1 /* 2 * Pid namespaces 3 * 4 * Authors: 5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 7 * Many thanks to Oleg Nesterov for comments and help 8 * 9 */ 10 11 #include <linux/pid.h> 12 #include <linux/pid_namespace.h> 13 #include <linux/user_namespace.h> 14 #include <linux/syscalls.h> 15 #include <linux/err.h> 16 #include <linux/acct.h> 17 #include <linux/slab.h> 18 #include <linux/proc_ns.h> 19 #include <linux/reboot.h> 20 #include <linux/export.h> 21 22 struct pid_cache { 23 int nr_ids; 24 char name[16]; 25 struct kmem_cache *cachep; 26 struct list_head list; 27 }; 28 29 static LIST_HEAD(pid_caches_lh); 30 static DEFINE_MUTEX(pid_caches_mutex); 31 static struct kmem_cache *pid_ns_cachep; 32 33 /* 34 * creates the kmem cache to allocate pids from. 35 * @nr_ids: the number of numerical ids this pid will have to carry 36 */ 37 38 static struct kmem_cache *create_pid_cachep(int nr_ids) 39 { 40 struct pid_cache *pcache; 41 struct kmem_cache *cachep; 42 43 mutex_lock(&pid_caches_mutex); 44 list_for_each_entry(pcache, &pid_caches_lh, list) 45 if (pcache->nr_ids == nr_ids) 46 goto out; 47 48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); 49 if (pcache == NULL) 50 goto err_alloc; 51 52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); 53 cachep = kmem_cache_create(pcache->name, 54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), 55 0, SLAB_HWCACHE_ALIGN, NULL); 56 if (cachep == NULL) 57 goto err_cachep; 58 59 pcache->nr_ids = nr_ids; 60 pcache->cachep = cachep; 61 list_add(&pcache->list, &pid_caches_lh); 62 out: 63 mutex_unlock(&pid_caches_mutex); 64 return pcache->cachep; 65 66 err_cachep: 67 kfree(pcache); 68 err_alloc: 69 mutex_unlock(&pid_caches_mutex); 70 return NULL; 71 } 72 73 static void proc_cleanup_work(struct work_struct *work) 74 { 75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); 76 pid_ns_release_proc(ns); 77 } 78 79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ 80 #define MAX_PID_NS_LEVEL 32 81 82 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns) 83 { 84 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES); 85 } 86 87 static void dec_pid_namespaces(struct ucounts *ucounts) 88 { 89 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES); 90 } 91 92 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, 93 struct pid_namespace *parent_pid_ns) 94 { 95 struct pid_namespace *ns; 96 unsigned int level = parent_pid_ns->level + 1; 97 struct ucounts *ucounts; 98 int i; 99 int err; 100 101 err = -ENOSPC; 102 if (level > MAX_PID_NS_LEVEL) 103 goto out; 104 ucounts = inc_pid_namespaces(user_ns); 105 if (!ucounts) 106 goto out; 107 108 err = -ENOMEM; 109 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); 110 if (ns == NULL) 111 goto out_dec; 112 113 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 114 if (!ns->pidmap[0].page) 115 goto out_free; 116 117 ns->pid_cachep = create_pid_cachep(level + 1); 118 if (ns->pid_cachep == NULL) 119 goto out_free_map; 120 121 err = ns_alloc_inum(&ns->ns); 122 if (err) 123 goto out_free_map; 124 ns->ns.ops = &pidns_operations; 125 126 kref_init(&ns->kref); 127 ns->level = level; 128 ns->parent = get_pid_ns(parent_pid_ns); 129 ns->user_ns = get_user_ns(user_ns); 130 ns->ucounts = ucounts; 131 ns->nr_hashed = PIDNS_HASH_ADDING; 132 INIT_WORK(&ns->proc_work, proc_cleanup_work); 133 134 set_bit(0, ns->pidmap[0].page); 135 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); 136 137 for (i = 1; i < PIDMAP_ENTRIES; i++) 138 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); 139 140 return ns; 141 142 out_free_map: 143 kfree(ns->pidmap[0].page); 144 out_free: 145 kmem_cache_free(pid_ns_cachep, ns); 146 out_dec: 147 dec_pid_namespaces(ucounts); 148 out: 149 return ERR_PTR(err); 150 } 151 152 static void delayed_free_pidns(struct rcu_head *p) 153 { 154 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu); 155 156 dec_pid_namespaces(ns->ucounts); 157 put_user_ns(ns->user_ns); 158 159 kmem_cache_free(pid_ns_cachep, ns); 160 } 161 162 static void destroy_pid_namespace(struct pid_namespace *ns) 163 { 164 int i; 165 166 ns_free_inum(&ns->ns); 167 for (i = 0; i < PIDMAP_ENTRIES; i++) 168 kfree(ns->pidmap[i].page); 169 call_rcu(&ns->rcu, delayed_free_pidns); 170 } 171 172 struct pid_namespace *copy_pid_ns(unsigned long flags, 173 struct user_namespace *user_ns, struct pid_namespace *old_ns) 174 { 175 if (!(flags & CLONE_NEWPID)) 176 return get_pid_ns(old_ns); 177 if (task_active_pid_ns(current) != old_ns) 178 return ERR_PTR(-EINVAL); 179 return create_pid_namespace(user_ns, old_ns); 180 } 181 182 static void free_pid_ns(struct kref *kref) 183 { 184 struct pid_namespace *ns; 185 186 ns = container_of(kref, struct pid_namespace, kref); 187 destroy_pid_namespace(ns); 188 } 189 190 void put_pid_ns(struct pid_namespace *ns) 191 { 192 struct pid_namespace *parent; 193 194 while (ns != &init_pid_ns) { 195 parent = ns->parent; 196 if (!kref_put(&ns->kref, free_pid_ns)) 197 break; 198 ns = parent; 199 } 200 } 201 EXPORT_SYMBOL_GPL(put_pid_ns); 202 203 void zap_pid_ns_processes(struct pid_namespace *pid_ns) 204 { 205 int nr; 206 int rc; 207 struct task_struct *task, *me = current; 208 int init_pids = thread_group_leader(me) ? 1 : 2; 209 210 /* Don't allow any more processes into the pid namespace */ 211 disable_pid_allocation(pid_ns); 212 213 /* 214 * Ignore SIGCHLD causing any terminated children to autoreap. 215 * This speeds up the namespace shutdown, plus see the comment 216 * below. 217 */ 218 spin_lock_irq(&me->sighand->siglock); 219 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; 220 spin_unlock_irq(&me->sighand->siglock); 221 222 /* 223 * The last thread in the cgroup-init thread group is terminating. 224 * Find remaining pid_ts in the namespace, signal and wait for them 225 * to exit. 226 * 227 * Note: This signals each threads in the namespace - even those that 228 * belong to the same thread group, To avoid this, we would have 229 * to walk the entire tasklist looking a processes in this 230 * namespace, but that could be unnecessarily expensive if the 231 * pid namespace has just a few processes. Or we need to 232 * maintain a tasklist for each pid namespace. 233 * 234 */ 235 read_lock(&tasklist_lock); 236 nr = next_pidmap(pid_ns, 1); 237 while (nr > 0) { 238 rcu_read_lock(); 239 240 task = pid_task(find_vpid(nr), PIDTYPE_PID); 241 if (task && !__fatal_signal_pending(task)) 242 send_sig_info(SIGKILL, SEND_SIG_FORCED, task); 243 244 rcu_read_unlock(); 245 246 nr = next_pidmap(pid_ns, nr); 247 } 248 read_unlock(&tasklist_lock); 249 250 /* 251 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. 252 * sys_wait4() will also block until our children traced from the 253 * parent namespace are detached and become EXIT_DEAD. 254 */ 255 do { 256 clear_thread_flag(TIF_SIGPENDING); 257 rc = sys_wait4(-1, NULL, __WALL, NULL); 258 } while (rc != -ECHILD); 259 260 /* 261 * sys_wait4() above can't reap the EXIT_DEAD children but we do not 262 * really care, we could reparent them to the global init. We could 263 * exit and reap ->child_reaper even if it is not the last thread in 264 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), 265 * pid_ns can not go away until proc_kill_sb() drops the reference. 266 * 267 * But this ns can also have other tasks injected by setns()+fork(). 268 * Again, ignoring the user visible semantics we do not really need 269 * to wait until they are all reaped, but they can be reparented to 270 * us and thus we need to ensure that pid->child_reaper stays valid 271 * until they all go away. See free_pid()->wake_up_process(). 272 * 273 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped 274 * if reparented. 275 */ 276 for (;;) { 277 set_current_state(TASK_UNINTERRUPTIBLE); 278 if (pid_ns->nr_hashed == init_pids) 279 break; 280 schedule(); 281 } 282 __set_current_state(TASK_RUNNING); 283 284 if (pid_ns->reboot) 285 current->signal->group_exit_code = pid_ns->reboot; 286 287 acct_exit_ns(pid_ns); 288 return; 289 } 290 291 #ifdef CONFIG_CHECKPOINT_RESTORE 292 static int pid_ns_ctl_handler(struct ctl_table *table, int write, 293 void __user *buffer, size_t *lenp, loff_t *ppos) 294 { 295 struct pid_namespace *pid_ns = task_active_pid_ns(current); 296 struct ctl_table tmp = *table; 297 298 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) 299 return -EPERM; 300 301 /* 302 * Writing directly to ns' last_pid field is OK, since this field 303 * is volatile in a living namespace anyway and a code writing to 304 * it should synchronize its usage with external means. 305 */ 306 307 tmp.data = &pid_ns->last_pid; 308 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 309 } 310 311 extern int pid_max; 312 static int zero = 0; 313 static struct ctl_table pid_ns_ctl_table[] = { 314 { 315 .procname = "ns_last_pid", 316 .maxlen = sizeof(int), 317 .mode = 0666, /* permissions are checked in the handler */ 318 .proc_handler = pid_ns_ctl_handler, 319 .extra1 = &zero, 320 .extra2 = &pid_max, 321 }, 322 { } 323 }; 324 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; 325 #endif /* CONFIG_CHECKPOINT_RESTORE */ 326 327 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) 328 { 329 if (pid_ns == &init_pid_ns) 330 return 0; 331 332 switch (cmd) { 333 case LINUX_REBOOT_CMD_RESTART2: 334 case LINUX_REBOOT_CMD_RESTART: 335 pid_ns->reboot = SIGHUP; 336 break; 337 338 case LINUX_REBOOT_CMD_POWER_OFF: 339 case LINUX_REBOOT_CMD_HALT: 340 pid_ns->reboot = SIGINT; 341 break; 342 default: 343 return -EINVAL; 344 } 345 346 read_lock(&tasklist_lock); 347 force_sig(SIGKILL, pid_ns->child_reaper); 348 read_unlock(&tasklist_lock); 349 350 do_exit(0); 351 352 /* Not reached */ 353 return 0; 354 } 355 356 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) 357 { 358 return container_of(ns, struct pid_namespace, ns); 359 } 360 361 static struct ns_common *pidns_get(struct task_struct *task) 362 { 363 struct pid_namespace *ns; 364 365 rcu_read_lock(); 366 ns = task_active_pid_ns(task); 367 if (ns) 368 get_pid_ns(ns); 369 rcu_read_unlock(); 370 371 return ns ? &ns->ns : NULL; 372 } 373 374 static void pidns_put(struct ns_common *ns) 375 { 376 put_pid_ns(to_pid_ns(ns)); 377 } 378 379 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) 380 { 381 struct pid_namespace *active = task_active_pid_ns(current); 382 struct pid_namespace *ancestor, *new = to_pid_ns(ns); 383 384 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || 385 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 386 return -EPERM; 387 388 /* 389 * Only allow entering the current active pid namespace 390 * or a child of the current active pid namespace. 391 * 392 * This is required for fork to return a usable pid value and 393 * this maintains the property that processes and their 394 * children can not escape their current pid namespace. 395 */ 396 if (new->level < active->level) 397 return -EINVAL; 398 399 ancestor = new; 400 while (ancestor->level > active->level) 401 ancestor = ancestor->parent; 402 if (ancestor != active) 403 return -EINVAL; 404 405 put_pid_ns(nsproxy->pid_ns_for_children); 406 nsproxy->pid_ns_for_children = get_pid_ns(new); 407 return 0; 408 } 409 410 static struct ns_common *pidns_get_parent(struct ns_common *ns) 411 { 412 struct pid_namespace *active = task_active_pid_ns(current); 413 struct pid_namespace *pid_ns, *p; 414 415 /* See if the parent is in the current namespace */ 416 pid_ns = p = to_pid_ns(ns)->parent; 417 for (;;) { 418 if (!p) 419 return ERR_PTR(-EPERM); 420 if (p == active) 421 break; 422 p = p->parent; 423 } 424 425 return &get_pid_ns(pid_ns)->ns; 426 } 427 428 static struct user_namespace *pidns_owner(struct ns_common *ns) 429 { 430 return to_pid_ns(ns)->user_ns; 431 } 432 433 const struct proc_ns_operations pidns_operations = { 434 .name = "pid", 435 .type = CLONE_NEWPID, 436 .get = pidns_get, 437 .put = pidns_put, 438 .install = pidns_install, 439 .owner = pidns_owner, 440 .get_parent = pidns_get_parent, 441 }; 442 443 static __init int pid_namespaces_init(void) 444 { 445 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); 446 447 #ifdef CONFIG_CHECKPOINT_RESTORE 448 register_sysctl_paths(kern_path, pid_ns_ctl_table); 449 #endif 450 return 0; 451 } 452 453 __initcall(pid_namespaces_init); 454