1.  0 disables printing and 1 enables it.
323  */
324 bool pm_print_times_enabled;
325 
326 static ssize_t pm_print_times_show(struct kobject *kobj,
327 				   struct kobj_attribute *attr, char *buf)
328 {
329 	return sprintf(buf, "%d\n", pm_print_times_enabled);
330 }
331 
332 static ssize_t pm_print_times_store(struct kobject *kobj,
333 				    struct kobj_attribute *attr,
334 				    const char *buf, size_t n)
335 {
336 	unsigned long val;
337 
338 	if (kstrtoul(buf, 10, &val))
339 		return -EINVAL;
340 
341 	if (val > 1)
342 		return -EINVAL;
343 
344 	pm_print_times_enabled = !!val;
345 	return n;
346 }
347 
348 power_attr(pm_print_times);
349 
350 static inline void pm_print_times_init(void)
351 {
352 	pm_print_times_enabled = !!initcall_debug;
353 }
354 
355 static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
356 					struct kobj_attribute *attr,
357 					char *buf)
358 {
359 	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
360 }
361 
362 power_attr_ro(pm_wakeup_irq);
363 
364 #else /* !CONFIG_PM_SLEEP_DEBUG */
365 static inline void pm_print_times_init(void) {}
366 #endif /* CONFIG_PM_SLEEP_DEBUG */
367 
368 struct kobject *power_kobj;
369 
370 /**
371  * state - control system sleep states.
372  *
373  * show() returns available sleep state labels, which may be "mem", "standby",
374  * "freeze" and "disk" (hibernation).  See Documentation/power/states.txt for a
375  * description of what they mean.
376  *
377  * store() accepts one of those strings, translates it into the proper
378  * enumerated value, and initiates a suspend transition.
379  */
380 static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
381 			  char *buf)
382 {
383 	char *s = buf;
384 #ifdef CONFIG_SUSPEND
385 	suspend_state_t i;
386 
387 	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
388 		if (pm_states[i])
389 			s += sprintf(s,"%s ", pm_states[i]);
390 
391 #endif
392 	if (hibernation_available())
393 		s += sprintf(s, "disk ");
394 	if (s != buf)
395 		/* convert the last space to a newline */
396 		*(s-1) = '\n';
397 	return (s - buf);
398 }
399 
400 static suspend_state_t decode_state(const char *buf, size_t n)
401 {
402 #ifdef CONFIG_SUSPEND
403 	suspend_state_t state;
404 #endif
405 	char *p;
406 	int len;
407 
408 	p = memchr(buf, '\n', n);
409 	len = p ? p - buf : n;
410 
411 	/* Check hibernation first. */
412 	if (len == 4 && !strncmp(buf, "disk", len))
413 		return PM_SUSPEND_MAX;
414 
415 #ifdef CONFIG_SUSPEND
416 	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
417 		const char *label = pm_states[state];
418 
419 		if (label && len == strlen(label) && !strncmp(buf, label, len))
420 			return state;
421 	}
422 #endif
423 
424 	return PM_SUSPEND_ON;
425 }
426 
427 static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
428 			   const char *buf, size_t n)
429 {
430 	suspend_state_t state;
431 	int error;
432 
433 	error = pm_autosleep_lock();
434 	if (error)
435 		return error;
436 
437 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
438 		error = -EBUSY;
439 		goto out;
440 	}
441 
442 	state = decode_state(buf, n);
443 	if (state < PM_SUSPEND_MAX) {
444 		if (state == PM_SUSPEND_MEM)
445 			state = mem_sleep_current;
446 
447 		error = pm_suspend(state);
448 	} else if (state == PM_SUSPEND_MAX) {
449 		error = hibernate();
450 	} else {
451 		error = -EINVAL;
452 	}
453 
454  out:
455 	pm_autosleep_unlock();
456 	return error ? error : n;
457 }
458 
459 power_attr(state);
460 
461 #ifdef CONFIG_PM_SLEEP
462 /*
463  * The 'wakeup_count' attribute, along with the functions defined in
464  * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
465  * handled in a non-racy way.
466  *
467  * If a wakeup event occurs when the system is in a sleep state, it simply is
468  * woken up.  In turn, if an event that would wake the system up from a sleep
469  * state occurs when it is undergoing a transition to that sleep state, the
470  * transition should be aborted.  Moreover, if such an event occurs when the
471  * system is in the working state, an attempt to start a transition to the
472  * given sleep state should fail during certain period after the detection of
473  * the event.  Using the 'state' attribute alone is not sufficient to satisfy
474  * these requirements, because a wakeup event may occur exactly when 'state'
475  * is being written to and may be delivered to user space right before it is
476  * frozen, so the event will remain only partially processed until the system is
477  * woken up by another event.  In particular, it won't cause the transition to
478  * a sleep state to be aborted.
479  *
480  * This difficulty may be overcome if user space uses 'wakeup_count' before
481  * writing to 'state'.  It first should read from 'wakeup_count' and store
482  * the read value.  Then, after carrying out its own preparations for the system
483  * transition to a sleep state, it should write the stored value to
484  * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
485  * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
486  * is allowed to write to 'state', but the transition will be aborted if there
487  * are any wakeup events detected after 'wakeup_count' was written to.
488  */
489 
490 static ssize_t wakeup_count_show(struct kobject *kobj,
491 				struct kobj_attribute *attr,
492 				char *buf)
493 {
494 	unsigned int val;
495 
496 	return pm_get_wakeup_count(&val, true) ?
497 		sprintf(buf, "%u\n", val) : -EINTR;
498 }
499 
500 static ssize_t wakeup_count_store(struct kobject *kobj,
501 				struct kobj_attribute *attr,
502 				const char *buf, size_t n)
503 {
504 	unsigned int val;
505 	int error;
506 
507 	error = pm_autosleep_lock();
508 	if (error)
509 		return error;
510 
511 	if (pm_autosleep_state() > PM_SUSPEND_ON) {
512 		error = -EBUSY;
513 		goto out;
514 	}
515 
516 	error = -EINVAL;
517 	if (sscanf(buf, "%u", &val) == 1) {
518 		if (pm_save_wakeup_count(val))
519 			error = n;
520 		else
521 			pm_print_active_wakeup_sources();
522 	}
523 
524  out:
525 	pm_autosleep_unlock();
526 	return error;
527 }
528 
529 power_attr(wakeup_count);
530 
531 #ifdef CONFIG_PM_AUTOSLEEP
532 static ssize_t autosleep_show(struct kobject *kobj,
533 			      struct kobj_attribute *attr,
534 			      char *buf)
535 {
536 	suspend_state_t state = pm_autosleep_state();
537 
538 	if (state == PM_SUSPEND_ON)
539 		return sprintf(buf, "off\n");
540 
541 #ifdef CONFIG_SUSPEND
542 	if (state < PM_SUSPEND_MAX)
543 		return sprintf(buf, "%s\n", pm_states[state] ?
544 					pm_states[state] : "error");
545 #endif
546 #ifdef CONFIG_HIBERNATION
547 	return sprintf(buf, "disk\n");
548 #else
549 	return sprintf(buf, "error");
550 #endif
551 }
552 
553 static ssize_t autosleep_store(struct kobject *kobj,
554 			       struct kobj_attribute *attr,
555 			       const char *buf, size_t n)
556 {
557 	suspend_state_t state = decode_state(buf, n);
558 	int error;
559 
560 	if (state == PM_SUSPEND_ON
561 	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
562 		return -EINVAL;
563 
564 	if (state == PM_SUSPEND_MEM)
565 		state = mem_sleep_current;
566 
567 	error = pm_autosleep_set_state(state);
568 	return error ? error : n;
569 }
570 
571 power_attr(autosleep);
572 #endif /* CONFIG_PM_AUTOSLEEP */
573 
574 #ifdef CONFIG_PM_WAKELOCKS
575 static ssize_t wake_lock_show(struct kobject *kobj,
576 			      struct kobj_attribute *attr,
577 			      char *buf)
578 {
579 	return pm_show_wakelocks(buf, true);
580 }
581 
582 static ssize_t wake_lock_store(struct kobject *kobj,
583 			       struct kobj_attribute *attr,
584 			       const char *buf, size_t n)
585 {
586 	int error = pm_wake_lock(buf);
587 	return error ? error : n;
588 }
589 
590 power_attr(wake_lock);
591 
592 static ssize_t wake_unlock_show(struct kobject *kobj,
593 				struct kobj_attribute *attr,
594 				char *buf)
595 {
596 	return pm_show_wakelocks(buf, false);
597 }
598 
599 static ssize_t wake_unlock_store(struct kobject *kobj,
600 				 struct kobj_attribute *attr,
601 				 const char *buf, size_t n)
602 {
603 	int error = pm_wake_unlock(buf);
604 	return error ? error : n;
605 }
606 
607 power_attr(wake_unlock);
608 
609 #endif /* CONFIG_PM_WAKELOCKS */
610 #endif /* CONFIG_PM_SLEEP */
611 
612 #ifdef CONFIG_PM_TRACE
613 int pm_trace_enabled;
614 
615 static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
616 			     char *buf)
617 {
618 	return sprintf(buf, "%d\n", pm_trace_enabled);
619 }
620 
621 static ssize_t
622 pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
623 	       const char *buf, size_t n)
624 {
625 	int val;
626 
627 	if (sscanf(buf, "%d", &val) == 1) {
628 		pm_trace_enabled = !!val;
629 		if (pm_trace_enabled) {
630 			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
631 				"PM: Correct system time has to be restored manually after resume.\n");
632 		}
633 		return n;
634 	}
635 	return -EINVAL;
636 }
637 
638 power_attr(pm_trace);
639 
640 static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
641 				       struct kobj_attribute *attr,
642 				       char *buf)
643 {
644 	return show_trace_dev_match(buf, PAGE_SIZE);
645 }
646 
647 power_attr_ro(pm_trace_dev_match);
648 
649 #endif /* CONFIG_PM_TRACE */
650 
651 #ifdef CONFIG_FREEZER
652 static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
653 				      struct kobj_attribute *attr, char *buf)
654 {
655 	return sprintf(buf, "%u\n", freeze_timeout_msecs);
656 }
657 
658 static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
659 				       struct kobj_attribute *attr,
660 				       const char *buf, size_t n)
661 {
662 	unsigned long val;
663 
664 	if (kstrtoul(buf, 10, &val))
665 		return -EINVAL;
666 
667 	freeze_timeout_msecs = val;
668 	return n;
669 }
670 
671 power_attr(pm_freeze_timeout);
672 
673 #endif	/* CONFIG_FREEZER*/
674 
675 static struct attribute * g[] = {
676 	&state_attr.attr,
677 #ifdef CONFIG_PM_TRACE
678 	&pm_trace_attr.attr,
679 	&pm_trace_dev_match_attr.attr,
680 #endif
681 #ifdef CONFIG_PM_SLEEP
682 	&pm_async_attr.attr,
683 	&wakeup_count_attr.attr,
684 #ifdef CONFIG_SUSPEND
685 	&mem_sleep_attr.attr,
686 #endif
687 #ifdef CONFIG_PM_AUTOSLEEP
688 	&autosleep_attr.attr,
689 #endif
690 #ifdef CONFIG_PM_WAKELOCKS
691 	&wake_lock_attr.attr,
692 	&wake_unlock_attr.attr,
693 #endif
694 #ifdef CONFIG_PM_DEBUG
695 	&pm_test_attr.attr,
696 #endif
697 #ifdef CONFIG_PM_SLEEP_DEBUG
698 	&pm_print_times_attr.attr,
699 	&pm_wakeup_irq_attr.attr,
700 #endif
701 #endif
702 #ifdef CONFIG_FREEZER
703 	&pm_freeze_timeout_attr.attr,
704 #endif
705 	NULL,
706 };
707 
708 static const struct attribute_group attr_group = {
709 	.attrs = g,
710 };
711 
712 struct workqueue_struct *pm_wq;
713 EXPORT_SYMBOL_GPL(pm_wq);
714 
715 static int __init pm_start_workqueue(void)
716 {
717 	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
718 
719 	return pm_wq ? 0 : -ENOMEM;
720 }
721 
722 static int __init pm_init(void)
723 {
724 	int error = pm_start_workqueue();
725 	if (error)
726 		return error;
727 	hibernate_image_size_init();
728 	hibernate_reserved_size_init();
729 	pm_states_init();
730 	power_kobj = kobject_create_and_add("power", NULL);
731 	if (!power_kobj)
732 		return -ENOMEM;
733 	error = sysfs_create_group(power_kobj, &attr_group);
734 	if (error)
735 		return error;
736 	pm_print_times_init();
737 	return pm_autosleep_init();
738 }
739 
740 core_initcall(pm_init);
741