xref: /openbmc/linux/kernel/power/energy_model.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Energy Model of devices
4  *
5  * Copyright (c) 2018-2020, Arm ltd.
6  * Written by: Quentin Perret, Arm ltd.
7  * Improvements provided by: Lukasz Luba, Arm ltd.
8  */
9 
10 #define pr_fmt(fmt) "energy_model: " fmt
11 
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/debugfs.h>
15 #include <linux/energy_model.h>
16 #include <linux/sched/topology.h>
17 #include <linux/slab.h>
18 
19 /*
20  * Mutex serializing the registrations of performance domains and letting
21  * callbacks defined by drivers sleep.
22  */
23 static DEFINE_MUTEX(em_pd_mutex);
24 
25 static bool _is_cpu_device(struct device *dev)
26 {
27 	return (dev->bus == &cpu_subsys);
28 }
29 
30 #ifdef CONFIG_DEBUG_FS
31 static struct dentry *rootdir;
32 
33 static void em_debug_create_ps(struct em_perf_state *ps, struct dentry *pd)
34 {
35 	struct dentry *d;
36 	char name[24];
37 
38 	snprintf(name, sizeof(name), "ps:%lu", ps->frequency);
39 
40 	/* Create per-ps directory */
41 	d = debugfs_create_dir(name, pd);
42 	debugfs_create_ulong("frequency", 0444, d, &ps->frequency);
43 	debugfs_create_ulong("power", 0444, d, &ps->power);
44 	debugfs_create_ulong("cost", 0444, d, &ps->cost);
45 }
46 
47 static int em_debug_cpus_show(struct seq_file *s, void *unused)
48 {
49 	seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private)));
50 
51 	return 0;
52 }
53 DEFINE_SHOW_ATTRIBUTE(em_debug_cpus);
54 
55 static void em_debug_create_pd(struct device *dev)
56 {
57 	struct dentry *d;
58 	int i;
59 
60 	/* Create the directory of the performance domain */
61 	d = debugfs_create_dir(dev_name(dev), rootdir);
62 
63 	if (_is_cpu_device(dev))
64 		debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus,
65 				    &em_debug_cpus_fops);
66 
67 	/* Create a sub-directory for each performance state */
68 	for (i = 0; i < dev->em_pd->nr_perf_states; i++)
69 		em_debug_create_ps(&dev->em_pd->table[i], d);
70 
71 }
72 
73 static void em_debug_remove_pd(struct device *dev)
74 {
75 	struct dentry *debug_dir;
76 
77 	debug_dir = debugfs_lookup(dev_name(dev), rootdir);
78 	debugfs_remove_recursive(debug_dir);
79 }
80 
81 static int __init em_debug_init(void)
82 {
83 	/* Create /sys/kernel/debug/energy_model directory */
84 	rootdir = debugfs_create_dir("energy_model", NULL);
85 
86 	return 0;
87 }
88 core_initcall(em_debug_init);
89 #else /* CONFIG_DEBUG_FS */
90 static void em_debug_create_pd(struct device *dev) {}
91 static void em_debug_remove_pd(struct device *dev) {}
92 #endif
93 
94 static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd,
95 				int nr_states, struct em_data_callback *cb)
96 {
97 	unsigned long opp_eff, prev_opp_eff = ULONG_MAX;
98 	unsigned long power, freq, prev_freq = 0;
99 	struct em_perf_state *table;
100 	int i, ret;
101 	u64 fmax;
102 
103 	table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL);
104 	if (!table)
105 		return -ENOMEM;
106 
107 	/* Build the list of performance states for this performance domain */
108 	for (i = 0, freq = 0; i < nr_states; i++, freq++) {
109 		/*
110 		 * active_power() is a driver callback which ceils 'freq' to
111 		 * lowest performance state of 'dev' above 'freq' and updates
112 		 * 'power' and 'freq' accordingly.
113 		 */
114 		ret = cb->active_power(&power, &freq, dev);
115 		if (ret) {
116 			dev_err(dev, "EM: invalid perf. state: %d\n",
117 				ret);
118 			goto free_ps_table;
119 		}
120 
121 		/*
122 		 * We expect the driver callback to increase the frequency for
123 		 * higher performance states.
124 		 */
125 		if (freq <= prev_freq) {
126 			dev_err(dev, "EM: non-increasing freq: %lu\n",
127 				freq);
128 			goto free_ps_table;
129 		}
130 
131 		/*
132 		 * The power returned by active_state() is expected to be
133 		 * positive, in milli-watts and to fit into 16 bits.
134 		 */
135 		if (!power || power > EM_MAX_POWER) {
136 			dev_err(dev, "EM: invalid power: %lu\n",
137 				power);
138 			goto free_ps_table;
139 		}
140 
141 		table[i].power = power;
142 		table[i].frequency = prev_freq = freq;
143 
144 		/*
145 		 * The hertz/watts efficiency ratio should decrease as the
146 		 * frequency grows on sane platforms. But this isn't always
147 		 * true in practice so warn the user if a higher OPP is more
148 		 * power efficient than a lower one.
149 		 */
150 		opp_eff = freq / power;
151 		if (opp_eff >= prev_opp_eff)
152 			dev_dbg(dev, "EM: hertz/watts ratio non-monotonically decreasing: em_perf_state %d >= em_perf_state%d\n",
153 					i, i - 1);
154 		prev_opp_eff = opp_eff;
155 	}
156 
157 	/* Compute the cost of each performance state. */
158 	fmax = (u64) table[nr_states - 1].frequency;
159 	for (i = 0; i < nr_states; i++) {
160 		table[i].cost = div64_u64(fmax * table[i].power,
161 					  table[i].frequency);
162 	}
163 
164 	pd->table = table;
165 	pd->nr_perf_states = nr_states;
166 
167 	return 0;
168 
169 free_ps_table:
170 	kfree(table);
171 	return -EINVAL;
172 }
173 
174 static int em_create_pd(struct device *dev, int nr_states,
175 			struct em_data_callback *cb, cpumask_t *cpus)
176 {
177 	struct em_perf_domain *pd;
178 	struct device *cpu_dev;
179 	int cpu, ret;
180 
181 	if (_is_cpu_device(dev)) {
182 		pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL);
183 		if (!pd)
184 			return -ENOMEM;
185 
186 		cpumask_copy(em_span_cpus(pd), cpus);
187 	} else {
188 		pd = kzalloc(sizeof(*pd), GFP_KERNEL);
189 		if (!pd)
190 			return -ENOMEM;
191 	}
192 
193 	ret = em_create_perf_table(dev, pd, nr_states, cb);
194 	if (ret) {
195 		kfree(pd);
196 		return ret;
197 	}
198 
199 	if (_is_cpu_device(dev))
200 		for_each_cpu(cpu, cpus) {
201 			cpu_dev = get_cpu_device(cpu);
202 			cpu_dev->em_pd = pd;
203 		}
204 
205 	dev->em_pd = pd;
206 
207 	return 0;
208 }
209 
210 /**
211  * em_pd_get() - Return the performance domain for a device
212  * @dev : Device to find the performance domain for
213  *
214  * Returns the performance domain to which @dev belongs, or NULL if it doesn't
215  * exist.
216  */
217 struct em_perf_domain *em_pd_get(struct device *dev)
218 {
219 	if (IS_ERR_OR_NULL(dev))
220 		return NULL;
221 
222 	return dev->em_pd;
223 }
224 EXPORT_SYMBOL_GPL(em_pd_get);
225 
226 /**
227  * em_cpu_get() - Return the performance domain for a CPU
228  * @cpu : CPU to find the performance domain for
229  *
230  * Returns the performance domain to which @cpu belongs, or NULL if it doesn't
231  * exist.
232  */
233 struct em_perf_domain *em_cpu_get(int cpu)
234 {
235 	struct device *cpu_dev;
236 
237 	cpu_dev = get_cpu_device(cpu);
238 	if (!cpu_dev)
239 		return NULL;
240 
241 	return em_pd_get(cpu_dev);
242 }
243 EXPORT_SYMBOL_GPL(em_cpu_get);
244 
245 /**
246  * em_dev_register_perf_domain() - Register the Energy Model (EM) for a device
247  * @dev		: Device for which the EM is to register
248  * @nr_states	: Number of performance states to register
249  * @cb		: Callback functions providing the data of the Energy Model
250  * @cpus	: Pointer to cpumask_t, which in case of a CPU device is
251  *		obligatory. It can be taken from i.e. 'policy->cpus'. For other
252  *		type of devices this should be set to NULL.
253  *
254  * Create Energy Model tables for a performance domain using the callbacks
255  * defined in cb.
256  *
257  * If multiple clients register the same performance domain, all but the first
258  * registration will be ignored.
259  *
260  * Return 0 on success
261  */
262 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
263 				struct em_data_callback *cb, cpumask_t *cpus)
264 {
265 	unsigned long cap, prev_cap = 0;
266 	int cpu, ret;
267 
268 	if (!dev || !nr_states || !cb)
269 		return -EINVAL;
270 
271 	/*
272 	 * Use a mutex to serialize the registration of performance domains and
273 	 * let the driver-defined callback functions sleep.
274 	 */
275 	mutex_lock(&em_pd_mutex);
276 
277 	if (dev->em_pd) {
278 		ret = -EEXIST;
279 		goto unlock;
280 	}
281 
282 	if (_is_cpu_device(dev)) {
283 		if (!cpus) {
284 			dev_err(dev, "EM: invalid CPU mask\n");
285 			ret = -EINVAL;
286 			goto unlock;
287 		}
288 
289 		for_each_cpu(cpu, cpus) {
290 			if (em_cpu_get(cpu)) {
291 				dev_err(dev, "EM: exists for CPU%d\n", cpu);
292 				ret = -EEXIST;
293 				goto unlock;
294 			}
295 			/*
296 			 * All CPUs of a domain must have the same
297 			 * micro-architecture since they all share the same
298 			 * table.
299 			 */
300 			cap = arch_scale_cpu_capacity(cpu);
301 			if (prev_cap && prev_cap != cap) {
302 				dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n",
303 					cpumask_pr_args(cpus));
304 
305 				ret = -EINVAL;
306 				goto unlock;
307 			}
308 			prev_cap = cap;
309 		}
310 	}
311 
312 	ret = em_create_pd(dev, nr_states, cb, cpus);
313 	if (ret)
314 		goto unlock;
315 
316 	em_debug_create_pd(dev);
317 	dev_info(dev, "EM: created perf domain\n");
318 
319 unlock:
320 	mutex_unlock(&em_pd_mutex);
321 	return ret;
322 }
323 EXPORT_SYMBOL_GPL(em_dev_register_perf_domain);
324 
325 /**
326  * em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device
327  * @dev		: Device for which the EM is registered
328  *
329  * Unregister the EM for the specified @dev (but not a CPU device).
330  */
331 void em_dev_unregister_perf_domain(struct device *dev)
332 {
333 	if (IS_ERR_OR_NULL(dev) || !dev->em_pd)
334 		return;
335 
336 	if (_is_cpu_device(dev))
337 		return;
338 
339 	/*
340 	 * The mutex separates all register/unregister requests and protects
341 	 * from potential clean-up/setup issues in the debugfs directories.
342 	 * The debugfs directory name is the same as device's name.
343 	 */
344 	mutex_lock(&em_pd_mutex);
345 	em_debug_remove_pd(dev);
346 
347 	kfree(dev->em_pd->table);
348 	kfree(dev->em_pd);
349 	dev->em_pd = NULL;
350 	mutex_unlock(&em_pd_mutex);
351 }
352 EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);
353