xref: /openbmc/linux/kernel/pid_namespace.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 #include <linux/idr.h>
25 
26 static DEFINE_MUTEX(pid_caches_mutex);
27 static struct kmem_cache *pid_ns_cachep;
28 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
29 #define MAX_PID_NS_LEVEL 32
30 /* Write once array, filled from the beginning. */
31 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @level: pid namespace level
36  */
37 
38 static struct kmem_cache *create_pid_cachep(unsigned int level)
39 {
40 	/* Level 0 is init_pid_ns.pid_cachep */
41 	struct kmem_cache **pkc = &pid_cache[level - 1];
42 	struct kmem_cache *kc;
43 	char name[4 + 10 + 1];
44 	unsigned int len;
45 
46 	kc = READ_ONCE(*pkc);
47 	if (kc)
48 		return kc;
49 
50 	snprintf(name, sizeof(name), "pid_%u", level + 1);
51 	len = sizeof(struct pid) + level * sizeof(struct upid);
52 	mutex_lock(&pid_caches_mutex);
53 	/* Name collision forces to do allocation under mutex. */
54 	if (!*pkc)
55 		*pkc = kmem_cache_create(name, len, 0, SLAB_HWCACHE_ALIGN, 0);
56 	mutex_unlock(&pid_caches_mutex);
57 	/* current can fail, but someone else can succeed. */
58 	return READ_ONCE(*pkc);
59 }
60 
61 static void proc_cleanup_work(struct work_struct *work)
62 {
63 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
64 	pid_ns_release_proc(ns);
65 }
66 
67 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
68 {
69 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
70 }
71 
72 static void dec_pid_namespaces(struct ucounts *ucounts)
73 {
74 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
75 }
76 
77 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
78 	struct pid_namespace *parent_pid_ns)
79 {
80 	struct pid_namespace *ns;
81 	unsigned int level = parent_pid_ns->level + 1;
82 	struct ucounts *ucounts;
83 	int err;
84 
85 	err = -EINVAL;
86 	if (!in_userns(parent_pid_ns->user_ns, user_ns))
87 		goto out;
88 
89 	err = -ENOSPC;
90 	if (level > MAX_PID_NS_LEVEL)
91 		goto out;
92 	ucounts = inc_pid_namespaces(user_ns);
93 	if (!ucounts)
94 		goto out;
95 
96 	err = -ENOMEM;
97 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
98 	if (ns == NULL)
99 		goto out_dec;
100 
101 	idr_init(&ns->idr);
102 
103 	ns->pid_cachep = create_pid_cachep(level);
104 	if (ns->pid_cachep == NULL)
105 		goto out_free_idr;
106 
107 	err = ns_alloc_inum(&ns->ns);
108 	if (err)
109 		goto out_free_idr;
110 	ns->ns.ops = &pidns_operations;
111 
112 	kref_init(&ns->kref);
113 	ns->level = level;
114 	ns->parent = get_pid_ns(parent_pid_ns);
115 	ns->user_ns = get_user_ns(user_ns);
116 	ns->ucounts = ucounts;
117 	ns->pid_allocated = PIDNS_ADDING;
118 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
119 
120 	return ns;
121 
122 out_free_idr:
123 	idr_destroy(&ns->idr);
124 	kmem_cache_free(pid_ns_cachep, ns);
125 out_dec:
126 	dec_pid_namespaces(ucounts);
127 out:
128 	return ERR_PTR(err);
129 }
130 
131 static void delayed_free_pidns(struct rcu_head *p)
132 {
133 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
134 
135 	dec_pid_namespaces(ns->ucounts);
136 	put_user_ns(ns->user_ns);
137 
138 	kmem_cache_free(pid_ns_cachep, ns);
139 }
140 
141 static void destroy_pid_namespace(struct pid_namespace *ns)
142 {
143 	ns_free_inum(&ns->ns);
144 
145 	idr_destroy(&ns->idr);
146 	call_rcu(&ns->rcu, delayed_free_pidns);
147 }
148 
149 struct pid_namespace *copy_pid_ns(unsigned long flags,
150 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
151 {
152 	if (!(flags & CLONE_NEWPID))
153 		return get_pid_ns(old_ns);
154 	if (task_active_pid_ns(current) != old_ns)
155 		return ERR_PTR(-EINVAL);
156 	return create_pid_namespace(user_ns, old_ns);
157 }
158 
159 static void free_pid_ns(struct kref *kref)
160 {
161 	struct pid_namespace *ns;
162 
163 	ns = container_of(kref, struct pid_namespace, kref);
164 	destroy_pid_namespace(ns);
165 }
166 
167 void put_pid_ns(struct pid_namespace *ns)
168 {
169 	struct pid_namespace *parent;
170 
171 	while (ns != &init_pid_ns) {
172 		parent = ns->parent;
173 		if (!kref_put(&ns->kref, free_pid_ns))
174 			break;
175 		ns = parent;
176 	}
177 }
178 EXPORT_SYMBOL_GPL(put_pid_ns);
179 
180 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
181 {
182 	int nr;
183 	int rc;
184 	struct task_struct *task, *me = current;
185 	int init_pids = thread_group_leader(me) ? 1 : 2;
186 	struct pid *pid;
187 
188 	/* Don't allow any more processes into the pid namespace */
189 	disable_pid_allocation(pid_ns);
190 
191 	/*
192 	 * Ignore SIGCHLD causing any terminated children to autoreap.
193 	 * This speeds up the namespace shutdown, plus see the comment
194 	 * below.
195 	 */
196 	spin_lock_irq(&me->sighand->siglock);
197 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
198 	spin_unlock_irq(&me->sighand->siglock);
199 
200 	/*
201 	 * The last thread in the cgroup-init thread group is terminating.
202 	 * Find remaining pid_ts in the namespace, signal and wait for them
203 	 * to exit.
204 	 *
205 	 * Note:  This signals each threads in the namespace - even those that
206 	 * 	  belong to the same thread group, To avoid this, we would have
207 	 * 	  to walk the entire tasklist looking a processes in this
208 	 * 	  namespace, but that could be unnecessarily expensive if the
209 	 * 	  pid namespace has just a few processes. Or we need to
210 	 * 	  maintain a tasklist for each pid namespace.
211 	 *
212 	 */
213 	rcu_read_lock();
214 	read_lock(&tasklist_lock);
215 	nr = 2;
216 	idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
217 		task = pid_task(pid, PIDTYPE_PID);
218 		if (task && !__fatal_signal_pending(task))
219 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
220 	}
221 	read_unlock(&tasklist_lock);
222 	rcu_read_unlock();
223 
224 	/*
225 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
226 	 * kernel_wait4() will also block until our children traced from the
227 	 * parent namespace are detached and become EXIT_DEAD.
228 	 */
229 	do {
230 		clear_thread_flag(TIF_SIGPENDING);
231 		rc = kernel_wait4(-1, NULL, __WALL, NULL);
232 	} while (rc != -ECHILD);
233 
234 	/*
235 	 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
236 	 * really care, we could reparent them to the global init. We could
237 	 * exit and reap ->child_reaper even if it is not the last thread in
238 	 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
239 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
240 	 *
241 	 * But this ns can also have other tasks injected by setns()+fork().
242 	 * Again, ignoring the user visible semantics we do not really need
243 	 * to wait until they are all reaped, but they can be reparented to
244 	 * us and thus we need to ensure that pid->child_reaper stays valid
245 	 * until they all go away. See free_pid()->wake_up_process().
246 	 *
247 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
248 	 * if reparented.
249 	 */
250 	for (;;) {
251 		set_current_state(TASK_INTERRUPTIBLE);
252 		if (pid_ns->pid_allocated == init_pids)
253 			break;
254 		schedule();
255 	}
256 	__set_current_state(TASK_RUNNING);
257 
258 	if (pid_ns->reboot)
259 		current->signal->group_exit_code = pid_ns->reboot;
260 
261 	acct_exit_ns(pid_ns);
262 	return;
263 }
264 
265 #ifdef CONFIG_CHECKPOINT_RESTORE
266 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
267 		void __user *buffer, size_t *lenp, loff_t *ppos)
268 {
269 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
270 	struct ctl_table tmp = *table;
271 	int ret, next;
272 
273 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
274 		return -EPERM;
275 
276 	/*
277 	 * Writing directly to ns' last_pid field is OK, since this field
278 	 * is volatile in a living namespace anyway and a code writing to
279 	 * it should synchronize its usage with external means.
280 	 */
281 
282 	next = idr_get_cursor(&pid_ns->idr) - 1;
283 
284 	tmp.data = &next;
285 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
286 	if (!ret && write)
287 		idr_set_cursor(&pid_ns->idr, next + 1);
288 
289 	return ret;
290 }
291 
292 extern int pid_max;
293 static int zero = 0;
294 static struct ctl_table pid_ns_ctl_table[] = {
295 	{
296 		.procname = "ns_last_pid",
297 		.maxlen = sizeof(int),
298 		.mode = 0666, /* permissions are checked in the handler */
299 		.proc_handler = pid_ns_ctl_handler,
300 		.extra1 = &zero,
301 		.extra2 = &pid_max,
302 	},
303 	{ }
304 };
305 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
306 #endif	/* CONFIG_CHECKPOINT_RESTORE */
307 
308 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
309 {
310 	if (pid_ns == &init_pid_ns)
311 		return 0;
312 
313 	switch (cmd) {
314 	case LINUX_REBOOT_CMD_RESTART2:
315 	case LINUX_REBOOT_CMD_RESTART:
316 		pid_ns->reboot = SIGHUP;
317 		break;
318 
319 	case LINUX_REBOOT_CMD_POWER_OFF:
320 	case LINUX_REBOOT_CMD_HALT:
321 		pid_ns->reboot = SIGINT;
322 		break;
323 	default:
324 		return -EINVAL;
325 	}
326 
327 	read_lock(&tasklist_lock);
328 	force_sig(SIGKILL, pid_ns->child_reaper);
329 	read_unlock(&tasklist_lock);
330 
331 	do_exit(0);
332 
333 	/* Not reached */
334 	return 0;
335 }
336 
337 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
338 {
339 	return container_of(ns, struct pid_namespace, ns);
340 }
341 
342 static struct ns_common *pidns_get(struct task_struct *task)
343 {
344 	struct pid_namespace *ns;
345 
346 	rcu_read_lock();
347 	ns = task_active_pid_ns(task);
348 	if (ns)
349 		get_pid_ns(ns);
350 	rcu_read_unlock();
351 
352 	return ns ? &ns->ns : NULL;
353 }
354 
355 static struct ns_common *pidns_for_children_get(struct task_struct *task)
356 {
357 	struct pid_namespace *ns = NULL;
358 
359 	task_lock(task);
360 	if (task->nsproxy) {
361 		ns = task->nsproxy->pid_ns_for_children;
362 		get_pid_ns(ns);
363 	}
364 	task_unlock(task);
365 
366 	if (ns) {
367 		read_lock(&tasklist_lock);
368 		if (!ns->child_reaper) {
369 			put_pid_ns(ns);
370 			ns = NULL;
371 		}
372 		read_unlock(&tasklist_lock);
373 	}
374 
375 	return ns ? &ns->ns : NULL;
376 }
377 
378 static void pidns_put(struct ns_common *ns)
379 {
380 	put_pid_ns(to_pid_ns(ns));
381 }
382 
383 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
384 {
385 	struct pid_namespace *active = task_active_pid_ns(current);
386 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
387 
388 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
389 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
390 		return -EPERM;
391 
392 	/*
393 	 * Only allow entering the current active pid namespace
394 	 * or a child of the current active pid namespace.
395 	 *
396 	 * This is required for fork to return a usable pid value and
397 	 * this maintains the property that processes and their
398 	 * children can not escape their current pid namespace.
399 	 */
400 	if (new->level < active->level)
401 		return -EINVAL;
402 
403 	ancestor = new;
404 	while (ancestor->level > active->level)
405 		ancestor = ancestor->parent;
406 	if (ancestor != active)
407 		return -EINVAL;
408 
409 	put_pid_ns(nsproxy->pid_ns_for_children);
410 	nsproxy->pid_ns_for_children = get_pid_ns(new);
411 	return 0;
412 }
413 
414 static struct ns_common *pidns_get_parent(struct ns_common *ns)
415 {
416 	struct pid_namespace *active = task_active_pid_ns(current);
417 	struct pid_namespace *pid_ns, *p;
418 
419 	/* See if the parent is in the current namespace */
420 	pid_ns = p = to_pid_ns(ns)->parent;
421 	for (;;) {
422 		if (!p)
423 			return ERR_PTR(-EPERM);
424 		if (p == active)
425 			break;
426 		p = p->parent;
427 	}
428 
429 	return &get_pid_ns(pid_ns)->ns;
430 }
431 
432 static struct user_namespace *pidns_owner(struct ns_common *ns)
433 {
434 	return to_pid_ns(ns)->user_ns;
435 }
436 
437 const struct proc_ns_operations pidns_operations = {
438 	.name		= "pid",
439 	.type		= CLONE_NEWPID,
440 	.get		= pidns_get,
441 	.put		= pidns_put,
442 	.install	= pidns_install,
443 	.owner		= pidns_owner,
444 	.get_parent	= pidns_get_parent,
445 };
446 
447 const struct proc_ns_operations pidns_for_children_operations = {
448 	.name		= "pid_for_children",
449 	.real_ns_name	= "pid",
450 	.type		= CLONE_NEWPID,
451 	.get		= pidns_for_children_get,
452 	.put		= pidns_put,
453 	.install	= pidns_install,
454 	.owner		= pidns_owner,
455 	.get_parent	= pidns_get_parent,
456 };
457 
458 static __init int pid_namespaces_init(void)
459 {
460 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
461 
462 #ifdef CONFIG_CHECKPOINT_RESTORE
463 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
464 #endif
465 	return 0;
466 }
467 
468 __initcall(pid_namespaces_init);
469